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a b s t r a c t

This article attempts a unification of the two approaches that have dominated theoretical climate
dynamics since its inception in the 1960s: the nonlinear deterministic and the linear stochastic one.
This unification, via the theory of random dynamical systems (RDS), allows one to consider the detailed
geometric structure of the random attractors associatedwith nonlinear, stochastically perturbed systems.
We report on high-resolution numerical studies of two idealized models of fundamental interest for
climate dynamics. The first of the two is a stochastically forced version of the classical Lorenz model. The
second one is a low-dimensional, nonlinear stochastic model of the El Niño–Southern Oscillation (ENSO).
These studies provide a good approximation of the two models’ global random attractors, as well as of
the time-dependent invariant measures supported by these attractors; the latter are shown to have an
intuitive physical interpretation as random versions of Sinaï–Ruelle–Bowen (SRB) measures.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction and motivation

The geometric [1] and the ergodic [2] theory of dynamical sys-
tems represent a significant achievement of the last century. In the
meantime, the foundations of the stochastic calculus also led to the
birth of a rigorous theory of time-dependent random phenomena.
Historically, theoretical developments in climate dynamics have
been largely motivated by these two complementary approaches,
based on thework of Lorenz [3] and that of Hasselmann [4], respec-
tively [5].

It now seems clear that these two approaches complement,
rather than exclude each other. Incomplete knowledge of small-,
subgrid-scale processes, as well as computational limitations will
always require one to account for these processes in a stochastic
way. As a result of sensitive dependence on initial data and on
parameters, numerical weather forecasts [6] as well as climate
projections [7] are both expressed these days in probabilistic
terms. In addition to the intrinsic challenge of addressing the
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nonlinearity along with the stochasticity of climatic processes, it is
thus more convenient – and becoming more and more necessary
– to rely on a model’s (or set of models’) probability density
function (PDF) rather than on its individual, pointwise simulations
or predictions; see e.g. [8–12] and references therein.

We show in this paper that finer, highly relevant and still
computable statistics exist for stochastic nonlinear systems, which
provide meaningful physical information not described by the PDF
alone. These statistics are supported by a random attractor that
extends the concept of a strange attractor [3,13] and of its invariant
measures [2] from deterministic to stochastic dynamics.

The attractor of a deterministic dynamical system provides
crucial geometric information about its asymptotic regime as
t → ∞, while the Sinaï–Ruelle–Bowen (SRB) measure provides,
when it exists, the statistics of the flow over this attractor [2,14].
These concepts have been applied to climate dynamics – across
a full hierarchy of models, from conceptual ‘‘toy’’ models via so-
called intermediate models and all the way to high-resolution
general circulation models (GCMs) – as well as to the related
uncertainties [15–17]. Recent applications of ergodic theory to
the problem of climate sensitivity, in the context of deterministic
models of small and intermediate complexity, include [18–22].

On the stochastic side, the crucial field of modeling subgrid-
scale phenomena has been increasingly moving toward stochastic
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‘‘parameterizations’’ [23,24]. Such parameterizations have been
studied in terms of their impact on the successful simulation
of certain physical processes in GCMs, but not in terms of their
global impact onmodel behavior. At a more fundamental level, the
climate system is an open system and subject to variable forcing
in time. The long-term effects of time-dependent forcing, whether
deterministic or stochastic, have only started to be studied;
examples include Quaternary glaciations and their relationship
to orbital forcing [25,26] or the interaction between the seasonal
forcing and intrinsic variability in the Tropical Pacific [27,28].

During the past two decades, the mathematical theory of ran-
domdynamical systems (RDS) [29] and of nonautonomous dynam-
ical systems [30] has made substantial progress in describing the
asymptotic behavior of open systems, subject to time-dependent
forcing. The pertinent mathematical literature, however, is fairly
technical and opaque. Its concepts and methods have, therefore,
not becomewidely understood and applied to the physical sciences
in general and to climate dynamics in particular; see [31] and ref-
erences therein.

The main objective of this paper is twofold: (i) to introduce
the key concepts and tools of RDS theory – from the point of
view of ergodic theory [2,14] – to a wider audience in the geo-
sciences and macroscopic physics; and (ii) to present novel results
for two highly idealized models of fundamental interest for cli-
mate dynamics. The first is a stochastically forced version of the
Lorenz [3] model: We provide detailed geometric structure and
novel statistical information by using a highly accurate numerical
approximation of its global random attractor and of the invariant
measures supported thereon; furthermore, these measures –
called here sample measures [14] for short – are shown to be ran-
dom SRB measures [32]. The second one is a low-dimensional,
nonlinear stochastic El Niño–Southern Oscillation (ENSO) model
[33]. Here we show how the information conveyed by its random
attractor and sample measures allow one to better understand the
qualitative behavior of this model – in particular its low-frequency
variability (LFV) – and to refine its physical interpretation.

The paper is organized as follows. In Section 2, we introduce the
pullback approach for nonautonomous dissipative dynamical sys-
tems and their pullback attractors. This is followed in Section 3 by
the corresponding definitions and concepts for random forcing, in
the setting of the ergodic theory of dynamical systems and while
stressing the role of the samplemeasures. Numerical results on the
sample measures for our two stochastic nonlinear models are pre-
sented in Section 4. These results are based on a random version
of the SRB property, and provide geometric and probabilistic in-
sights into the dynamics. Concluding remarks follow in Section 5.
The mixing properties and decay of correlations used in the dis-
cussion of the stochastic ENSO model are clarified in Appendix A.
In Appendix B, we attempt to provide a mathematically rigorous
description of LFV, based on mixing ideas. Appendix C provides a
rigorous justification of using the sample measures as random SRB
measures.

In order to keep the presentation accessible to the intended
audience, we refer for technical details to Arnold’s [29] and
Crauel’s [34] books. For the sake of brevity, statements about the
rigorous existence of themathematical objects being described are
typically omitted, while the three appendices provide brief defini-
tions and explanations of key concepts, on both the mathematical
and the climate side.

2. Forward approach versus pullback approach

What is the effect of random perturbations on a nonlinear
deterministic system’s phase portrait? To address this issue, espe-
cially in the case of a deterministically chaotic and dissipative sys-
tem, we introduce herewith the appropriate framework. The dis-
cussion is developed in a finite dimensional context.

2.1. The classical forward approach

To analyze the effect of the noise on the invariant measure
supported by the deterministic system’s attractor, the traditional
stochastic approach is to seek the fixed point of the associated
Markov semigroup, i.e. to find stationary solutions of the
Fokker–Planck equation. These solutions correspond precisely to
the system’s stationary measures. Numerically, it is most often
easier to integrate the system forward in time, perform ensemble
or time averages and call the resulting object the ‘‘PDF’’.

When a deterministic system is perturbed by noise, it is
often observed that the support of such a numerically obtained
PDF corresponds to a (small) phase-space neighborhood of the
deterministic attractor; in particular, the topological structure
of the deterministic attractor becomes fuzzy. Such an approach
provides, therefore, purely statistical information, without a close
link with the attractor’s geometry. Even so, the effect of the noise
can result in surprising changes, especially when the deterministic
system is neither hyperbolic [35] nor stochastically stable [14].

The RDS approach is based on a drastically different view.
Its fundamental objects are the random invariant measures of
the dynamics rather than the stationary ones of the Markov
semigroup. These invariant measures are supported by a well-
defined attractor, as will be explained below. In this approach,
instead of integrating forward in time, the system is run from a
distant point s in the past until the present time t , where it is
‘‘frozen’’. We refer to this as the pullback approach. Remarkably,
by looking at the system in this way, the topological structures
related to the stochastic dynamics emerge naturally and, even
more surprisingly, there is no fuzziness in them. RDS theory thus
reconciles the ergodic and geometric approaches in the stochastic
context. We explain next the pullback approach, what an RDS and
a random attractor are, and discuss the invariant measures such an
attractor supports.

2.2. The pullback approach

This approach adopts a pathwise analysis, rather than the pre-
vious one, based on an ensemble of realizations. At first glance, this
angle of attack may appear more laborious and less direct in pro-
viding statistical information. In fact, it yields much more detailed
insights, along with the PDF, as will be seen below.

To understand this relatively novel approach, we first explain
heuristically the concept of pullback attractor in the context of a
deterministic, but nonautonomous dynamical system. For simplic-
ity, we consider a finite-dimensional system, written in the form,

ẋ = f(t, x), (1)

where the law f governing the evolution of the state x depends ex-
plicitly on time t .

A simple example from climate dynamics is given by the oceans’
wind-driven circulation [36]. The effect of the atmosphere on the
mid-latitude oceans at zero order would be modeled by a time-
independent forcing that yields an autonomous system [31]. At the
next order, however, taking into account the seasonal cycle in the
winds, the forcing would become time periodic and the system
thus nonautonomous [37]. As the degree of realism increases –
unless one were to switch to a fully coupled atmospheric–ocean
model – the time-dependent aspects would become more and
more elaborate and involve not only the forcing but also various
coefficients, which eventually will include stochastic effects at
some point. Another example that will be illustrated in the
numerical section of this paper is an ENSO model, in which wind
bursts are modeled stochastically; see e.g. [38–40].

Stochastic models, in particular, are nonautonomous, rough
rather than smooth, and are indexed by the realizations of the ran-
dom processes involved.
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For such models, we ask the following question:

Q: For a fixed realization ω, and at a fixed time t – the time at
which the system is observed – how does the ‘‘stochastic flow’’
transform the Lebesgue measure on the phase space, assuming we
have started the system in the asymptotic past?

It is this question that motivates and guides our exposition, and
our subsequent results. This question will be handled for systems
which contract the phase-space volume in an appropriate sense.

To study Q, we need to recall several concepts. First, let us
denote by ϕ(s, t)x the solution of (1) at time t , where x is the initial
state at time s ≤ t , i.e. ϕ(s, s)x = x. In general, the operator ϕ(s, t)
generates a two-parameter semigroup that provides a two-time
description of the system’s evolution, while in the autonomous
case a one-parameter semigroup suffices to entirely determine this
evolution. In the latter case, the system’s evolution is invariant
with respect to translation in time, i.e. ϕ(s, t)x = ϕ(t − s)x,
while in the former, the time at which initial data are prescribed is
of paramount importance. Thus, in the nonautonomous case, the
limiting behavior when s → −∞ and t is fixed may differ from
the one obtained in the forward situation, with t → ∞ and s
fixed, whereas in the autonomous case the two limits represent
the same asymptotic behavior, due to the translation invariance of
ϕ(s, t) = ϕ(t − s).

To illustrate the fundamental character of this distinction,
consider the simple scalar version of (1): ẋ = −αx + σ t , with
α > 0, and σ ≥ 0. We denote again by ϕ(s, t)x0 the solution at
time t , assuming that x(s) = x0 at s ≤ t . The forward approach
yields blow-up as t → +∞ for any x0, while an easy computation
shows that |ϕ(s, t)x0 − A(t)| → 0 as s → −∞, for all t and x0,
with A(t) := σ(t − 1/α)/α.

It can be shown further thatA(t) is invariant under the dynam-
ics, i.e. ϕ(s, t)A(s) = A(t), for every s ≤ t . We have therefore ex-
hibited a family of limiting objects A(t), which exist in actual time
t rather than asymptotically in the future, and which convey the
effect of the dissipation due to the term−αx. In this example,A(t)
is simply a time-dependent point that attracts all the initial data.

More generally, in the forced dissipative case, one obtains for
all t , by letting s → −∞, a collection



t∈R
A(t) of objects A(t)

that depend on time t; this collection is called a pullback attractor.
EachA(t)may bemore complicated than a point, and attract some
subsets of initial data taken in the asymptotic past. In rigorous
terms, a family of objects



t∈R
A(t) in a finite-dimensional,

complete metric phase space X is a pullback attractor if it satisfies
the two following conditions:

(I) For all t , A(t) is a compact subset of X and is invariant with
respect to the dynamics, namely,

ϕ(s, t)A(s) = A(t), for every s ≤ t; and

(II) for all t , pullback attraction occurs:

lim
s→−∞

dX (ϕ(s, t)B, A(t)) = 0, for all B ∈ B. (2)

In Eq. (2), dX (E, F) denotes the Hausdorff semi-distance

dX (E, F) := sup
x∈E

dX (x, F), with dX (x, F) := inf
y∈F

d(x, y),

between the subset E and the subset F in X; here d is the metric
in X , and the collection B of sets in X may itself exhibit some time
dependence [29,30]. Note that, in general, dX (E, F) ≠ dX (F , E) and
that dX (E, F) = 0 implies E ⊂ F .

A fundamental property of a system’s pullback attractor is
that it may support physically interesting invariant measures.
In the present paper, this aspect is discussed in greater detail
for stochastically perturbed systems. We provide here a simple
deterministic, but nonautonomous illustration.

Going back to ẋ = −αx+σ t , one can show that every x-interval
in R, taken at a time s < t , shrinks ontoA(t) as s → −∞. In terms
of measure, one can say that the Dirac measure δA(t), supported by
A(t), ‘‘pullback attracts’’ at time t the Lebesgue measure on R. By
invariance of A(t), δA(t) is thus a globally stable, time-dependent,
invariant measure of our scalar nonautonomous system, just as δ0
is for the autonomous system ẋ = −αx, when σ = 0.

In general, the simplest and most fundamental measures
that are invariant under the dynamics are precisely these time-
dependent invariant Dirac measures. For a nonautonomous sys-
tem, they replace the role played by fixed points for autonomous
ones: time dependence usually prevents the system from being at
rest and traditional fixed points become the exception, rather than
the rule.

It follows that, if a nonautonomous dynamical system involves
dissipation, we may wish to consider its asymptotic behavior
in a pullback sense. Indeed, dissipative properties, coupled with
time-dependent forcing, lead to the existence of a dynamical
object



t∈R
A(t), rather than a static one; this pullback attractor

describes the asymptotic regime at time t , by considering the
system initialized in the asymptotic past. Furthermore, this object
supports invariantmeasures that are time-dependent by nature. At
this stage, we have traveled half the road that leads to answering
question Q. We need now to consider the random case, in order to
travel the other half.

3. Noise effect on model statistics: a change of paradigm

3.1. The RDS approach

When the time-dependent forcing is random, the pullback
attractor becomes a random pullback attractor or random attractor
for short. This concept, however, is subtler than its ‘‘deterministic
cousin’’ just discussed, and needs further clarification. In the
1980’s, Kunita [41], among others, took an important step toward
a geometrical description of ‘‘stochastic flows’’ by providing a
pathwise two-parameter framework for describing the stochastic
flows generated by fairly general stochastic differential equations
(SDEs).

Roughly speaking, this framework allows one to show that,
for almost all realizations ω living in some probability space Ω ,
the evolution in the phase space X of a stochastic system from
time s < t to time t is described by a two-parameter family of
transformations ϕ(s, t; ω). It is tempting, therefore, to adopt the
pullback approach just described above in an ω-parameterized
version, in order to introduce the analog of a pullback attractor
into the stochastic context. The problem with such a naive
generalization is that the resulting object



t∈R
A(t; ω) does not

exhibit any a priori relation between distinct realizations ω. As a
matter of fact, this is one of the reasonswhy traditional approaches
consider only expectations, i.e. ensemble means, rather than the
stochastic flows.

The remedy to this problem comes from physical considera-
tions. For an experiment to be repeatable, one has to have a reason-
able description of its random aspects. These aspects may change
in time, and thus the noise has to be modeled as a time-dependent
stochastic process with certain known properties.

Representing mathematically such a stochastic process starts
with a probability space (Ω, F , P), where F is a σ -algebra of
measurable subsets of Ω , called ‘‘events’’, and P is the probability
measure [29]. Parameterizing noise by time, or equivalently,
parameterizing the probability space by time, means that we
should be able to connect the stateω of the randomenvironment at
time t = 0, say, with its state after a time t has elapsed;we call this
connection θtω and set, of course, θ0ω = ω. This setup establishes
a map θt : Ω → Ω for all times t .
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In practice, one requires (t, ω) → θtω to be measurable, and
to satisfy the one-parameter group property θs+t = θs ◦ θt for
any s and t; along with θ0 = idΩ , these requirements lead to a
time-dependent family {θt} of invertible transformations ofΩ that
keeps track of the noise. Furthermore, one requires a stationarity
condition, namely that the statistics of the external noise are
invariant under θt ;mathematically, thismeans that the probability
measure P is preserved by θt , i.e. θtP = P.

No other properties are needed in general: even ergodicity of θt
appears to be secondary [29]. A simple example is givenby the class
of two-sidedWiener processes that are so pervasive in SDEs,where
Ω = {W ∈ C0(R),W (0) = 0}, while θt is the shift operator that
acts according toWs(θtω) = Ws+t(ω)−Wt(ω)making theWiener
process a helix over θ , and thus preserves the Wiener measure. In
this particular case, ergodicity holds [29].

At this stage,we realize that the evolution of a stochastic system
ϕ(s, τ ; ω) for τ > s can be derived from a simpler description
Φ(t, ω); this operator is parameterized by a single time variable
t and it ascribes the state of the system at any time t > 0, starting
at time s = 0 and given a realization ω that characterizes the state
of the noise at time 0. Indeed, given the one-parameter mapping
Φ(t, ω), it is easy to obtain the evolution of the system from any
time s to any time τ via the two-parameter mapping ϕ(s, τ ; ω) =
Φ(τ − s, θsω).

This simplification allows one to understand why a pathwise
approach to modeling the noise may be reasonable: a system
influenced by an external stochastic process for a single realization
ω can be interpreted via the driving system {θt} as wandering
along a path θtω in Ω and thus may provide additional statistical
information to the modeler. For this to hold true, however, one
must show that the system’s behavior can be described in a self-
consistent manner along such a path θtω; this is the case if the
stochastic dynamicsΦ(t, ω) satisfies the so-called cocycle property,
namely Φ(t + s, ω) = Φ(t, θsω) ◦ Φ(s, ω) for all t, s and all
ω, [29,31], in which case Φ(t, ω) itself is called a perfect cocycle.
Remarkably, RDS theory shows that the cocycle property holds for
a very large class of random systems that includes standard SDEs;
this result is mainly due to the group andmeasurability properties
of {θt} associatedwith an attentive care of the exceptional sets [29].
In short, fairly general SDEs generate RDSs.

The cocycle concept lies at the core of RDS theory, thus
extending Kunita’s results [41]. It appears that the system Θ(t) :
(ω, x) → (θtω, Φ(t, ω)x), also referred to as a skew product, is
indeed a dynamical system on the extended phase space Ω × X ,
i.e. (probability space)×(phase space). We can thus deal with a
genuine stochastic flow on this extended space, where Θ(t +
s) = Θ(t) ◦ Θ(s) holds. The notion of stochastic flow mentioned
in question Q is therewith defined rigorously. One thus recovers
much of the classical theory for autonomous flows, although there
is an additional difficulty. This difficulty arises because, in the
extended phase space Ω × X , one can only use measurability
concepts on Ω , without any topological tools. The pair (Φ, θ) is
called an RDS [29].

3.2. Random attractor

With these concepts and tools in hand, we are now in a position
to extend the notion of pullback attractor to the stochastic context.
To do so, consider first the classical Langevin equation,

dx = −αxdt + σdWt , with α > 0 and σ ≠ 0. (3)

Using stochastic calculus, the properties of the Wiener process
and the definition of θt as a shift introduced above, it follows
that |Φ(t, θ−tω)x − a(ω)| → 0 as t → +∞; here a(ω) :=

σ
 0

−∞
exp(ατ)dWτ (ω) andΦ(t, ω) as defined above. The random

variable a is even invariant under the dynamics, i.e.Φ(t, ω)a(ω) =
a(θtω), for all t ≥ 0 and all ω ∈ Ω .

We have thus exhibited a family of random invariant objects –
each of which is a single point a(ω) – that describe the possible
states that can be observed in the present, at t = 0, whatever
the state it occupied in the infinitely distant past, at t = −∞.
This contraction of the Lebesgue measure under the stochastic
flow results, once more, from the effect of the dissipation that is
‘‘experienced’’ by the system in a pullback sense.

More generally, if a random subset A(ω) of X satisfies certain
measurability conditions [29], and furthermore

(I′) A(ω) is a compact subset of X and Φ-invariant, i.e., for each
t ≥ 0, Φ(t, ω)A(ω) = A(θtω); and

(II′) A(ω) is attracting in the pullback sense, i.e.,

lim
t→+∞

dX (ϕ(t, θ−tω)B(θ−tω), A(ω)) = 0, for all B ∈ B,

then


ω∈Ω A(ω)provides the complete picture of the only present
states of the system that are likely to be observed. The second
condition holds almost surely, with respect to themeasureP, while
the B(ω) are now random subsets of X; see [29] for further details.

The resulting random compact set


ω∈Ω A(ω) is called a ran-
dom attractor; it is also called a strong attractor since the conver-
gence of remote initial data to the attractor holds almost surely
for the Hausdorff semi-metric of the phase space X [29,42–44].
Moreover, when {θt} is ergodic, then knowing



t∈R
A(θtω) yields



ω∈Ω A(ω), and vice versa. In other words, knowing the random
attractor along one path ω yields all the possible states of the at-
tractor at a given t .

RDS theory also provides a natural link between the forward
and pullback approach. Pullback attraction involves convergence
almost surely (see above) and it implies weak convergence
forward, that is, convergence in probability only. A weak attractor,
as opposed to the strong one above, is defined similarly, except that
now one requires only that

lim
t→∞

dX (Φ(t, ω)B(ω), A(θtω)) = 0 in probability [42].

A strong attractor is always a weak attractor, but the converse
is obviously wrong [29,42]. The argument runs as follows: {θt} is
measure-preserving and thus one has P{ω : Φ(t, ω)x ∈ D} =
P{ω : Φ(t, θ−tω)x ∈ D}, for any x ∈ X and D any measurable
subset of X . If the limit of the right-hand side exists as t →
+∞, then the left-hand side converges as well; that is, Φ(t, ω)x
converges, but only in probability. There is a duality between
fuzziness from the present into the future versus ‘‘determinism’’
from the past up to the present. This duality arises from the
asymmetric way in which time is addressed in the RDS approach,
through the concepts of past and future of an RDS; see Section 1.7
of [29].

3.3. Random invariant measures

So far, we have focused on the more appealing and intuitive
aspects of RDS theory, with random attractors playing the key role.
The fundamental objects in RDS theory, though, are in fact the
random invariant measures; they are intimately linked to random
attractors in forced dissipative systems.

When a global random attractor A exists, it supports all the
invariant measures µ, and hence µ(A) = 1; this result is indeed
similar to the deterministic situation. The invariant measures µ
here are defined on the product spaceΩ×X and invariance is with
respect to the skew product Θ defined above, so that Θ(t)µ = µ
for all t [29,34].

The invariant measures µ ‘‘lift’’ the probability measure P,
defined on Ω , into the extended phase space Ω × X , so that the
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projection ofµ onΩ equals P. It is muchmore convenient, though,

to work in the phase space X , rather than in the product space.

Invariance of µ in X corresponds to the use of random measures

ω → µω on X called sample measures [32]; they are also known as

factorized or disintegrated measures [29,34].
Under very general conditions, one can show there is a one-

to-one correspondence between any µω on X and any µ on

the product space whose Ω-projection equals P; symbolically

µ(dω, dx) = µω(dx)P(dω) [29]. In particular, to say that µ(A) =
1 is equivalent to µω(A(ω)) = 1; i.e., each sample of A supports

the sample measure µω . The invariance of µ can now be written,

since we take θt here to be invertible, as

Φ(t, ω)µω = µθtω, almost surely with respect to P. (4)

Note that the time-dependent solutions of the Fokker–Planck

equation must not be confused with the time-dependent sample

measures µθtω discussed herein; see the discussion of Eq. (6) in

Section 4.1 below. The main difference is apparent by returning

now to question Q.

Indeed, the answer to our key question Q – at least when X is

finite-dimensional – is simply that the regionswhere the stochastic

flow ends up at time t – for a realization ω of the system’s random

aspects – may be determined by A(ω) and distributed according

to probabilities given by a specific invariant sample measureµω . A

condition for this to hold is the existence of a physical measure, i.e.

an invariant measure which satisfies almost surely (with respect

to P) the key identity:

lim
t→∞

1

t

 t

0

G ◦ Φ(s, θ−sω)x ds =



A(ω)

G(x)µω(dx), (5)

for almost every x ∈ X (in the Lebesgue sense), and for every

continuous observable G : X → R. Eq. (5) is a direct generalization

to the RDS framework of the concept of physical measure from the

autonomous deterministic setting [2,14]. In the next section, we

discuss a particular class of physical measures of interest, namely

random SRB measures. These measures are a sample version of the

classical SRB measures found in the autonomous context; see [32]

and the next section here. We focus now on the simplest invariant

measures that are fundamental in RDS theory.

Going back to the Langevin equation (3), since the randompoint

a(ω) = σ
 0

−∞
exp(ατ)dWτ (ω) is the global random attractor of

that system, we get that the random Dirac δa(ω) supported by each

point a(ω) is a globally stable invariant measure, which pullback

attracts the Lebesgue measure of the real line. This result can be

of course generalized to a higher-dimensional Langevin equation

dx = Lx+dWt , where L has good dissipative properties andwhere

the random attractorA becomes the union of random vectors a(ω)

such that Φ(t, ω)a(ω) = a(θtω) for all t ≥ 0 and all ω ∈ Ω . For a

more general RDS, a (measurable) random variable a : Ω → X is

called a random fixed point of the system when this last equality

holds. These random fixed points are the analogs of the steady

states found in the autonomous setting.

When all the Lyapunov exponents are negative, then all the ini-

tial states are attracted to a single random fixed point. This well-

known phenomenon occurs for general RDSs and is not restricted

to linear dynamics with additive noise [45,46]; it is sometimes

called synchronization [29,31]. When the random attractor is more

complex than a random point, one may observe intermittency: for
each realization ω, two arbitrary trajectories are either synchro-

nized or not during variable time intervals. This on-off synchro-

nization occurs exponentially fast; see Fig. 6 of [47]. It appears

that the ENSO model studied below exhibits such intermittent

behavior.

4. Numerical results and their RDS analysis

We consider in this section the Lorenz model [3] and the
ENSO model of Timmerman and Jin (TJ hereafter) [40]. The two
models have three degrees of freedom each and we perturb
them by linearly multiplicative white noise [29] for the Lorenz
model and by including white noise in a nonlinear term of
the TJ model. Both models are low-dimensional truncations of
sets of partial differential equations: the former of the classical
Rayleigh–Bénard convection equations [48], and the latter of a
coupled ocean–atmosphere model for ENSO due to Zebiak and
Cane [49].

The deterministically chaotic regimes of these twomodels have
very different power spectra: the Lorenz model exhibits a broad-
band spectrum with exponential decay even in the low-frequency
range [50], while the ENSO model we study in Section 4.3
below does exhibit LFV in its chaotic regimes [51]; the latter is
characterized by awide peak at low frequencies, which rises above
a continuous background that has a power-law or exponential
decay; see Appendix B and [52,53]. In both cases, we will illustrate
how the sample SRB measures discussed in Section 3.3, and the
RDS approach in general, allow us to differentiate these two types
of chaos in the presence of noise.

4.1. A stochastically perturbed Lorenz model

In the deterministic context, geometric models were proposed
in the 1970s [54] to interpret the dynamics observed numerically
by Lorenz in [3]. These geometric models attracted considerable
attention and it was shown that they possess a unique SRB
measure [55,56], i.e., a time-independentmeasure that is invariant
under the flow and has conditional measures on unstable
manifolds that are absolutely continuous with respect to Lebesgue
measure [2]. This result has been extended recently to the Lorenz
flow [3] itself, in which the SRB measure is supported by a strange
attractor of vanishing volume [57,58].

Even though this result was only proven recently, the existence
of such an SRB measure was suspected for a long time and has
motivated several numerical studies to compute a PDF associated
with the Lorenz model [3], by filtering out the stable manifolds;
e.g. [59,60] and references therein. The Lorenz attractor is then
approximated by a two-dimensional manifold, called the branched
manifold [54], which supports this PDF. Based on such a strategy,
Dorfle and Graham [59] showed that the stationary solution of
the Fokker–Planck equation for the Lorenz model [3] perturbed by
additive white noise possesses a density with two components:
the PDF of the deterministic system supported by the branched
manifold plus a narrow Gaussian distribution transversal to that
manifold.

It follows that, in the presence of additive noise, the resulting
PDF looks very much like that of the unperturbed system, only
slightly fuzzier: the noise smoothes the small-scale structures of
the attractor. More generally, this smoothing appears in the for-
ward approach – for a broad class of additive as well as multiplica-
tive noise, in the sense of [29] – provided that the diffusion terms
due to the stochastic components in the Fokker–Planck equation
are sufficiently non-degenerate; see Appendix C.1. Hörmander’s
theorem guarantees that this is indeed the case for hypoelliptic
SDEs [61]. The corresponding non-degeneracy conditions allow
one to regularize the stationary solutions of the counterpart of
the Fokker–Planck equation in the absence of noise, known as the
transport equation,

∂tp(x, t) = −∇ · (p(x, t)F(x)); (6)

ameasure-theoretic justification for this equation can be found, for
instance in [62, p. 210].
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Fig. 1. Snapshot of the Lorenz [3] model’s random attractor A(ω) and of the

corresponding sample measure µω , for a given, fixed realization ω. The figure

corresponds to projection onto the (y, z) plane, i.e.


µω(x, y, z)dx. One billion

initial points have been used and the pullback attractor is computed for t = 40.

The parameter values are the classical ones – r = 28, s = 10, and b = 8/3 – while

σ = 0.3 and the time step ∆t = 5 · 10−3 . The color bar to the right is on a log-

scale and quantifies the probability to end up in a particular region of phase space.

Notice the interlaced filament structures between highly (yellow) and moderately

(red) populated regions.

This transport equation is also known as the Liouville equation
and it provides the probability density at time t of S(t)x when
the initial state x is sampled from a probability measure that is
absolutely continuous with respect to Lebesgue measure; here
{S(t)}t∈R is the flow of ẋ = F(x), for some sufficiently smooth
vector field FonR

d. As amatter of fact,when F is dissipative and the
dynamics associated with it is chaotic, the stationary solutions of
(6) are very often singularwith respect to Lebesguemeasure; these
solutions are therefore expected to be SRB measures. For a broad
class of noises – such as those that obey a hypoellipticity condition
– the forward approach leads us to suspect that noise effects
tend to remove the singular aspects with respect to Lebesgue
measure. This smoothing aspect of random perturbations is often
useful in the theoretical understanding of any stochastic system, in
particular in the analysis of the lower- and higher-order moments,
which have been thoroughly studied in various contexts.

For chaotic systems subject to noise, however, this noise-
induced smoothing observed in the forward approach compresses
a lot of crucial information about the dynamics itself; quite to
the contrary, the pullback approach brings this information into
sharp focus. A quick look at Figs. 1–3 is already enlightening in
this respect. All three figures refer to the invariant measure µω

supported by the random attractor of our stochastic Lorenz model
[SLM]. This model obeys the following three SDEs:

[SLM]



dx = s(y − x)dt + σ x dWt ,
dy = (rx − y − xz)dt + σy dWt ,
dz = (−bz + xy)dt + σ z dWt .

(7)

In system (7), each of the three equations of the classical, deter-
ministic model [3] is perturbed by linearly multiplicative noise in
the Itô sense, withWt aWiener process and σ > 0 the noise inten-
sity. The other parameter values are the standard ones for chaotic
behavior [48], and are given in the caption of Fig. 1.

Figs. 1 and 2 show two snapshots of the sample measure µω

supported by the random attractor of [SLM] — for the same real-
ization ω but for two different noise intensities, σ = 0.3 and 0.5,
while Fig. 3 provides four successive snapshots of µθtω , for the
same noise intensity as in Fig. 2, but with t = t0 + kδt and
k = 0, 1, 2, 3 for some t0.

The sample measures in these three figures, and in the asso-
ciated short video given in the SM, exhibit amazing complexity,

–8
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–14

–16

–18

–20

Fig. 2. Same as Fig. 1, for the same realization ω but with noise intensity σ = 0.5.

Interlaced filament structures between highly and moderately populated regions

are now much more complex. Weakly populated regions cover an important part

of the random attractor and are, in turn, entangled with ‘‘zero-probability’’ regions

(black).

Fig. 3. Four snapshots of the random attractor and sample measure supported on

it, for the same parameter values as in Fig. 2. The time interval δt between two

successive snapshots –moving from left to right and top to bottom– is δt = 0.0875.

Note that the support of the sample measure may change quite abruptly, from time

to time; see the related short video in the SM for details.

with fine, very intense filamentation; note logarithmic scale on
color bars in the three figures. There is no fuzziness whatsoever
in the topological structure of this filamentation, which evokes the
Cantor-set foliation of the deterministic attractor [54]. Such a fine
structure strongly suggests that these measures are supported by
an object of vanishing volume.

Much more can be said, in fact, about these objects. RDS theory
offers a rigorous way to define random versions of stable and un-
stable manifolds, via the Lyapunov spectrum, the Oseledec multi-
plicative theorem, and a randomversion of the Hartman–Grobman
theorem [29]. These random invariantmanifolds can supportmea-
sures, like in the deterministic context.When the samplemeasures
µω of an RDS have absolutely continuous conditional measures on
the random unstable manifolds, then µω is called a random SRB
measure.
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We can prove rigorously, by relying on Theorem B of [32], that
the samplemeasures of the discretized stochastic system obtained
from the [SLM] model share the SRB property. Indeed, it can be
shown that aHörmander hypoellipticity condition is satisfied for our
discretized [SLM] model, thus ensuring that the random process
generated by this model has a smooth density p(t, x) [63]; see
Appendix C.1 for more details. Standard arguments [64] can then
be used to prove that the stationary solution ρ of our model’s
Fokker–Planck equation is in fact absolutely continuous with
respect to Lebesgue measure.

Since our simulations exhibit exactly one positive Lyapunov
exponent, the absolute continuity of ρ implies that the sample
measures seen in Figs. 1–3 are, actually, good numerical approx-
imations of a genuine random SRB measure for our discretized
[SLM], whenever δt is sufficiently small; see also the next section.
In fact, Ledrappier and Young’s [32] Theorem B is a powerful re-
sult, which clearly shows that – in noisy systems, and subject to
fairly general conditions – chaos can lead to invariant samplemea-
sures with the SRB property; we reformulate in Appendix C.2 this
theorem in the present context. It is striking that the same noise-
induced smoothing that was ‘‘hiding’’ the dynamics in the forward
approach allows one here to exhibit the existence of an SRB mea-
sure from a pullback point of view, and thus to approximate the
unstable manifolds supporting this invariant measure.

Note that since the sample measures associated with the
discrete [SLM] system are SRB here, they are physical measures
and can thus be computed at any time t by simply flowing a
large set of initial data from the remote past s ≪ t up till
t , for a fixed realization ω; this is exactly how Figs. 1–3 were
obtained. Given the SRB property, the nonzero density supported
on the model’s unstable manifolds delineates numerically these
manifolds; Figs. 1–3 provide therefore an approximation of the
global random attractor of our stochastic Lorenz system.

Finally, these random measures are Markovian, in the sense
that they are measurable with respect to the past σ -algebra of the
noise [29]. The latter statement results directly from the fact that
these measures are physical, cf. (5), and thus satisfy the required
measurability conditions in the pullback limit. The information
about the moments that is available in the classical Fokker–Planck
approach is complemented here by information about the pathwise
moments. These pathwise statistics are naturally associated with
the samplemeasures –when the latter are SRB – by settingG(x) :=
xpi , i = 1, 2, 3, p ∈ R in Eq. (5), as we shall see in the next
subsection.

The evolution of the sample measures µθtω (see SM video)
is quite complex, and two types of motion are present. First, a
pervasive ‘‘jiggling’’ of the overall structure can be traced back to
the roughness of the Wiener process Wt and to the multiplicative
way it enters into the [SLM] model. Second, there is a smooth,
regular low-frequency motion present in the evolution of the
sample measures, which seems to be driven by the deterministic
system’s unstable limit cycles and is thus related to the well-
known lobe dynamics. The latter motion is clearly illustrated in
Fig. 3.

More generally, it is worth noting that this type of low-
frequency motion seems to occur quite often in the evolution
of the samples measures of chaotic systems perturbed by
noise; it appears to be related to the recurrence properties of
the unperturbed deterministic flow, especially when energetic
oscillatory modes characterize the latter. The TJ model of ENSO is
another example in which another type of low-frequency motion
of the sample measures is present; see Fig. 7 in Section 4.3 below.
To the best of our knowledge, there are no rigorous results on this
type of phenomenon in RDS theory.

Besides this low-frequencymotion, abrupt changes in the global
structure occur from time to time, with the support of the sample

measure either shrinking or expanding suddenly. These abrupt
changes recur frequently in the video associated with Fig. 3,
which reproduces a relatively short sequence out of a very long
stochasticmodel integration; see the supplementarymaterial (SM)
in Appendix D.

As the noise intensity σ tends to zero, the sample-measure
evolution slows down, and one recovers numerically the measure
of the deterministic Lorenz system (not shown). This convergence
as σ → 0 may be related to the concept of stochastic stability
[14,55]. Such a continuity property of the sample measures in the
zero-noise limit does not, however, hold in general; it depends
on properties of the noise, as well as of the unperturbed attractor
[45,46,65].

As stated in the theoretical section, the forward approach is
recovered by taking the expectation, E[µ•] :=



Ω
µωP(dω),

of these invariant sample measures. In practice, E[µ•] is closely
related to ensemble or time averages that typically yield the
previously mentioned PDFs. In addition, when the random
invariantmeasures areMarkovian and the Fokker–Planck equation
possesses stationary solutions, E[µ•] = ρ, where ρ is such
a solution. Subject to these conditions, there is even a one-to-
one correspondence between Markovian invariant measures and
stationary measures of the Markov semigroup [29,34]. The inverse
operation of µ → ρ = E[µ•] is then given by ρ → µω =
limt→∞ Φ(−t, ω)−1ρ; the latter is in fact the pullback limit of
ρ due to the cocycle property [34]. It follows readily from this
result that RDS theory ‘‘sees’’ many more invariant measures than
those given by the Markov semigroup approach: non-Markovian
measures appear to play an important role in stochastic bifurcation
theory [29], for instance.

To summarize, one might say that the classical forward ap-
proach considers only expectations and PDFs, whereas the RDS
approach ‘‘slices’’ the statistics very finely: the former takes a ham-
mer to the problem,while the latter takes a scalpel. Clearly, distinct
physical processes may lead to the same observed PDF: the RDS
approach and, in particular, the pullback limit are able to discrimi-
nate between these processes and thus provide further insight into
them.

4.2. Numerical stability of the sample measures

In this subsection, we perform simple numerical tests on the
stability of the sample measures µω computed in the previous
subsection. We keep the same parameter values as in Fig. 2 and
perturb slightly the noise intensity σ from its value σ0 = 0.5.

Let C be a fixed cube inR
3 such that the support of themeasures

always lies in C . We discretize C over a regular mesh with N3

nodes and obtain a brute-force numerical approximation µ
σ0,N
ω

of the measures µ
σ0
ω by simply flowing an ensemble of initial

data of size n with the stochastic flow of our [SLM], over a long
time interval. This large ensemble is uniformly distributed on the
given N-partition of C and the noise realization ω is fixed. Since
the results in Section 4.1 allow us to prove that any discrete,
and numerically stable, approximation of our [SLM] possesses a
sample SRB measure, it follows that µ

σ0
ω is a physical measure that

answers the question Q of Section 2.2, and therefore it attracts
the Lebesgue measure on C . The SRB property strongly suggests

that µ
σ0,N
ω provides a good approximation of the sample SRB

measures of the discretized [SLM], as n and N increase, although a
rigorous convergence analysis would be necessary to corroborate
this intuition. This property also indicates that the nature of
the distribution of initial states is not important, provided this
distribution is absolutely continuous with respect to the Lebesgue
measure.

In the deterministic context, the road for a rigorous analysis
has been paved over the past decades. The underlyingmethods are
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Fig. 4. Numerical stability of the invariant sample measures of Fig. 2. The upper-left panel shows the L1-error δN,ϵ(t) as a function of N for ϵ = 10−2 and three different

sets of initial data; the number of points n in the latter is n = 503, 1003 and 3003 for the blue, red and black curves, respectively. The upper-right panel displays δN,ϵ(t) for
t varying over 1.5 time units, 40.5 < t < 42.0, while N = 600 and ϵ = 10−2 . The lower-left panel plots a snapshot of the two sample measures that correspond to noise

intensity σ0 and σ0 − ϵ at the end of the time series of δN,ϵ(t) in the upper-right panel. The lower-right panel shows δN,ϵ(t) as a function of ϵ for N = 900 and n = 2003;

this error clearly converges to zero as ϵ → 0.

essentially based on a time-dependent matrix approximation P̂t
N

over the N-partition of the infinite-dimensional Perron–Frobenius
or transfer operator Pt , where Pt is naturally associated with the
semigroup induced by the transport equation (6) [66]. It is the
fixed points of this operator that give the invariant measures; e.g.
[62,67–70] and references therein. These methods are rooted
in Ulam’s method [71] and SRB measures have been typically
obtained as aweak limit of the densities ofMarkov chains governed

by {P̂t
N
}, as N → ∞. Using a directed-graph representation of

the partition, Osipenko [72] has proposed an alternative approach
that also allows one to rigorously approximate certain invariant
measures –which are not necessarily SRB but are ergodic, and thus
still physically interesting – by flows on this graph.

Similar approaches can be extended to a nonautonomous, as
well as a random setting, by considering the Perron–Frobenius
operator obtained essentially by inversion of (4) [73]. Froyland
et al. [74] and Dellnitz et al. [70] have thus computed eigenvec-

tors of the approximating matrices P̂t
N
that correspond to eigen-

values close to 1 in the nonautonomous context, and Julitz [73] has
computed random attractors by using an extension of the subdivi-
sion algorithm [75,76] in a stochastic context. Still, much remains
to be done for the computation of sample SRBmeasures in the RDS
setting.

Given the scope of the present article, it appeared sufficient for
our purposes to adopt a brute-force approach to the numerical
calculations for the [SLM] model in Section 4.1. This approach
still allows us to perform a sensitivity analysis of the numerical
results so obtained. We thus consider the L1-error δN,ϵ(t) :=



C

|p
σ0,N
θtω

− p
σ0−ϵ,N
θtω

| dx, where pσ ,N
θtω

(x) is the ‘‘probability density’’ of

the discrete samplemeasureµ
σ0,N
θtω

and the integral is evaluated on

the N3-mesh.
The upper-left panel of Fig. 4 shows the dependence of δN,ϵ(t)

with respect to N for fixed t and ϵ = 10−2, and for three different
sets of initial data, with an increasing number n of points (see
caption). There is very little difference between the three curves,
indicating that the number n is already large enough to guard
against sampling error. An error of less than 1% is achieved for
meshes of size 200 ≤ N ≤ 900. The brute-force estimate of
sensitivity given by the L1-norm is thus not subject to quantization
effects in the number of initial data, provided that n is sufficiently
large.

The evolution of δN,ϵ(t) for the same ϵ and N = 600 is plotted
in the upper-right panel of Fig. 4. This plot indicates that, as the
sample measures evolves with θt , they remain close to each other
for all time; here 7.5 · 10−4 ≤ δN,ϵ(t) ≤ 11 · 10−4.

The lower-left panel shows an actual snapshot of the two
measures at a fixed time t , at the end of the time series plotted
in the upper-right panel, for N = 900 and ϵ = 10−2. Only tiny
differences become visible when zooming in on the electronic file
of the figure (see SM). As a matter of fact, for ϵ < 10−3, the two
measures are no longer distinguishable by eye for the N used. This

visual similarity between µ
σ0,N
ω and µ

σ0−ϵ,N
ω for N = 900 is in

excellent agreement with the error of less than 0.1% in the L1-
difference.

The error δN,ϵ(t) is plotted in the lower-right panel as a function

of ϵ, demonstrating clearly that the function ϵ → µ
σ0−ϵ,N
ω is
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L1-continuous at ϵ = 0, since the difference between the two

measures tends to zero in L1 as ϵ → 0. This result, moreover, is

independent of the noise intensity σ0 (not shown).

From the SRB property and Eq. (5), we thus conclude that, for

almost all realizations, any observable of our discretized [SLM]

depends continuously on the noise intensity and, in particular, on

the pathwise moments of the components of [SLM], by setting

G(x) := xpi , i = 1, 2, 3, p ∈ R in Eq. (5). We will refer to the latter

property as pathwise statistical stability of our [SLM].

We conclude that the numerical results shown in this paper

are very robust. Note that we cannot precisely estimate the

level of accuracy with which the sample measures are computed,

although the results of this subsection indicate they are quite

good, due to the very large ensembles of initial states we used.

Unfortunately, statistical methods for improving PDF estimates,

like kernel density estimation, require densities that are at least

twice differentiable, while the numerical evidence here is that the

sample measures of our stochastic system are strongly suspect of

not being even absolutely continuous with respect to Lebesgue

measure; in particular, they are not differentiable even once.

4.3. A stochastic ENSO model and its RDS analysis

In this subsection, we compute the stochastic TJmodel’s sample

measures to obtain more detailed information on this model

[40,51]. These sample measures enable us to understand at a

deeper level the interaction between noise and nonlinearity in this

slightly more realistic climate model. Our theoretical laboratory is

climate variability in the Tropical Pacific, which is characterized

by the interannual ENSO oscillation. A variety of modeling studies

and observations strongly suggest that the irregular, 2–7-year

time scale of ENSO is produced by nonlinear ocean–atmosphere

interactions in this region [27,28]. In addition, this variability is

bracketed by high-frequency, intraseasonal noise due to so-called

‘‘westerly wind bursts’’ in the surface winds, and by interdecadal

changes in the global ocean circulation [38].

Aside from global effects that act on interdecadal time scales,

these time scales may also arise from the interaction between

noise and purely tropical effects [77]. Timmermann and Jin [40]

argued, based on a dynamical analysis of the Jin model [33], that

long-term changes in ENSO activity may result from perturbations

of a homoclinic orbit specifically associated with the nonlinear

advection terms in the model’s sea surface temperature equation.

Using the classical forward approach, they noted that such

conclusions are robust against the introduction of wind-generated

noise in the model.

For the sake of completeness and consistency, we describe

here briefly the low-order, coupled model of tropical atmo-

sphere–ocean interactions [33,40,51] that we use. This model

can be derived from a simplified version of Zebiak and Cane’s

ENSO model [49] by using a two-strip-and-two-box approxi-

mation [33]. By assuming symmetry with respect to the equa-

tor, the model focuses on changes across one equatorial and

one off-equatorial strip [33]. The upper ocean is a two-box ver-

sion of a shallow-water model for the equatorial ocean, com-

bined with a mixed layer of fixed depth [49]; the two boxes are

the western (135°E–155°W) and the eastern equatorial region

(155°–85°W) [78]. The ocean–atmosphere interaction is approx-

imated by a linear relationship between surface winds and the sea

surface temperature (SST) gradient.

The reduced model has three variables: the SSTs T1 and T2
in the western and eastern Tropical Pacific, respectively, and the

depth anomaly h of the western equatorial thermocline [33,40,

51]. Their evolution is governed by a stochastic system composed

of three prognostic (i.e., differential) equations, coupled with two
diagnostic (i.e., algebraic) equations:

[STJ]



























































Ṫ1 = −α(T1 − Tr) − (2ϵu/L)(T2 − T1),

Ṫ2 = −α(T2 − Tr) −
w

Hm
(T2 − Tsub(h)),

ḣ = r(−h −
bL

2
T(T1, T2)),

Tsub(h) = Tr −



1

2
(Tr − Tr0)



×


1 −
1

h∗
tanh



H + bL · T(T1, T2) + h − z0


T(T1, T2) =
a

β
(T1 − T2)(ξt − 1).

(8)

Thewind-stress anomaliesT in the last equation of (8) are assumed
to depend on the western and eastern SSTs, T = T(T1, T2),
and the zonal advection is given by u = βLT(T1, T2)/2. In
the eastern Tropical Pacific, the equatorial upwelling is given by
w = −βT(T1, T2)/Hm, while Tsub = Tsub(h) there represents
the subsurface temperature and has a saturation effect on
the dynamics; thermal relaxation toward a radiative–convective
equilibrium temperature Tr is assumed in modeling Tsub. Wind-
stress bursts are parameterized as white noise ξt of variance σ ,
while ϵ measures the strength of the zonal advection and serves
as a bifurcation parameter in the model [40,51]. We refer to [40]
for other subsidiary variables and for a table of parameters used in
the numerical results obtained hereafter.

The TJ model [33,40] is not only closer in its physical derivation
to global climate dynamics than the stochastic Lorenz model
[SLM], but it also exhibits LFV [51], which is an important
ingredient of climate variability but is not present in the latter
[15,79]. We are also interested in the TJ model because the way
in which the noise enters into the Eqs. (8) makes it difficult to
guess its effects on the deterministic dynamics. Does the model
exhibit noise-induced Hopf bifurcation or more complicated,
noise-sustained oscillation scenarios, and how would either of
these alternatives affect our understanding and prediction of ENSO
variability [15,39,79]?

Our aimhere is to show that a pullback approach based onphys-
ical sample measures is better suited for the study and rigorous in-
terpretation of stochastic effects on climatic LFV than usingmerely
a forward, PDF-type approach. The pullback approach can even
provide interesting information that complements standard power
spectrum analysis. We believe that these statements are likely to
be true for any problem involving both noise and chaotic behavior
associated with LFV.

We show first that the deterministic version of the [STJ]

model, with the noise turned off, exhibits – as the strength of
the zonal advection ϵ increases – sharp transitions between dis-
tinct regimes with complex dynamics. These transitions include
Hopf bifurcations, as well as chaotic behavior associated with so-
called single-pulse homoclinic orbits that arise from a Shil’nikov-
type bifurcation [80]. The associated qualitative jumps are clearly
apparent in the left panel of Fig. 5, as the system’s power spectrum
changes with ϵ. When the noise is turned back on, we see in the
right panel of Fig. 5 that these qualitative changes are completely
smoothed out. This smoothing interferes with a reliable dynami-
cal interpretation regarding the origin of the LFV exhibited by the
[STJ] model in its chaotic regimes. As we shall see forthwith, the
pullback approach does provide sharper insights into this LFV.

Recall that, if the deterministic model’s variability is damped,
adding even small-amplitude stochastic forcing can easily result
in significant nonlinear effects; see [38,39] and references therein.
Such a noise-induced excitation of supercritical behavior at
deterministically subcritical parameter values does indeed occur
in our numerical study of the [STJ]model.Wewere able to confirm
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Fig. 5. Power spectrum of the [STJ] model as a function of the control parameter ϵ: (left panel) deterministic versus (right panel) stochastic. The color bar (not shown) is

on a logarithmic scale. Sharp transitions between different types of quasi-periodic and chaotic behavior are apparent in the left panel, for zero noise; note the presence of

windows of stability with one attracting limit cycle. Several model trajectories are, in fact, displayed; they include Shil’nikov-type orbits in the left panel as well. The sharp

transitions in the left panel are completely smoothed out in the right panel, and the homoclinic orbits disappear, too; see also discussion in Section 4.2.

the presence of a Shil’nikov-type bifurcation to homoclinic orbits
in the deterministic model, and show that the noise helps trigger
horseshoe-like behavior in phase space for parameter ranges in
which the deterministic model has only a stable limit cycle or even
a stable steady state. All these noise-induced phenomena possess
geometric features captured by the random attractors; see Fig. 6.

For instance – in the damped regime, with the right amount
of noise – the global random attractor A(θtω) of our [STJ] model
is a closed curve, whose length and location in phase space vary
with time, i.e., a random periodic orbit [81] that pullback attracts
the Lebesgue measure of the phase space. This random limit cycle
is associated with a broad spectral peak (not shown). One can
thus observe here how the pullback approach provides a clearer
dynamical perspective on the origin of the [STJ] model’s LFV.

We proceed to study next the [STJ] model in a chaotic regime,
i.e. when zonal advection is sufficiently strong. In the absence of
noise (not shown), the model does exhibit interdecadal variability.
This variability is due to the nearby presence in parameter space
of a homoclinic orbit, whose characteristic amplitude modulation
can be seen in the time series of T2; see upper-left panel of Fig. 7.
When including the noise that models wind-stress bursts, the
sample measures shown in this figure’s other panels still possess a
complex structure.

The six sample measures µθtω shown in the bottom panels of
Fig. 7, at interannual intervals of δt = 1.6 years, are even more
obviously singular than those in Figs. 1–4: at every time t , the
regions that aremost populated by the stochastic flow are confined
mainly to filaments near the sharp peak (white + sign) that is
located in the upper-left corner of the (h − T2) plane. For the
decadal time scale of 6× 1.6 ≃ 10 years, the change in probability
of occurrence of El Niño episodes, with warm T2, is clearly visible,
while the spectral signature of the underlying random attractor
may be undistinguishable from that of the random limit cycle.

The distinction in solution behavior between the two stems
from the intermittency [47] that our [STJ] model exhibits in the
chaotic regime; this intermittency is clearly visible in the T2 time
series in the upper-left panel of Fig. 7. The model’s intermittency
seems to be related to the structure of its random attractor,
which differs from that of the [SLM] model shown in Figs. 1–3.
The intermittency of the [STJ] model is that of noisy relaxation
oscillators, as already documented for the noisy Duffing–Van der
Pol oscillator. The random attractor of the latter is – in certain

chaotic regimes – even more singular than that seen in Figs. 6 and
7 here [47]. This singular character is due to the random attractor’s
‘‘nearly zero-dimensional’’ geometry, in the sense that its sample
SRBmeasure is highly concentrated in a small neighborhood of one
point of the phase space,with a small additional fraction supported
by thin filaments that meander in-and-out of this neighborhood.
Fig. 7 strongly suggests that our [STJ] model’s behavior lies in
between a randompoint – as observed in certain ENSOmodels that
are governed by linear dynamics with additive noise (e.g., [82])
– and a noisy chaotic model with strong mixing, like [SLM]; see
Appendix A for a precise definition of random dynamical systems
that exhibit strong mixing.

In a more general context, the relationships noticed here
between intermittent behavior and the nearly zero-dimensional
geometry of the sample SRB measures seem to be associated
with the single-pulse homoclinic orbits also present in relaxation
oscillations [80]. This conjecture needs, however, to be further
clarified, both physically and mathematically: the extent to which
a system exhibiting LFV does present pathwise intermittency with
sample SRB measures of nearly vanishing dimension requires
proper investigation. In the case of our [SLM] model, for example,
the spectrum is exponentially decaying [50,79], whereas the [STJ]

model studied here does exhibit a broad peak in its power
spectrum, with significant oscillatory modes still present in the
chaotic regime illustrated in Fig. 7. Interestingly, the random
attractors of the two models are quite different in their spatio-
temporal phase-space patterns.

In fact, certain consequences of the nearly zero-dimensional
aspect of a sample SRB measure possessing a sharp peak can be
fairly well understood. This is the case regarding the dependence
on initial state for a fixed realization ω. Indeed, the existence of
regions with very low probability is an obvious corollary of such
‘‘peaky’’ samplemeasures, and it implies that almost all initial data
are synchronized by the noise.

This synchronization leads naturally to a weak dependence on
initial data, at least on sufficiently long time scales, namely of
order greater than the system’s characteristic dissipation time. The
[STJ] model does exhibits such a weak dependence, whereas the
[SLM] model does not. More generally, it seems important to note
that these two systems have very different mixing properties [83]
and decay of correlations: exponential in the [SLM] case and
subexponential in the [STJ] case. The latter assertion relies, so far,
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Fig. 6. Sample measures of the [STJ] model as a function of the control parameter ϵ and the noise intensity σ . The corresponding deterministic regimes, at σ = 0, are:

ϵ = 0.0782, a stable fixed point; ϵ = 0.083, a homoclinic trajectory; and ϵ = 0.095, a twisted limit cycle. Same qualitative color bar as in Figs. 1–3: highly populated regions

in yellow, moderately populated in red, and near-zero population in black (logarithmic scale). These sample measures supported on the model’s attractor reveal interesting

noise-induced scenarios that are difficult to deduce in the forward approach. We thus see, at (ϵ = 0.0782, σ = 0.005), that horseshoe-like behavior in phase space can be

noise excited even for ϵ-values for which the deterministic dynamics exhibits an attracting fixed point, provided the noise is sufficiently strong.

only on numerical evidence: rigorous justification is quite a bit
harder to obtain; see [83] and references therein for a survey.

To summarize, the [STJ] model possesses two main types of
random attractor: (i) a random limit cycle in the deterministically
damped regime; and (ii) a random attractor associated with
intermittency in chaotic regimes. The first onemay be of interest in
understanding certain features that are displayed by fairly realistic
models of the tropical ocean driven by surface winds [39], while
the second one needs further investigation, theoretically as well

as practically. Both offer new perspectives in the understanding of

ENSO variability, as well as of other climate systems that exhibit

LFV [5,15,84].

5. Concluding remarks

We have briefly motivated and outlined the main concepts

and tools of RDS theory, in particular how to rigorously define
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Fig. 7. Evolution of [STJ]model behavior in time, for ϵ = 0.0782 and σ = 0.005. Intermittency is illustrated in the upper-left panel, for two different initial states at t = 0

(blue and red curves; time in years on the abscissa) and the same realization ω; where the two curves are visually indistinguishable, only the red curve appears. The forward

PDF is shown in the upper-right panel: it averages the sample measures µω . Six snapshots of the latter are shown at regular, 1.6-year intervals in the bottom panels; they

are projected onto the (h − T2) plane, with T2 on the abscissa, and their timing corresponds to the interannual variability of a long ENSO cycle.

stochastic flows and random attractors, as well as the correspond-
ing invariant random measures. It appears from this outline that
a stochastically perturbed system’s pullback, strong attractor [42]
provides muchmore detailed information on the system’s dynam-
ics and statistics than its PDF alone.

Detailed computations of the invariant samplemeasures for the
stochastic Lorenzmodel [SLM] reveal the amazing complexity that
underlies its PDF; see Figs. 1–3. The numerical results were shown
to be quite robust (Fig. 4) and suggest that the actual measures are
Markovian randomSRBmeasures [14] associatedwith one positive
Lyapunov exponent.

We saw, moreover, that other noisy systems with a positive
Lyapunov exponent possess random attractors, which – while
exhibiting a less striking geometry – still support nontrivial sample
measures (Figs. 5 and 6) and are associated with intermittent

synchronization. This type of behavior was illustrated on hand of
the nonlinear stochastic ENSO model [STJ] of [40]. We showed
in Fig. 7 that the sample-measure’s evolution in time conveys
information that greatly facilitates the physical interpretation of
the dynamics.

On a longer, multidecadal time scale, the RDS approach could
be combined with linear response theory [85]. When noise is
absent, the fact that the physical invariant measure is absolutely
continuous only along the unstable manifold implies that the fluc-
tuation–dissipation theorem (FDT) cannot be applied in its clas-
sical form [86,87]. For hyperbolic deterministic systems, precise
estimates exist for the response of their SRB measures to pertur-
bations [85,88]. Based on this framework, the response to deter-
ministic perturbations has been studied in [18–22] in a climatic
context; climate response to stochastic perturbations should be
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next and may provide more robust climate projections than avail-
able so far [7,31]. A mathematically rigorous justification of lin-
ear response theory for forced dissipative stochastic dynamical
systems has been developed recently in [89]. The results of [89]
support the experimental fact that for good systems, the mathe-
matical formulation of FDT as linear response theory applies when
the expectation of the µω ’s (or its ergodic equivalent obtained by
averaging over time for a single noise realization) is considered.
The good systems are here the hypoelliptic ones where the im-
proved regularity due to the presence of noise – in a forward sense
(cf. Appendix C.1) – simplifies key aspects of the problem of a rig-
orous justification of linear response theory and circumvents the
difficulties found to occur even in relatively simple determinis-
tic systems [85]. Based on the established results for determin-
istic SRB measures [85], it appears feasible to extend rigorously
linear response theory to SRB sample measures, at least for ran-
domhyperbolic systems [90]. Note that the pullback approachmay
combine furthermore a deterministic time-dependent forcingwith
a stochastic one. To do so, it suffices to work with the appropri-
ate skew product and the relevant driving systems: one associated
with the deterministic time-dependent forcing and one with the
stochastic one; see e.g. [91]. This general abstract framework offers
a natural ground for a mathematical formulation of FDT as linear
response theory for time-dependent stochastic systems of interest
in climate change science [31].

Moving on to intermediatemodels, the numerical results of [92]
– using a so-called hybrid coupledmodel that couples an empirical,
diagnostic atmosphere to an oceanic GCM [15,36] – showed that
noise can shift as well as broaden the model’s spectral peaks (see
Figs. 6 and 8 there). Here again, the RDS approach could provide
deeper insights into this phenomenon.

A key question arises of course, as it did for many novel
mathematical concepts and tools, when first applied in the climatic
or, more generally, physical context. The question is how to
extend these novel ideas to more detailed and realistic models
and even to observational data sets [15,84]. This question is under
investigation for certain intermediate ENSO models and results
will be reported elsewhere; see however [96] for an illustration
of the pathwise approach in prediction of ENSO by a model of
intermediate complexity.
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Appendix A. Mixing in random dynamical systems

In this appendix, we define rigorously the concept of an ω-wise
mixing RDS, in the continuous-time context. Recall first the well-
known definition of mixing in a deterministic dynamical system.
Given a flow {φt} on a topological space X , which possesses an
invariant (Borel) probabilitymeasureµ, we say that the dynamical
system (φt , µ) is mixing if for any two measurable sets A and B,

µ(A ∩ φ−t(B)) −→
t→∞

µ(A)µ(B), (9)

or equivalently,


F · (G ◦ φt)dµ −→
t→∞



Fdµ



Gdµ, (10)

for any pair of continuous functions F ,G : X → R. Eq. (9)
states that the set of points in A whose images belong to B by {φt}

tends toward having the same proportion in A as B has in X , with
proportions being understood in terms of the measure µ. Hence
any measurable set will tend to redistribute itself over the state
space according to µ.

Let us now consider a cocycle {Φ(t, ω)}(t,ω)∈R×Ω on the base
space (Ω, F , P, {θt}), which possesses the sample measures {µω}.
We say thatΦ isω-wisemixing or fibermixing [93] – or even simply
mixing, if no confusion is possible – if for any randomsets [43]A(ω)
and B(ω),

µω



A(ω) ∩ Φ(t, ω)−1


B(θtω)




−→
t→∞

µω(A(ω))µθtω(B(θtω)), (11)

almost surely with respect to P. This mixing concept and
its interpretation are natural extensions of their deterministic
counterparts just recalled above, except that the mixing property
has to be checked across the fibers ω and θtω, due to the skew-
product nature of the RDS (Φ, θ) [93].

Appendix B. Low-frequency variability (LFV) and mixing

Low-frequency variability (LFV) is a widely used, but not
clearly defined concept in the atmospheric, oceanic and climate
sciences [48,15,31]. In general, one just refers to phenomenawhose
periods are longer than those previously studied. Examples include
atmospheric LFV – referring to so-called intraseasonal oscillations
whose characteristic time scale of 10–100 days is longer than
the 5–10-day life cycle of mid-latitude storms but not longer
than a season [15,84] – or oceanic LFV referring to interannual or
interdecadal variability whose characteristic time scales are longer
than the several-months-long ones of mesoscale eddies and the
seasonal cycle of a year [5,15].

In this appendix, we clarify the notion of LFV from a math-
ematical perspective. Let us reconsider the deterministic Lorenz
system [3]. It is known that the power spectral density, or power
spectrum, of this system is exponentially decaying [50,79]. At the
same time, one can check numerically that the decay of the au-
tocorrelation function is exponentially decaying, too. Other types
of power spectrum behavior may be encountered for chaotic dy-
namical systems, though. Aside frompure power-lawdecay, itmay
also happen that the power spectrum contains one or several broad
peaks that stand out above the continuous background, whether
the latter has a power-law [53] or exponential decay. If the central
frequencies of these peaks are located in a frequency band that lies
close to the lower end of the frequency range being studied, the
system is said to exhibit LFV [52,79].

This climatically motivated, but vague notion of LFV can be
tentatively formalizedmathematically through themixing concept
introduced in Appendix A. Indeed, for a general flow {φt} on
a topological space X , which possesses an invariant physical
measure µ, let us define the correlation function by

Ct(F ,G) :=











F · (G ◦ φt)dµ −



Fdµ



Gdµ









,

using the same notations as above. If the system (φt , µ) is mixing,
the rate of approach to zero of Ct(F ,G) is called the rate of decay
of correlations for its observables F and G. A system exhibits a
slow decay rate of correlations at ‘‘short’’ lags if the rate is slower
than exponential over some characteristic time interval [0, T ]. This
emphasis on the nonuniformdecay rate of correlationswhich leads
to modulations of the rate of decay is consistent with the heuristic
notion described above and connects the mixing properties of
the flow and its power spectral density. In that perspective, the
Ruelle–Pollicott resonances [97] might play an important role in
the mathematical characterization of the notion of LFV.

The relationships between the two approaches require further
study, but we wanted to emphasize here the need for a more pre-
cise definition of the notion of LFV encountered in geophysical
problems. It appears that the mixing properties of flows encoun-
tered in dynamical systems theory offer at least one way to do so.
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Appendix C. Hypoellipticity and random SRB measures

To be as self-contained as possible, we recall here the concept
of hypoellipticity and its use in the theory of stochastic differential
equations. TheoremBof Ledrappier–Young [32] is also restated in a
form that is closer to the framework adopted in the present article.

C.1. Hypoellipticity and Hörmander’s theorem

Consider an SDE

dXt = A0(X)dt +
k=d


k=1

Ak(X) ◦ dW k
t (12)

in the Stratonovich form [41], where A0, Ak (k ∈ {1, . . . , d}) are n-
dimensional C∞ vector fields of R

n, and where the W k
t represent

d one-dimensional, independent Wiener processes. It is assumed
here that the stochastic flow is well defined for all t .

The Lie bracket of two vector fields V andW is given by

[V ,W ] := DW · V − DV · W , (13)

where DV and DW stand for the usual Jacobian of V and of W
in some local coordinates; see for instance [94] and references
therein. At each point x ∈ R

n, Eq. (13) has to be read as

[V ,W ]|x = DW (x) · V (x) − DV (x) · W (x),

and therefore [·, ·] is a bilinear operation that associates a vector
field [V ,W ] to the vector fields V and W .

We denote by L{W1, . . . ,Wp} the smallest vector space G

closed under Lie brackets (13), such that G contains the vectors
W1, . . . ,Wp, i.e. the Lie algebra G generated by the vector family
W1, . . . ,Wp. We are now in a position to recall Hörmander’s
celebrated ‘‘sum-of-squares theorem’’ [61,95].

Theorem (Hörmander). Let A0, Ak (k ∈ {1, . . . , d}) be n-
dimensional C∞ vector fields of R

n such that Hörmander’s condition

∀ x ∈ R
n

L{A0|x, [A1, A0]|x, . . . , [Ad, A0]|x} = R
n, (14)

is satisfied. Then the law of the solutions of Eq. (12), i.e. the probability
measure such that Xt ∈ dx (t > 0), has a C∞ density with respect to
the Lebesgue measure on R

n.

It is interesting to note that A0 alone represents the drift of Eq.
(12), and hence it does not cause any diffusion phenomenon that
is required for a density of the process Xt to exist in the usual
Fokker–Planck setting. Such diffusion is lacking, for instance, in
the case of the Liouville equation (6), which is only a first-order
differential operator.

To clarify this statement, we recall here some basic facts related
to the hypoellipticity concept and to the Fokker–Planck equation.
By using the repeated-index rule for summation, we introduce
now the second-order differential operator L that generates the
SDE (12),

L :=
1

2
E ij∂ij + Bi∂i, (15)

with E the n × nmatrix whose coefficients are given by

E ij :=
k=d


k=1

Ai
kA

j
k;

here

Bi := Ai
0 +

1

2

k=d


k=1

Aj
k∂jA

i
k

is the ith-component of the Itô–Stratonovich correction term.

We can thus define the concept of a hypoelliptic differential
operator for G := aij∂ij + bi∂i + c , where aij, bi and c are smooth
functions from R

m into R. Let U ⊂ R
m and f , g lie in D ′(U),

the space of distributions on U , and assume that Gf = g in the
distributional sense, i.e.

⟨f , G∗ϕ⟩ = ⟨g, ϕ⟩,

for all smooth test functions ϕ ∈ D(U) with compact support in
U . We call the operator G hypoelliptic if, for all open V ⊂ U ,

g|V ∈ C∞(V ) ⇒ f |V ∈ C∞(V ).

Hörmander’s remarkable theorem gives sufficient conditions to
guarantee the hypoellipticity of G = −∂t + L∗ as an operator on
U = (0, ∞)×R

n ⊂ R
m withm = n+1 [95,61]. The hypoellipticity

property relaxes the usual ellipticity property that ensures the
smoothing effect of a second-order differential operator. In fact,
if we assume the operator L to be uniformly elliptic, the vectors
A1, . . . , Ad already span R

n at all points, so that Hörmander’s
condition (14) is always satisfied.

Indeed, assuming that v ∈ {A1, . . . , Ad}
⊥ implies that, for all

k ∈ {1, . . . , d},

0 = ⟨v, Ak⟩
2 = |viAi

k|
2 = viAi

kA
j
kv

j = vTEv,

and we deduce trivially – from the fact that E = σσ T is symmetric
and positive definite, with σ = (A1| . . . |Ad) – that v ≡ 0. When
L is not uniformly elliptic, the spanning condition takes the form
(14) between the drift part generated by A0 and the diffusion part
generated by A1, . . . , Ad.

We leave as an exercise the verification of Hörmander’s
condition in the case of our [SLM]. It follows that the law of the
process generated by this model has a smooth density on (0, ∞)×
(R3 − {0}).

C.2. Existence of random SRB measures and Ledrappier–Young’s
theorem

Weadapt here the appendix of [32] to the point of view adopted
in the present article. It is known that the solutions of (12) are
Markov processes that can be represented by {Φ(t, ω) : R

n →
R

n, t ≥ 0, ω ∈ Ω}, where Φ(t, ω) ∈ Diff∞(Rn) for each t
and ω, Φ(t, ω) varies continuously with t for fixed ω, and the
transition probabilities Pt(·|x) are given by the distributions of
ω → Φ(t, ω) [41]. Since A0 and the Ak’s are time-independent
vector fields, the law of this stochastic semi-flow from time s to
time t > s depends only on t − s. Thus if ν is the distribution
of {Φ(1, ω), ω ∈ Ω}, the random diffeomorphisms Φ(n, ω) are
products of n independent diffeomorphisms with law ν, and we
are, therefore, in the framework of the composition of independent
random diffeomorphisms considered in [32]. Note that the pair
(Φ(n, ω), θ) – with θ being the shift operator at time 1 acting on
the Wiener space described in Section 3.1 – form a discrete RDS
associated with the SDE (12); see [29].

Theorem B of [32] can now be reformulated as follows, in the
light of Appendix C.1.

Theorem (Corollary of Ledrappier and Young [32]). Consider an
SDE (12) with smooth vector fields A0 and Ak, k ∈ {1, . . . , d},
such that the discrete RDS (Φ(n, ω), θ) above possesses a random
global attractor. Assume that the Hörmander condition (14) is
satisfied and that there exists a positive Lyapunov exponent associated
with (12). Then the sample measures associated with the discrete RDS
(Φ(n, ω), θ), have the SRB property.

To prove this theorem it suffices to note that the P1(·|x)’s have
C∞ densities with respect to Lebesgue measure, by Hörmander’s
theorem, and to use Theorem B of [32]. The theorem thus obtained
applies to our [SLM].
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Appendix D. Supplementary data

Supplementary material related to this article can be found
online at doi:10.1016/j.physd.2011.06.005.
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