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Traditional chemical kinetics may be inappropriate to describe chemical reactions in microdomains
involving only a small number of substrate and reactant molecules. Starting with the stochastic
dynamics of the molecules, we derive a master-diffusion equation for the joint probability density
of a mobile reactant and the number of bound substrate in a confined domain. We use the equation
to calculate the fluctuations in the number of bound substrate molecules as a function of initial
reactant distribution. A second model is presented based on a Markov description of the binding and
unbinding and on the mean first passage time of a molecule to a small portion of the boundary.
These models can be used for the description of noise due to gating of ionic channels by random
binding and unbinding of ligands in biological sensor cells, such as olfactory cilia, photoreceptors,
hair cells in the cochlea. © 2005 American Institute of Physics. �DOI: 10.1063/1.1849155�

I. INTRODUCTION

Biological microstructures such as synapses, dendritic
spines, subcellular domains, sensor cells, and many other
structures are regulated by chemical reactions that involve
only a small number of molecules, that is, between a few and
up to thousands of molecules. A chemical reaction that in-
volves only 10–100 proteins can cause a qualitative transi-
tion in the physiological behavior of a given part of a cell.
Large fluctuations should be expected in a reaction if so few
molecules are involved, both in transient and persistent bind-
ing and unbinding reactions. In the latter case large fluctua-
tions in the number of bound molecules should force the
physiological state to change all the time, unless there is a
specific mechanism that prevents the switch and stabilizes
the physiological state. Therefore, a theory of chemical ki-
netics of such reactions is needed to predict the threshold at
which switches occur and to explain how the physiological
function is regulated in molecular terms at a subcellular
level.

A physiological threshold can be determined in molecu-
lar terms, for example, when the number of activated mol-
ecules exceeds a certain value. The standard theory of chemi-
cal kinetics is insufficient for the determination of the
threshold value, because it is based on the assumption that
there is a sufficiently large number of reactant molecules and
it describes the time evolution of only the average number of
molecules. The standard theory of reaction diffusion de-
scribes chemical reactions in terms of concentrations so that
fluctuations due to a small number of molecules are lost.

For example, in dendritic spines of neurons a flow of
calcium entering through the NMDA channels can induce a
cascade of chemical reactions. As calcium ions diffuse they
can bind, unbind, and leave the spine without binding. But if
enough calcium binds specific molecules, such as calmodu-

lin, then certain proteins become activated, such as CaMK-II,
which are involved in regulating synaptic plasticity.1 Now if
sufficiently many of them are activated at about the same
time and thus the threshold is exceeded, additional changes
can be induced at the synapse level, affecting the physiologi-
cal properties of a neuron. In particular, such changes may
include a modification of the biophysical properties of some
receptors and/or increase the number of channels at a specific
area of the synapse, called the postsynaptic density. It is un-
clear how many CAMK-II are needed for crossing the
threshold, but the range is somewhere between 5 and 50. It is
remarkable that as few as 5–50 molecules can control the
synaptic weight.1 The number of phosphorylated CAMK-II,
activated after a transient calcium flow, depends on the loca-
tion of the proteins, the location of the channels, the geo-
metrical restrictions imposed by the spine shape, and the
state of the proteins. All of these factors play a crucial role in
determining the threshold.

The photoreceptor cells are another example, where fluc-
tuations in the number of bound molecules determine the
physiological limitations of the cell. Indeed, in the outer seg-
ment of cones and rods of the retina, the total number of
open channels fluctuates continuously due to the binding and
unbinding of specific gating molecules to their receptors.
These fluctuations are directly converted into fluctuations of
the membrane potential, which are called “dark noise,” and
thus determine the signal to noise ratio2 for a photon detec-
tion. The fluctuation in the number of open channels is regu-
lated by the number of gated molecules and depends on the
geometry of the outer segment and the distribution of chan-
nels. It is not clear what are the details of the biochemical
processes involved in regulating the number of open chan-
nels, but interestingly, the signal due to a single photon event
is sufficient to overcome the noise amplitude in rods, but not
in cones, although their biochemical properties are similar.
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As the binding molecules diffuse in the cell they can bind
and unbind to channels, thus causing fluctuations in the num-
ber of open channels. The fluctuation depends on the arrival
time of the binding molecules, called cGMP, to the channel
binding sites.

In the mathematical description of the binding and un-
binding reactions, we model the diffusion of the particles as
Brownian motion and binding occurs when a particle reaches
a binding site. The binding probability depends on the geom-
etry of the domain and on the distribution of the channels. A
channel opens when it binds to two or three cGMP molecules
and in the absence of light, the number of open channels is
small, approximatiely six to ten per microdomain in a mam-
malian rod, when there are only 60 cGMP molecules. Due to
the random binding and unbinding of the molecules to the
channels the number of open channels is a stochastic process.

In this paper we start with the stochastic dynamics of the
reactant molecules in a microdomain and derive a master-
diffusion equation for the joint probability density of the mo-
bile reactant and the number of bound immobile substrate
molecules. We use the equation to calculate the fluctuations
in the number of bound substrate molecules as a function of
initial reactant concentration. We apply the present theory to
the computation of the mean and variance of the fluctuation
in the number of open channels, and find their dependence
on the initial number of the mobile reactant, the geometry of
the compartment, and the distribution of channels.

Our model can predict the fluctuation intensity produced
by binding and unbinding to channels in confined compart-
ments, such as the compartment �the space between two con-
secutive disks� of cone and rod outer segment, or any other
subcompartment of a sensor cell. Such a prediction can
clarify part of the noise generation. At the present time the
noise in a confined microdomain cannot be directly mea-
sured. Instead, excised patch measurements are done,3,4 in
which the cell structure is destroyed. Thus computation and
simulation of mathematical models are the only tools for
studying noise in this biological context.

II. A STOCHASTIC MODEL OF A NON-ARRHENIUS
CHEMICAL REACTION

A. Chemical reaction

We consider two species of reactants, the mobile reactant
M that diffuses in a bounded domain �, and the stationary
substrate S �e.g., a protein�. The boundary �� of the domain
� is partitioned into an absorbing part ��a �e.g., pumps,
exchangers, another substrate that forms permanent bonds
with M, and so on� and a reflecting part ��� �e.g., a cell
membrane�. In this model the volume of M is neglected. We
assume that there are binding sites on the substrate. In terms
of traditional chemical kinetics the binding of M to S follows
the law

M + Sfree�
kb

kf

MS , �1�

where kf is the forward binding rate constant, kb is the back-
ward binding rate constant, and Sfree is the unbound sub-
strate.

However, when only a small number of reactant and
substrate molecules are involved in the reaction, as is the
case in a microdomain in a biological cell, this reaction has
to be described by a molecular model, rather than by con-
centrations. The description of this reaction on the molecular
level begins with the following definitions.

�1� M�t�, number of unbound M particles at time t;
�2� S��x , t�, number of free sites in volume �x at time t;
�3� S�t�, number of unbound binding sites at time t;
�4� MS�t�=M�0�−M�t�, number of bound M particles at

time t;
�5� s0�x�, initial density of substrate;
�6� Smax=��s0�x�dx, total number of binding sites in �.

The M�0� reactant particles are initially distributed with
probability density m0�x�. The initial density s0�x� integrates
to S�0�. We assume that the M particles diffuse and we de-
note by x�t� the random trajectory of an unbound M particle.
We consider a small volume �x about x, which contains
initially s0�x��x free binding sites and m0�x��x unbound M
particles.

The joint probability of an M trajectory and the number
of bound sites in the volume �x is

p�x,S,t�y��x = Pr�x�t� � x + �x,S��x,t� = S�x�0� = y� .

�2�

The function p�x ,S , t �y� is the joint probability density to
find an M particle and S��x , t� free binding sites at x at time
t, conditioned by the initial position y of the M particle.

The marginal probability density of an M trajectory is

p�x,t�y� = 	
free S

p�x,S,t�y� ,

where the sum is over all free binding sites in the volume
�x. The number of free M molecules in the volume �x at x
is

Mfree�x,t� = M0�x 	
free S



�

p�x,S,t�y�m0�y�dy .

The joint probability density function of x and S is

p�x,S,t� = 

�

p�x,S,t�y�m0�y�dy .

The two-dimensional process �Mfree�x , t� ,S�x , t�� is Markov-
ian. The evolution of p�x ,S , t� is governed by the diffusion
of M particles in and out of the volume �x, and their binding
and unbinding inside the volume �x. The influx in the time
interval �t , t+�t� is

�
�Volume �x

J�x,S,t�y� · n�x�dSx�t

= 

Volume �x

�p�x,S,t + �t�y� − p�x,S,t�y��dx ,

which represents diffusion with coefficient D. Additional
change in the contents of the volume �x is due to the binding
and unbinding of M particles to the substrate. When there are
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S free binding sites in the volume �x �see Fig. 1�, the prob-
ability that one M particle binds to a free site in the volume
�x in the time interval �t , t+�t� is proportional both to S and
to the number Mfree�x , t� of free M particles in the volume
�x. It is given by

k1M0p�x,S,t�S�x�t .

The probability that one particle unbinds in the volume �x in
this time interval is proportional to the number s0�x��x−S of
bound sites in the volume �x, given by

k−1�s0�x − S��t .

Thus the probability of S free sites when no change occurred
in the number of free sites is

p�x,S,t��x�1 − k1M0p�x,S,t�S �x �t − k−1

��s0�x��x − S��t� .

The number of free sites can change to S at the end of the
interval �t , t+�t� if it was S+1 at the beginning and one
bond was formed, or if it was S−1 and one particle was
unbound. The probability of this event, as calculated above,
is

k1M0�x�S + 1�p�x,S + 1,t��t + k−1�s0�x��x − S + 1��t .

The probability of x ,S at time t+�t is, therefore,

p�x,S,t + �t��x = − � · J�x,S,t�y��x + p�x,S,t��x

��1 − M0k1�x Sp�x,S,t��t

− k−1�s0�x��x − S��t� + M0k1

��S + 1�p2�x,S + 1,t���x�2�t

+ k−1�s0�x��x − S + 1�p�x,S − 1,t�

��x�t

for S=0,1 ,2 ,… ,Smax, the coupled partial differential equa-
tions

�p�x,S,t�
�t

= − � · J�x,S,t� − K1p2�x,S,t�S − k−1�S0�x�

− S�p�x,S,t� + K1�S + 1�p2�x,S + 1,t�

+ k−1�S0�x� − S + 1�p�x,S − 1,t� , �3�

where by definition J�x ,S , t� is the joint probability flux at
position x at time t, and S proteins are free. It is defined in
the diffusion case by

J�x,S,t� = − D � p�x,S,t� . �4�

The new �forward� binding rate is

K1 = M0k1�x

and

S0�x� = s0�x��x

= total number of binding sites in the volume �x .

Thus K1 is the probability flux into the binding sites. The
boundary conditions on S are

p�x,S,t� = 0 for S � 0 and S � S0�x� . �5�

Remark 1. By summing Eq. �3� over 0�S�S0�x� and
using the boundary conditions �5�, we obtain

�Mtotal�x,t�
�t

= − � · JM�x,t� , �6�

for the marginal density of the M particles. It means that all
bound and free M particles effectively diffuse.

Remark 2. When at specific locations there can be at
most one binding site, the system �3� reduces to the coupled
equations

�p�x,0,t�
�t

= D�p�x,0,t� − k−1p�x,0,t� + K1p2�x,1,t� ,

�p�x,1,t�
�t

= D�p�x,1,t� + k−1p�x,0,t� − K1p2�x,1,t� . �7�

Here S0�x� can take the values 0 or 1. When no molecules
can escape from a bounded domain, the flux associated with
p�x ,S , t� satisfies the reflective boundary condition

�J · n��� = 0. �8�

The initial condition, when no substrate is bound, is
given by p�x ,0 ,0�=m0�x�, hence p�x ,1 ,0�=0. When the to-
tal number of M particles stays constant �i.e., no particles
leave the domain�, adding Eqs. �7� gives in the steady state

p�x,0� + p�x,1� =
1

���
. �9�

If the M particles can escape the compartment, e.g., by
being absorbed in a part of the boundary ��a, the condition
�8� should be changed to

�J · n���−��a
= 0 �10�

and

FIG. 1. Chemical reaction inside a microdomain. Each free particle �white
circle� moves according to a Brownian motion until it binds to a free site
�black color�. An occupied site cannot accept any other particles. A molecule
is composed of a finite number of sites. Parts of the microdomain is reflec-
tive and the rest is absorbing.
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p�x,S,t���a
= 0. �11�

In this case Eq. �9� no longer holds.
Remark 3. Obviously, S0�x� takes only integer values.

We assume that its discontinuities are located on smooth in-
terfaces. The density p�x ,S , t� and the normal component of
the flux J�x ,S , t� ·n�x� are continuous across the interfaces
for all S=0,1 ,… ,Smax.

B. Moments of the pdf

Statistical moments of the pdf can be computed from Eq.
�3�. The average and the standard deviation of the number of
bound proteins are evaluated for Eq. �7�. The mean of the
number of bound proteins at time t is given by

�Sb�t�
 = 

�

S0�x�p�x,1,t�dx . �12�

The standard deviation is given by

�2�t� = �Sb
2�t�
 − �Sb�t�
2

= 

�

S0
2�x�p�x,1,t�dx − �


�

S0�x�p�x,1,t�dx�2

.

�13�

When the proteins are uniformly distributed on a subset
����, the distribution S0�x� is given by the characteristic
function of the subset ��,

S0�x� = 	���x�
N0

����
, �14�

where the total number of binding sites is

N0 = 

�

S0�x�dx .

We obtain the standard deviation of bound sites from the
expression �13� as

�2�t� = �Sb
2�t�
 − �Sb�t�
2

= � N0

����
�2

�S̄0�t� − S̄0
2�t�� = � N0

����
�2

S̄0�t��1 − S̄0�t�� ,

�15�

where

S̄0�t� = 

��

p�x,1,t�dx �16�

is the fraction of bound sites. Note that

S̄0�t� � 1.

C. Standard deviation of the number of bound protein
in some cases

We consider the one-dimensional case where �= �0,L�
and S0�x� is either 0 or 1 in intervals. In the steady state the
system �7� is

0 = D�p�x,0� − k−1S0�x�p�x,0� + K1p2�x,1� ,

0 = D�p�x,1� + k−1S0�x�p�x,0� − K1p2�x,1� ,

1

L
= p�x,0� + p�x,1� , �17�

which reduces to

Dp��x,1� + k−1S0�x�� 1

L
− p�x,1�� − K1p2�x,1� = 0. �18�

We convert to densities by setting

cM�x,1� = M0p�x,1� .

Then Eq. �18� becomes

DcM� �x,1� + k−1S0�x��M0

L
− cM�x,1�� −

K1

M0
cM

2 �x,1� = 0.

�19�

The function cM�x ,1� is supported where the protein are lo-
cated.

When the boundary conditions are reflective for the M
trajectories, using the uniqueness of the solution, then at a
point x, where S0�x� is supported is

cM�x,1� =
2k−1S0�x�M0/L

k−1S0�x� + ��k−1S0�x��2 + 4K1k−1S0�x�/L
.

In particular, if the substrate is uniformly distributed in in-
tervals S0�x�=NS /L and M0
NS, then the fraction of bound
M particles is

pM =
1

M0



0

L

cM�x,1�dx =
2

1 + �1 + 4
M0k1�x

NSk−1

� 1, �20�

which means that practically all M particles are bound. If
M0�NS, then Eq. �20� gives

pM =
1

M0



0

L

cM�x,1�dx �� NSk−1

M0k1�x

 1. �21�

In this case, the variance of the fluctuations in the num-
ber of bound M particles, which is the same as the number of
bound sites, as a function of M0 and NS, is given by

�S
2�M0� = pM�1 − pM�

=
2

1 + �1 + 4
M0k1�x

NSk−1

�1 −
2

1 + �1 + 4
M0k1�x

NSk−1

� .

�22�

The graph of �S
2�M0� vanishes for both M0→0 and M0→�

and has a unique finite maximum, as in Fig. 2.

D. General equations when binding proteins are
located on the boundary of the domain

We consider the same problem, but with binding sites
located on the boundary �� with surface density S0�x� �see
Fig. 3�. This may represent for example binding to gated
channels, which open when they bind agonist molecules.
Some channels may need to bind several agonist molecules
to open; however, we consider here the case that a single
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agonist molecule opens the channel upon binding. We as-
sume that the agonist molecule cannot escape �.

The initial M0 agonist molecules diffuse in � and are
reflected at �� at nonbinding sites, but can bind to a free
binding site on a protein channel in the membrane with a
certain forward binding rate k1. When this occurs the channel
opens and stays open as long as the agonist is bound. The
bound agonist is released from the bound state at a backward
rate k−1. Then the number of open channels is the number of
missing M particles in �. We write

M0 = 

�

c�x,t�dx + 

��

Sbound�x,t�dSx .

The equations for the density of M particles in � and in ��
is

�c�x,t�
�t

= D�c�x,t� ,

− D
�c�x,t�

�n
= �J�x,t� · n�x��x��� = Ṡbound�x,t� = k1c�x,t�

��S0�x� − Sbound�x,t�� − k−1Sbound�x,t� . �23�

The probability of k bound sites on the boundary at time
t satisfies the equations

Ṗk�t� = − Pk�t�K1�
��

c�x,t��S0�x� − Sbound�x,t��dSx

− kPk�t�k−1 + Pk−1�t�K1�
��

c�x,t��S0�x�

− Sbound�x,t��dSx + �k + 1�Pk+1�t�k−1, �24�

Ṗ0�t� = − P0�t�K1�
��

c�x,t��S0�x� − Sbound�x,t��dSx

+ P1�t�k−1, �25�

FIG. 2. The variance square equal to �S
2�M�, for various values of the

backward binding rate k−1= �250,500,1000,1500�. The total number of sub-
strate molecules is fixed at S=10 and �=0.01 ms.

FIG. 3. Schematic reaction in a microdomain where channels are located on the boundary. Molecules move according to a Brownian motion inside the
domain. When a particle hits a free channel, it can bound and stays there for a certain amount of time. Particles can escape through the absorbing boundary.
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ṖS0
�t� = − PS0

�t�K1�
��

c�x,t��S0�x� − Sbound�x,t��dSx

− S0PS0
�t�k−1 + PS0−1�t�K1�

��

c�x,t��S0�x�

− Sbound�x,t��dSx, �26�

where, according to Eq. �23�,

Ṡbound�x,t� = k1c�x,t��S0�x� − Sbound�x,t�� − k−1Sbound�x,t� .

Here 0�k�S0, where

S0 = �
��

S0�x�dSx,

that is, P−1�t�= PS0+1�t�=0.
The moments of the number of bound sites are

�Sb�t�
 = 	
k=1

S0

kPk�t�, �Sb
2�t�
 = 	

k=1

S0

k2Pk�t� .

The variance in the number of bound sites is

�2�t� = �Sb
2�t�
 − �Sb�t�
2.

III. THE FLUCTUATION IN THE NUMBER OF
PARTICLES IN A PUSH-PULL CHEMICAL REACTION

A push-pull chemical reaction consists of a source that
produces particles at a given rate and a sink or a killing term
that destroy or remove the particles from the system with its
rate. When the movement of the particles is driven by diffu-
sion and the source and the sink are not uniformly distrib-
uted, the number of particles fluctuates. In this section, we
propose an approach to estimate the mean number and the
fluctuations. A permanent regime imposes that the rate of the
sink and the source satisfy some specific conditions. At equi-
librium, in the limit of a large number particles, the push-pull
mechanism reaches a steady state and the number of particles
does not fluctuate and can be computed using the rate con-
stant. But for a small number, the analysis requires to study
separately the dynamics of the particles and especially the
law of injection by the source.

In the neurobiological context, many biochemical reac-
tions are based on push-pull mechanisms: at a given location,
a source produces molecules and somewhere else, an enzyme
modeled as a sink, destroys the molecules with a certain
efficacy. In general, sinks and sources are not uniformly dis-
tributed, which induces fluctuations. As an example, gating
molecules that can open channels are produced by such
push-pull mechanism, and the fluctuations in the number of
molecules induce a fluctuation in the number of open chan-
nels, which is revealed at the cellular level. It is of particular
interest to examine the situation where molecules move by
diffusion, the enzyme sink is represented by a single mol-
ecule and the sources are uniformly distributed. For example,
this occurs inside a compartment of photoreceptors for the
regulation of cGMP molecules.

A. The push-pull mechanism

The sink of the push-pull mechanism is modeled by a
killing term located at a single point. The killing term is a
Dirac function �see Ref. 5 for the exact mathematical inter-
pretation�. The source is assumed to be uniformly distributed
and molecules are produced at a constant rate 
.

We assume that the molecules are independent and their
movement in a domain � can be described by the stochastic
differential equations

ẋk = b�xk� + �2Dẇk, k = 1,…,N , �27�

where b�x� is a drift vector. Since the molecules cannot es-
cape, reflecting boundary conditions are imposed at the
boundary ��. If a particle is injected in � at time t=0, its
pdf p�x , t� satisfies the Fokker-Planck equation

�p�x,t�
�t

= − � · J�x,t� − k1��x − x1�p�x,t� ,

�J · n��� = 0, �28�

where the probability flux density vector is given by

J�x,t� = − D � p�x,t� + b�x�p�x,t� . �29�

At any moment of time, when there are N particles inside �,
the concentration c�x , t� is given by

c�x,t� = Np�x,t� . �30�

Particles are injected with a Poisson stream at a rate 
, that
is, at independent and identically distributed interinjection
times, whose pdf is

f�t� = 
e−
t.

The mean interinjection time is E�T�=
−1. The probability
that a molecule injected at time t=0 at a point y survives at
time t is

Sy�t� = Pr�x�t� � �� = 

�

p�x,t�y�dx . �31�

When y=0, we denote S�t�=S0�t�. To compute the mean and
the variance of the number of molecules N�t� surviving in �
at time t, we use here the renewal equation6–8

Pr�N�t� = 0� = Pr�x�t� � �� · �

0

t

f�s�Pr�N�t − s� = 0�ds

+ 

t

�

f�s�ds� , �32�

Pr�N�t� = 1� = Pr�x�t� � �� · �

0

t

f�s�Pr�N�t − s� = 0�ds

+ 

t

�

f�s�ds� + Pr�x�t� � ��

· 

0

t

f�s�Pr�N�t − s� = 1�ds . �33�
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Pr�N�t� = n� = Pr�x�t� � �� · 

0

t

f�s�Pr�N�t − s�

= n − 1�ds + Pr�x�t� � �� · 

0

t

f�s�Pr

��N�t − s� = n�ds, n � 1. �34�

The expected number EN�t� of molecules surviving in � at
time t is

EN�t� = 	
n=1

�

nPr�N�t� = n�

= Pr�x�t� � �� · �

0

t

fL�s�EN�t − s�ds

+ 

0

�

f�s�ds� + Pr�x�t� � �� · 

0

t

f�s�EN�t

− s�ds = Pr�x�t� � �� + 

0

t

f�s�EN�t − s�ds .

�35�

The integral equation �35� is solved by the Laplace transform
as

n̄��� =
S̄���

1 − f̄���
, �36�

where S̄��� is the Laplace transform of Pr�x�t���� when the
initial position of insertion is 0.

f̄��� =




 + �
�37�

and S̄��� is the Laplace transform of the survival probability.
Therefore the Laplace transform of EN�t� is given by

n̄��� =
�
 + ��S̄���

�
. �38�

1. Computation of S̄„�… in a driftless one-dimensional
model

We consider the one-dimensional equation �28� in �
= �0,L� and b�x�=0. We assume, for simplicity, that L=�
and D=1.

The survival probability given by S�t�=�0
Lp�x , t �y�dx is

also �see Ref. 5� equal to

S�t� = 1 − k1

0

t

p�x,t�y�dx . �39�

The Laplace transform is

S̄��� =
1 − k1p̄�x1,��y�

�
. �40�

p̄�x1 ,� �y� can be computed using the Green’s function for
the Neumann problem for Eq. �28�, given by

G�x,t�y� = 1 +
2

�
	
n=1

�

e−n2tcos nx cos ny . �41�

Following the computations of Ref. 5, an integral represen-
tation of the solution of Eq. �28� is given by

p�x,t�y� = − k1

0

t

p�x1,s�y�G�x,t − s�x1�ds + G�x,t�y� .

�42�

The Laplace transform of Eq. �42� is given by

p̄�x,��y� = − k1p̄�x1,��y�Ḡ�x,��x1�ds + Ḡ�x,��y� . �43�

Thus,

p̄�x1,��y� =
Ḡ�x1,��y�

1 + k1Ḡ�x1,��x1�
�44�

and

p̄�x,��y� =
1

k1
+

Ḡ�x1,��y� − Ḡ�x1,��x1� − k1
−1

1 + k1Ḡ�x1,��x1�
. �45�

With

Ḡ�x,��y� =
1

�
+

2

�
	
n=1

2
cos nx cos ny

n2 + �
, �46�

for x ,y� �0,��, and to first order in �, we obtain

p̄�x,��y� =
1

k1
+

2
� 	

n=1

�

� cos nx cos ny
n2 − cos2nx

n2 � − k1
−1

k1 +
2k1

� 	
n=1

�

cos nx cos ny
n2

� + o���

=
1

k1
+

1
2� �x2 − y2� − k1

−1

k1�1 + 2
���2

6 − �
2 x + x2

2 ��� + o��� .

Hence

S̄��� =
1 − k1p̄�x1,��y�

�
=

−1
2� �x2 − y2� + k1

−1

�1 + 2
���2

6 − �
2 x + x2

2 �� + o�1� .

Using the normalization condition that S�0�=1, we find the
long time asymptotics

S�t��r→+�exp�− �t� , �47�

where

�−1 =
−1
2� �x2 − y2� + k1

−1

�1 + 2
���2

6 − �
2 x + x2

2 �� . �48�

The unnormalized time constant for x ,y� �0,L� is

�−1 =
−�3

2D �x2 − y2� + k1
−1

�1 + 2�� 1
6 − 1

2Lx + x2

L2��
. �49�
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2. The steady state limit

In the steady state, the mean number of molecules N�t�
surviving in � at time t is

lim
t→�

EN�t� = lim
�→0

�n̄��� = 
S̄�0� . �50�

Note that

S̄�0� = 

0

� 

0

L

p�x,t�0�dx .

If at time t=0 the particle is injected randomly at a point y,
we index S by y and write

S̄y�0� = 

0

� 

0

L

p�x,t�y�dx = 

0

L

G�x�y�dy ,

where G�x �y� is the solution of

− ��x − y� = D
�2G

�x2 − k��x − x1�G ,

�G�0�y�
�x

=
�G�L�y�

�x
= 0.

Thus,

G�x�y� = −
��x − y�

D
+

��x − x1�
D

+
1

k1
,

where ��x� is the integral of the Heaviside unit step function.
It follows that

S̄y�0� = 

0

L

G�x�y�dy = −
�L − y�2

2D
+

�L − x1�2

2D
+

L

k1
.

At steady state, the mean number of molecules surviving in
� at time t is given by

Ny��� = 
S̄y�0� = 
�−
�L − y�2

2D
+

�L − x1�2

2D
+

L

k1
� . �51�

If the particle is initially uniformly distributed, Pr�y� �x ,x
+dx��=dx /L, then the steady state mean number of surviving
molecules is given by

N��� = 
Ey�S̄y�0�� = 
�−
L2

6D
+

�L − x1�2

2D
+

L

k1
� . �52�

3. Variance

The second moment of the total number of surviving
particles is defined as

EN2�t� = 	
n=1

�

n2Pr�N�t� = n� .

We will now compute such number using the renewal equa-
tions. We have

EN2�t� = Pr�x�t� � ��

0

t

f�s�k2Pr�N�t − s� = k − 1�ds

+ Pr�x�t� � �0,L��

0

t

f�s�k2Pr�N�t − s� = k�ds

+ Pr�x�t� � ��

t

�

f�s�ds ,

which leads to

EN2�t� = Pr�x�t� � �0,L��

t

�

f�s�ds + Pr�x�t�

� ��

0

t

EN2�t − s�f�s�ds

+ Pr�x�t� � �0,L��

0

t

EN2�t − s�f�s�ds

+ 	
k

Pr�x�t� � ��

0

t

�2k + 1�Pr�N�t�

= k − 1�f�s�ds .

Thus,

EN2�t� = 

0

t

EN2�t − s�f�s�ds + Pr�x�t� � ��

t

�

f�s�ds

+ 2Pr�x�t� � ��

0

t

E�N�t − s�f�s�ds + Pr�x�t�

� ��

0

t

f�s�ds

and

EN2�t� = 

0

t

EN2�t − s�f�s�ds + Pr�x�t� � �� + 2Pr�x�t�

� ��

0

t

f�s�E�N�t − s��ds . �53�

Remark. The variance can also be written in the form

�N
2 �t� = EN2�t� − �E�N�t���2 = Pr�x�t� � �� − Pr�x�t�

� ��2 + 

0

t

EN2�t − s�f�s�ds

− �

0

t

E�N�t − s��f�s�ds�2

.

4. The steady state variance

To compute the variance in the steady state limit, as t
→�, we Laplace transform equation �53�,
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n̄2��� =
S̄���

1 − f̄���
+

2

1 − f̄���

�

0

� �S�t�

0

t

f�t − s�n�s�ds�e−t�dt .

It follows that

EN2��� = lim
t→�

EN2�t� = lim
�→0

�n̄2��� .

Writing

�n̄2��� = I��� + II��� ,

we obtain the short � approximation

I��� = �
S̄���

1 − f̄���
� 
S̄�0� .

To evaluate

II��� = �
2

1 − f̄���



0

� �S�t�

0

t

f�t − s�n�s�ds�e−t�dt ,

we recall that f�t�=
e−
t and approximating S�t� by e−�t and
interchanging the order of integration, we obtain

II��� = �

2

1 − f̄���



0

�

n�s�e
s

s

�

e−t�
+�+��dt

= �

2

1 − f̄���

1


 + � + �



0

�

n�s�e−t��+��dt

= �

2

1 − f̄���

1


 + � + �
n̄�� + �� � 2
2 1


 + �
n̄��� .

Finally,

EN2��� = 
S̄�0� + 2
2 1


 + �
n̄���

and

�2 = EN2��� − �EN����2 = 
S̄�0� − 
2S̄2�0� +
2
2


 + �
n̄��� ,

�54�

where S̄�0�=N��� /
, the time � depends only on k1, the
diffusion constant, and the length L, as given in formula �49�,
and n̄���= ��
+�� /��S̄���, where S̄��� is the Laplace trans-
form of the survival probability at time �.

B. Push-pull chemical reaction in the continuum limit

When the number of reacting molecules is large enough,
regulated by a push-pull mechanism of hydrolysis and syn-
thesis, the reaction-diffusion equations is sufficient to de-
scribe the evolution of such system. We assume that the mol-
ecules diffuse inside a domain �, but the synthesis occurs
only uniformly in a domain ���� while the hydrolysis is
performed by isolated enzymes. The hydrolysis can be mod-

eled as a killing measure k�x� �see Ref. 5�. When there are a
discreet number Nh of killing sources, the killing measure
k�x , t� is the sum of � measures given by

k�x� = 	
1

Nh

k1��x − xk� ,

where k1 is the arrival rate constant to the killing sources. If
the boundary of the domain is divided into an absorbing part
��a and a reflective part ��b, the concentration c�x , t� can be
defined as the probability density function p�x , t� of the sys-
tem of N particles as

c�x,t� = Np�x,t� ,

and

�c�x,t�
�t

= D�c�x,t� − k�x,t�c�x,t� + 
	��,

� �c�x,t�
�n

�
��r

= 0,

�c�x,t����a
= 0,

c�x,0� = c0�x� ,

where



�

c0�x�dx = N .

The mean number of particles N�t� at any moment of time is
given by

N�t� = 

�

c�x,t�dx .

When the particles are contained inside a fixed domain and
cannot escape, �a is empty. The steady state density c�x�
=limt→�c�x , t� is a solution of

0 = D�c�x� − k�x�c�x� + 
	��,

0 = � �c�x�
�n

�
��r

.

In one dimension ��=�= �0,L� and the killing measure is
reduced to a single point. The steady state equation is

0 = D
�2c�x�
�x2 − k1��x − x1�c�x� + 
 ,

0 = � �c�x�
�x

�
x=0

= � �c�x�
�x

�
x=L

, �55�

where k1 is the forward rate for one active site �it has units of
length per time�, 
 is the uniform injection rate of particle
due to synthesis �it is the number of injected particles per
second per unit length�. Two integrations of Eq. �55� lead to
the solution
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c�x� = 
�L��x − x1�
D

−
x2

2D
+ � L

k1
+

x1
2

2D
�� , �56�

where � is the integral of the Heaviside function,

��x� = �0 for x � 0

x for x � 0.
�

Finally, the total number of free molecules is given by

N0 = 

0

L

c�x�dx =

L

2D
�L − x1�2 −


L3

6D
+ 
L�L

k
+

x1
2

2D
� ,

which should be compared to the steady state mean number
obtained in the discrete case �52�.

IV. MARKOVIAN MODEL OF CELL NOISE

We propose in this section an alternative model for com-
puting the fluctuation of the number of bound molecules,
based on a Markovian approach. We consider a domain
��R3 with M mobile agonist molecules and S receptors,
embedded in the boundary ��, that open channels when they
bind a single mobile agonist molecule. We assume that the
receptors occupy a small portion of the surface area of ��.
The agonists diffuse in � independently of each other.
Bound agonists are released independently of each other at
exponential waiting times with rate k−1.

For a single receptor and a single agonist the time to
binding is the first passage time to diffuse to a small portion
of the boundary ��a, which is absorbing and represents the
active surface of the receptor, whereas the remaining part of
�� is reflecting. It can be shown9 that the probability distri-
bution of the first passage time to ��a is approximately ex-
ponential with rate

�1 =
1

��1

,

where ��1
 is the mean first passage time to ��a.
When there are S channels, k�t� of which are free at time

t, and M agonists �gating molecules�,

N�t� = �M − S + k�t��+ �57�

of which are free to diffuse in � at time t, where

x+ = max�0,x� .

Thus,

�S − M�+ � k�t� � S .

We assume that the pdf of the time for the next receptor
to bind is well approximated by the exponential pdf with
instantaneous rate

�k�t� =
N�t�k�t�

��1

.

This assumption is justified if the total area of the absorbing
boundary �the channels� is small relative to the surface area
of the reflecting boundary.9

It follows that when N�t�=N and k�t�=k, the mean time
to bind is

�k =
Nk

��1

=

k�M − S + k�+

��1

.

The number of bound receptors at time t is a birth-death
process with states 0, 1, 2, …, min�M ,S� and transition rates

�k→k+1 = �k, �k→k−1 = � = k−1.

The boundary conditions are

�S→S+1 = 0, �0→−1 = 0.

Setting

Pk�t� = Pr�k�t� = k� ,

we have10

Ṗ�S − M�+�t� = − k−1SP�S − M�+�t� + �1P�S − M�++1�t� ,

Ṗk�t� = − ��k + k−1�S − k��Pk�t� + �k+1Pk+1�t� + k−1�S − k

+ 1�Pk−1�t� for k = �S − M�+ + 1,…,S − 1,

ṖS�t� = − �SPS�t� + k−1PS−1�t� .

The initial condition is Pk,q�0�=�k,S�q,0. In the steady state
the average number of open channels is

�k�
 = 	
j=�S − M�+

S

jPj ,

where Pj =limt→� Pj�t�, and the stationary variance in the
number of open channels is determined from the second mo-
ment

�k�
2 
 = 	

j=�S − M�+

S

j2Pj

by

�2�M,S� = �k�
2 
 − �k�
2.

A. The steady state approximation

In the steady state

0 = − k−1SP�S − M�+ + �1P�S − M�++1,

0 = − ��k + k−1�S − k��Pk + �k+1Pk+1 + k−1�S − k + 1�

�Pk−1 for k = �S − M�+ + 1,…,S − 1,

0 = − �SPS + k−1PS−1,

which gives for �S−M�+�k�S,

PS−1 = PS
�S

k−1
,

PS−k = PS

�
i=S−k+1

S

�i

k ! k−1
k = PS

�
i=S−k+1

S

i�M − S + i�+

k ! ���1
k−1�k ,
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P�S − M�+ = PS

�
i=�S − M�++1

S

�i

�S − �S − M�+� ! k−1
S−�S − M�+

= PS

�
i=�S − M�++1

S

i�M − S + i�+

�S − �S − M�+� ! �k−1��1
�k .

The constant P0 is determined from the normalization con-
dition

	
k=�S − M�+

S

Pk = 	
k=S−�S − M�+

0

PS−k = 1.

Thus,

PS =
1

1 + 	
k=1

S−�S − M�+
�

i=S−k+1

S

�i

k!k−1
k

=
1

1 + 	
k=1

S−�S − M�+
�

i=S−k+1

S

i�M−S+i�+

k!���1
k−1�k

,

�k�
 = 	
k=S−1

�S − M�+

�S − k�+PS−k = PS 	
k=S−1

�S − M�+

�S − k�+

�

�
i=S−k+1

S

i�M − S + i�+

k ! ���1
k−1�k ,

�k�
2 
 = 	

k=S−1

�S − M�+

��S − k�+�2PS−k = PS 	
k=S−1

�S − M�+

��S − k�+�2

�

�
i=S−k+1

S

i�M − S + i�+

k ! ���1
k−1�k ,

�S
2�M� = �k�

2 
 − �k�
2. �58�

The graph of �S
2�M� versus M is given in Fig. 2.

B. The steady state mean number of open channels

Using the above Markov model an explicit formula can
be obtained for the mean number of open channels �that bind
an agonist molecule�. It is assumed here that a channel can
bind only a single agonist molecule at a time. This approach
does not give any information about the fluctuations.

The steady state fraction n1
* of bound agonist molecules

in a bounded domain � that contains S channels and M
gating agonists is

n1
* =

k1

k1 + k−1
M , �59�

�60�

n1 =
k−1

k1 + k−1
M , �61�

where k1 is the forward binding rate in solution and k−1 is the
backward rate. If Sch is the total surface occupied by the
channels, then Sch=SSch

1 , where Sch
1 is the effective surface

occupied by a single channel. Sch
1 is defined by the area

where the electrostatic force of the channel is sufficient to
bind an agonist. Recall that k1 is by definition the mean
number of agonist molecules arriving at the channel per unit
of time. Using the result of the preceding section, we can
write

k1 =
Sch

�n1
�M − S + n1�+ . �62�

Thus, using Eqs. �60� and �62�, we find that the mean
number of bound agonist, which is the same as that of bound
channels, is given by

n1
* =

1

1 +
�1k−1

Sch
�M − n1

*��S − n1
*�

M , �63�

with

��1
 =
���
�D

ln
Sch

����
, �64�

where ��� is the volume of � and ���� is the surface area of
its boundary �see Ref. 9�. For n1

* small relative to M and S,

n1
* �

1

1 +
�1k−1

Sch
MS

M �65�

�66�

=
1

1 +
�1k−1

Sch
1 M

M , �67�

which gives explicitly the number of bound channels as a
function of the geometrical parameters. A similar formula
can be derived, when a single channel can be bound to sev-
eral gating molecules.

C. The Michaelis-Menten law in microstructures

The rate of production of a product P from a substrate M
by a catalytic enzyme E is usually described in text books by
the Michaelis-Menten law for reactions in solution. In con-
fined microdomains, the above analysis can be used to esti-
mate the number of P produced in the reaction.

The chemical reaction is described by

M + E�
kb1

kf1

ME⇀

kb2

E + P , �68�

and a master equation for the joint probability that the num-
ber of P molecules produced is k and q enzymes are bound at
time t, Pk,q�t�=Pr�P�t�=k ,E�t�=q�, can be derived as above.
In particular, the kinetics of the reaction �68� are
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Ṗk,q�t� = �1 − q�k−1 + k2� − �M,q�Pk,q�t� + k2�q

+ 1�Pk−1,q+1�t� + k−1�q + 1�Pk,q+1�t�

+ �M,q−1Pk,q−1�t� for 1 � q,k � E0 − 1,

Ṗ0,q�t� = �1 − �M,q�P0,q�t� + k−1�q + 1�P0,q+1�t�

+ �M,q−1P0,q−1�t� ,

Ṗk,E0
�t� = �1 − k�k−1 + k2��Pk,E0

�t� + k2qPk−1,E0
�t�

+ �M,E0−1Pk,q−1�t� ,

ṖM0,0�t� = �1 − M0�k−1 + k2��PM0,0�t� + k2PM0−1,0�t� ,

with the initial condition Pk,q�0�=�M−0,0 and

�M,q =
M�E0 − k�

�1
,

M = �M0 − k − q�+.

Here M0 is the initial number of substrate molecules, M is
the number of unbound substrate molecules, and E0 is the
total number of enzyme available. The mean number of P
produced at time t is

�P�t�
 = 	
k

kPr�P�t� = k� = 	
k

k	
q

Pr�P�t� = k,E�t� = q� .

�69�

The only steady state solution of Eq. �69� is zero as any
steady state.

D. Fluctuations in a push-pull system with binding

We consider now a push-pull system, where gating mol-
ecules can also bind and unbind to some proteins. We con-
sider two main approaches to the description of this dynam-
ics. The first approach is based on the procedure used in the
first model in Sec. II and consists in deriving an equation for
the joint probability of a trajectory, the number of bound
sites in the volume �x, and the total number of molecules in
�,

p�x,S,M,t�y��x = Pr�x�t� � x + �x,S��x,t� = S,M�x�0�

= y� . �70�

The function p�x ,S ,M , t �y� is the joint probability density to
find an agonist and S free binding sites at x+�x at time t,
and M agonists in the domain, conditioned by the initial
position y of the agonist. An analysis similar to that of Sec. II
leads to

�p�x,S,M,t�
�t

= − � · J�x,S,M,t� − K1Mp2�x,S,M,t�S

− k−1�S0�x� − S�p�x,S,M,t� + K1M

��S + 1�p2�x,S + 1,M,t� + k−1�S0�x�

− S + 1�p�x,S − 1,M,t� + 
p�x,S,M,t�

− �M − S�+K−1p�x,S,M,t� , �71�

where by definition J�x ,S ,M , t� is the joint probability flux
at position x at time t, and S proteins are free for M agonists.
It is defined in the diffusion case by

J�x,S,M,t� = − D � p�x,S,M,t� . �72�

The new �forward� binding rate is

K1 = k1�x ,


 is the uniform production rate, and K−1 is the uniform
killing rate for the �M −S�+ free agonist molecules. The mo-
ments can be calculated from p�x ,S ,M , t�, as above.

The second procedure consists in adding directly the
push-pull effect in the Markovian model. Defining the joint
probability that k channels are free and M�t� are in the react-
ing domain at time t,

Pk,q�t� = Pr�k�t� = k,M�t� = q� , �73�

neglecting the distribution of the sources and sinks respon-
sible for the fluctuation of the number of molecules, we con-
sider only the case that hydrolysis and synthesis occur at
exponential waiting times �i.e., are Poissonian�, with rates
K−1 and 
, respectively. Following the same steps as in Sec.
IV, the master equation for Pk,q�t� becomes

Ṗ�S − M�+,q�t� = − k−1SP�S − M�+,q�t� + �1,q

��q − S + 1�+P�S − M�++1,q�t�

Ṗk,q�t� = − ��k,q + �S − k�k−1 + 
 + K−1q�Pk,q�t�

+ �k+1,qPk+1�t� + k−1�S − k + 1�Pk−1,q�t�

+ 
Pk,q−1 + K−1�q + 1�Pk,q+1 for k = �S − M�+

+ 1,…,S − 1,

where we recall that

�k,q =
Nk

��1

=

k�M − q + k�+

��1

.

The initial condition is Pk,q�0�=�k,S�q,0.
Finally, if the push-pull rate is much slower than the

binding rate, the previous results of the Markovian model
can be used directly and the mean number of free channels,
N��t�, is directly computed using the moments �58� and

N��t� = 	
M

�k�
�M�Pr�N�t� = M� ,

where �k�
�M� is the mean number of bound channels when
there are M gating molecules in the domain,

�k�
�M� = 	
k=S−1

�S − M�+

�S − k�+PS−k�q� .

Here, by definition, the dependence of PS−k on q is that ob-
tained in Eq. �58�, and Pr�N�t�=m� is the probability that M
molecules are in the reacting domain at time t �see Sec.
III A�. In the limit t→�,
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�N����
 = 	
M

�k�
�M�Pr�N��� = M� ,

�N�
2 ���
 = 	

M

�k�
2�M�Pr�N��� = M� .

V. CONCLUSION AND BIOLOGICAL
IMPLICATIONS

A. Comparison of the models

We presented here two models that describe fluctuation
due to binding and binding of agonist to some fixed proteins.
In the Markovian model, the only geometric feature of the
cell that enters the model is the cell’s volume. The distribu-
tion of the channels, as well as other geometric features are
ignored. The advantage of such approach is that it gives ex-
plicit estimates of the mean and the variance �see Eq. �58��.

In the first model, more details of the geometry and organi-
zation of the channel are captured; however, the computation
of the moments requires the solution of a system of partial
differential equations. The expression of the variance is
given in general by Eq. �13� and in steady state by expres-
sion �22�.

B. The forward binding rate

The Markovian model does not rely on the forward bind-
ing rate and it is replaced here by the mean arrival time to the
channels ��1
. The initial forward binding rate per molecule
is the arrival rate of a gating molecule to any one of the
binding sites on the N proteins, and can be defined as

K1 =
1

��1
N
. �74�

The number N can be, for example, the number of proteins in
a given volume. It can be computed from the concentration
�N�. In that case K1 can be rewritten as

K1� =
1

��1
�N�
. �75�

The Markovian approach proves that the traditional forward
binding rate has to be abandoned and a dynamical rate has to
be used instead. The first model uses another definition of the
forward binding rate that can be related to the traditional one.

C. Biological implications

The mean and the variance of the number of bound mol-
ecules were derived in the first model for a finite system of
molecules. In particular formula �15� proves that the variance
depends on the total number of bound molecules at time

t S̄0�t� �see formula �16��. Note that S̄0�t� is the integral of the
joint probability density function p�x ,1 , t�, which is a solu-

FIG. 4. Normalized variance �2, for k1�x /NSk−1=1/2, 1, 2, 4.

FIG. 5. Experimental analysis of the fluctuation in the number of open channel. The left panel corresponds to the current response for various concentration
of the gating molecules �cGMP�, in a detached patch experiment of a cone photoreceptors membrane. On the right panel, the variance is plotted vs the mean
current, which is proportional to the number of gating molecules �cGMP�. This picture was published in Ref. 18 �Fig. 2�.
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tion of a partial differential equation. Thus the number of
bound molecules is a complicated function of the geometry,
the distribution of the substrate molecule, and the interaction
between the molecules through the number of binding sites.

As seen in the experimental data,3,4,11,12 the variance �15�
does not only reflect binding to proteins, but also a dynami-
cal process of binding and unbinding in a microstructure,
which involves the geometry, the distribution of the protein,
and the diffusion process. Only at high concentration of
binding molecules, a molecule that leaves a binding site will
be immediately replaced by another gating molecule. In the
regime of high concentration, when the protein represents a
gating channel located on the cell membrane, the fluctuation
of the current represents an intrinsic property of the channel.
The fluctuations, then, are proportional to the gating property
of the channel. But for many sensor cells, the concentration
of gating molecules is not high, the small number of gating
molecules is the cause of perpetual fluctuations due to bind-
ing and unbinding.

The current noise variance versus S̄0�t� �see Fig. 4� has
almost the shape of an inverted parabola, which implies that
there it has unique maximum point at a specific location. In
the steady state limit, it is obtained in case of the first model

for S̄0�t�=1/2. Biological microsystems, such as photorecep-
tors, usually operate at low noise levels, far from the maxi-
mum of the graph.

Controlling the membrane voltage fluctuation for sensor
cells is a crucial issue for the transduction process that con-
sists in transmitting a molecular signal. Channels fluctuation
is not responsible only for the noise of the cell, but the bio-
chemistry underneath and the organization of the cell play a
crucial role. In a set of experiments,3,4,11,12 the membrane
noise was measured but the purpose was to identify the prop-
erties of the channel rather than the molecular dynamics.
Using the results of the previous mathematical analysis, it is
a hard problem to convert the data of fluctuation obtained for
a detached patch experiment to the fluctuation inside a single
cell. A separate mathematical analysis has to be performed to
identify such fluctuation.

In the experimental data, the variance of the fluctuation
has been related12 to the total current, when the probability
of the channel to be in an open state is independent from the
other. When the gating molecule is not as abundant, channels
share such resource and when a gating molecule is bound to
a channel, this resource is not available for the neighboring
channels. This effect coupled the probability of the channel
to be in open state through the number of gating molecules.
It is useful to compare the experimental result �Fig. 5� with
the simulations of the theoretical model, obtained in Figs. 1
and 2. This comparison suggests that the tail distribution of
the variance cannot be approximated everywhere by a pa-

rabola, as it was done, under the assumption that the opening
of the channels is independent. This assumption breaks at
high concentration, where the channels are coupled through
the gating molecules.

In a system composed by a cell membrane containing
channels and gating molecules only, two time scales should
be dominant. The first time scale is related to the time it
takes for a gating molecule to find a channel. This time de-
pends on the geometry of the domain, the number of gating
molecules, and the number of channels: for few molecules,
this time can be approximated by the mean time it takes for
a gating molecule to find a small absorbing boundary. This
problem has been treated in Ref. 9 and this approximation
was used in the Markovian model of the paper to estimate
the number of open channels. This assumption is valid be-
cause channels or binding proteins occupy a small portion of
the boundary surface. The second time scale is related to the
backward binding constant of the gating molecule to the
channel. The backward binding constant depends on the
property of the channel only and thus does not depend on the
statistical property of the system.13–22
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