
Hindawi Publishing Corporation
VLSI Design
Volume 2007, Article ID 95348, 17 pages
doi:10.1155/2007/95348

Research Article

Stochastic Communication: A New Paradigm for
Fault-Tolerant Networks-on-Chip

Paul Bogdan, Tudor Dumitraş, and Radu Marculescu

Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA

Received 12 December 2006; Accepted 6 February 2007

Recommended by Maurizio Palesi

As CMOS technology scales down into the deep-submicron (DSM) domain, the costs of design and verification for Systems-on-
Chip (SoCs) are rapidly increasing. Relaxing the requirement of 100% correctness for devices and interconnects drastically reduces
the costs of design but, at the same time, requires SoCs to be designed with some degree of system-level fault-tolerance. Towards
this end, this paper introduces a novel communication paradigm for SoCs, called stochastic communication. This scheme separates
communication from computation by allowing the on-chip interconnect to be designed as a reusable IP and also provides a built-
in tolerance to DSM failures, without a significant performance penalty. By using this communication scheme, a large percentage
of data upsets, packet losses due to buffers overflow, and severe levels of synchronization failures can be tolerated, while providing
high levels of performance.

Copyright © 2007 Paul Bogdan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION AND NOVEL CONTRIBUTION

Nowadays, the application-specific integrated circuits (ASI-
Cs) have evolved into complicated systems-on-chip (SoCs),
where dozens, and soon hundreds, of predesigned IP cores
are assembled together to form large chips with complex
functionality. Extensive research on how to integrate and
connect these IPs is currently being conducted, but there
are many open issues that are difficult to address within the
framework of existing CAD tools and design methodologies.

Indeed, shrinking transistor dimensions, smaller inter-
connect features, and higher operating frequencies lead to a
higher sensitivity of deep-submicron (DSM) circuits to neu-
tron and alpha radiation, significantly higher soft-error rates,
and an increasing number of timing violations [1]. These
new types of failures are impossible to characterize using
deterministic measurements and, thus, probabilistic metrics,
such as average values and variances, are likely to be needed
to quantify the critical design objectives, such as performance
and power. It has become clear that, in order to reduce the
cost of design and verification, the “100% correctness” re-
quirement for VLSI circuits has to be relaxed [2, 3]. This
means that, in the near future, circuits will be designed with
some degree of architectural and system-level fault-tolerance
[4–6].

Furthermore, as emphasized in the ITRS 2001 [3] it is
very important, especially at the system-level, to separate the
computation from communication, as they are orthogonal
issues which should remain separate. A novel communica-
tion paradigm has to be developed in order to enable the sep-
aration between the design of the on-chip communication
architecture and the design of the SoC main functionality.

Traditionally, the IP cores on a typical SoC are connected
with a shared bus or a hierarchy of buses. When a bus needs
to connect a large number of modules, its performance de-
creases drastically because of the contention for access to the
shared medium. Therefore, this communication architecture
is not well suited to future SoCs which may incorporate hun-
dreds of communicating IPs. On-chip buses need to be sup-
plemented or even replaced with a more scalable on-chip
communication infrastructure [7].

A recently proposed design platform for the on-chip in-
terconnect is the network-on-chip (NoC) architecture [8, 9],
where the IPs are placed on a grid (see Figure 1) and the
communication between tiles is implemented by a stack of
networking protocols. Such regular structures are very at-
tractive because they can offer well-controlled electrical pa-
rameters, which enable high-performance circuits by reduc-
ing latency and increasing bandwidth. From this perspective,
the SoC design will resemble more the creation of large-scale

2 VLSI Design

TilesLinks

IPs

Figure 1: Network-on-chip (NoC).

communication networks rather than traditional IC design
practice.

However, providing communication via NoCs is not an
easy matter, as mitigating the effects of on-chip failures on
the network communication remains largely an open ques-
tion. Furthermore, the resources used in traditional networks
in order to achieve fault-tolerance are not easily available in
VLSI chips. For instance, the static routing approach trans-
mitting messages along a fixed path would fail if even a single
tile or link on the path becomes faulty. Generally speaking,
the deterministic algorithms do not behave well in the pres-
ence of random failures [10, 11]. On the other hand, imple-
menting adaptive dynamic routing for on-chip networks is
prohibitive because of the need for very large buffers, lookup
tables, and complex shortest-path algorithms [12].

Perhaps the greatest challenge introduced by the advent
of new technologies is the shift from design determinism to
design uncertainty [13, 14]. Failures that occur in the DSM
technologies can only be characterized by stochastic models,
as they are either nondeterministic in nature or too complex
to be described by simplistic models. Therefore, the on-chip
communication has to be aware of this inherent nondeter-
minism induced by the DSM technologies.

1.1. Contributions of this paper

The research presented in this paper addresses the issue of
on-chip fault-tolerant communication. Towards this end,
we introduce a novel communication paradigm, called on-
chip stochastic communication. In an NoC such as the one
in Figure 1, the IPs can communicate using a probabilistic
broadcast scheme, very similar to the randomized gossip pro-
tocols used in databases or sensor networks [15, 16]. More
precisely, if a tile has a message that needs to be transmitted,
this will be forwarded to a randomly chosen subset of the
tiles in the neighborhood. Hence, the messages are diffused

through the network. At the same time, every IP selects from
the set of received messages, only the messages whose desti-
nation field is identical to the ID of the tile. The behavior of
this communication scheme is similar, but not identical, to
the proliferation of an epidemic in a large population1 [17].

This approach achieves many desired features of future
SoCs. As shown later in the paper, the algorithm provides
the following.

(i) Separation between computation and communication,
as the communication scheme is implemented in the
network logic and is transparent to the IPs.

(ii) Fault-tolerance since a message can still reach its desti-
nation despite severe levels of DSM failures.

(iii) Extremely low latency since this communication sch-
eme does not require retransmission of corrupted
data.

(iv) Low production costs because the fault-tolerant nature
of the algorithm eliminates the need for detailed test-
ing/verification.

(v) Design flexibility since it provides a mechanism to tune
the tradeoff between performance and energy con-
sumption.

We also note that the proposed on-chip stochastic com-
munication is accompanied with a theoretical justification.
The analytical model allows us to explain the essence of
stochastic communication and determine nodes coverage
which is later validated via simulation.

1.2. Structure of this paper

The remainder of this paper is organized as follows: Section 2
reviews related work. Section 3 introduces a fault model for
NoCs which captures the typical errors that may appear in a
DSM circuit. Section 4 describes the on-chip stochastic com-
munication algorithm meant to work in a failure-prone en-
vironment. Section 5 presents the analytical treatment of the
novel communication paradigm. Section 6 presents the ex-
perimental results obtained for a simple two-dimensional
FFT application working on a flat NoC. Finally, in Section 7
we outline the limitations of the proposed model. We then
conclude in Section 8 by summarizing our main contribu-
tion.

2. RELATED WORK

The starting point of on-chip stochastic communication is
the epidemics theory and gossip algorithms. The epidemics
theory has its origin in the Bernoulli’s work who tried to
prove that the exposure of healthy people to smallpox may
contribute to their immunization and decrease the mortal-
ity rate [18]. Generally speaking, the simple epidemic mod-
els characterize the infection process in a finite population of
susceptible (S) and infected (I) individuals. The velocity of
infection process is given by the product between the num-

1 This analogy explains intuitively the high performance and robustness of
this protocol in the presence of failures.

Paul Bogdan et al. 3

ber of susceptibles and infected individuals [17, 18]. Besides
these two types of individuals, the general epidemics model,
also called SIR model, introduces the removal of individu-
als (R) which designates an infected person that is removed
either by immunization or by death.

In contrast to epidemics, the rumor spreading theory
takes into account an additional type of interaction that may
happen between a spreader (similar to an infected individ-
ual) and a stifler (viewed as a removal). While in epidemics
the stifler corresponds to an isolated individual, in rumor
spreading it influences directly the dissemination process.

The first complete stochastic model for rumor spread-
ing was introduced by Daley and Kendall in [19]. They di-
vided the entire population of individuals in three categories:
spreaders (S), ignorants (I), and stiflers (R). The spreader
designates an individual (or node) who disseminates the ru-
mor or forwards the message according to a fixed proba-
bilistic rule. An ignorant represents an individual who is not
aware of the rumor contents yet. A stifler refers to an individ-
ual who is aware of the rumor, but decides to stop its dissem-
ination.

According to the epidemics modeling, the interaction be-
tween a spreader and an ignorant leads to a state with two
spreader individuals at a rate proportional to the number of
the spreader and ignorant populations (i.e., SI). Similarly, the
interaction between a spreader and a stifler may lead to a new
stifler at a rate proportional to the number of the spreader
and stifler subpopulations (i.e., SR). Moreover, in the case of
an interaction between two spreaders, it may happen that one
of them becomes a stifler at a rate proportional with the fre-
quency of interactions between individuals belonging to the
same subpopulation (i.e., 0.5S(S− 1)).

An alternative approach, called the Maki-Thompson ru-
mor model, is presented in [18]. The main difference be-
tween the Daley-Kendall and Maki-Thompson models is that
in the later, the interaction between two spreaders results in a
new stifler at a rate double than the one in the first approach
(i.e., S(S − 1)). A unified treatment of the rumor spreading
process was recently proposed by Pearce [20].

All these approaches inspired the so-called gossip proto-
cols for information dissemination in computer systems or
sensor networks [15, 16, 21]. They are very attractive for ap-
plications that require localized communication. A distant
ancestor is the USENET news protocol, NNTP [22], devel-
oped in early 80s. The news servers running the NNTP pro-
tocol exchange updates with the neighboring servers with-
out knowing the entire set of hosts that run NNTP world-
wide. Thus, a new message that has been sent to a newsgroup
will propagate from server to server until it is known by
all of them. An interesting property of this protocol is that
the servers are not required to know about all other servers,
and yet they are able to broadcast the updates to the entire
group. This reduces drastically the bandwidth required for
the broadcast, which makes this protocol more scalable than
most traditional distributed algorithms.

Demers et al. in [15] propose randomized gossip proto-
cols for the lazy update of data objects in databases repli-
cated at many sites. In that paper, the authors show how the

gossip-based communication is related to the propagation
of epidemics and develop a family of gossip-based multicast
protocols. It can be shown that, the updates spread exponen-
tially fast among the replicated instances of the database, and
the broadcast is accomplished with only a few retransmission
rounds.

Several networking protocols, such as the Internet Muse
protocol [23], the Scalable Reliable Multicast [24], and the
Xpress Transfer Protocol [25] were based on the same prin-
ciples. Birman et al. in [21] have shown that for the gossip-
based multicast protocols there is a high probability that al-
most all or almost none of the players will receive the broad-
cast, as opposed to the stronger all or none guarantee of the
classical distributed algorithms. Therefore, these protocols
are best suited for applications that can tolerate a small per-
centage of message losses, but need to be scalable and have a
steady throughput.

More recently, these types of algorithms have been ap-
plied to the networks of sensors [16]. Their ability to limit
the communication to local regions and support light-weight
protocols is appealing to applications where power, complex-
ity, and size constraints are critical. Although promising from
the practical standpoint, the claims about the practicality of
the proposed algorithm are not supported by an analytical
framework.

We argue that this communication paradigm can be suc-
cessfully applied to the SoC design as well, especially for the
NoC type of architecture as in Figure 1. Preliminary results
investigating the basic paradigm and hardware implementa-
tion were presented in [5, 26]. Recently, Manolache et al. in
[27] proposed a method to reduce the number of broad-
cast messages and improve the application response time. In
terms of the analytical modeling, while the on-chip stochas-
tic communication resembles epidemics and rumor spread-
ing, it is highly dependent on the topology on which the mes-
sage diffusion takes place [28]. These topological considera-
tions dictate the calculations of the transition probabilities in
our analytical model and help explain the nature of on-chip
stochastic communication and interactions that take place.
Finally, the analytical model validation is done by evaluating
nodes coverage.

3. FAULT MODELING FOR NoCs

Moore’s law has been valid for the past three decades.
Presently, the advances in wiring and manufacturing tech-
nology, as well as the device scaling below the 100 nm thresh-
old, seem to allow Moore’s law to continue only for a few
more years. Indeed, shrinking transistor dimensions, smaller
interconnect features, and higher operating frequencies lead
to a higher sensitivity of DSM circuits to neutron and alpha
radiation, significantly higher soft error rates, and an increas-
ing number of timing violations [1]. Dependability modeling
shows that complex VLSI circuits can be seriously impacted
by transient faults and silent data corruption [29, 30]. Fur-
thermore, in order to reduce the costs of design, manufactur-
ing, and verification and make such technologies affordable
not only for the highest volume products, the “100% correct-
ness” requirement for VLSI circuits has to be relaxed.

4 VLSI Design

The faults that may appear in NoCs are either transient
or permanent. The transient faults, also known as data up-
sets or soft errors, are caused by fluxes of neutron and alpha
particles, power supply and interconnect noise, electromag-
netic interference, or electrostatic discharge. They represent
the most common problem for future VLSI circuits. Sim-
ply stated, if noise in the interconnect causes a message to
be scrambled, a data upset will occur; these faults are sub-
sequently characterized by a probability Pupset. As predicted
in [1], the rate of occurrence increases as technology scales
down into the DSM domain.

Permanent faults reflect irreversible physical changes in
the structure of the circuit. They make recovery very hard
or even impossible. However, while these errors occur infre-
quently [31] and do not pose a serious threat to the mass
production of VLSI chips, this may change for future nan-
otechnologies [32].

Another common failure is when a message is lost be-
cause of buffer overflow. These faults are known as send/re-
ceive omissions [33] or buffer overflows. The occurrence rate
of these faults is modeled by the probability Poverflow.

For complex SoCs, there are additional, more subtle, er-
ror modes that can appear. The high coupling capacities of
the interconnect and tighter integration favor the Miller ef-
fect. As such, it becomes very difficult to achieve predictable
delays. Furthermore, as modern circuits span multiple clock
domains (e.g., GALS architectures [34]), and can function at
different voltages and frequencies (as for “voltage/frequency
island”-based architectures [35]), the communication be-
tween domains has to go through a special interface with
mixed clocks [36]. Due to the special handshake needed be-
fore transferring data, the latency in communication may in-
crease and synchronization errors appear. In our experiments,
every tile has its own clock domain. In this architecture, syn-
chronization errors are normally distributed with a standard
deviation σsynchr.

In summary, our fault model depends on the following
parameters:

(i) Ptiles and Plinks: probability that a tile/link is affected by
a permanent failure,

(ii) Pupset: probability that a packet is scrambled because of
a data upset,

(iii) Poverflow: probability that a packet is dropped because
of buffer overflows,

(iv) σsynchr: standard deviation error of the duration of a
round (TR) which indicates the magnitude of synchro-
nization errors.

4. THE IDEA OF ON-CHIP STOCHASTIC
COMMUNICATION

Traditionally, data networks dealt with fault-tolerance by us-
ing complex algorithms, like the Internet Protocol or the
ATM Layer [23]. However, these algorithms require many re-
sources that are not available on chip. In addition, they are
not always able to guarantee a low latency which is vital for
SoCs. For example, in these protocols, the packets are pro-
tected by a cyclic redundancy code (CRC) which is able to

detect if a packet contains correct or corrupted data. If an
error is detected, the receiver asks for the retransmission of
the scrambled messages. This method is known as the au-
tomatic retransmission request (ARQ); it has the disadvan-
tage that it increases the communication latency. Another ap-
proach is the forward error correction (FEC), where the errors
are corrected directly by the receiver by using an error correc-
tion scheme, like the Reed-Solomon code. FEC is appropriate
when a return channel is not available, as in deep-space com-
munications or in audio CD recordings. FEC, however, is less
reliable than ARQ and incurs significant additional process-
ing complexity.

Based on these considerations, we propose a fast and
computationally lightweight scheme for the on-chip com-
munication, based on an error-detection/multiple-transmis-
sions scheme. The key observation behind our strategy is
that, at chip level, the bandwidth is less expensive than in tra-
ditional networks; this is due to the existing high-speed buses
and interconnect fabrics which can be used to implement
NoCs. In the following subsections, we illustrate the idea
of stochastic communication and then describe the mathe-
matical model of on-chip stochastic communication which
is built on this very principle.

4.1. Example of a Producer-Consumer application

In Figure 2, we give the example of a generic Producer-
Consumer application. On an NoC with 16 tiles, the Pro-
ducer is placed on tile 6 and the Consumer on tile 12. Sup-
pose the Producer needs to send a message to the Consumer.
Initially the Producer sends the message to a randomly cho-
sen subset of its neighbors (e.g., tiles 2 and 7 in Figure 2(a)).
At the second gossip round, tiles 6, 2, and 7 forward it in the
same manner. After this round, eight tiles (i.e., 6, 2, 7, 1, 3, 8,
10, and 11 in Figure 2(b)) become aware of the message and
are ready to send it to the rest of the network. At the third
gossip round, the Consumer finally receives the packet from
tiles 8 and 11 (see Figure 2(c)). Note that

(i) the Producer needs not know the location of the Con-
sumer and the message will arrive at the destination
with high probability (w.h.p.);2

(ii) the message reaches the Consumer before the full
broadcast is completed. For instance, by the time the
Consumer gets the message, tiles 13–16 have not re-
ceived the message yet.

The most appealing feature of this algorithm is its excel-
lent performance in presence of failures. For instance, sup-
pose the packet transmitted by tile 8 is affected by a data
upset. The Consumer will discard it as it receives (from tile
11) another copy of the same packet anyway. The presence of
such upsets is detected by implementing an error-detection
scheme on each tile. Bandwidth is less expensive compared to
traditional networks, so we can afford more packet transmis-
sions to simplify the communication scheme and guarantee
low latencies.

2 This means with probability at least 1−O(n−α) for any constant α > 0.

Paul Bogdan et al. 5

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Producer

(a)

ConsumerFaulty tiles

1 1

(a) First gossip round

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Producer

(b)

Consumer

1

(b) Second gossip round

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Producer

(c)

Consumer

(c) Third gossip round

Figure 2: Producer-Consumer application in a stochastically communicating NoC.

Send buffer←send buffer ∪

{m received|CRC OK(m)}

Send buffer←Φ

Receive
messages

∀m ∈ send buffer
m.TTL←m.TTL-1

Send m
up

Send m
right

Send m
left

Send m
down

Gossip round

Send buffer←send buffer\

{m ∈ send buffer|m.TTL=0}

For each m ∈ send buffer
1− P

1− P

P
1− P

PPP
1− P

Figure 3: The basic algorithm for stochastic communication.

4.2. A generic algorithm for stochastic communication

The above example assumes that individual tiles can detect if
data transmissions are affected by upsets. This is possible by
protecting the packets with a CRC code. If an error is discov-
ered, then the packet is simply discarded. Because a packet is
retransmitted many times in the network, the receiver does
not need to ask for retransmission, as it will receive the packet
again anyway. This is why stochastic communication can sus-
tain low latencies even under severe levels of failures.

Our proposed algorithm is presented in Figure 3 (with
standard set theory notations) and it is executed concurrently
by all nodes in the network. A tile forwards the packet that is
available for sending to all four output ports, and then a de-
cision with probability P is made whether or not to transmit
the message to the next tile. In practice, a gossip round takes
several clock cycles. We also note that, since a message can

reach its destination before the broadcast is completed, the
spreading can be terminated even earlier in order to reduce
the number of messages transmitted in the network. This is
important because it is directly related to the bandwidth used
and energy dissipated (see Section 5.2). To this effect, we as-
sign a time-to-live (TTL) to every message upon creation and
decrement it at every hop until it reaches value 0 and so the
message is garbage-collected. In Section 6, we show how the
probability P and the TTL can be used to tune the trade-off

between performance and energy consumption.

4.3. The hardware interface

A typical tile of such an NoC is shown in Figure 4. The IP
core is placed in the center of the tile. On the four edges of
the tile, there exist buffers to hold the messages that are sent
and received by the IP. A CRC decoding circuit checks all the

6 VLSI Design

Buffers
RND

IP

R
N

D

CRC check

RND

Buffers

R
N

D

Figure 4: A typical tile of a stochastically communicating NoC.

received packets and when an error is discovered, the mes-
sage is discarded before being fed into the IP. The tile keeps a
list of messages that have to be sent in an output buffer. The
messages received during the last round and the new mes-
sages generated by the IP core are constantly added to the
list. However, if a message is already present, a duplicate mes-
sage will not be inserted. Consequently, even if the message
is received a second time from one of the tiles in the neigh-
borhood, only one copy is kept in the send buffer and sent to
the neighbors during the next round. However, before being
actually transmitted over a link, some messages are randomly
dropped by a specialized circuit. The selected threshold volt-
age determines the probability P that a message is forwarded
over a link. This is how the aforementioned random subset
of neighbors is actually selected.

4.4. Relationship between stochastic communication
and rumor spreading

With this technique, the NoC communication becomes sim-
ilar to the dissemination of a rumor within a large group of
friends [37]. Assume that, initially, only one person in the
group knows the rumor (see Figure 5(a)). Upon learning the
rumor, this person (initiator) passes it to a group of friends
(considered confidants if they spread the rumor) randomly
chosen. At the next round, both the initiator and the con-
fidants, if there is at least one, independently of each other,
select someone else to pass the rumor to. The process contin-
ues in the same fashion until everyone is informed or there
are no spreaders of the rumor in the entire population.

By analogy with rumor spreading, the NoC tiles are the
“gossiping friends,” while packets transmitted between them
become the “rumors” (see Figure 5(c)). Since in the social
network any “friend” is able to communicate with anyone

else in the same group (see Figure 5(b)), communication in
this setup may lead to the small world phenomenon [38].
From a silicon implementation perspective, however, the
topology in Figure 5(b) does not represent a viable solution
due to its huge wiring demands. Therefore, for NoCs, we
consider a grid-based topology (Figure 5(c)), as this is eas-
ier and cheaper to implement in silicon.

To analyze the square grid in Figure 5(c)), we clearly need
a new method which takes into account the network topol-
ogy. This is achieved by considering a stochastic model where
transition probabilities are dictated by the network topol-
ogy.3 This aspect distinguishes the small world approach
from the NoC stochastic communication as it will be de-
tailed next. Besides topology, we need to also consider buffer
overflows, links and/or nodes failures. Although deriving a
good theoretical model for rumor spreading across a grid is
an open research question, to the best of our knowledge, our
effort represents the first approach that describes both qual-
itatively and quantitatively the on-chip stochastic communi-
cation.

5. ON-CHIP STOCHASTIC COMMUNICATION THEORY

5.1. Basic node interactions and problem formulation

Starting from theory of epidemic and rumor dissemination
modelling [17, 19, 37], we consider a grid network of N2

nodes able to communicate as in Figure 1. Following the
model of epidemics theory, we classify the entire popula-
tion into spreader, ignorant, and stifler nodes. The spreader
represents any node that is aware of the message and de-
cides to disseminate it. We denote by S(t) the number of
spreader nodes at time t. The ignorant defines a node that
is not included in the communication area yet and it is de-
noted by I(t). The stifler node refers to the case in which a
node aware of the message chooses to cease its dissemination
(either the link is faulty or the node is dropping the packet).
The initial number of spreader and ignorant nodes is de-
noted by S(0) = N1 and, respectively, I(0) = N2. The num-
ber of stifler nodes is obtained by subtracting the spreader
and ignorant populations from the total number of nodes:
R(0) = N2−N1−N2. Since we are dealing with a closed pop-
ulation of N2 nodes, we can write the following conservation
law, for time t ≥ 0:

S(t) + I(t) + R(t) = N2. (1)

The process {(S, I ,R)(t): t > 0} evolves over a finite state
space so that it is completely described by a continuous time
Markov chain, for which the initial state and the infinitesi-
mal transition probabilities are specified. While the number
of stiflers is simply R(t) = N2 − S(t) − I(t), it is sufficient
to deal with stochastic processes S(t) and I(t) in order to en-
sure the system evolution. Since we deal with three types of

3 As we can see in Figure 5(c), each spreader node may communicate di-
rectly with at most four neighbors.

Paul Bogdan et al. 7

Friend 1

Friend 2

Friend 4

Friend 3

(a)

(a) Social network

Friend 16

Friend 1

Friend 2

(b)

(b) Fully connected network

Tile 1 Tile 2

Tile 16

(c)

(c) Square grid network

Figure 5: Different topologies illustrating social and technological networks.

populations, using the decomposition of a pathway into el-
ementary reactions or interactions [39], we can distinguish
the following types of interactions.

(a) Spreader-ignorant interaction

In a mesh topology, each spreader node can be surrounded
by one, two, three, or four ignorant nodes. This can con-
tribute to an increase with one, two, three, or four new
spreaders. Using the law of mass action as in [17], we can
write the associated transition probability in the infinitesi-
mal time interval (t, t + h) as follows:

P
{

S(t + h) = s + k, I(t + h) = i− k | S(t) = s, I(t) = i
}

= αk(t)sih + O(h), k = 1, 2, 3, 4,

(2)

where α1(t), α2(t), α3(t), α4(t) are time varying rates that
characterize the interaction between any spreader and one,
two, three, and four ignorant neighbors. More precisely,
starting with s − 1 spreaders and i + 1 ignorants (i.e., ini-
tial state (s − 1, i + 1)), we end up with s spreaders and i
ignorants (i.e., final state (s, i)) at a rate proportional with
α1(t)(s− 1)(i + 1) (i.e., k = 1).

We note that the αk parameters in (2) are directly related
to the forwarding probability P in the algorithm in Figure 3.

More precisely, αk =
(

4
k

)

Pk(1 − P)4−k. This illustrates the

direct connection between the formalism developed in this
section and the “knobs” that control the stochastic commu-
nication in Figure 3.

(b) Spreader-spreader interaction

Another type of reaction is the interaction between two
spreaders that are neighboring nodes. In this situation, it can
happen that either both spreader nodes stop the packet diffu-
sion process with a rate β2(t), or one node ceases the dissem-
ination while the second node continues to forward packets
in the network with a rate β1(t). The situations can describe
the behavior of a link between two congested nodes which is
characterized by Poverflow. We do not consider the situation

when both nodes continue the packet dissemination since
this can be viewed as a consequence of the spreader-ignorant
interaction mentioned above. The corresponding transition
probability for these two cases is

P
{

S(t + h) = s−m, I(t + h) = i | S(t) = s, I(t) = i
}

= βm(t)sh + O(h), m = 1, 2.
(3)

(c) Spreader-stifler interaction

The third type of interaction we consider is between a
spreader and a stifler. The result of this interaction consists
in altering the state of the spreader node with a rate α5(t).
More precisely, a faulty node, also called stifler, may corrupt
the received packet and disseminate it, affecting the state of
other nodes. The associated transition probability is given by

P
{

S(t + h) = s− 1, I(t + h) = i | S(t) = s, I(t) = i
}

= α5(t)s
(

N2 − s− i
)

h + O(h).
(4)

(d) No interaction

If there is no change in the continuous time Markov chain,
the corresponding transition probability has the form:

P
{

S(t + h) = s, I(t + h) = i | S(t) = s, I(t) = i
}

= 1−

{ 4
∑

k=1

αk(t)i+
2
∑

m=1

βm(t)+α5(t)
(

N2−s−i
)

}

sh

−O(h).

(5)

The parameters that characterize the above interactions were
introduced for capturing both permanent and transient er-
rors. For s + i ≤ N1 + N2 and i ≤ N2 we define

P
{

S(t + h)=s, I(t + h)= i | S(t)=N1, I(t) = N2

}

=P(s, i, t)
(6)

which stands for the probability that, at time t, we have s
spreader nodes and i ignorant nodes. If needed, the num-
ber of stifler nodes can be easily obtained by subtracting

8 VLSI Design

α2 α2 α3

α2 α1 α2

α2 α5 α1 α3

α2 α3 α3

α1 α3 β2

α3
β1 α4

α4 α4

α5

α4

1 2 3 4 5

109876

1514131211

2019181716

2524232221

S-node

S-node

S-S interaction

S-I interaction

Figure 6: Stochastic dissemination in a 5 × 5 mesh network. The
dotted lines show damaged links. The lines with arrows represent
packet communication.

from the entire population the number of spreader and ig-
norant nodes. The packet dissemination process can be then
described by the following forward Kolmogorov equation:

dP(s, i, t)

dt
=

4
∑

k=1

αk(t)(s− k)(i + k)P(s− k, i + k, t)

+
2
∑

k=1

βk(t)(s + k)P(s + k, i, t)

+ α5(t)(s + 1)
(

N2 − s− i− 1
)

P(s + 1, i, t)

− s

[4
∑

k=1

αk(t)i+
2
∑

k=1

βk + α5(t)
(

N2−s−i
)

]

P(s, i, t).

(7)

Next, we give some intuition about the stochastic packet
dissemination using a 5× 5 mesh network (see Figure 6). We
set the nodes 9 and 21 to be the sources for packet dissemina-
tion. Source 21 can follow the spreader-ignorant interaction
and send packets to its neighbors (i.e., nodes 16 and 22) with
rate α2. Further, nodes 16 and 22 can forward their packets
with rates α2 and α1, respectively. Node 22 sends packets with
rate α1 (instead of α2) because the dotted link between nodes
22 and 17 is assumed to be damaged. We observe that node
17 does not send any packet and becomes a stifler with rate
α5. Subsequently, nodes 11, 12, and 13 behave similarly as
they describe new spreader-ignorant interactions.

By the same token, the links between the neighboring
nodes 6, 11 and 13, 18 are considered damaged. Source 9
can send a packet to its neighbors with probability α4. Later
on, nodes 8, 13, and 14 try to disseminate their packets. If
the network is overloaded, we may notice new interactions.
For instance, it can happen that only one of the nodes 8 or
13 disseminates its packets; this transition probability (β1)
is shown on the link between them (spreader-spreader in-
teraction). Moreover, if nodes 13 and 14 are blocked due to
congestion, then we end up with two nodes blocking the dis-
semination process (β2).

Next, we illustrate the derivation of the closed-form so-
lution for the packet diffusion process [28]. First, we use the
probability generating functions

fi(x, t) =
∞
∑

s=0

P(s, i, t)xs, |x| ≤ 1, 0 ≤ i ≤ N2 (8)

to rewrite (7) as a transport equation,

∂ fi(x, t)

∂t
=

4
∑

k=1

αk(t)(i+k)
∂ fi+k(x, t)

∂x
+α5(t)x(x−1)

∂2 fi(x, t)

∂x2

+

{ 2
∑

k=1

βk(t)

[

1

xk−1
− x

]

+α5(t)
(

N2−i−1
)

(1−x)

− x
4
∑

k=1

αk(t)i

}

∂ fi(x, t)

∂x
.

(9)

Furthermore, we can construct a vector

F(x, t) =
[

fN2 (x, t), fN2−1(x, t), . . . , f1(x, t), f0(x, t)
]T

(10)

from all the probability generating functions and obtain the
following nonlinear differential equation:

∂F(x, t)

∂t
= A(x, t)

∂F(x, t)

∂x
+ B(x, t)

∂2F(x, t)

∂x2
, (11)

where the functions A and B are given by

A(x, t) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a
(

N2

)

0 · · · 0

b
(

N2 − 1
)

a
(

N2 − 1
)

· · · 0

c
(

N2 − 2
)

b
(

N2 − 2
)

· · · 0

d
(

N2 − 3
)

c
(

N2 − 3
)

· · · 0

e
(

N2 − 4
)

d
(

N2 − 4
)

· · · 0

· · · · · · · · · · · ·

0 0 · · · a(0)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(12)

B(x, t) = α5(t)x(x − 1) (13)

with the following components:

a(i) =
2
∑

k=1

βk(t)

(

1

xk−1
− x

)

+ α5(t)
[(

N2 − i
)

(1− x)− 1
]

−

4
∑

k=1

xiαk(t)

b(i) = α1(t)(i + 1)x2 c(i) = α2(t)(i + 2)x3

d(i) = α3(t)(i + 3)x4 e(i) = α4(t)(i + 4)x5.

(14)

Generally speaking, it is difficult to find out the solution
of the above-mentioned differential equation in matrix form.
We briefly summarize the methods for finding the solution in
time and frequency domains for the case in which A and B
are time-independent. This leads to the following equation:

∂F(x, t)

∂t
= A(x)

∂F(x, t)

∂x
+ B(x)

∂2F(x, t)

∂x2
. (15)

Paul Bogdan et al. 9

5.1.1. Time domain investigation

To solve (15) in time domain, we use the method of separat-
ing variables. Consequently, the base solution will have the
following form F(x, t) = X(x)T(t), where X is a real func-
tion and T is a temporal scalar function. Consequently, the
parabolic differential equation can be written as follows:

LX(x) = A(x)D2X(x) + B(x)DX(x) =
dT(t)

T(t)

X(x)

T(x)
. (16)

Hence, by introducing the eigenvalue λ in the following
equation dT(t)/dt = −λT(t), we obtain T(t) = e−λt. The
general solution will be given by the following formula:

F(x, t) =
∑

λ

cλXλ(x)e−λt, (17)

where Xλ is the eigenvector associated with the eigenvalue
λ of the Sturm-Liouville differential operator L (i.e., L =

A(x)D2 + B(x)D).

5.1.2. Frequency domain investigation

To find out the solution of the forward Kolmogorov equa-
tion (7), we use the method described in [18, 37]. Using the
Laplace transform for the probability generating function as-
sociated with the forward Kolmogorov equation, we reach
the following relation for 0 ≤ i ≤ N2:

θ fi(x, s)− δN2x
N2 =

{ 2
∑

k=1

βk
xk−1

+ α5

(

N2 − i− 1
)

}

∂ fi(x, s)

∂x

− x

[4
∑

k=1

iαk +
2
∑

k=1

βkα5

(

N2 − i
)

]

∂ fi(x, s)

∂x

+
4
∑

k=1

αk(i + k)xk+1 ∂ fi+k(x, s)

∂x

+ α5x(x − 1)
∂2 fi(x, s)

∂x2
.

(18)

In order to solve the differential equation, we apply the
Laplace transform to the column vector introduced in (10)
which leads to:

B(x)
∂2F(x, s)

∂x2
+ A(x)

∂F(x, s)

∂x
− sF(x, s) = −xN2EN2+1,

(19)

where A(x) is given by (12), and B(x) = α5x(x − 1)IN2+1.
The symbol IN2+1 represents the identity matrix of dimension
N2 + 1. If we differentiate the above equation with respect to
variable x, and use the notation

Fd = Fd(x, s) =
∂dF(x, s)

∂xd
, (20)

then (19) takes the form

B(x)Fd+2 +
[

z(d)B(1)(x) + A(x)
]

Fd+1

+
[

w(d)B(2)(x)+z(d)A(1)(x)− sIN2+1

]

Fd

+ w(d)A(2)(x)Fd = −
N2!xN2−d

(

N2 − d
)

!
EN2+1

(21)

with z(d) = d and w(d) = d(d−1)/2, for d ≥ 0. Considering
that the probability generating functions fi(x, s) are polyno-
mial functions of variable x of degreeN1+N2−i and using the
Taylor expansion of F(x, s), we get the following relations:

F(x, s) = F0 +
N1+N2+2
∑

d=1

(

x − x0

)d

d!
·
∂dF(x, s)

∂xd
, (22)

where F0 represents the initial condition, and the intermedi-
ate Taylor factors are given by

∂dF(x, s)

∂xd
=

⎡

⎢

⎣

∏N1+N2

d=0 Ad

⎡

⎢

⎣

F1

F0

0

⎤

⎥

⎦

⎤

⎥

⎦

N2+1

+
N1+N2
∑

d=0

N1+N2
∏

k=d+1

AkBd

(23)

with the following coefficients:

Bd =

⎡

⎢

⎢

⎢

⎣

−
N2!xN2−d

(

N2 − d
)

!
EN2+1

0
0

⎤

⎥

⎥

⎥

⎦

,

Ad =

⎡

⎢

⎢

⎣

A1
d A2

d A3
d

IN2+1 ON2+1 ON2+1

ON2+1 IN2+1 ON2+1

⎤

⎥

⎥

⎦

,

A1
d = B−1(x)

[

z(d)B(1)(x) + A(x)
]

A3
d = w(d)B−1(x)A(2)(x),

A2
d = B−1(x)

[

w(d)B(2)(x) + z(d)A(1)(x)− θIN2+1

]

.

(24)

The symbols IN2+1 and ON2+1 stand for the identity and
zero matrices, respectively, of dimension N2 + 1.

In summary, (22) governs the evolution of packet dis-
semination on a grid. This equation lies at the heart of on-
chip stochastic communication. More precisely, it captures
the transition probabilities of the Markov process associated
with the SIR interactions, as well as the effects induced by the
network topology during the stochastic dissemination pro-
cess.

5.2. Performance evaluation

The behavior of the stochastic communication scheme can
be characterized based on a small number of parameters
which are detailed in this section.

5.2.1. Nodes coverage

An interesting metric that can be derived from the proposed
analytical framework is the coverage metric (i.e., the number
of reached nodes as a function of time). To analyze the cov-
erage metric for the mesh network, we get inspiration from
systems biology [39]. As such, we construct a set of rate equa-
tions that describe the rumor dissemination process on a
mesh network. The ordinary differential equation modeling
starts from the following set of possible reactions and their

10 VLSI Design

rate coefficients:

S + I −→ S + S with rate α1 (1,−1, 0) with rate α1,

S + 2I −→ S + 2S with rate α2 (2,−2, 0) with rate α2,

S + 3I −→ S + 3S with rate α3 (3,−3, 0) with rate α3,

S + 4I −→ S + 4S with rate α4 (4,−4, 0) with rate α4,

S + S −→ S + R with rate β1 (−1, 0, 1) with rate β1,

S + S −→ R + R with rate β2 (−2, 0, 2) with rate β2,

S + R −→ R + R with rate α5 (−1, 0, 1) with rate α5,

(25)

where S denotes the number of spreaders, I designates the
number of ignorants, and R represents the number of stiflers.
Whenever a reaction takes place, the number of individuals
in each population evolves as shown in the right-hand side of
(25). For example, if the third reaction takes place with rate
α3, then the expression (3,−3, 0) shows that the number of
spreader nodes (S) increases by 3 individuals, the number of
ignorants (I) decreases by the same amount and the number
of stiflers (R) remains unchanged. More precisely, if we start
from (S, I ,R) configuration and we follow the third reaction,
then we end up in the (S + 3, I − 3,R) state.

The reaction velocity of each equation can be obtained
by using the following rationale: given the reaction mX +
nY → qZ that takes place at rate k, the reaction velocity is
(1/m)(d[X]/dt) = (1/n)(d[Y]/dt) = k[X]m[Y]n. Further,
we have the following relations:

[dS/dt]

1
=

[dI/dt]

−1
= α1[S][I],

[dS/dt]

1
=

[dI/dt]

−2
= α2[S][I]2,

[dS/dt]

1
=

[dI/dt]

−3
= α3[S][I]3,

[dS/dt]

1
=

[dI/dt]

−4
= α4[S][I]4,

[dS/dt]

−1
=

[dR/dt]

1
= β1[S]2[R],

[dS/dt]

−2
=

[dR/dt]

2
= β2[S]2[R],

[dS/dt]

−1
=

[dR/dt]

1
= α5[S][R].

(26)

This is a compact way of defining the velocity of each re-
action. For instance, the first relation in (26) states that the
small variation in the number of spreaders over a short time
interval (i.e., dS/dt) is proportional with α1SI ; this needs to
be accounted for since one ignorant becomes a spreader. At
the same time, the variation in the number of ignorants over
a short time interval (i.e., dI/dt) is proportional to −α1SI
since the ignorant population losses one member. It is im-
portant to note that all the interactions in (26) are indepen-
dent and only one such interaction occurs in any given time

0

10

20

30

40

50

60

70

80

90

N
u

m
b

er
o

f
sp

re
ad

er
n

o
d

es

0 1 2 3 4 5 6

Time

P = .5
P = .6 P = .7

P = .8

×10−7

Figure 7: Time evolution of spreader nodes with and without faults.

interval dt. Based on these relations, we can write the follow-
ing rate equations to describe how the ensemble changes at
any point in time:

ds

dt
=

4
∑

k=1

kαksi
k −

2
∑

k=1

kβks
2 − α5sr,

di

dt
= −

4
∑

k=1

kαksi
k,

dr

dt
=

2
∑

k=1

kβks
2 + α5sr.

(27)

The variations in number of spreaders, ignorants, and
stiflers over time are obtained by taking into account the
superposition of all the above-mentioned individual effects.
Thus, if the third reaction in (25) takes place, for instance,
then the number of spreaders increases by three units (there-
fore, k = 3 in (27) and the first term becomes 3α3SI3) since
three ignorants are turned into spreaders. At the same time,
the same quantity needs to be subtracted from the number of
ignorants variation in (27) (i.e., −3α3SI3). We note that the
semantics of these relations is similar to that used in process
algebra of concurrent communicating systems [40].

Considering, for instance, (27) and the following initial
configuration on a 10 × 10 grid: one spreader, one stifler,
N2−2 ignorants (i.e., 98 ignorants), and setting the parame-
ters β1 = β2 = α5 = 0 (i.e., assuming neither damaged links,
nor nodes), we obtain the time evolution in Figure 7, as a
function of P. The conclusion from this plot is twofold: on
one hand, there exists a region of exponential growth in the
number of spreader nodes; this is also later shown experi-
mentally by simulation in Section 6.1.2. On the other hand,
in absence of faults or upsets, the number of spreader nodes
reaches a maximum point after which it does not change sig-
nificantly with time.

Paul Bogdan et al. 11

In order to investigate the impact of faults or upsets on
the coverage metric, we increase the values of the fault pa-
rameters (i.e., β1, β2, α5) and use the analytical approxima-
tion, in (27). We compare these results with the case in which
there are neither damaged links, nor nodes. As we can see in
Figure 8 (P = .7), the number of nodes that become aware
of the packet dissemination reaches a maximum point in
both cases. However, in presence of faults, the number of
reached nodes is significantly smaller. This can be explained
with the spreader-spreader and spreader-stifler interactions
introduced in Section 5.1 (i.e., (3) and (4)).

5.2.2. Broadcast rounds

A broadcast round is the time interval in which a tile has to
finish sending all its messages to the next hops; this usually
takes several clock cycles. The optimal duration of a round
(TR) can be determined using (28)

TR =
S ·Npackets/round

f
, (28)

where f is the maximum frequency of any link, Npackets/round

is the average number of packets a link sends during one
round (this is application dependent), and S is the average
packet size.

As shown in Section 6, the fast dissemination of rumors
makes it possible to achieve very low latencies. While XY
routing generates traffic along a single path, stochastic com-
munication spreads the traffic uniformly across all links in
the network, thereby reducing the chances that packets are
delayed due to local congestion. Under the proposed proto-
col, congestion occurs only when the entire network becomes
saturated. This is especially important in multimedia appli-
cations, for instance, where a sustainable constant bit-rate is
highly desirable. Furthermore, the fact that we do not store
or compute the shortest paths (as in dynamic routing) makes
this algorithm computationally lightweight, simpler and eas-
ier to customize for every application and interconnection
network. We also note that since the stochastic communica-
tion algorithm uniformly spreads the traffic across the entire
network, the proposed algorithm does not suffer from dead-
lock. Indeed, the packets can reach their destinations even
when using finite buffers if the injection rates are sufficiently
small.

5.2.3. Energy metrics

To estimate the energy consumption of this algorithm, we use
(29)

Etotal = Ecomputation + Ecommunication

= Ecomputation + Npackets · S · Ebit,
(29)

where Npackets is the total number of messages generated in
the network, S is the average size of one packet (in bits), and
Ebit is the energy consumed per bit per link. The parame-
ter Npackets can be estimated by simulation, S is application-
dependent, and Ebit can be derived from the technology li-
brary.

0

10

20

30

40

50

60

70

80

N
u

m
b

er
o

f
sp

re
ad

er
n

o
d

es

0 1 2 3 4 5 6

Time

Number of reached nodes without faults
Number of reached nodes with faults

×10−7

Figure 8: Time evolution of spreader nodes with and without faults.

As shown in (29), the total energy consumed is also in-
fluenced by the computational cores (Ecomputation). Since our
focus is on the performance of the communication scheme, it
is not necessary to estimate precisely the energy required by
computation. However, this can be added, to our estimations
in Section 6 in order to get the combined energy values.

In summary, the parameters relevant to our analysis are:

(i) nodes coverage, which is a measure of message dissemi-
nation in the network (similarly to molecules diffusion
in gases),

(ii) number of broadcast rounds needed, which is a direct
measure of the inter-IP communication latency,

(iii) total number of packets sent in the network, which in-
dicates the bandwidth required by the algorithm; it can
be controlled by varying the message TTL value,

(iv) fault-tolerance, which evaluates the algorithm re-
silience to abnormal conditions in the network,

(v) energy consumption, which is computed with (29) (as
detailed in Section 6).

6. PRACTICAL CONSIDERATIONS AND
EXPERIMENTAL RESULTS

Stochastic communication can be beneficial to many appli-
cation areas ranging from parallel SAT solvers and multime-
dia applications to periodic data acquisition from noncritical
sensors. Starting from a computational task graph, the fault-
tolerant scheme distributes the independent tasks and oper-
ations to different nodes (i.e., information dissemination to-
wards slave nodes) similar to a network of sensors. Later on,
the results are collected at the master node through multi-
ple paths. This idea is better emphasized by our first exam-
ple, the two-dimensional Fast Fourier Transform (FFT) (see
Figure 9). The inherent parallelism of the FFT algorithm is
exploited by computing the partial results at the slave nodes.

12 VLSI Design

FFT(x1(n), y1(n)) FFT(x1(n), y2(n)) FFT(x2(n), y1(n)) FFT(x2(n), y2(n))

FFT(x(n), y(n))

· ·· · ·

F11

F21 F22

F12

Figure 9: Parallel scheme for computing FFT2.

The stochastic communication scheme ensures that the mas-
ter node ultimately receives these results and is able to return
the desired FFT value even for high data error rates.

Since realistic data about failure patterns in regular SoCs
are not easily available, we explore the entire parameter space
of our fault model (i.e., Pupset ∈ [0, 1]). Another important
parameter we vary is P, the probability that a packet is for-
warded over a link (see Section 4.1). Stochastic communica-
tion allows us to tune the trade-off between energy and per-
formance by varying the probability of transmission (P) be-
tween 0 and 1.

6.1. Case study: the 2D Fast Fourier Transform

Given the structure of the Discrete Fourier Transform of N
samples, a recursive divide-and-conquer algorithm can be
used to compute the FFT of N samples (see Figure 9). This
reduces the number of operations to O(N log2 N). Because
of its widespread use in engineering (especially in image
and multimedia processing), we have focused on the two-
dimensional FFT algorithm (FFT2) applied to both XY di-
mensions. Every node in the tree from Figure 9 represents a
parallel process. The leaves compute the FFT on a small num-
ber of samples and send the intermediate results back to the
root which assembles the final result.

We map this application onto a 4 × 4 NoC running
the stochastic communication algorithm in Section 4. To in-
crease the tolerance to permanent tile failures, the IPs can
be duplicated (as for the Master-Slave computations). Our
models simulate grids of 16–25 tiles, which is relevant to
nowadays designs, but the gossip algorithms scale extremely
well so stochastic communication can be applied to much
larger designs.

For this case study we have considered a restricted version
of the fault model from Section 3, which includes only the
most cited failure modes in the current literature [33] per-
manent failures of tiles and links (with probabilities Ptiles and
Plinks) and data upsets (with probability Pupset). The random
failures are distributed uniformly in time during the length
of the simulation (see Figure 10 where we consider a 4 × 4
NoC).

In our framework, the packet (not the flit) represents the
basic unit of information and as such, packet reordering is

0

5

10

15

20

F
au

lt
y

ti
le

s

0 100 200 300 400

Rounds

Figure 10: Distribution of failures during simulation.

not a real issue. More precisely, in our experiments, while
packets may arrive at destination in an out-of-order fashion,
they can be easily reordered based on the information con-
tained in their header. As such, the experiments reported in
this paper do not suffer from the out-of-order arrival prob-
lem.

We evaluate the latency, the energy dissipation, and the
fault-tolerance of stochastic communication.For consistency
reasons, all the results presented in this section are averages
obtained after several simulations. We compare here four
versions of the stochastic communication, obtained for dif-
ferent values of the parameter P:

(i) the network flooding, which is a deterministic algo-
rithm where the tiles send the messages to all their
neighbors all the time (P = 1);

(ii) three versions of the stochastic communication algo-
rithm in Section 4, which uses different probabilities
to transmit the message across the links; namely, we
use P = .75, P = .5, and P = .25.

The reason for comparing our protocol against the flood-
ing algorithm is because the latter is the simplest possible
example of a deterministic broadcast protocol. The flooding

Paul Bogdan et al. 13

Table 1: Stochastic communication in an NoC with 6.25% defective tiles and 8.33% defective links.

Initial broadcast FFT2 finished
Total number of packets

Average energy

(no. of rounds) (no. of rounds) (×10−8 J/bit)

Flood
(P = 1)

Stoch.comm.(P) Flood
(P = 1)

Stoch.comm.(P) Flood
(P = 1)

Stoch.comm.(P) Flood
(P = 1)

Stoch.comm.(P)

.75 .5 .25 .75 .5 .25 .75 .5 .25 .75 .5 .25

Pupset = 0 5 7 — 16 5 6 9 16 471 481 619 558 2.261 1.924 1.651 0.836

Pupset = 0.2 5 9 12 30 5 7 11 16 444 559 811 508 2.129 1.917 1.768 0.761

Pupset = 0.4 9 11 — — 5 13 16 20 387 1417 1289 486 1.858 2.616 1.934 0.583

Pupset = 0.6 19 11 17 38 10 16 18 39 1226 1997 1172 1700 2.942 2.995 1.562 1.046

Pupset = 0.8 22 18 46 85 23 25 34 84 4158 2734 2080 3562 4.339 2.624 1.468 1.018

Table 2: Impact of failures on latency of stochastic communication with P = .5 (number of rounds to finish: initial broadcast/FFT2).

Ptiles = 0 Ptiles = .125 Ptiles = .25

Plinks = Plinks = Plinks =

0 .083 .166 .25 0 .083 .166 .25 0 .083 .166 .25

Pupset = 0 8/6 9/9 15/8 —/9 8/10 7/7 13/13 —/11 6/8 —/— —/14 —/—

Pupset = 0.2 11/10 10/8 —/12 —/12 9/12 —/10 23/19 —/19 8/— —/20 —/17 —/—

Pupset = 0.4 9/11 16/14 —/14 —/25 15/10 15/16 —/16 —/— —/11 —/37 —/9 —/22

Pupset = 0.6 15/18 21/13 —/22 —/25 43/15 —/36 21/12 —/— 24/16 —/16 —/17 —/—

Pupset = 0.8 33/27 46/33 83/37 —/69 24/53 —/49 35/46 —/— —/— 42/— —/39 —/35

algorithm is also optimal with respect to latency; that is, the
number of intermediate hops between source and destina-
tion is always equal to the Manhattan distance between the
two tiles. We show that our protocol has a latency close to
this optimum. The flooding is, however, extremely ineffi-
cient to implement with respect to the bandwidth and en-
ergy consumed. The stochastic communication enables var-
ious trade-offs between energy and performance figures by
varying the values of the transmission probability P.

A summary of our results is given in Tables 1 and 2. For
example, the second row in Table 1 shows that, when the
probability of an unsuccessful transmission is Pupset = .2,
depending on the algorithm used, the broadcast of the first
message takes between 5–30 rounds to reach all the tiles,
FFT2 is computed after 5–16 rounds, there are 444–811 pack-
ets transmitted in the network, with an average energy con-
sumption of 7.61–21.29 nJ per message bit.4 The second row
of Table 2 shows the number of rounds needed to finish the
initial broadcast/the computation of FFT2, for different lev-
els of tile and link failures, when Pupset = .2.

To give an idea about the average communication energy
consumption of the stochastic communication algorithm, we
compare the energy consumption of the deterministic XY
routing, against the energy of the proposed approach when
there are no defective tiles or links in the network. We con-
sider a random mapping which is not optimal for either
stochastic or deterministic cases. Moreover, we assume that

4 The total energy dissipation can be obtained by multiplying these figures
with the packet size S. In our experiments, we have used S = 364 bits.

for a nonzero probability of data upsets (i.e., Pupset > 0) in
the deterministic case, a number of (Pupset × Npackets) pack-
ets need to be retransmitted during the next communica-
tion round.5 The packet retransmission is done in n commu-
nication rounds, where n is determined from the following
condition (Pupset)n ≤ ε and ε depends on the allowed toler-
ance to missing FFT2 values. In absence of data upsets (i.e.,
Pupset = 0), the deterministic XY routing scheme consumes
7.2 nJ energy which is smaller than the energy consumption
needed in flooding (i.e., 17.22 nJ) and stochastic communi-
cation (i.e., 18.34 nJ for P = .75, 11.94 nJ for P = .5 and
7.83 nJ for P = .25). In presence of data upsets, the determin-
istic routing scheme requires several retransmissions and the
energy consumption is given by E0/(1− Pupset). For instance,
for a Pupset = .4, the communication energy consumption
of the deterministic case is 12 nJ, while the energy consump-
tion of the stochastic communication varies from 22.29 nJ for
P = .75 to 16.64 nJ for P = .5 and 10.48 nJ for P = .25. In-
terestingly enough, for higher error rates (e.g., Pupset = .8),
the communication energy consumption in the determinis-
tic case is 36 nJ, which is higher than the stochastic commu-
nication energy consumption which varies from 33.55 nJ for
P = .75 to 19.85 nJ for P = .5 and 7.72 nJ for P = .25. Thus,
the stochastic communication algorithm proves to work well
and consume less energy at higher data upset rates, while the
deterministic case seems to imply a nonlinear increases with
Pupset.

5 A communication round refers to the number of cycles needed until the
first FFT2 value is computed.

14 VLSI Design

0

5
×10−8

E
n

er
gy

(J
/b

it
)

0 20 40 60 80 100 120 140

Number of rounds

(a)

0

10

20

In
it

ia
lb

ro
ad

ca
st

0 2 4 6 8 10

Number of rounds

(b)

Figure 11: Three different runs of the algorithm.

6.1.1. Repetability of results

Our experiments show that, for several runs of the protocol,
the parameter estimations are consistent and do not fluctu-
ate much around the mean value. To support this claim, we
present in Figure 11 a comparison for the evolution of the en-
ergy dissipation across the entire simulation, and the number
of rounds needed to complete the application.

6.1.2. Latency

From the communication point of view, the FFT2 applica-
tion has two phases.

(i) First, the initial message, containing the raw image
samples, has to reach all of the leaf nodes,

(ii) Second, the computed results have to come back to the
root node, which will assemble the final result.

The evolution of the first phase, namely the spread of the
initial broadcast, is shown in the upper part of Figure 12.
As we can see, the spread is relatively slow in the begin-
ning, but soon reaches a stage of explosive growth and so the
entire network becomes aware of the message after a small
number of rounds. This behavior is reasonably close to the
one predicted by the theoretical model in Section 5.2.1 (see
Figure 8). In both graphs, the data upsets influence the num-
ber of nodes reached. The presence of transmission failures
slows down the spreading (dashed line in Figure 12 and the
blue line in Figure 8), but the message still reaches most of
the network tiles.

The end of the second phase, namely the time when all
the partial results reach the root node, marks the comple-
tion of the application and is illustrated in the lower part
of Figure 12. We note that stochastic communication with
probability of transmission P = .5 (when up to 50% of the
sent packets are corrupted because of data upsets) has a la-

0

20

10

N
o

d
es

2 4 6 8 10 12 14 16 18 20

Rounds

0% data upsets

50% data upsets

(a)

0

100

50

R
o

u
n

d
s

0 0.2 0.4 0.6 0.8 1

Data upsets (Pupset)

P = 1
P = .5

(b)

Figure 12: Coverage and latency of the stochastic communication.

tency very close to the optimal one which corresponds to
the flooding algorithm. The standard deviation (shown by
the error bars in Figure 12) is small which proves that the
stochastic communication has indeed a stable behavior and
the results can be reproduced across several runs of the algo-
rithm.

Last but not least, these numbers depend on the map-
ping of IPs to tiles. In some cases, we notice that the replies
may come back before the full broadcast of the original mes-
sage reaches all the tiles of the network. This indicates that
the application mapping phase has to take into account the
communication performance in order to obtain an efficient
design [41].

6.1.3. Energy dissipation

We have estimated the energy dissipation of our algorithm
using (29). We do not include the energy consumed dur-
ing computation and so, all the results presented here reflect
solely the performance of the NoC stochastic communica-
tion.

In the top part of Figure 13 we compare the energy con-
sumption of flooding (P = 1) and stochastic communication
(with P = .5) algorithms. While stochastic communication
has a latency close to optimal (as explained above), its energy
dissipation is about half of the one of the flooding algorithm.
This is because the energy is proportional to the total num-
ber of messages generated in the network (see Section 5.2.3),
which is controlled by the probability of transmission P. This
observation indicates that, by modifying parameter P, the
designer can tune the trade-off between the performance and
the energy dissipation of the communication architecture.

Paul Bogdan et al. 15

0

4

2

6
×10−8

E
n

er
gy

(J
/b

it
)

0 0.2 0.4 0.6 0.8 1

Data upsets

P = 1
P = .5

(a)

0

4

2

×10−8

E
n

er
gy

(J
/b

it
)

1 2 3 4 5 6 7 8 9 10

TTL

(b)

Figure 13: Energy dissipation of the stochastic communication.

The energy dissipation drops to 0 in the extreme case
when Pupset ≈ 1 because all the packets are corrupted and
therefore, they are not retransmitted anymore. We also note
that the energy dissipation of the stochastic communication
also has a smaller variance across several runs of the protocol.

Further energy savings can be achieved by stopping the
spreading of messages after a fixed number of rounds. This
can be done by assigning messages a finite TTL. For a small
TTL, neither the broadcast of the initial message nor the ap-
plication itself can complete. However, after a certain thresh-
old, the latency does not improve if the TTL is increased. The
lower half of Figure 13 shows that the energy consumption
increases almost linearly with the TTL. This suggests that the
TTL can be set to the smallest value which guarantees tasks
completion, in order to keep the energy consumption at min-
imum.

6.1.4. Fault-tolerance

Different types of failures have different effects on the perfor-
mance of stochastic communication (see Table 2). The levels
of defective links and tiles do not seem to have a big impact
on latency. However, if a significant number of permanent
tile and link failures occurs during the early stages of the al-
gorithm (fortunately, this is actually not likely with modern
manufacturing technologies, as explained in Section 3), the
applications would fail because too many important mod-
ules are not working or entire regions of the NoC may be-
come isolated.

The computation of FFT2 succeeds in many cases, for in-
stance even with 12.5% faulty tiles and 16.67% faulty links,

0

2

4

6

8

10

P
er

m
an

en
t

ti
le

fa
il

u
re

s

0 0.2 0.4 0.6 0.8 1

16

11

26

36
96

21

16

56

41

Data upsets (Pupset)

Figure 14: Impact of permanent failures and data upsets on latency.

FFT2 succeeds in almost all runs (see Table 2). The initial
broadcast is especially affected by the number of defective
links, which can disconnect a region of the chip from the
network and prevent those tiles from sending/receiving mes-
sages. However, due to resource duplication, even in these
cases the computation of FFT2 may succeed, if there are
enough resources left that can communicate with each other.

On the other hand, data upsets seem to have little in-
fluence on the probability that the applications will be able
to terminate; however, upsets do have a serious impact on
latency, especially if Pupset > .5. Figure 14 illustrates how
the defective tiles and data upsets influence the latency of
stochastic communication, again on a 4× 4 NoC. As shown,
FFT2 cannot finish with more than 8 permanently failed tiles.
Generally speaking, data upsets will not cause the commu-
nication to fail completely. As shown in Figure 14, for less
than 4 stopped tiles (this represents 25% faulty tiles), the al-
gorithm eventually terminates with levels of data upsets as
high as 90%, even if it requires close to 100 rounds to do so.

6.2. More complex applications

Another application of stochastic communication that was
extensively studied in [26] is the MP3 encoder implemented
in a “voltage/frequency island” architecture [35]. For this ap-
plication, some regions of the NoC run at different voltages
and even at different frequencies without a significant perfor-
mance penalty. Indeed, certain parts of the chip, like memo-
ries or control logic, do not require as high a voltage as the
processor; by placing them on different voltage islands, the
total power consumed by the design can be significantly re-
duced.

As shown in [26], the level of buffer overflows does not
seem to have a big impact on latency. Moreover, the synchro-
nization errors do not prevent the application from terminat-
ing; however, they do cause a great variability in the latency.
Data upsets also seem to have little influence on the chances
to finish encoding, but have a significant impact on the la-
tency, especially if Pupset > .7.

16 VLSI Design

7. LIMITATIONS AND EXTENSIONS

The on-chip stochastic communication approach is inspired
by epidemic models where communication is seen as a conse-
quence of interactions between individuals from various sub-
populations (i.e., spreaders, ignorants, and stiflers). These
interactions are defined in Section 5.1, in accordance to the
restrictions imposed by the topology. Also, the mathemat-
ical model captures the situation in which due to buffer
overflow, link failures or nodes malfunctions, the dissem-
ination process can be stopped. Further, the mathematical
model in Section 5.2.1 retrieves the evolution of coverage of
spreader nodes which is also illustrated in the experiments
(Section 6.1.1).

A similar behavior can be obtained if the Euler-
Maruyama stochastic method is used for evaluating the evo-
lution of the number of spreader nodes over time [42]. Al-
though it seems attractive for its simplicity, this method may
not serve as a prediction tool for latency and energy values
because it does not capture the spatial relationship between
the network nodes. Future analysis should take into account
the variation of stochastic communication in space; this can
provide insight on the covered surface by the packet dissem-
ination process.

We plan to extend the present work in several directions.
One possibility is to address the issue of task mapping in the
context of stochastic communication. The main challenge
here comes from the difficulty involved in precise TTL eval-
uation. The TTL value is not only dependent on the distance
between source and destination, but also on the network di-
ameter and node buffering resources. This remains an open
problem.

Other possible extensions include investigating the trade-
off between TTL and packet transmission probability for dif-
ferent network topologies. Another important extension is
to accommodate the proposed approach with a wormhole
switching technique and consider the problem of out-of-
order packet delivery.

Finally, the problem of CRC code design should be also
considered in the NoC context. In our framework, a packet
is treated as the basic unit of information. The packet header
does not include the routing path information since it is re-
transmitted many times over different paths. Instead, we as-
sume that each packet is protected by a CRC code. While
there are several criteria for characterizing the optimality
of the CRC codes, two properties are of particular interest,
namely, the Hamming distance and the burst error detection
capability. A CRC code of degree d can detect a burst error
whose length is smaller than its degree. For instance, Koop-
man and Chakravarty report in [43] that the USB-5 (i.e.,
Universal Serial Bus protocol) is optimum for data words
of 11-bit long and BERs of 1e-6. Nevertheless, the literature
(e.g., [9, 44]) reports that the routing tag consists of at least
16 bits and the required number of bits increases with net-
work size. As such, the use of CRC codes may bring some
benefits in reducing the number of header bits. However, the
detailed analysis that would help us determine the optimal
CRC codes is beyond the purpose of the present work and it
is left for future work.

8. CONCLUSIONS

This paper proposed stochastic communication as a novel
SoC communication paradigm. This approach takes advan-
tage of the large bandwidth available on chip in order to pro-
vide the needed system-level tolerance to synchronization er-
rors, data upsets, and buffer overflows. A theoretical frame-
work which accounts for network topology was proposed to
analyze the packet dissemination and interactions between
nodes.

Experimental results show that this approach is very scal-
able, robust, and has a low latency, while keeping the en-
ergy consumption at reasonable levels. At the same time, this
method simplifies the design process by offering a low-cost
and easy to customize solution for on-chip communication.
Last but not least, stochastic communication enables various
hybrid architectures that may be used to enable on-chip di-
versity.

ACKNOWLEDGMENTS

The authors thank Nick Zamora and Umit Ogras of System
Level Design group at CMU for their insightful comments on
the stochastic communication approach. Also, the authors
would like to thank Sam Kerner for help with the experimen-
tal part in the initial stages of this project. This Research was
supported by SRC 2004-HJ-1189 and Marco GSRC.

REFERENCES

[1] C. Constantinescu, “Impact of deep submicron technology
on dependability of VLSI circuits,” in Proceedings of the In-
ternational Conference on Dependable Systems and Networks
(DNS ’02), pp. 205–209, Washington, DC, USA, June 2002.

[2] W. Maly, “IC design in high-cost nanometer-technologies
era,” in Proceedings of the 38th Design Automation Conference
(DAC ’01), pp. 9–14, Las Vegas, Nev, USA, June 2001.

[3] Semiconductor Association, “The International Technology
Roadmap for Semiconductors (ITRS),” 2001.

[4] D. Bertozzi, L. Benini, and G. De Micheli, “Low power error
resilient encoding for on-chip data buses,” in Proceedings of
Design, Automation and Test in Europe Conference and Exhibi-
tion (DATE ’02), pp. 102–109, Paris, France, March 2002.

[5] T. Dumitraş, S. Kerner, and R. Marculescu, “Towards on-chip
fault-tolerant communication,” in Proceedings of the Asia and
South Pacific Design Automation Conference (ASP-DAC ’03),
pp. 225–232, Kitakyushu, Japan, January 2003.

[6] T. Valtonen, T. Nurmi, J. Isoaho, and H. Tenhunen, “Inter-
connection of autonomous error-tolerant cells,” in Proceed-
ings of IEEE International Symposium on Circuits and Systems
(ISCAS ’02), vol. 4, pp. 473–476, Phoenix, Ariz, USA, May
2002.

[7] H. G. Lee, U. Y. Ogras, R. Marculescu, and N. Chang, “Design
space exploration and prototyping for on-chip multimedia ap-
plications,” in Proceedings of the ACM/IEEE 43rd Design Au-
tomation Conference (DAC ’06), pp. 137–142, San Francisco,
Calif, USA, July 2006.

[8] W. J. Dally and B. Towles, “Route packets, not wires: on-chip
interconnection networks,” in Proceedings of the 38th Design
Automation Conference (DAC ’01), pp. 684–689, Las Vegas,
Nev, USA, June 2001.

Paul Bogdan et al. 17

[9] A. Jantsch and H. Tenhunen, Networks on Chip, Kluwer Aca-
demic Publishers, Norwell, Mass, USA, 2003.

[10] L. Gasieniec and A. Pelc, “Adaptive broadcasting with faulty
nodes,” Parallel Computing, vol. 22, no. 6, pp. 903–912, 1996.

[11] T. Leighton, B. Maggs, and R. Sitaraman, “On the fault tol-
erance of some popular bounded-degree networks,” in Pro-
ceedings of the 33rd IEEE Annual Symposium on Foundations
of Computer Science, pp. 542–552, Pittsburgh, Pa, USA, Octo-
ber 1992.

[12] L. M. Ni and P. K. McKinley, “A survey of wormhole routing
techniques in direct networks,” Computer, vol. 26, no. 2, pp.
62–76, 1993.

[13] G. De Micheli, “Robust system design with uncertain informa-
tion,” in The Asia and South Pacific Design Automation Confer-
ence (ASP-DAC ’03) Keynote Speech, Kitakyushu, Japan, Jan-
uary 2003.

[14] T. Karnik, S. Borkar, and V. De, “Sub-90nm technologies—
challenges and opportunities for CAD,” in Proceedings of
IEEE/ACM International Conference on Computer Aided De-
sign (ICCAD ’02), pp. 203–206, San Jose, Calif, USA, Novem-
ber 2002.

[15] A. Demers, D. Greene, C. Hauser, et al., “Epidemic algorithms
for replicated database maintenance,” in Proceedings of the 6th
Annual ACM Symposium on Principles of Distributed Comput-
ing, Vancouver, British Columbia, Canada, August 1987.

[16] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar,
“Next century challenges: scalable coordination in sensor net-
works,” in Proceedings of the 5th Annual ACM/IEEE Inter-
national Conference on Mobile Computing and Networking
(MOBICOM ’99), pp. 263–270, Seattle, Wash, USA, August
1999.

[17] N. Bailey, The Mathematical Theory of Infectious Diseases,
Charles Griffin and Company, London, UK, 2nd edition, 1975.

[18] D. J. Daley and J. Gani, Epidemics Modelling: An Introduction,
Cambridge University Press, Cambridge, UK, 1999.

[19] D. J. Daley and D. G. Kendall, “Stochastic rumours,” IMA Jour-
nal of Applied Mathematics, vol. 1, no. 1, pp. 42–55, 1965.

[20] C. E. M. Pearce, “The exact solution of the general stochas-
tic rumour,” Mathematical and Computer Modelling, vol. 31,
no. 10, pp. 289–298, 2000.

[21] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and
Y. Minsky, “Bimodal multicast,” ACM Transactions on Com-
puter Systems, vol. 17, no. 2, pp. 41–88, 1999.

[22] B. Kantor and P. Lapsley, “Network News Transfer Proto-
col,” RFC 977, February 1986. http://www.w3.org/Protocols/
rfc977/rfc977.

[23] K. Lidl, J. Osborne, and J. Malcolm, “Drinking from the fire-
hose: multicast USENET news,” in Proceedings of the USENIX
Winter Technical Conference, San Francisco, Calif, USA, Jan-
uary 1994.

[24] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang, “A
reliable multicast framework for light-weight sessions and ap-
plication level framing,” IEEE/ACM Transactions on Network-
ing, vol. 5, no. 6, pp. 784–803, 1997.

[25] XTP Forum, “Xpress Transfer Protocol Specification Revision
4.0,” March 1995.

[26] T. Dumitraş and R. Marculescu, “On-chip stochastic commu-
nication,” in Proceedings of the Design, Automation and Test
in Europe Conference and Exhibition (DATE ’03), pp. 790–795,
Munich, Germany, March 2003.

[27] S. Manolache, P. Eles, and Z. Peng, “Fault and energy-aware
communication mapping with guaranteed latency for applica-
tions implemented on NoC,” in Proceedings of the 42nd Design

Automation Conference (DAC ’05), pp. 266–269, ACM Press,
Anaheim, Calif, USA, June 2005.

[28] P. Bogdan and R. Marculescu, “A theoretical framework
for on-chip stochastic communication analysis,” in Proceed-
ings of the 1st International Conference on Nano-Networks
(NANONETS ’06), Lausanne, Switzerland, September 2006.

[29] C. Constantinescu, “Dependability analysis of a fault-tolerant
processor,” in Proceedings of Pacific Rim International Sympo-
sium on Dependable Computing, pp. 63–67, Seoul, South Ko-
rea, December 2001.

[30] R. Horst, D. Jewett, and D. Lenoski, “The risk of data cor-
ruption in microprocessor-based systems,” in Proceedings of
the 23rd International Symposium on Fault-Tolerant Comput-
ing (FTCS-23 ’93), pp. 576–585, Toulouse, France, June 1993.

[31] T.-T. Y. Lin and D. P. Siewiorek, “Error log analysis: statistical
modeling and heuristic trend analysis,” IEEE Transactions on
Reliability, vol. 39, no. 4, pp. 419–432, 1990.

[32] C. Constantinescu, “Trends and challenges in VLSI circuit re-
liability,” IEEE Micro, vol. 23, no. 4, pp. 14–19, 2003.

[33] V. Hadzilacos and S. Toueg, “A modular approach to fault-
tolerant broadcasts and related problems,” Tech. Rep. TR94-
1425, Department of Computer Science, Cornell University,
Ithaca, NY, USA, May 1994.

[34] D. M. Chapiro, Globally-asynchronous locally-synchronous sys-
tems, Ph.D. thesis, Stanford University, Stanford, Calif, USA,
1984.

[35] D. E. Lackey, P. S. Zuchowski, T. R. Bednar, D. W. Stout, S.
W. Gould, and J. M. Cohn, “Managing power and perfor-
mance for system-on-chip designs using voltage islands,” in
Proceedings of IEEE/ACM International Conference on Com-
puter Aided Design (ICCAD ’02), pp. 195–202, San Jose, Calif,
USA, November 2002.

[36] T. Chelcea and S. M. Nowick, “Robust interfaces for mixed-
timing systems with application to latency-insensitive proto-
cols,” in Proceedings of the 38th Design Automation Conference
(DAC ’01), pp. 21–26, Las Vegas, Nev, USA, June 2001.

[37] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S.
Shenker, H. Sturgis, D. Swinehart, and D. Terry, “Stochastic
Models for Social Processes,” in Proceedings of the 6th Annual
ACM Symposium on Principles of Distributed Computing, Van-
couver, John Wiley & Sons, British Columbia, Canada, August
1987.

[38] D. J. Watts, Small Worlds, the Dynamics of Networks between
Order and Randomness, Princeton University Press, Princeton,
NJ, USA, 1999.

[39] D. J. Wilkinson, Stochastic Modelling for Systems Biology,
Chapman & Hall Press, London, UK, 2006.

[40] R. Milner, Communication and Concurrency, Prentice-Hall,
Upper Saddle River, NJ, USA, 1989.

[41] J. Hu and R. Marculescu, “Energy- and performance-aware
mapping for regular NoC architectures,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
vol. 24, no. 4, pp. 551–562, 2005.

[42] P. E. Protter, Stochastic Integration and Differential Equations,
Springer, Berlin, Germany, 2004.

[43] P. Koopman and T. Chakravarty, “Cyclic Redundancy Code
(CRC) polynomial selection for embedded networks,” in Pro-
ceedings of the International Conference on Dependable Systems
and Networks (DSN ’04), pp. 145–154, Florence, Italy, June-
July 2004.

[44] J. Duato, S. Yalamanchili, and L. M. Ni, Interconnection Net-
works: An Engineering Approach, Morgan Kaufmann Publish-
ers, San Francisco, Calif, USA, 2002.

http://www.w3.org/Protocols/rfc977/rfc977
http://www.w3.org/Protocols/rfc977/rfc977

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

