Stochastic Climate Models

Peter Imkeller Jin-Song von Storch Editors

Birkhäuser Verlag Basel · Boston · Berlin

Contents

Introd	e v uction xiii
	butors and speakers xix es xxvii
Decour	AAVII
Chapt	ter 1 The Hierarchy of Climate Models1
	allery of simple models from climate physics OLBERS
1	Introduction
2	Fluid dynamics and thermodynamics6
3	Reduced physics equations14
4	Integrated models
5	Low-order models44
Re	eferences
	ple climate models
KLAU	US FRAEDRICH65
1	Climate and climate modelling65
2	Zero-dimensional energy balance climate model
3	Quasi-geostrophic two-layer atmosphere in a channel
4	Reduced gravity ocean in a square basin
5	Summary and outlook
Re	eferences
	plex climate models – tools for studying the origin cochasticity in the climate system
Jin-S	Song von Storch
1	Introduction
2	Origin of complexity
3	Cosequence of complexity111
4	Concluding remarks
Re	eferences
	e mathematical aspects of the GCMs ER TEMAM
1	Introduction
2	Hierarchy of PDEs in the GCMs
3	The PEs and PEV ² s of the ocean

4	The PEs and PEV ² s of the atmosphere	$\dots 129$
5	Coupled atmosphere-ocean (CAO) models	134
Re	eferences	136
	ter 2 The Emergence of Randomness: Chaos, veraging, Limit Theorems	139
of st	selmann's program revisited: the analysis tochasticity in deterministic climate models WIG ARNOLD	141
1	Introduction	141
2	Stochasticity in deterministic climate models with two separate time scales	143
3	The method of averaging	146
4	Normal deviations from the averaged system: the central limit theorem	148
5	Large deviations from the averaged system	151
6	Extensions of Hasselmann's program comments	$\dots 154$
Re	eferences	155
	rmodynamic formalism, large deviation,	
	multifractals IFRED DENKER AND MARC KESSEBÖHMER	150
1	Expanding dynamical systems	
2	Pointwise dimension	
3	Multifractal formalism	
4	Local large deviation	
	eferences	
	ummary	
Ave	raging and climate models	
1	Introduction	
2	The averaging setup	
3	Fully coupled systems	
4	Appendix A: hyperbolicity	
5	Appendix B: Proof of Theorem 3.1	
6	Appendix B: Proof of Theorem 3.2	
	eferences	187

aver	amical systems with time scale separation: aging, stochastic modelling, and central
	theorems
	stian Rödenbeck, Christian Beck Holger Kantz189
1	Introduction
2	Average skill of an averaged model
3	Stochastic modelling
4	Central limit theorems and their limits
-	onclusion
	opendix: Remarks on the numerical implementation
	eferences
	۸.
	ter 3 Tools and Methods: SDE, Dynamical Systems,
SP	DE, Multiscale Techniques211
	rgy balance models – viewed from stochastic dynamics
	ER IMKELLER213
1	Introduction
2	The paradigm of stochastic resonance
3	Deterministic energy balance models
4	Stochastic extensions of EBM228
5	Stochastic resonance: Freidlin's approach
\mathbf{R}	eferences
_	onential stability of the quasigeostrophic
_	ation under random perturbations 140 Duan, Peter E. Kloeden and Björn Schmalfuss241
JINQ 1	Introduction
2	Préliminaries
_	
3	Transformation of the quasigeostrophic equation
4	The stationary solution
5 D	Discussion
	eferences
	ini course on stochastic partial differential equations Y ZABCZYK
JER2 1	Introduction
2	Cauchy problem and semigroups
3	Infinite dimensional Wiener processes
ა 4	Stochastic integration 265

	5 First order stochastic equations	266
	6 Heat equation with space-time white noise	269
	7 Stationary solutions of a wave equation	. 271
	8 Nonlinear stochastic pdes	275
	9 Appendix	279
	References	. 283
fro	asselmann's stochastic climate model viewed om a statistical mechanics perspective one Müller	285
:	1 Introduction	285
	2 The microscopic description	. 287
	3 The mesoscopic description	. 288
	4 A derivation of the Langevin equation	. 289
	5 The macroscopic description	292
	6 Statistical mechanics	. 293
	7 Discussion	294
	References	. 294
Co	pter 4 Reduced Stochastic Models and Particular Techniques onstrained stochastic forcing	
Jo	SEPH EGGER	
	1 Introduction	
	2 Charney-DeVore model	
	3 Discussion	
	T) C	
	References	. 307
JA	References	
Ja an	ochastic resonance and noise-induced phase coherence n A. Freund, Alexander Neiman	. 309
JA AN	ochastic resonance and noise-induced phase coherence N A. Freund, Alexander Neiman D Lutz Schimansky-Geier	. 309 309
JA AN	ochastic resonance and noise-induced phase coherence N. A. FREUND, ALEXANDER NEIMAN D. LUTZ SCHIMANSKY-GEIER	. 309 309
JA AN	ochastic resonance and noise-induced phase coherence N A. FREUND, ALEXANDER NEIMAN D LUTZ SCHIMANSKY-GEIER	. 309 309 316
JA AN Ste by	ochastic resonance and noise-induced phase coherence N. A. FREUND, ALEXANDER NEIMAN D. LUTZ SCHIMANSKY-GEIER	. 309 309 316

	Introduction	$\dots 325$
:	2 Spectral model	327
;	Superrotation flow	331
4	Interpretation	335
ļ	5 Conclusions	340
	References	341
So	me mathematical remarks concerning the localization	
	planetary waves in a stochastic background flow	
	fer Imkeller, Adam Hugh Monahan Di Lionel Pandolfo	345
	Introduction	
	2 Some remarks concerning path properties of R	
	3 Transformation into Sturm-Liouville problems	
2	4 Critical lines for $\mu = 0$	
į	5 Critical lines for general μ	
(The spectrum of L	
,	The spectrum of K	
	References	
Ro	ssby waves in a stochastically fluctuating medium	
PR	ashant Sardeshmukh, Cécile Penland	
AN	MATTHEW NEWMAN	
	Introduction	
-	2 The stochastic differential equations	
	Results	
	Summary and discussion	
	Appendix A	
	References	383
	ssive tracer transport in stochastic flows	90=
	A. Woyczyński	
	I Introduction	
	2 Lagrangian vs. Eulerian picture	
	Slowly varying spatial variables	388
,	Richardson function of an advected scalar	388 389
ļ	Richardson function of an advected scalar Statistical topography of passive tracer fields	388 389 390
!	Richardson function of an advected scalar	388 389 390