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Concerns about models of cultural adaptation as analogs of genetic selection have led cognitive game
theorists to explore learning-theoretic specifications. Two prominent examples, the Bush-Mosteller sto-
chastic learning model and the Roth-Erev payoff-matching model, are aligned and integrated as special cases
of a general reinforcement learning model. Both models predict stochastic collusion as a backward-looking
solution to the problem of cooperation in social dilemmas based on a random walk into a self-reinforcing
cooperative equilibrium. The integration uncovers hidden assumptions that constrain the generality of the
theoretical derivations. Specifically, Roth and Erev assume a “power law of learning”—the curious but plau-
sible tendency for learning to diminish with success and intensify with failure. Computer simulation is used
to explore the effects on stochastic collusion in three social dilemma games. The analysis shows how the
integration of alternative models can uncover underlying principles and lead to a more general theory.

FROM EVOLUTIONARY TO COGNITIVE GAME THEORY

The escalation of conflict between neighbors, friends, business associates, ethnic
groups, and states strikes observers as tragically misguided and irrational, yet these
same observers may find themselves trapped in similar dynamics without intending to
be. Why do some relationships proceed cooperatively whereas others descend into
mutually detrimental discord, rivalry, dishonesty, or injury?
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Game theory has formalized the problem of cooperation at the most elementary
level as a mixed-motive, two-person game with two choices: cooperate or defect.
These choices intersect at four possible outcomes, abbreviated as CC, CD, DD, and
DC. Each outcome has an associated payoff: R (reward), S (sucker), P (punishment),
and T (temptation). Using these payoffs, we define a two-person social dilemma1 as
any ordering of these payoffs such that mutual cooperation is Pareto optimal yet may
be undermined by the temptation to cheat (if T > R) or the fear of being cheated (if P >
S) or both. In the game of Stag Hunt, the problem is fear but not greed (R > T > P > S);
and in the game of Chicken, the problem is greed but not fear (T>R> S>P). The prob-
lem is most challenging when both fear and greed are present, that is, when T >R and
P> S. Given the assumption thatR>P, there is only one way this can happen—ifT>R>
P > S, the celebrated game of Prisoner’s Dilemma (PD).

The Nash equilibrium2—the main solution concept in analytical game theory—
predicts mutual defection in PD, unilateral defection in Chicken, and either mutual
cooperation or mutual defection in Stag Hunt. However, Nash cannot make precise
predictions about the selection of supergame equilibria, that is, about the outcome of
ongoing, mixed-motive games. Nor can it tell us much about the dynamics by which a
population of players can move from one equilibrium to another.

These limitations, along with concerns about the cognitive demands of forward-
looking rationality (Dawes and Thaler 1988; Weibull 1998; Fudenberg and Levine
1998), have led game theorists to explore backward-looking alternatives based on evo-
lution and learning. Evolutionary models test the ability of conditionally cooperative
strategies to survive and reproduce in competition with predators (Maynard-Smith
1982). Biological models have also been extended to military and economic games in
which losers are physically eliminated or swallowed up and to cultural games in which
winners are more likely to be imitated (Axelrod 1984; Weibull 1998). However,
despite rapid growth in the science of mimetics (Dawkins 1989; Dennett 1995;
Blackmore 1999), skeptics charge that genetic learning may be a misleading template
for models of adaptation at the cognitive level (Aunger 2001).

The need for a cognitive alternative to evolutionary game theory is reflected in a
growing number of formal learning-theoretic models of cooperative behavior (Macy
1991; Roth and Erev 1995; Fudenberg and Levine 1998; Peyton-Young 1998; Cohen,
Riolo, and Axelrod 2001). In learning, positive outcomes increase the probability that
the associated behavior will be repeated, whereas negative outcomes reduce it. The
process closely parallels evolutionary selection, in which positive outcomes increase a
strategy’s chances for survival and reproduction whereas negative outcomes reduce it
(Rapoport 1994; Axelrod and Cohen 2000). However, this isomorphism need not
imply that adaptive actors will learn the strategies favored by evolutionary selection
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1. Dawes (1980) defined a social dilemma as an n-person, mixed-motive game in which a Pareto-
deficient outcome is the only individually rational course of action, as in Prisoner’s Dilemma. Raub (1988;
see also Liebrand 1983) proposed a less restrictive criterion—that there is at least one Pareto-deficient indi-
vidually rational outcome of the game, as in Stag Hunt and Chicken as well as in Prisoner’s Dilemma. Unlike
Dawes’s definition, Raub’s criterion does not exclude the possibility that rational behavior may also result in
Pareto-efficient outcomes. Our usage follows Raub.

2. In a Nash equilibrium, no one has an incentive to unilaterally change strategies, given the expected
utility of the alternatives.



pressures (Fudenberg and Levine 1998; Schlag and Pollock 1999). In evolution, strate-
gies compete between the individuals that carry them, notwithin them. That is, evolu-
tionary models explore changes in the global frequency distribution of strategies
across a population, whereas learning operates on the local probability distribution of
strategies within the repertoire of each individual member. Put differently, learning
models provide a microfoundation for extragenetic evolutionary change. Just as evolu-
tionary models explain social patterns from the bottom up, learning models theorize
social evolution from the bottom up, based on a cognitive “population” of strategies
competing for the attention of each individual.

In general form, game-theoretic learning models consist of a probabilistic decision
rule and a learning algorithm in which game payoffs are evaluated relative to an aspira-
tion level and the corresponding choice propensities are updated accordingly. The
schematic model is diagrammed in Figure 1.

The first step in Figure 1 is the decision by each player to cooperate or defect. This
decision is probabilistic, based on the player’s current propensity to cooperate. The
resulting outcome then generates payoffs (R, S, P, or T) that the players evaluate as sat-
isfactory or unsatisfactory relative to their aspiration level. Satisfactory payoffs pres-
ent a positive stimulus (or reward), and unsatisfactory payoffs present a negative stim-
ulus (or punishment). These rewards and punishments then modify the probability of
repeating the associated choice, such that satisfactory choices become more likely to
be repeated, whereas unsatisfactory choices become less likely.

Erev, Roth, and others (Roth and Erev 1995; Erev and Roth 1998; Erev, Bereby-
Meyer, and Roth 1999) used a learning model to estimate globally applicable parame-
ters from data collected across a variety of human subject experiments. They con-
cluded that “low-rationality” models of reinforcement learning may often provide a
more accurate prediction than orthodox game theoretical analysis. Macy (1995) and
Flache (1996) have also tested a simple reinforcement learning algorithm in controlled
social dilemma experiments and found supporting evidence.

Learning models have also been applied outside the laboratory to mixed-motive
games played in everyday life in which cooperation is largely unthinking and auto-
matic, based on heuristics, habits, routines, or norms, such as the propensity to loan a
tool to a neighbor, tell the truth, or trouble oneself to vote. For example, Kanazawa
(2000) used voting data to show how a simple learning model suggested by Macy
(1991) solves the “voter paradox” in public choice theory.
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Partner’s Choice: C/D Aspiration Level

Propensity C/D Outcome
[CC,DD,CD,DC]

Payoff
[R,P,S,T]

Stimulus

Figure 1: Schematic Model of Reinforcement Learning
NOTE: C = cooperate; D = defect; R = reward; S = sucker; P = punishment; T = temptation.



Cognitive game theory also applies to conflict in arenas where forward-looking
rationality seems most plausible, such as business transactions and international poli-
tics. Fischer and Suleiman (1997) developed a formal voting model that closely resem-
bles reinforcement learning and applied the model to intergroup competitions such as
the Israeli-Palestinian conflict. They formalized group interaction as a repeated PD
game played by the groups’ representatives. They assumed that representatives’
chances for reelection are influenced by the payoffs that their decisions generate for
group members. Successful aggression (DC) and peace (CC) are evaluated as positive
outcomes, whereas mutual conflict (DD) and defeat (CD) are regarded as unsatisfac-
tory. The negative payoffs from mutual conflict cause representatives from both sides
to lose electoral support. If both sides come to favor peace, a period of stability will
ensue. However, if only one side favors peace and the other exploits this “weakness,”
the relationship will move back into mutual conflict. This in turn will eventually
undermine support for the leaders of both sides, regenerating peace movements that
can become self-reinforcing, but only if both sides avoid the temptation to exploit an
opponent who blinks first.

Homans (1974) used William the Conqueror’s decision to invade England in 1066
to show how learning theory can explain strategic decisions that might otherwise seem
puzzling. From a forward-looking rational choice perspective, William should have
refrained from invasion given the enormous uncertainties such as “the danger of a sea
voyage, of landing on a hostile shore, and of battle with an English army under the
experienced and hitherto successful command of Harold Godwinsson” (p. 46). How-
ever, William looked back on a near-perfect, twenty-year record of military victories
that reinforced his confidence in his ability to succeed, whatever the odds.

Although interest in cognitive game theory is clearly growing, recent studies have
been divided by disciplinary boundaries between sociology, psychology, and econom-
ics that have obstructed the theoretical integration needed to isolate and identify the
learning principles that underlie new solution concepts. Our study aims to move
toward such an integration. We align two prominent models in cognitive game theory
and integrate them into a general model of adaptive behavior in two-person, mixed-
motive games (or social dilemmas). In doing so, we will identify a set of model-
independent learning principles that are necessary and sufficient to generate coopera-
tive solutions. We begin by briefly summarizing the basic principles of reinforcement
learning and then introduce two formal specifications of these principles: the Bush-
Mosteller stochastic learning model and the Roth-Erev payoff matching model.

LEARNING THEORY AND THE LAW OF EFFECT

Learning theory bridges game theory and biology with the assumption that cooper-
ative decisions are shaped by egoistic reinforcements. Like evolutionary selection,
reinforcement is backward-looking (Macy 1990) in that the search for solutions is
driven by experience rather than the forward-looking calculation assumed in analyti-
cal game theory (Fudenberg and Levine 1998; Weibull 1998). Thorndike (1898) for-
mulated this as the law of effect based on the cognitive psychology of William James.
If a behavioral response has a favorable outcome, the neural pathways that triggered
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the behavior are strengthened, which “loads the dice in favor of those of its perfor-
mances which make for the most permanent interests of the brain’s owner” (James
[1890] 1981, 143). This connectionist theory anticipates the error back-propagation
used in contemporary neural networks (Rummelhart and McLelland 1988). These
models show how highly complex behavioral responses can be acquired through
repeated exposure to a problem. For example, with a little genetic predisposition and a
lot of practice, we can learn to catch a ball while running at full speed without having to
stop and calculate the trajectory (as the ball passes overhead).

More precisely, learning theory relaxes three key behavioral assumptions in analyt-
ical game-theoretic models of decision:

• Propinquity replaces causality as the link between choices and payoffs.
• Reward and punishment replace utility as the motivation for choice.
• Melioration replaces optimization as the basis for the distribution of choices over time.

Propinquity, not causality. Compared to analytical game theory, the law of effect
imposes a lighter cognitive load on decision makers by assuming experiential induc-
tion rather than logical deduction. Players explore the likely consequences of alterna-
tive choices and develop preferences for those associated with better outcomes, even
though the association may be coincident, superstitious, or causally spurious.

Reward and punishment, not utility. Learning theory differs from game-theoretic
utility theory in positing two distinct cognitive mechanisms that guide decisions
toward better outcomes, approach (driven by reward) and avoidance (driven by pun-
ishment). The distinction means that aspiration levels are very important for learning
theory. The effect of an outcome depends decisively on whether it is coded as gain or
loss, satisfactory or unsatisfactory, pleasant or aversive.

Melioration, not optimization. Melioration refers to suboptimal gradient climbing
when confronted with “distributed choice” (Herrnstein and Drazin 1991) across recur-
rent decisions. A good example of distributed choice is the decision whether to cooper-
ate in an iterated social dilemma game. Suppose each side is satisfied when the partner
cooperates and dissatisfied when the partner defects. Melioration implies a tendency
to repeat choices with satisfactory outcomes even if other choices have higher utility, a
behavioral tendency March and Simon (1958) call “satisficing.” In contrast, unsatis-
factory outcomes induce a search for alternative outcomes, including a tendency to
revisit alternative choices whose outcomes are even worse, a pattern we call
“dissatisficing.” Although satisficing is suboptimal when judged by conventional
game-theoretic criteria, it may be more effective in leading actors out of social traps
than if they were to use more sophisticated decision rules, such as “testing the waters”
to see if they could occasionally get away with cheating.

Nevertheless, the law of effect does not solve the social dilemma, it merely reframes
it: Where the penalty for cooperation is larger than the reward, and the reward for aggres-
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sive behavior is larger than the penalty, how can penalty-aversive, reward-seeking
actors elude the trap of mutual punishment?

THE BUSH-MOSTELLER STOCHASTIC LEARNING MODEL

The earliest answer was given by Rapoport and Chammah (1965), who used learn-
ing theory to propose a Markov model of PD with state transition probabilities given
by the payoffs for each state based on the assumption that each player is satisfied only
when the partner cooperates. With choice probabilities updated after each move based
on the law of effect, mutual cooperation is an absorbing state in the Markov chain.

Macy (1990, 1991) elaborated Rapoport and Chammah’s (1965) analysis using
computer simulations of their Bush-Mosteller stochastic learning model. Macy identi-
fied two learning-theoretic equilibria in the PD game, corresponding to each of the two
learning mechanisms, approach and avoidance. Approach implies a self-reinforcing
equilibrium (SRE) characterized by satisficing behavior. The SRE obtains when a
strategy pair yields payoffs that are mutually rewarding. The SRE can obtain even
when both players receive less than their optimal payoff (such as the R payoff for
mutual cooperation in the PD game), as long as this payoff exceeds aspirations. Avoid-
ance implies an aversive self-correcting equilibrium (SCE) characterized by
dissatisficing behavior. Dissatisficing means that both players will try to avoid an out-
come that is better than their worst possible payoff (such asP in the PD game), as long
as this payoff is below aspirations. The SCE obtains when the expected change of
probabilities is zero and there is a positive probability of punishment as well as reward.
This happens when outcomes that reward cooperation or punish defection (causing the
probability of cooperation to increase) balance outcomes that punish cooperation or
reward defection (causing the probability to decline).3 At equilibrium, the dynamics
pushing the probability higher are balanced by the dynamics pushing in the other
direction, like a tug-of-war between two equally strong teams.

These learning theoretic equilibria differ fundamentally from the Nash predictions
in that agents have an incentive to unilaterally change strategy. In the SRE, both play-
ers have an incentive to deviate from unconditional mutual cooperation, but they stay the
course as long as the associated payoff exceeds their aspirations. Unlike a pure strategy
Nash equilibrium, the SCE has players constantly changing course, but their efforts are
self-defeating. It is not that everyone decides he is doing the best he can, it is that his
efforts to do better set into motion a dynamic that pulls the rug out from under everyone.

Suppose two players in PD are each satisfied only when the partner cooperates, and
each starts out with 0 probability of cooperation. They are both certain to defect, which
then causes both probabilities to increase (as an avoidance response). Paradoxically,
an increased probability of cooperation now makes a unilateral outcome (CD or DC)
more likely than before, and these outcomes punish the cooperator and reward the
defector, causing both probabilities to drop. Nevertheless, there is always the chance
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3. The expected change in the probabilities of cooperation can also be zero when all outcomes are
rewarding, but this equilibrium is not self-correcting. Rather, it is an unstable saddle point from which any
deviation will cause probabilities to move toward one of the self-reinforcing pure strategy equilibria of the
game.



that both players will defect anyway, causing probabilities to rise further still. Once
both probabilities exceed .5, further increases become self-reinforcing by increasing
the chances for another bilateral move, and this move is now more likely to be mutual
cooperation instead of mutual defection. In short, the players can escape the social trap
through stochastic collusion, characterized by a chance sequence of bilateral moves in
a “drunkard’s walk.” A fortuitous string of bilateral outcomes can increase cooperative
probabilities to the point that cooperation becomes self-sustaining—the drunkard
wanders out of the gully.

THE ROTH-EREV PAYOFF-MATCHING MODEL

More recently, Roth and Erev (Roth and Erev 1995; Erev and Roth 1998; Erev,
Bereby-Meyer, and Roth 1999) have proposed a learning-theoretic alternative to the
earlier Bush-Mosteller formulation. Their model draws on the “matching law,” which
holds that adaptive actors will choose between alternatives in a ratio that matches the
ratio of reward. Applied to social dilemmas, the matching law predicts that players will
learn to cooperate to the extent that the payoff for cooperation exceeds that for defec-
tion, which is possible only if both players happen to cooperate and defect at the same
time (given R > P). As with Bush-Mosteller, the path to cooperation is a sequence of
bilateral moves.

Like the Bush-Mosteller (BM) stochastic learning model, the Roth-Erev (RE) pay-
off-matching model implements the three basic principles that distinguish learning
from utility theory—experiential induction (vs. logical deduction), reward and pun-
ishment (vs. utility), and melioration (vs. optimization). The similarity in substantive
assumptions makes it tempting to assume that the two models are mathematically
equivalent or, if not, that they nevertheless give equivalent solutions.

On closer inspection, however, we find important differences. Each specification
implements reinforcement learning in different ways and with different results. With-
out a systematic theoretical alignment and integration of the two algorithms, it is not
clear whether and under what conditions the backward-looking solution for social
dilemmas identified with the BM specification generalizes to the RE model.

Those assumptions can be brought to the surface by close comparison of competing
models and by integrating alternative specifications as special cases of a more general
model. This is especially important for models that must rely on computational rather
than mathematical methods. “Without such a process of close comparison, computa-
tional modeling will never provide the clear sense of ‘domain of validity’that typically
can be obtained for mathematized theories” (Axtell et al. 1996, 123).

Unfortunately, learning models have been divided by disciplinary boundaries
between sociology, psychology, and economics that have obstructed the theoretical
integration needed to isolate and identify the learning principles that underlie new
solution concepts. Accordingly, this study aims to align two prominent models in cog-
nitive game theory and integrate them into a general model of adaptive behavior in
two-person, mixed-motive games. By “docking” (Axtell et al. 1996) the BM stochastic
learning model with the RE payoff-matching model, we can identify learning princi-
ples that generalize beyond particular specifications and, at the same time, uncover

Flache, Macy / STOCHASTIC COLLUSION AND THE POWER LAW 635



hidden assumptions that explain differences in the outcomes and constrain the gener-
ality of the theoretical derivations.

In the following section, we formally align the two learning models and integrate
them into a general reinforcement learning (GRL) model, for which the BM and RE
models are special cases. This process brings to the surface a key hidden assumption
with important implications for the generality of learning-theoretic solution concepts.
The third section then uses computer simulations of the integrated model to explore the
effects of model differences across a range of two-person social dilemma games. The
analyses confirm the generality of stochastic collusion but also show that its determi-
nants depend decisively on whether BM or RE assumptions about learning dynamics
are employed.

THE BUSH-MOSTELLER AND ROTH-EREV SPECIFICATIONS

In general form, both the BM and RE models implement the stochastic decision
process diagrammed in Figure 1, in which choice propensities are updated by the asso-
ciated outcomes. Thus, both models imply the existence of some aspiration level, A,
relative to which cardinal payoffs can be positively or negatively evaluated. Formally,
the stimulus s associated with action a is calculated as

[ ] { }s
A

T A R A P A S A
a C Da

a= −
− − − −

∈π
sup , , ,

, , , (1)

whereπa is the payoff associated with action a (R or S if a=C, andT orP if a=D) and sa
is a positive or negative stimulus derived from πa. The denominator in equation 1 rep-
resents the upper value of the set of possible differences between payoff and aspira-
tion. With this scaling factor, stimulus s is always equal to or less than unity in absolute
value, regardless of the magnitude of the corresponding payoff.4

Neither model imposes constraints on the determinants of aspirations. Whether
aspirations are high or low or change with experience depends on assumptions that are
exogenous to both models.

ALIGNING THE TWOMODELS

The two models diverge at the point that these evaluations are used to update choice
probabilities. The BM stochastic learning algorithm updates probabilities following
an action a (cooperation or defection) as follows:

( )
p

p p ls s

p p ls s
a t

a t a t a t a t

a t a t a t a t

,

, , , ,

, , , ,

,

,
+ =

+ − ≥

+ <
1

1 0

{ }
0

, ,a C D∈









.

(2)
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4. The Roth-Erev model also does not require that outcomes be normed to |s| ≤ 1, but norming has no
effect and simplifies comparison and integration of the two models.



In equation 2, pa,t is the probability of action a at time t and sa, t is the positive or negative
stimulus given by equation 1. The change in the probability for the action not taken, b,
obtains from the constraint that probabilities always sum to 1, that is, pb,t + 1 = 1 – pa,t + 1.
The parameter l is a constant (0 < l< 1) that scales the learning rate. With l ≈ 0, learning
is very slow; and with l ≈ 1, the model approximates a “win-stay, lose-shift” strategy
(Catania 1992).

For any value of l, equation 2 implies a decreasing effect of reward as the associated
propensity approaches unity but an increasing effect of punishment. Similarly, as the
propensity approaches zero, there is a decreasing effect of punishment and a growing
effect of reward. This constrains probabilities to approach asymptotically their natural
limits.

Like the BM, the RE model is stochastic, but the probabilities are not equivalent to
propensities. Propensities are a function of cumulative satisfaction and dissatisfaction
with the associated choices, and probabilities are a function of the ratio of propensities.
More precisely, the propensity q for action a at time T is the sum of all stimuli sa a
player has ever received when playing a:

{ }q s a C Da T a t
t

T

, , , ,= ∈
=
∑

1

.
(3)

Roth and Erev then use a “probabilistic choice rule” to translate propensities into be-
havior. The probability pa of action a at time t + 1 is the propensity for a divided by the
sum of the propensities at time t:

( ) { }p
q

q q
a b C D a ba t

a t

a t b t
,

,

, ,

, , , ,+ + =
+

∈ ≠1 1 ,
(4)

where a and b represent the binary choices to cooperate or defect. Following action a,
the associated propensity qa increases if the payoff is positive relative to aspirations (by
increasing the numerator in equation 4) and decreases if negative. The propensity for b
remains constant, but the probability of b declines (by increasing the denominator in
the equivalent expression for pb, t + 1).

An obvious problem with the specification of equations 3 and 4 (but not equation 2)
is the possibility of negative probabilities if punishment dominates reinforcement. In
their original model, Erev, Bereby-Meyer, and Roth (1999) circumvent this problem
with the ad hoc addition of a “clipping” rule. More precisely, their implementation
assumes that the new propensity qa, t + 1 = qa, t + sa, t except for the case where this sum
drops below a very small positive constant ν. In that case, the new propensity is reset
to ν. Equations 5 and 6 represent the RE clipping rule by rewriting equation 3 as

qa, t + 1 = qa, t + rt sa, t, a ∈ {C, D}, (5)
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where a is the action taken in round t (either cooperation or defection) and r is a re-
sponse function of the form

( ) { }r

q s

v q
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q s

a b C DRE

a a
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a a
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+ ≥

− + <
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where all terms except ν are indexed on t. This solution causes the response to rein-
forcement to become discontinuous as propensities approach the lower bound ν. To
align the model with BM, we replaced the discontinuous function in equation 6 with a
more elegant solution. Equation 7 gives asymptotic lower as well as upper limits to the
probabilities:
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where all terms except l (the constant learning rate) are indexed on t. The parameter l
sets the baseline learning rate between 0 and 1 (as in equation 2), rather than leaving l
implied by the relative magnitude of the payoffs (as in equation 3). More important,
equation 7 aligns RE with BM by eliminating the need for a theoretically arbitrary clip-
ping rule. For sa ≥ 0, equation 7 is equivalent to equation 6 except that rewards are mul-
tiplied by the constant l/(1 – l) that increases exponentially with the learning rate l. The
important change is for the case where sa < 0. Now r is decreasing in qa (with a limit at 0).
Hence, the marginal effect of additional punishment for action a approaches 0 as the
corresponding propensity approaches 0.

Equation 7 aligns RM with BM, allowing easy identification of the essential differ-
ence, which is inscribed in equation 4. Rewards increase the denominator in equa-
tion 4, depressing the effect on probabilities of unit changes in the numerator. Punish-
ments have the opposite effect, allowing faster changes in probabilities.

To see the significance of this difference, consider first the special case where learn-
ing is based on rewards of different magnitude and no stimuli are aversive. Here the RE
model corresponds to Blackburn’s power law of practice (as cited in Erev and Roth
1998). Erev and Roth (1998) cite Blackburn to support the version of their model that
precludes punishment, such that “learning curves tend to be steep initially and then
flatten” (p. 859). In the version with both reward and punishment, their model implies
what might be termed a power law of learning, in which responsiveness to stimuli
declines exponentially with reward and increases with punishment. We have no
knowledge of a power law of learning or of any corresponding learning-theoretic con-
cept. For convenience, we have borrowed “fixation” from Freudian psychology.
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Fixation is the principal difference between the BM and RE models. Unlike the BM
model, which precludes fixation, the RE model builds this in as a necessary implica-
tion of the learning algorithm in equation 4. The two models make convergent predic-
tions about

• the declining marginal impact of repeated reinforcement on the response to yet another
reward and

• the increasing marginal impact of repeated punishment on the response to an occasional
reward.

However, the two models make competing predictions about the effects of repeated
punishment on the response to additional punishment and the effects of repeated
reward on the response to an occasional punishment, as summarized in Table 1. BM
assumes that the marginal impact of punishment decreases with repetition, whereas
punishment has its maximum effect following repeated reward for a given action. The
power law of learning implies quite the opposite. Repeated failure arouses attention
and restores an interest in learning. Hence, the marginal impact of punishment
increases with punishment. Conversely, repeated success leads to complacency and
inattention to the consequences of behavior, be they reward or punishment.

Note that fixation as implemented in the RE learning model should not be confused
with either satisficing or habituation, two well-known behavioral mechanisms that can
also promote the routinization of behavior. Fixation differs from satisficing in both
causes and effects. Satisficing is caused by a sequence of reinforcements that are asso-
ciated with a given behavior, which causes the probability of choosing that behavior to
approach unity, thereby precluding the chance to find a better alternative. Fixation is
caused by a sequence of reinforcements for any behavior. Thus, fixation “fixes” any
probability distribution over a set of behaviors, including indifference, as long as all
behaviors are rewarded. Satisficing and fixation also differ in their effects. Satisficing
inhibits search but has no effect on responsiveness to reinforcement. Fixation does not
preclude search but instead inhibits responses to the outcomes of all behaviors that
may be explored.
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TABLE 1

Change in Response to Reward and Punishment Following a Recurrent Stimulus

Following Repeated Reinforcement of C Following Repeated Punishment of C

Response to Response to Response to Response to
Reward of Punishment of Reward of Punishment of

C D C D C D C D

BM Decreases Increases Increases Decreases Increases Decreases Decreases Increases
RE Decreases Decreases Decreases Decreases Increases Increases Increases Increases

NOTE: C = cooperation; D = defection; BM = Bush-Mosteller stochastic learning model; RE = Roth-Erev
payoff-matching model.



Fixation also differs from habituation in both the causes and effects. Habituation is
caused by repeated presentation of a stimulus, be it a reward or a punishment. Fixation
is caused only by repeated reinforcement; repeated punishment disrupts fixation and
restores learning. The effects also differ. Habituation to reward increases sensitivity to
punishment, whereas fixation inhibits responsiveness to both reward and punishment.

INTEGRATING THE TWOMODELS

To suppress fixation, Roth and Erev (1995; see also Erev and Roth 1998) added dis-
continuous functions for forgetting, which suddenly resets the propensity to some
lower value. Like the clipping rule, the forgetting rule is theoretically ad hoc and math-
ematically inelegant. Equation 8 offers a more elegant solution that permits continu-
ous variation in the level of fixation, parameterized as f:
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As in equation 7, all parameters except f and l are time indexed. The parameter f repre-
sents the level of fixation, 0 ≤ f ≤ 1. Equation 8 is identical to equation 7 in the limiting
case where f = 1, corresponding to the RE model, which hardwires fixation.

But notice what happens when f = 0. Equation 8 now reduces to the BM stochastic
learning algorithm! (The proof is elaborated in the appendix.) By replacing the discon-
tinuous clipping and forgetting functions used by RE with continuous functions, we
arrive at a GRL model, with a smoothed version of RE and the original BM as special
cases. Hence, the response function in equation 8 is expressed as rG, denoting the gen-
erality of the model. BM and RE are now fully aligned and integrated.

A GENERAL THEORY OF COOPERATION
IN SOCIAL DILEMMAS

The GRL model in equations 1, 4, 5, and 8 includes three parameters—aspiration
level (A), learning rate (l), and fixation (f)—that can be manipulated to study each of
the four mechanisms that we have identified as elements of a learning-theoretic solu-
tion concept for social dilemmas: satisficing, dissatisficing, fixation, and random
walk.5 The model allows us to independently manipulate satisficing (precluded by
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5. Habituation to repeated stimuli also affects the learning dynamics and can be modeled with a param-
eter that scales the degree to which aspiration levels float toward the mean of recent payoffs (Macy and
Flache 2002; Erev, Bereby-Meyer, and Roth al 1999). Macy and Flache (2002) explored the consequences
of habituation using the Bush-Mosteller algorithm. In this study, we focus on fixation and leave possible
interactions with habituation for future research.



high aspirations), dissatisficing (precluded by low aspirations), fixation (precluded by
a fixed learning rate), and random walk (precluded by a low learning rate). We can then
systematically explore the solutions that emerge with different parameter combina-
tions over each of the three classic types of social dilemma.

THE BASELINE MODEL: STOCHASTIC
COLLUSION IN SOCIAL DILEMMAS

We begin by using the GRL model to replicate findings in previous research with
the BM specification. This provides a baseline for comparing the learning dynamics in
the RE model, specifically, the effects of fixation in interaction with aspiration levels
and learning rates.

Macy and Flache (2002) use the BM model to study learning dynamics in three
characteristic types of two-person social dilemma games: PD, Chicken, and Stag
Hunt. They identify a socially deficient SCE in all three social dilemmas. We can com-
pute SCE analytically by finding the level of cooperation at which the expected change
in the probability of cooperation is 0. The expected change is 0 when for both players,
the probability of outcomes that reward cooperation or punish defection, weighted by
the absolute value of the associated stimuli, equals the probability of outcomes that
punish cooperation or reward defection, weighted likewise. With A = 2 and the payoff
vector (4,3,1,0), the SCE occurs at pc = .37 in PD and at pc = .5 in Chicken and Stag
Hunt. Across all possible payoffs, the equilibrium cooperation rate in PD is always
below pc = .5, which is the asymptotic upper bound that the solution approaches as R
approaches T and P approaches S simultaneously. The lower bound is pc = 0 as P
approaches A. In Chicken, the corresponding upper bound is pc = 1 as R approaches T
and S approaches A. The lower bound is pc = 0 as R, S, and P all converge on A (retain-
ingR >A > S >P). Only in Stag Hunt is it possible that there is no SCE, ifR – T >A – S.
The lower bound for Stag Hunt is pc = 0 as T approaches R and P approaches A.

Using computer simulation, Macy and Flache (2002) show that it is possible to
escape this equilibrium through random walk not only in PD but in all dyadic social
dilemma games. However, the viability of the solution critically depends on actors’
aspiration levels, that is, the benchmark that distinguishes between satisfactory and
unsatisfactory outcomes. A self-reinforcing cooperative equilibrium is possible if and
only if both players’aspiration levels are lower than the payoff for mutual cooperation
(R). Aspirations above this point necessarily preclude a learning theoretic solution to
social dilemmas.

Very low aspirations do not preclude mutual cooperation as an equilibrium but may
prevent adaptive actors from finding it. If aspiration levels are below maximin,6 then
mutual or unilateral defection may also be a self-reinforcing equilibrium, even though
these outcomes are socially deficient. Once the two players stumble into one of these
outcomes, there is no escape, as long as the outcome is mutually reinforcing. If the
aspiration level exceeds maximin and falls below R, there is a unique SRE in which
both players receive a reward, namely, mutual cooperation.
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6. Maximin is the largest possible payoff players can guarantee themselves in a social dilemma. This is
punishment in the (P) Prisoner’s Dilemma and Stag Hunt and sucker (S) in Chicken.



If there is at least one SRE in the game matrix, then escape from the SCE is inevita-
ble. It is only a matter of time until a chance sequence of moves causes players to lock
in a mutually reinforcing combination of strategy choices. However, the wait may not
be practical in the intermediate term if the learning rate is very low. The lower the
learning rate, the larger the number of steps that must be fortuitously coordinated to
escape the pull of the SCE. Thus, the odds of attaining lock-in increase with the step
size in a random walk (see also Macy 1989, 1991).

To summarize, the BM stochastic learning model identifies a social trap—a
socially deficient SCE—that lurks inside every PD and Chicken game and most games
of Stag Hunt. The model also identifies a backward-looking solution: mutually rein-
forcing cooperation. However, this solution obtains only when both players have aspi-
ration levels belowR, such that each is satisfied when the partner cooperates. Stochas-
tic collusion via random walk is possible only if aspirations are also above maximin
and viable for the intermediate term only if the learning rate is sufficiently high.

We can replicate the BM dynamics with the GRL model by setting parameters to
preclude fixation and allow random walk, satisficing, and dissatisficing. More
precisely,

• Fixation is precluded by setting f = 0.
• Aspirations are fixed midway between maximin and minimax. With the payoffs ordered

from the set (4, 3, 1, 0) for each of the three social dilemma payoff inequalities, minimax
is always 3, maximin is always 1, andA = 2. This aspiration level can be interpreted as the
expected payoff when behavioral propensities are uninformed by prior experience (pa =
.5) such that all four payoffs are equiprobable. This means that mutual cooperation is a
unique SRE in each of the three social dilemma games.

• We set the baseline learning rate l high enough to facilitate random walk into the SRE at
CC (l = 0.5).

Figure 2 confirms the possibility of stochastic collusion in all three social dilemma
games, assuming moderate learning rates, moderate aspirations, and no fixation. The
figure charts the change in the probability of cooperation, pc, for one of two players
with statistically identical probabilities.
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Figure 2: Stochastic Collusion in Three Social DilemmaGames (� = [4, 3, 1, 0],A = 2, l = 0.5,
f = 0, qc,1 = qd,1 = 1)

NOTE:A= aspiration level; l= learning rate; f= fixation; qc= propensity to cooperate; qd= propensity to de-
fect; R = reward; S = sucker; P = punishment; T = temptation.



Figure 2 shows how dissatisficing players wander about in a SCE with a positive
probability of cooperation that eventually allows them to escape the social trap by ran-
dom walk. With f = 0, the general model reproduces the characteristic BM pattern of
stochastic collusion in all three games, but not with equal probability. Mutual coopera-
tion locks in most readily in Stag Hunt and least readily in PD. To test the robustness of
this difference, we simulated 1,000 replications of this experiment and measured the
proportion of runs that locked into mutual cooperation within 250 iterations. The
results confirm the differences between the games. In PD, the lock-in rate for mutual
cooperation was only .66, whereas it was .96 in Chicken and 1.0 in Stag Hunt.

These differences reflect subtle but important interactions between aspiration lev-
els and the type of social dilemma—the relative importance of fear (the problem in
Stag Hunt) and greed (the problem in Chicken). The simulations also show that
satisficing is equally important, at least in PD and Chicken. In these games, apprecia-
tion that the payoff for mutual cooperation is “good enough” motivates players to stay
the course despite the temptation to cheat (given T > R). Otherwise, mutual coopera-
tion will not be self-reinforcing. In Stag Hunt, satisficing is less needed in the long run
because there is no temptation to cheat (R > T). However, despite the absence of greed,
the simulations reveal that even in Stag Hunt, fear may inhibit stochastic collusion if
high aspirations limit satisficing. Simulations confirmed that in the absence of fixa-
tion, there is an optimal balance point for the aspiration level between satisficing and
dissatisficing and between maximin and R (Macy and Flache 2002).

EFFECTS OF FIXATION ON STOCHASTIC COLLUSION

With the BM dynamics as a baseline, we now systematically explore the effects of
fixation in interaction with the learning rate and aspirations. Knowledge of these
effects will yield a general theory of the governing dynamics for reinforcement learn-
ing in social dilemmas, of which BM and RE are special cases.

Fixation has important implications for the effective learning rate, which in turn
influences the coordination complexity of stochastic collusion. In both the BM and
revised RE models, the effective learning rate depends on the baseline rate (l) and the
magnitude of p. Even if the baseline learning rate is high, the effective rate approaches
zero as p asymptotically approaches the natural limits of probability. The RE model
adds fixation as an additional determinant of effective learning rates. Fixation implies
a tendency for learning to slow down with success, and this can be expected to stabilize
the SRE. Even if one player should occasionally cheat, fixation prevents either side
from paying much attention. Thus, cooperative propensities remain high, and the
rewards that induce fixation are quickly restored.

Fixation also implies that learning speeds up with failure. This should destabilize
the SCE, leading to a higher probability of random walk into stochastic collusion, all
else being equal. This effect of fixation should be even stronger when aspirations are
high. The higher actors’aspirations, the smaller are the rewards and the larger the pun-
ishments that players can experience. As aspirations approach the R payoff (from
below), punishments may become so strong that “de-fixation” propels actors into sto-
chastic collusion following a single incidence of mutual defection.
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The lower actors’aspirations, the larger are the rewards and the smaller the punish-
ments that players can experience. Fixation on reward, then, reduces the effective
learning rate, thereby increasing the coordination complexity of random walk into the
SRE. The smaller the step size, the longer it takes for random walk out of the SCE.

Simply put, when aspirations are above maximin, the power law of learning implies
a higher likelihood of obtaining a cooperative equilibrium in social dilemmas com-
pared to what would be expected in the absence of a tendency toward fixation, all else
being equal. However, the opposite is the case when aspirations are low.

We used computational experiments to test these intuitions about how fixation
interacts with learning rates and aspirations to alter the governing dynamics in each of
three types of social dilemma, using a 2 (learning rates: high/low) × 2 (fixation: high/
low) × 2 (aspirations: high/low) factorial design with fixation and aspiration levels
nested within learning rates. Based on the results for the BM model (with f = 0), we set
the learning rate l at a level high enough to facilitate stochastic collusion (0.5) and low
enough to preclude stochastic collusion (0.05). We begin with a high learning rate to
study the effects of fixation on the attraction and stability of the SRE. We then use a low
learning rate to look at the effects on the stability of socially deficient SCE.

Within each learning rate, we manipulated fixation using two levels, f = 0, corre-
sponding to the BM assumption; and f= 0.5, as an approximation of the RE model with
a moderate level of fixation. (For robustness, we also tested f = 1 but found no qualita-
tive difference with moderate fixation.) Within each level of fixation, we manipulated
the aspiration level below and above A = 2.0 to see how fixation affects the optimal
aspiration level for random walk into mutual cooperation.

We begin by testing the interaction between fixation and satisficing by setting aspi-
rations close to the lower limit at maximin. With A = 1.05 and l = 0.5, mutual coopera-
tion is the unique SRE in all three games, and stochastic collusion is possible even
without fixation. Low aspirations increase the tendency to satisfice, making it more
difficult to escape a socially deficient SCE. With low aspirations, the predominance of
reward over punishment means that fixation can be expected to increase the difficulty
by further stabilizing the SCE.

This intuition is confirmed in Figure 3 across all three games. The dotted lines show
the cooperation rate with fixation (f= 0.5), and the solid line shows the rate without fix-
ation. Without fixation, low aspirations delay lock-in on mutual cooperation relative to
the moderate aspirations in the baseline condition (see Figure 2), but lock-in is still
possible within the first 100 iterations. For reliability, we measured the proportion of
runs that locked in mutual cooperation within 250 iterations based on 1,000 replica-
tions withA= 1.05. We found that in PD and Chicken, the lower aspiration level caused
a significant decline in the rate of mutual cooperation relative to the baseline condition,
but it did not suppress cooperation entirely. In PD, the cooperation rate declined from
.66 in the baseline condition to about .14; and for Chicken, the corresponding reduc-
tion was from .96 to .83. Only in Stag Hunt did lower aspirations not affect the rate of
mutual cooperation.

As expected, fixation considerably exacerbates the problem caused by low aspira-
tions. Figure 3 shows how with f = 0.5, lock-in fails to obtain entirely in PD and
Chicken and is significantly delayed in Stag Hunt. Reliability tests reveal a highly sig-
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nificant effect of fixation. Based on 1,000 replications with f = 0.5, the rate of lock-in
within 250 iterations dropped to 0 in all three games.

With high aspirations, fixation should have the opposite effect. Without fixation,
high aspirations increase the tendency to dissatisfice (overexplore), which should
destabilize the SRE. However, the predominance of punishment over reward means
that de-fixation can be expected to promote cooperation by negating the destabilizing
effects of dissatisficing.

This intuition is confirmed in Figure 4. For symmetry with Figure 3, we assumed an
aspiration level of A = 2.95, just below the minimax payoff. Without fixation, stochas-
tic collusion remains possible but becomes much more difficult to attain, due to the
absence of satisficing.

Figure 4 reveals an effect of fixation that is similar across the three payoff struc-
tures. Without fixation, high aspirations preclude stochastic collusion in PD and
Chicken. In Stag Hunt, mutual cooperation remains possible but is delayed relative to
the baseline condition in Figure 2. With high aspirations, fixation causes the effective
learning rate to increase within the first 20 or so iterations, up to a level that is sufficient
to quickly obtain lock-in on mutual cooperation. Reliability tests show that the pattern
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Figure 3: Effect of LowAspirations onCooperationRates,with andwithout Fixation (dot-
ted and solid) in ThreeSocial Dilemmas (� = [4,3,1,0],A = 1.05, l = 0.5, f = [0,0.5],
qc,1 = qd,1 = 1)

NOTE:A= aspiration level; l= learning rate; f= fixation; qc= propensity to cooperate; qd= propensity to de-
fect; R = reward; S = sucker; P = punishment; T = temptation.

Figure 4: Effect of High Aspirations on Cooperation Rates, with and without Fixation
(dotted and solid) in Three Social Dilemmas (� = [4, 3, 1, 0],A = 2.95, l = 0.5, f = [0,
0.5], qc,1 = qd,1 = 1)

NOTE:A= aspiration level; l= learning rate; f= fixation; qc= propensity to cooperate; qd= propensity to de-
fect; R = reward; S = sucker; P = punishment; T = temptation.



is highly robust. Based on 1,000 replications without fixation, the rate of stochastic
collusion within 250 iterations was 0 in PD and Chicken and .64 in Stag Hunt. With fix-
ation (f = 0.5), this rate increased to nearly 1 in all three games (.997, .997, and .932 in
PD, chicken, and stag hunt, respectively).

To further test the interaction between aspirations and fixation, we varied the aspi-
ration level A across the entire range of payoffs (from 0 to 4) in steps of 0.1. Figure 5
reports the effect of aspirations on the rate of stochastic collusion within 250 iterations,
based on 1,000 replications with (dotted line) and without (solid line) fixation.

Figure 5 clearly demonstrates the interaction effects. In all three games, fixation
reduces cooperation at low aspiration levels and increases cooperation at high aspira-
tion levels. Fixation also shifts the optimal balance point for aspirations to a level close
to theR payoff of the game, orA= 3 in PD and Chicken andA= 4 in Stag Hunt. In addi-
tion, the figure reveals that the interaction between fixation and low aspirations does
not depend on whether aspirations are below or above the maximin payoff. As long as
aspirations levels fall belowA = 2, moderate fixation (f = 0.5) suppresses random walk
into mutual cooperation.

However, the mechanisms differ depending on whether aspirations are above or
below maximin. Below maximin, the predominant self-reinforcing equilibria are defi-
cient outcomes: mutual defection in PD and Stag Hunt and unilateral cooperation in
Chicken. These equilibria prevail at low aspiration levels because their coordination
complexity is considerably lower than that of mutual cooperation. Accordingly, fixa-
tion reduces cooperation in this region because it increases the odds that learning
dynamics converge on the SRE that is easiest to coordinate, at the expense of mutual
cooperation. With aspiration levels above maximin, fixation no longer induces conver-
gence on a deficient SRE, but it inhibits convergence on the unique SRE of mutual
cooperation.

To sum up, the GRL model shows that stochastic collusion is a fundamental solu-
tion concept for all social dilemmas. However, we also find that the viability of sto-
chastic collusion depends decisively on the assumptions about fixation. With high
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Figure 5: Effects of Aspiration Level (horizontal axis) on Stochastic Collusion within 250
Iterations, with and without Fixation (dotted and solid) in Three Social Di-
lemmas (� = [4, 3, 1, 0], l = 0.5, f = [0, 0.5], qc,1 = qd,1 = 1)

NOTE: l = learning rate; f = fixation; qc = propensity to cooperate; qd = propensity to defect;R = reward; S =
sucker; P = punishment; T = temptation.



aspirations, fixation makes stochastic collusion more likely, whereas with low aspira-
tions, it makes cooperation more difficult.

SELF-CORRECTING EQUILIBRIUM AND FIXATION

We now use low learning rates to study the effect of fixation on the stability of the
socially deficient SCE. The coordination complexity of random walk increases expo-
nentially as the learning rate decreases. In our baseline condition with A = 2 and f = 0
but a low learning rate of l = 0.05, stochastic collusion is effectively precluded in all
three social dilemma games, even after 1,000 iterations and with moderate aspiration
levels. We confirmed this by measuring mean cooperation in the 1,000th iteration over
1,000 replications. For all three types of social dilemma, the mean was not statistically
different from the SCE derived analytically from the payoffs (p= .366 for PD and p= .5
for Chicken and Stag Hunt).

We want to know if fixation makes it easier to escape and whether this depends on
the level of aspirations. To find out, we crossed fixation (f = 0 and f = 0.5) with aspira-
tions just above maximin (A = 1.05) and just below minimax (A = 2.95), just as we did
in the previous study of stochastic collusion with high learning rates.

When aspirations are low, the predominance of reward over punishment should
cause the effective learning rate to decline as players fixate on repeated reward. With
the baseline learning rate already near 0, fixation should have little effect, and this is
confirmed in Figure 6, based on 1,000 iterations in each of the three games. Reduction
in the effective learning rate merely smooths out fluctuations in players’probability of
cooperation, pc, around an equilibrium level of about pc = .13 in PD and pc = .5 in
Chicken and Stag Hunt. Reliability tests showed a slight negative effect of fixation on
the equilibrium rate of cooperation. Based on 1,000 replications, we found that in PD
and Chicken, the rate of stochastic collusion within 1,000 iterations was 0, with or
without fixation. In Stag Hunt, stochastic collusion remained possible without fixation
(with a rate of .21), but this rate dropped to 0 with f = 0.5. In short, without fixation, the
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Figure 6: Effects of Fixation (dotted line) on Self-Correcting Equilibriumwith Low Learning
Rates and Low Aspirations in Three Social Dilemma Games (� = [4, 3, 1, 0], l =
0.05, A = 1.05, f = [0, 0.5], qc,1 = qd,1 = 1)

NOTE:A= aspiration level; l= learning rate; f= fixation; qc= propensity to cooperate; qd= propensity to de-
fect; R = reward; S = sucker; P = punishment; T = temptation.



low learning rate of l = 0.05 allows players to escape the SCE only in Stag Hunt. Fixa-
tion suppresses even this possibility.

With high aspirations—and a predominance of punishment over reward—fixation
should have the opposite effect, causing the effective learning rate to increase. This in
turn should make stochastic collusion a more viable solution. To test this possibility,
we increased the aspiration level to A = 2.95.

Figure 7 confirms the expected cooperative effect of fixation when aspirations are
high. The increase in the effective learning rate helps players escape the SCE within
about 250 iterations in all three games. Reliability tests show a very powerful effect of
fixation. With f = 0, the rate of stochastic collusion within 1,000 iterations is 0 in all
three games. With moderate fixation (f = 0.5), stochastic collusion within 1,000 itera-
tions becomes virtually certain in all three games.

As an additional test, we varied the aspiration level A from 0 to 4 in steps of 0.1,
exactly as in Figure 5, only this time with a low baseline learning rate. The results con-
firm that fixation largely cancels out the effects of a low learning rate. Without fixation
(f= 0), stochastic collusion is effectively precluded by a low learning rate, regardless of
aspiration levels. With fixation, the rate of stochastic collusion over 1,000 iterations
was virtually identical to that observed in Figure 5 with a high baseline learning rate.

To sum up, without fixation, low baseline learning rates make it very difficult for
backward-looking actors to escape the social trap, regardless of aspiration levels.
However, if aspirations are high, fixation increases the effective learning rate to the point
that escape becomes as likely as it would be with a moderate baseline learning rate. If
aspirations are low, fixation reduces the effective learning rate, but because the rate is
already too low to attain stochastic collusion, there is little change in the outcome.

DISCUSSION AND CONCLUSION

Concerns about models of cultural adaptation as analogs of genetic selection have
led cognitive game theorists to explore learning-theoretic specifications. Two promi-
nent examples are the BM stochastic learning model and the RE payoff-matching
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Figure 7: Effects of Fixation (dotted line) on Self-Correcting Equilibriumwith Low Learning
Rates and High Aspirations in Three Social Dilemma Games (� = [4, 3, 1, 0], l =
0.05, A = 2.95, f = [0, 0.5] qc,1 = qd,1 = 1)

NOTE:A= aspiration level; l= learning rate; f= fixation; qc= propensity to cooperate; qd= propensity to de-
fect; R = reward; S = sucker; P = punishment; T = temptation.



model. Both models identify two new solution concepts for the problem of coopera-
tion in social dilemmas: a socially deficient SCE (or social trap) and an SRE that is
usually (but not always) socially efficient. The models also identify the mechanism by
which players can escape the social trap—stochastic collusion, based on a random
walk in which both players wander far enough out of the SCE that they escape its
“gravitational” pull. Random walk, in turn, implies that a principal obstacle to escape
is the coordination complexity of stochastic collusion. Thus, these learning models
direct attention to conditions that reduce coordination complexity. These include

• temporal Schelling points, such as the holidays that triggered self-organized truces in
World War I;

• small-world networks (Watts 1999), which minimize the average number of partners for
each player yet still permit locally successful strategies to globally propagate; and

• high learning rates, which reduce the number of steps that must be coordinated in the ran-
dom walk.

It is here—the effect of learning rates on stochastic collustion—that the two learn-
ing models diverge. The divergence might easily go unnoticed, given the theoretical
isomorphism of two learning-theoretic models based on the same three fundamental
behavioral principles: experiential induction (vs. logical deduction), reward and pun-
ishment (vs. utility), and melioration (vs. optimization). Yet each model implements
these principles in different ways and with different results. To identify the differences,
we aligned and integrated the two models as special cases of a GRL model. The inte-
gration and alignment uncovered a key hidden assumption: the power law of learning.
This is the curious but plausible tendency for learning to diminish with success and
intensify with failure, which we call fixation. Fixation, in turn, impacts the effective
learning rate and, through that, the probability of stochastic collusion.

We used computer simulation to explore the effects of fixation on stochastic collu-
sion in three social dilemma games. The analysis shows how the integration of alterna-
tive models can uncover underlying principles and lead to a more general theory. Com-
putational experiments confirmed that stochastic collusion generalizes beyond the
particular BM specification. However, we also found that stochastic collusion depends
decisively on the interplay of fixation with aspiration levels and the baseline learning
rate. The GRL model shows that in the absence of fixation, the viability of stochastic
collusion is compromised by low baseline learning rates and both low and high aspira-
tions. With low aspirations, actors learn to accept socially deficient outcomes as “good
enough.” We found that fixation exacerbates this problem. When rewards dominate
punishments, fixation reduces the effective learning rate, thereby increasing the coor-
dination complexity of stochastic collusion via random walk.

With high aspirations, actors may not feel sufficiently rewarded by mutual coopera-
tion to avoid the temptation to defect. Simulations show that fixation removes this
obstacle for stochastic collusion as long as aspirations do not exceed the payoff for
mutual cooperation. High aspirations cause punishments to dominate rewards. Fixa-
tion, then, increases responsiveness to stimuli, facilitating random walk into the basin
of attraction of mutual cooperation.
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Our exploration of dynamic solutions to social dilemmas is necessarily incomplete.
Alignment and integration of the BM and RE models identified fixation as the decisive
difference, and we therefore focused on its interaction with aspiration levels to the
exclusion of other factors (such as Schelling points and network structures) that also
affect the viability of stochastic collusion. We have also limited the analysis to sym-
metrical, two-person, simultaneous social dilemma games within a narrow range of
possible payoffs. Previous work (Macy 1989, 1991) suggests that the coordination
complexity of stochastic collusion in PD increases with the number of players and with
payoff asymmetry. We leave these complications to future research.

The identification of fixation as a highly consequential hidden assumption also
points to the need to test its effects in behavioral experiments, including its interaction
with aspiration levels. Both the BM and the RE models have previously been tested
experimentally, but these tests did not address conditions that allow discrimination
between the models (Macy 1995; Erev and Roth 1998). Our research identifies these
conditions. Erev, Roth, and others (Roth and Erev 1995; Erev and Roth 1998; Erev,
Bereby-Meyer, and Roth 1999) estimated parameters for their payoff-matching model
from experimental data. However, empirical results cannot be fully understood if key
assumptions are hidden in the particular specification of the learning algorithm. Their
learning algorithm “hardwires” fixation into the model without an explicit parameter
to estimate the level of fixation in observed behavior. Theoretical integration of the two
models can inform experimental research that tests the existence of fixation and its
effects on cooperation in social dilemmas, including predicted interactions with aspi-
ration levels.7

Given the theoretical and empirical limitations of this study, we suggest that its pri-
mary contribution may be methodological rather than substantive. By aligning and
integrating the BM stochastic learning model with the RE payoff-matching model, we
identified a hidden assumption—the power law of learning—that has been previously
unnoticed despite the prominent position of both models in the game-theoretic litera-
ture. Yet the assumption turns out to be highly consequential. This demonstrates the
importance of “docking” (Axtell et al. 1996) in theoretical research based on computa-
tional models, a practice that remains all too rare. We hope this study will motivate
greater appreciation not only of the emerging field of cognitive game theory but also
of the importance of docking in the emerging field of agent-based computational
modeling.
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7. Calibration of payoffs in decision tasks prior to a social dilemma game can be used to manipulate
subjects’aspiration levels. By setting reward (R) just above aspirations, we can test whether stochastic collu-
sion obtains as predicted by Roth-Erev (due to the interaction with fixation) but not by Bush-Mosteller.



APPENDIX

We prove that without fixation (f = 0), our GRL model is equivalent to the BM stochastic
learning model in equations 1 and 2. By extension, we also obtain the original learning mecha-
nism of Roth and Erev as a special case of a BM stochastic learning model with a dynamic learn-
ing rate.

To derive the equation for the effective change in choice probabilities, we use the probabilis-
tic choice rule in equation 4 with the propensities that result after the reinforcement learning rule
in equation 5 has been applied in round t. Without loss of generality, let a be the action carried
out in t. Equation A1 yields the probability for action a in round t + 1, pa, t + 1, as a function of the
reinforcement and the propensities in t:
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q r s

q q r s
a b C D a ba t

a t t a t

a t b t t a t
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, ,

, , ,
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+ +
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Suppose awas rewarded, that is, sa,t ≥ 0. Substitution of the response function r in equation A1
by rG with f = 0 yields, after some rearrangement, equation A2:
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In equation A2, we substitute the terms corresponding to the right-hand side of the probabilistic
choice rule in equation 4 by the choice probabilities in round t, pa, t and pb, t= 1 – pa, t, respectively.
Equation A2 then yields the new choice probability as a function of the old choice probability
and the reinforcement. Equation A3 shows the rearrangement where (a,b)∈ {C,D} and a≠b:
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The right-hand side of equation A3 is equivalent to the BM updating of probabilities following
“upward” reinforcement (or increase of propensity) defined in equation 2.

The BM equations for punishments of a are obtained in the same manner. Let sa, t < 0. Then
substitution of the response function rG with f = 0 in equation A1 yields, after some rearrange-
ment, the new probability for action a given in equation A4:
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(A4)

Again, substitution of the terms for pa, t and pb, t = 1 – pa, t according to the probabilistic choice
rule yields the new probability as the function of the preceding probability and the punishment
that is specified by equation A5.
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The rightmost expression in equation A5 is identical with the BM stochastic learning rule for
“downward” reinforcement (or reduction of propensity) defined in equation 2.
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We now show that the original RE learning mechanism with response function rRE can also
be obtained as a special case of a BM learning algorithm with a dynamic learning rate. Consider
the case where action awas taken in t and rewarded (sa≥ 0). In the BM algorithm, the new proba-
bility pa, t + 1 for action a is given by equation 2. To obtain the corresponding RE learning rule, we
express the learning rate in the BM equation as a function of the present propensities and the
most recent payoff. More precisely, the BM equation 2 expands to the RE equations 4 and 5 if the
learning rate l is replaced as follows:

( ) { }l
r

q q r s
a b C D a bt

RE t

a t b t RE t a t
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+ +

∈ ≠,

, , , ,

, , , , .
(A6)

Equation A6 shows that for rewards, the RE model is identical to the BM, with a learning rate
that declines with the sum of the net payoffs for both actions in the past.

To obtain the BM equation for punishment, the corresponding learning rate function for pun-
ishment of action a is

( ) ( ) { }l
q r

q q q r s
a b C D a bt

b t RE t

a t a t b t RE t a t

=
+ +

∈ ≠, ,

, , , , ,

, , , , .
(A7)

Equation A7 modifies the learning rate as in equation A6, but it also ensures that the learning
rate is exponentially amplified as the propensity for the action taken approaches zero. This
forces the behavior of the original RE model onto the BM equations. Now the corresponding ac-
tion propensity drops discontinuously down to its lower bound, a behavior that the BM model
with a constant learning rate l avoids with the dampening term lsa pa, as pa moves toward zero.
Conversely, equation A7 decreases the learning rate as the propensity for the alternative action b
approaches zero. The latter effect of equation A7 obtains when the probability for action a is
close to one. In that case, the BM model with a constant learning rate l implies a rapid decline of
the propensity of a after punishment, unlike the RE model. Equation A7 again forces RE behav-
ior onto the BM equations, as the declining learning rate modifies the strong effect of punish-
ment in this condition.
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