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	e paper reviews the application of deterministic-stochastic models in some areas of computational electromagnetics. Namely,
in certain problems there is an uncertainty in the input data set as some properties of a system are partly or entirely unknown.
	us, a simple stochastic collocation (SC) method is used to determine relevant statistics about given responses. 	e SC approach
also provides the assessment of related con
dence intervals in the set of calculated numerical results. 	e expansion of statistical
output in terms of mean and variance over a polynomial basis, via SC method, is shown to be robust and e�cient approach
providing a satisfactory convergence rate. 	is review paper provides certain computational examples from the previous work
by the authors illustrating successful application of SC technique in the areas of ground penetrating radar (GPR), human exposure
to electromagnetic 
elds, and buried lines and grounding systems.

1. Introduction

Some areas in computational electromagnetics (CEM) su�er
from uncertainties of the input parameters resulting in the
uncertainties in the assessment of the related response.
	ese problems could be overcome, to a certain extent, by
an e�cient combination of well-established deterministic
electromagnetic models with certain stochastic methods.

Traditionalmethods rely upon statistical approaches such
as bruteMonte Carlo (MC) simulations and various sampling
techniques like strati
ed sampling and Latin hypercube
sampling (LHS). 	ese methods are easy to implement and
do not su�er from “curse of dimensionality” which means
that the sample size does not depend on number of random
variables. On the other hand the sample size needs to be very
high (>100.000), and thus they exhibit very slow convergence.

Contrary to statistical approaches, the nonstatistical
based techniques aim to represent the unknown stochastic
solution as a function of random input variables. Among the
various methods available in the literature, the spectral dis-
cretization based technique—generalized polynomial chaos

(gPCE)—emerged as the most used approach in the stochas-
tic CEM.	egPCE framework comprises stochasticGalerkin
method (SGM) and stochastic collocation method (SCM)
for solving stochastic equations [1]. 	e SGMs have been
successfully used in recent years in the area of circuit
uncertainty modeling both for Signal Integrity (SI) [2] and
microwave applications [3] as well as in stochastic dosimetry
[4, 5]. 	e intrusive nature of SGM implies more demand-
ing implementation since a development of new codes is
required. On the contrary, the nonintrusive nature of SCM
enables the use of reliable deterministicmodels as black boxes
in stochastic computations. Both approaches exhibit fast
convergence and high accuracy under di�erent conditions
and a detailed comparison of their use in EMC simulation
can be found in [6].

	e combination of the nonintrusive, sampling based
nature of Monte Carlo simulations with the polynomial
approximation of output value, which is the characteristic
of gPCE methods, made stochastic collocation one of the
most researched and applied stochastic approaches [7–9].	e
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examples of successful coupling of SCM and its variations
with di�erent deterministic codes have been reported in
stochastic dosimetry [10, 11], in the analysis of complex power
distribution networks (PDN) [12], in the design of integrated
circuits (ICs), microelectromechanical systems, (MEMSs),
and photonic circuits [13, 14], in the simulation of EM-
circuit systems [15, 16], and in the area of antenna modeling
[17–19] and electromagnetic compatibility (EMC) of space
applications [20]. 	is paper reviews the previous work of
the authors pertaining to the use of SC techniques in areas of
CEM such as ground penetrating radar (GPR), EM-thermal
dosimetry of the eye and brain, and buried lines and ground-
ing systems [21]. Some illustrative computational examples
for the transient transmitted 
eld fromGPR antenna [22, 23],
speci
c absorption rate (SAR) distribution in the brain and
the eye [24, 25], plane wave coupling to buried conductors
[26, 27], and transient analysis of grounding electrodes [28]
pertaining to certain statistical moments are given in the
paper as well.

	e paper is organized, as follows: 
rst an outline of
the SC method is given in Section 2 along with the short
overview of its applications in various areas. Section 3 deals
with di�erent applications of SCMcarried out by authorswith
related examples. 	is is followed by some conclusions and
guidelines for a future work.

2. An Outline of the Stochastic
Collocation Method

	e uncertainty quanti
cation (UQ) of the unknown
stochastic output of the model is preceded by two steps:
the UQ of input parameters and uncertainty propagation
(UP) of uncertainties present in the model inputs to the
output of interest. 	e UQ of input parameters implies
modeling the input parameters as random variables
and/or random processes. 	e UP refers to the choice and
implementation of the stochastic method that is capable of
solving the stochastic model. 	e advantage of the stochastic
collocation method (SCM) used in this work is its simplicity,
a strong mathematical background, and the polynomial
representation of stochastic output. 	e nonintrusive nature
of the method enables the use of deterministic models as
a black box. 	is way, previously validated computational
models, such as FEM-BEMmodels described in Section 3, are
used at predetermined set of simulation points. 	is section
outlines the fundaments of the mathematical background for
the SCM, with the brief mention of some other variants.

Once the deterministic modeling of a problem of interest
is completed, a stochastic processing of the numerical results
can be carried out via the SC method [1, 22–27]. 	e
theoretical basis of SC technique is to use the polynomial
approximation of the considered output for a certain number
of random parameters.

Without loss of generality, the theoretical principles can
be presented taking into account a single random parameter�.Within this framework, a givenmapping through function� : � → � can be assumed and a random variable (RV) �
given by an a priori probabilistic distribution (� standing for
the relation between the output and input parameter, resp.).

Consequently, the expressions for statistical moments, such
as mean and variance of RV, can be derived.

First, an approximation of function � over �th order
Lagrange polynomial basis can be written as follows:

� (�) = �∑
�=0
��	 � (�) , (1)

where Lagrange polynomials are given by

	 � (�) = �∏
�=0,� ̸=�

� − ���� − �� . (2)

And one has the following property:

	 � (��) = 
��, (3)

where 
�� denotes Kronecker symbol.
It is worth mentioning that, although Lagrange poly-

nomials are mostly used for the polynomial representation
of the stochastic output, other types of basis functions are
also possible. In [15] SCM is used to assess the uncertainty
quanti
cation for the hybrid EM-circuit systems. Two types
of basis functions are used: Lagrange polynomials that have
the character of locally global basis functions and piecewise
multilinear basis functions that are able to capture the
discontinuous issues in stochastic solutions.

Note that collocation points �� from (1) correspond to the
points in Gauss quadrature rule attached to the probability
distribution of random inputs (e.g., Legendre polynomials
for a uniform distribution and Hermite polynomials for a
Gaussian distribution). 	e choice of an adapted quadrature
rule [19] yields

∫+∞
−∞

� (�) � (�) �� = �∑
�=0

��� (��) , (4)

where� is the probability density of randomvariable�, while� represents a function with a su�cient regularity and the
coe�cients �� are collocation weights chosen in a way to
ensure an exact quadrature rule for polynomials with a degree
lower or equal to 2� + 1.

However, the choice of collocation points is not limited
to the points that supervene from Gauss quadrature rules.
Other formulas may be used to generate the abscissas for the
interpolation in (1) such as Clenshaw-Curtis formula with
nonequidistant abscissas given as zeros of the extreme points
of Chebyshev polynomials as in [15] or equidistant points
in [14, 15]. 	ese sets of points exhibit nested fashion unlike
Gauss points, which is desirable in certain applications.

Higher dimensions yield multivariate interpolants in (1).
	e simplest way to interpolate is by using the tensor product
in each random dimension. 	is approach is justi
ed for
the cases when random dimension is up to 5 [1]. Successful
applications of a fully tensorized SCMmodel can be found in
[7–9]. However, for random dimension > 5, SCM exhibits the
“curse of dimensionality” and di�erent techniques need to
be considered. One of the most popular approaches is sparse
grid interpolation based on Smolyak algorithm [1]. Sparse
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grid stochastic collocation method (SGSCM) has become an
interest of many researchers. In [14] a conventional SGSCM
has been applied for stochastic characterization of MEMS.
An adaptive approach of SGSCM has been employed in [15]
for the stochastic modeling of hybrid EM-circuits while a
dimension-reduced sparse grid strategy has been proposed
for SCM in EMC so�ware in [16].

Furthermore, di�erent cubature formulas for dealing
with multidimensional integrals may be used for the gener-
ation of collocation points. One of the examples is Stroud
cubature based SCmethodwhose application for the variabil-
ity analysis of PDNs within SPICE environments is reported
in [12] and, for e�cient computation of RCS from scatterers
of uncertain shapes, in [19].

Once the desired output has been expressed as polyno-
mial dependent on random input variables, the expression for
the stochastic moments can be easily derived following their
de
nitions from statistics.	e expectation (mean) of �(�) is
by de
nition

� [� (�)] = ∫+∞
−∞

� (�) � (�) ��, (5)

where� is a given RV.
Next step is to replace �(�) in terms of Lagrange polyno-

mials and expectation of �(�) can be written as follows:

� [� (�)] = ∫+∞
−∞

�∑
�=0
��	 � (�) � (�) ��. (6)

	e Gauss quadrature rule yields

∫+∞
−∞

	 � (�) � (�) �� = �∑
�=0

��	 � (��) . (7)

Taking into account the property of Lagrange polynomi-
als (3) one obtains

∫+∞
−∞

	 � (�) � (�) �� = ��. (8)

Combining (6)–(8) leads to an expression for mean of�(�):
� [� (�)] = �∑

�=0
����. (9)

Furthermore, the same approach is used to evaluate
variance of �(�), which is by de
nition given by

var (� (�)) = � [� (�)2] − � [� (�)]2. (10)

It can be written as

var (� (�)) = ∫+∞
−∞

� (�)2� (�) �� − � [� (�)]2. (11)

Again, utilizing the expansion of function � over
Lagrange polynomial basis (1) yields

var (� (�))
= ∫+∞

−∞
( �∑
�=0
��	 � (�))( �∑

�=0
��	� (�))� (�) ��

− � [� (�)]2
(12)

which can be also written as

var (� (�))
= �∑
�=0

�∑
�=0

���� ∫+∞
−∞

	 � (�) 	� (�) � (�) �� − � [� (�)]2 . (13)

Furthermore, integral from the right-hand side of (13)
according to Gauss quadrature rule (7) becomes

∫+∞
−∞

	 � (�) 	� (�) � (�) = �∑
�=0

��	 � (��) 	� (��)
= �∑
�=0

��
��
��.
(14)

Finally, inserting (14) into (13), one obtains

var (� (�)) = �∑
�=0

�∑
�=0

�∑
�=0

��
��
�� − � [� (�)]2 (15)

and due to Kronecker property nonzero terms are only with� = � =  leading to
var (� (�)) = �∑

�=0
����2 − � [� (�)]2. (16)

Now the statistical moments around a considered output! can be written as [!]�, where " stands for a given order of
statistical moment; for example, the mean of �(�) can then
be written as

� [� (�)] = [!]1 . (17)

General expression is given as follows:

[!]� ≈ �∑
�=0
��Φ� (��) , (18)

where Φ� represents a mapping pertaining to a certain
statistical moment ", that is, with Φ�(��) such as

Φ1 (��) = � (��) ,
Φ2 (��) = (� (��) − � [� (�)])2 . (19)

Assuming the mutual independence of input random
variables the generalization to multi-RVs case is straightfor-
ward. Instead of single random variable, one deals with a
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Figure 1: Center-fed GPR dipole antenna.

random vector X = (�1, �2, . . . , �	)
 and "th statistical
moment of output ! can be written as [28]

[!]� (X) ≈ �1∑
�1=0

⋅ ⋅ ⋅ ��∑
��=0

��1 ⋅⋅⋅��Φ� (X) , (20)

where ���1 ⋅⋅⋅�� stands for weight of the expansion for random
vectorX of size&. Somemore details related to this approach
are available elsewhere, for example, in [28].

Although the assumption on independence of random
input variables is valid in many CEM applications, it is
worth noting that correlated random variables can also be
taken into account. For example, in [29] collocation points
that belong to correlated inputs are computed by using the
di�erent orthogonal polynomials, while in [30] the use of
partitioning and clustering methods for generation of SC
points is proposed which naturally extends to incorporation
of correlated inputs.

3. Applications in
Computational Electromagnetics

	is section outlines the governing equations pertaining to
CEM deterministic models reviewed in this work.	us, 
rst,
Section 3.1 deals with transient 
eld generated by GPR dipole
antenna. Modeling of induced SAR in the brain and eye
is presented in Section 3.2. Sections 3.3 and 3.4 deal with
plane wave coupling to buried wire and current injection of
horizontal grounding electrode, respectively.

3.1. Transient Field in the Soil Generated by GPR Dipole
Antenna. 	edipole is characterized by a length 	 and radius' and is located at height ℎ above an interface as depicted in
Figure 1.

Direct time domain deterministic model of GPR dipole
antenna is based on the space-time Hallen integral equation
and corresponding integral formula for the calculation of the
transmitted 
eld into the lossy ground.

	e transient current !(�, -) along the dipole antenna
excited by an equivalent voltage generator is obtained by
solving the Hallen integral equation [31]:

∫

0

! (��, - − ��/0)43 ���

− ∫�
−∞

∫

0
5 (6, 7) ! (��, - − �∗� /0 − 7)

43�∗� ����7

= 12809�(��, - −
;;;;;� − ��;;;;;0 ) + <0 (- − �0 )

+ <
 (- − 	 − �0 ) ,
(21)

where 0 is velocity of light, 80 is the free-space wave
impedance, and �� and �∗� are the distances between obser-

vation point � and source point �� on real and image wire,
respectively. Time signals <0 and <
 account for the multiple
re�ections from the wire ends and can be determined by
assuming the zero current at the wire ends [31]. 	e interface
e�ects are taken into account via the re�ection coe�cient
(RC) 5(6, -) [31]:
5 (6, 7) = A
 (-) + 4B1 − B2 C

−��

-
∞∑
�=1

(−1)�+1 �A�!� (D-) , (22)

where

A = 1 − B1 + B ;

B = √G� − sin26
G� cos 6 ;

D = H2G ;
6 = arctg

;;;;;� − ��;;;;;2ℎ ;

(23)


(-) is the Dirac impulse; and !�(-) is the �th order modi-

ed Bessel function of the 
rst kind.	eHallen equation (21)
is solved via space-time version of Galerkin-Bubnov indirect
boundary element method (GB-IBEM) [31].

	e transient 
eld transmitted into a lossy ground is given
by an integral formula [31]

�tr

� (5, -) = I043
⋅ ∫�
−∞

∫

0
ΓMIT

tr
(7) K! (��, - − ���/V − 7)

K7 C−(1/��)(���/V)��� ����7,
(24)

where V is velocity of wave propagation in the lower medium
and ��� is the distance from the dipole antenna to the
observation point located in the lower medium:

��� = √(� − ��)2 + (L + ℎ)2. (25)

	e in�uence of the two-media interface is taken into
account via the simpli
ed space-time transmission coe�cient
arising from the modi
ed image theory (MIT) [31]:

Γtr (-) = 7372 
 (-) +
172 (2 −

7372) C−�/�2 , (26)
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Figure 2: Mean of the �-
eld inside soil, 	 = 1m, ' = 6.74mm.
Figure reproduced from Poljak et al. (2017).

where

72 = G� + 1H G0,
73 = 2GH . (27)

	e integral formula is handled via boundary element for-
malism as well. 	e mathematical details of these procedures
could be found elsewhere, for example, in [31].

All computational examples are related to the horizontal
dipole antenna of length 	 = 1m and radius ' = 6.74mm
above a real ground.

First, a simpli
ed case of a dielectric half-space is consid-
ered [22]. 	e antenna is excited at its center by the Gaussian
pulse voltage source:

9 (-) = 90C−�2(�−�0)2 (28)

with parameters 90 = 1V, � = 1.5 ∗ 109 s−1, -0 = 1.43 ns.
Figure 2 shows the mean of the electric 
eld transmitted

in the soil for the following random variables: RV1 = ℎ
(antenna height above a soil), RV2 = G� (soil permittivity),
and RV3 = � (
eld observation point). First, one random
variable at a time is considered, as follows:

(i) RV1: central location, ℎ0 = 0.3m; uniformly dis-
tributed: T[0.05; 0.55] (in meters);

(ii) RV2: initial value, G�0 = 15; uniformly distributed:T[2; 28];
(iii) RV3: initial value, �0 = 1m; uniformly distributed:T[0.5; 1.5] (in meters).

Signi
cant discrepancies appear between di�erent sce-
narios with one random variable at a time, that is, between

In�uence(E)-SC RV1

In�uence(E)-SC RV2

In�uence(E)-SC RV3

×10−8
0.5 1 1.5 2 2.5 3 3.50

Time (s)
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In
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u
en

ce
, n

o
 d

im

Figure 3: In�uence of each RV on the output �. Figure reproduced
from Poljak et al. (2017).

RV1, RV2, and RV3 models. 	e in�uence of each RV on the
output � is computed using the following relation:

In�uence (�)� = var (� | RV�)
var (� | RV�=1⋅⋅⋅�) . (29)

Figure 3 shows the in�uence of each of three di�erent RVs
on the output �.

Ranking random parameters from the most in�uential
to the least in�uential (from �-
eld variances), the model is
more sensitive to RV3 (depth accuracy) and RV1 (antenna
height) and less sensitive to soil permittivity.

Next example deals with the same GPR antenna radiating
over a lossy ground with ground conductivity H as the
fourth random input variable (RV) [23]. 	e input RVs
follow the uniform distribution. 	e observed types of soil
are wet and average sand, respectively. 	e di�erence is in
the corresponding ranges for relative permittivity of sand:G�0 ∼ T[7, 30] and G�0 ∼ T[14, 18] for wet and average

sand, respectively. 	e other RVs are modeled as H0 ∼T[0.1, 9.9]mS/m; ℎ0 ∼ T[12, 18] cm; �0 ∼ T[0.93, 1.07]m.
Stochastic simulations are carried out for 4 univariate

cases each with 3, 5, 7, and 9 sigma points and for 4-
dimensional case with 54 input points. 	e impact factor is
calculated according to (29).

Figure 4 depicts the mean value for the electric 
eld
transmitted into the soil versus time for wet sand when only
permittivity is random. 	e relative permittivity is directly
related to the propagation velocity; therefore, it has the
highest impact on the time delay of a signal. More sigma
points imply adding signals with di�erent starting point to
calculation. 	erefore, for the given range of permittivity
stochastic moments for the electric 
eld versus time cannot
be obtained. For this reason additional calculationswere done
for the case of average type of sandwith narrower permittivity
range.

Figure 5 shows the rank of input parameter for wet and
average type of soil, respectively, with respect to transmitted
electric 
eld versus time. 	e relative permittivity has the



6 Mathematical Problems in Engineering

15 20 25 30 35 40

t (ns)

−0.2

−0.1

0

0.1

0.2

0.3

⟨E tr⟩, 3SC

⟨E tr⟩+std, 3SC

⟨E tr⟩−std, 3SC

⟨E tr⟩, 5SC

⟨E tr⟩+std, 5SC

⟨E tr⟩−std, 5SC

⟨E tr⟩, 7SC

⟨E tr⟩+std, 7SC

⟨E tr⟩−std, 7SC

⟨E tr⟩, 9SC

⟨E tr⟩+std 9SC

⟨E tr⟩−std 9SC

⟨E
tr
⟩

(V
/m

)
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eld transmitted into the soil versus time for wet sand; ⟨�tr⟩ is mean value and std is standard deviation; only G� is random.
Figure reproduced from Susnjara et al. (2017).
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Figure 5:	e impact factor !�(�) for each random input variable for the case of wet sand (a) and average type of sand (b). Figure reproduced
from Susnjara et al. (2017).

highest impact followed by the depth of the observation
point. 	e soil conductivity exhibits the minimal in�uence.

	e maximum value of the transmitted 
eld is mostly
a�ected by the soil conductivity. 	e permittivity, the height,
and the depth have a very similar in�uence on maximum

eld value for the wet sand. However, if the range of relative
permittivity is reduced, the in�uence of relative permittivity
is much smaller than the in�uence of the other two variables.
Nevertheless, the multivariate simulation for both soil types
has similar average value and standard deviation since the
major origin of variations is the soil conductivity.

3.2. Induced SAR in the Brain and the Eye and Related
�ermal Response. Deterministic frequency domain model
of the human brain exposed to microwave radiation is based
on the set of coupled electric 
eld integral equations (EFIEs)
and the related solution via method of moments (MoM)
scheme. 	e mathematical details could be found elsewhere,
for example, in [24, 32].

	e main task of high frequency (HF) dosimetry is to
quantify thermal e�ects, provided the distribution of the
electromagnetic energy absorbed by the body is known. 	e
power dissipated in the tissue is expressed in terms of the
speci
c absorption rate (SAR) de
ned by the rate of energyZ absorbed by the unit body mass\:

SAR = �^�\ = H2_ |�|2 , (30)

where ^ is the dissipated power, � is the peak value of the
electric 
eld, respectively, _ is the tissue density, and H is the
tissue conductivity.

	e temperature increase because the SAR induced in a
tissue is obtained from the solution of the steady-state Pennes
bioheat equation [24, 32]:

∇ ⋅ ( ∇a) + _�0�b (a� − a) + c� + _ ⋅ SAR = 0, (31)

where  stands for the tissue thermal conductivity, _� is the
blood mass density, 0� is the speci
c heat capacity of blood,
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b is the blood perfusion rate, a� is the arterial temperature,c� is the heat source due tometabolic processes, and term _⋅
SAR represents the volumetric heat source due to an external
electromagnetic 
eld.

	e corresponding boundary condition at the interface
between the model surface and the air is

d = e (a� − a�) , (32)

where d is the heat �ux density:
d = −fKaK� (33)

while e, a�, and a� are the convection coe�cient, the
temperature of the surface, and the temperature of the air,
respectively.

	e temperature rise in a tissue exposed to external HF

elds is obtained by solving the bioheat transfer equation.	e
Pennes equation is solved via 
nite element method (FEM)
and the details are available elsewhere, for example, in [24,
32].

	e brain exposed to HF radiation is analyzed by solving
the coupled surface integral equations (SIE) [32]:

��I�∬
�

h→i (h→5 �)l� (h→5 , h→5 �) �m�
− ��G� ∬�

∇��h→i (h→5 �)∇l� (h→5 , h→5 �) �m�
+∬

�

h→n(h→5 �) × ∇�l� (h→5 , h→5 �) �m�

= {{{
h→� inc, � = 1
0, � = 2,

(34)

where
h→i and

h→n are the unknown equivalent electric and
magnetic current densities, respectively,  � is the wave num-
ber of a medium �, and l� is the interior/exterior Green
function for the homogeneous medium [32] given by

l� (h→5 , h→5 �) = C−����43� ; � = ;;;;;;h→5 − h→5 �;;;;;; , (35)

where � is the distance from the source to the observation
point, respectively, while � denotes the index of an inte-
rior/exterior domain; that is, � = 1, 2.

	e set of integral equations (34) is solved via MoM
procedure presented in [32].

Plane wave incident on the corneal part of the eye, treated
as an exterior unbounded scattering problem, is formulated
via the Stratton-Chu formulation; that is, the time-harmonic
electric 
eld at the exterior domain is expressed by the
following boundary integral equation [25]:

Dh→� = h→� � + ∮
���

h→� × (∇� × h→�)l�m�
+ ∮

���
[(h→� � × h→�) × ∇�l + (h→� ⋅ h→�)l] �m�, (36)

where �� is the incident electric 
eld.

Table 1: 	e brain electrical parameters.

� = 900MHz � = 1800MHzG� 46 84H [S/m] 0.8 1.2

Table 2: 	e electrical parameters of selected eye tissues.

Vitreous body CorneaG� 64.5 ± 5 46.2 ± 5H [S/m] 7.01 ± 0.6 5.91 ± 0.6

	e interior domain is governed by the vector Helmholtz
equation [25]:

∇ × ( 1 �∇ × h→�) −  �h→� = 0, (37)

where subscripts u and v stand for the exterior and interior
region, respectively.

	is coupled formulation (36)-(37) is handled via the
hybrid BEM/FEM technique.

	e response of interest is the SAR distribution in the
brain at� = 900MHz and� = 1800MHz, respectively, for the
case of vertical polarization.	epower density of the incident
plane wave is ^ = 5mW/cm2.

	e brain model is generated from a Google SketchUp
rendering of the human brain.	e dimensions of the average
adult human brain are as follows: width 131.8mm, length
161.1mm, and height 139mm, while the frequency dependent
parameters of the human brain are presented in Table 1.

Figure 6 shows the results for the SAR and the resulting
temperature increase obtained in the brainmodel at 900MHz
[24].

Each RV� ( = 1, . . . , 5), where RVs are brain width,
length, height, relative dielectric permittivity, and conduc-
tivity, respectively, is assumed to be uniformly distributed
around deterministic values with common coe�cient of
variation equal to 5.77% [24].

Figure 7 shows the SC convergence with 3, 5, and 7
points for the SAR values calculations and di�erent random
variables (RV�,  = 1, . . . , 5).

SC o�ers a precise assessment of the 
rst statistical
moment of maximum SAR with 5 multiphysics simulations,
as themaximum value is between 0.87 and 0.9W/kg, indicat-
ing the importance of modeling RVs at the same time.

Figures 8 and 9 are related to the results obtained from
stochastic dosimetry modeling of the eye.

	e deterministic eye parameter values are available
elsewhere, for example, in [25], while only the relative
permittivity and the electrical conductivity of vitreous body
and cornea are considered here. 	e mean deterministic
values and the stochastic variation assuming the uniform
distribution, as the realistic distributions are not available, are
given in Table 2.

Figure 8 shows the high convergence of the SC tech-
nique jointly with its huge e�ciency as mostly only 3 or 5
simulations are required to compute mean and variance of
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the induced electric 
eld without additional computational
cost.

Figure 9 gives information of the 
rst order sensitivity of
the model to a corresponding random variable for the SAR
assessment in the eye exposed to plane wave, that is, the SAR
variance.

As evident from Figures 9(a) and 9(b), higher levels of
SAR variance are obtained inside the central part of vitreous
body while in the remaining parts this value is rather low.
On the other hand, Figures 9(c) and 9(d) emphasizes the
importance of the corneal part, as the distribution of SAR
variance is mostly concentrated around the corneal region
although some noticeable e�ects exist also in the anterior
chamber.

3.3. Electromagnetic Field Coupling to Buried Conductors.
	e deterministic analysis of the plane wave scattering from
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Figure 8: Relative gap between SC approximations: (a) � = 2 (SC3) and � = 4 (SC5), (b) � = 4 (SC5) and � = 6 (SC7), regarding mean and
variance from the real part of the induced electric 
eld. Figure reproduced from Dodig et al. (2014).

buried wires is based on the space-time Pocklington integral
equation. 	e geometry of a thin wire of length 	 and radius' is buried in a lossy medium at depth �, excited by the plane
wave as shown in Figure 10.

A transient response of a horizontal buried wire is
governed by the following equation of the Pocklington type
[26]:

(IG KK- + IH)�tr

� (-) = −( K2K�2 − IH KK- − IG K2K-2)
⋅ [ I43 ∫


0
� (��, - − �

V

) C−(1/��)(�/V)� ��� − I43
⋅ ∫�
0
∫

0
ΓMIT

ref
(7) � (��, - − �∗

V

− 7)
⋅ C−(1/��)(�∗/V)�∗ ����7] ,

(38)

where �(��, - − �/V) is the unknown space-time dependent
current, �tr

� is the tangential component of the transmitted


eld, and ΓMIT

ref
is the space-time corresponding re�ection

coe�cient arising from the modi
ed image theory (MIT)
approach, reported in [33]. Detailed derivation of (38) can be
found in [34].

	e distance from the source point in the wire axis to the
observation point located on the wire surface is

� = √(� − ��)2 + '2 (39)

while the distance from the source point on the image wire to
the observation point on the original wire, according to the
image theory, is

�∗ = √(� − ��)2 + 4�2. (40)

Time constant and propagation velocity in the lossy
medium are given with

7� = 2GH ,
V = 1√IG .

(41)

	e in�uence of the earth-air interface is taken into
account via the re�ection coe�cient arising from the MIT
and is given with [34]

ΓMIT

ref
(-) = − [7172 
 (-) +

172 (1 −
7172) C−�/�2] , (42)

where the corresponding time constants are

71 = G0 (G� − 1)H ,
72 = G0 (G� + 1)H .

(43)

Note that the re�ection coe�cient (42) represents rather
simple characterization of the earth-air interface, taking into
account only medium properties. An accuracy of (42) has
been discussed in [34].	e solution is carried out analytically,
as presented in [34].

	e response of interest is the transient current at the
center of the wire excited by a transmitted plane wave. 	e
entire stochastic modeling is based upon realistic values of
environmental parameters [26]:

(i) soil conductivity H: H0 = �01 = 5mS/m; uniformly
distributed: T[1; 9] (in mS/m);

(ii) length 	 of wire: 	0 = �02 = 10m; uniformly
distributed: T[9.5; 10.5] (in meters);

(iii) burial depth �: �0 = �03 = 4m; uniformly
distributed: T[2.5; 5.5] (in meters).

Without loss of generality, the problem can be addressed
following di�erent assumptions about the statistical distribu-
tion laws.
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Figure 9: Variance inside the eyemodel induced by plane wave with power density 10W/m2 at� = 6GHz and SC approximation order � = 2,
results at sagittal cross section. Stochastic variations around vitreous body (a) conductivity, (b) relative permittivity, cornea (c) conductivity,
and (d) relative permittivity. Figure reproduced from Dodig et al. (2014).

Figure 11 shows mean (+one standard deviation) of the
current at the wire center under uncertain constraints fully
tensorized (i.e., with 3 RVs). 	e sensitivity analysis provides
relevant information needed to decrease the total number of
SC points required for each RV and optimize the “full-tensor”
random model to an “asymmetrical” one.

Figure 12 provides convergence rates from the current
variance including a complete random model: only 5 points

are necessary to precisely describe the in�uence of random
burying depth � (RV3). Nearly zero levels of the current
(mean and variance) below 0.03 Is involve instability of the
convergence criterion (and positive SC gaps).

3.4. Transient Analysis of Grounding Electrode. 	is subsec-
tion deals with a transient analysis of a horizontal grounding
electrode. 	e deterministic formulation is based on the
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Figure 11: Currents at the center of the wire (“full-tensor” model).
Figure reproduced from Sesnic et al. (2015).

homogeneous space-time Pocklington integral equation. A
horizontal grounding electrode excited at one end with an
equivalent current source of length 	 and radius ', buried in
a lossy medium of conductivity H and relative permittivity G,
at depth �, is shown in Figure 13.

	us, the current distribution along the wire is governed
by the space-time homogeneous Pocklington integrodi�er-
ential equation [35]:

( K2K�2 − IH KK- − IG K2K-2) ⋅ [ I43 ∫

0
� (��, - − �

V

)
⋅ C−(1/��)(�/V)� ��� − I43 ∫�

0
∫

0
ΓMIT

ref
(7)

⋅ � (��, - − �∗
V

− 7) C−(1/��)(�∗/V)�∗ ����7] .
(44)

	eparameters used in (44) are already de
ned in Section 3.3.

Gap 7 × 3 × 3 pts → 7 × 3 × 5 pts

Gap 7 × 3 × 5 pts → 7 × 3 × 7 pts

Gap 7 × 3 × 7 pts → 7 × 3 × 9 pts
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Figure 12: Relative gap with increasing SC orders (RV3). Figure
reproduced from Sesnic et al. (2015).
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Figure 13: A horizontal thin wire scatterer buried in a lossymedium
excited via equivalent current source.

Integrodi�erential equation (44) is solved analytically,
using certain approximations [35].

Additionally, transient impedance can be expressed as
[28]

L (-) = V (0, -)� (0, -) , (45)

where scattered voltage can be obtained using Generalized
Telegraphers’ equations in the frequency domain with sub-
sequent Inverse Fourier Transform (IFFT) [28].

Figure 14 shows the results obtained from 32 + 52 + 72 =83 simulations [27]. Obviously, high convergence rates are
achieved for current mean since 5 × 5 points (i.e., 5 points
for each RV) almost overlap data involving 7 × 7 SC points.
Current variance provides important information regarding
the data dispersion around mean values (via standard devia-
tion in Figure 14).	erefore, the standard deviation is around
20mA at - = 100 Is.

A multivariate test case for the calculation of transient
impedance is presented in Figure 15. 	e in�uence of vari-
ability of soil conductivity H, lightning front time a�, and
lightning time-to-half a is investigated where these three
input variables are modeled as random, each prescribed with
uniform distribution as follows: H ∼ T(1, 10) (in mS/m),
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Figure 15: Mean value ± standard deviation of transient impedance
for multivariate case. Figure reproduced from Sesnic et al. (2017).

a� ∼ T(0.4, 4) (in Is), and a ∼ T(50, 70) (in Is) [28]. 	e
assessment of the mean value and variance using the SC full-
tensor model with 7 × 7 × 7 collocation points is given.

	e conductivity of the medium has the highest impact
during the entire simulation period, while front time has
higher impact at the early time period and time-to-half is
more dominant in the steady state.

4. Conclusion

	e paper reviews some applications of stochastic-
deterministic modeling in various areas of computational
electromagnetics (CEM), previously reported by the authors.

Having completed the deterministic modeling, simple
stochastic collocation (SC) formalism is implemented to e�-
ciently account for uncertainties and to determine con
dence
intervals in the set of obtained numerical results.

	e expansion of the statistical output in terms of mean
and variance over a polynomial basis via stochastic colloca-
tion (SC) is proved to be a powerful method for uncertainty
propagation and related sensitivity analysis demonstrating
robustness and e�ciency and providing satisfactory conver-
gence rate and nonintrusiveness nature of the approach.
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