Stochastic completeness and volume growth

Gregório Pacelli Bessa

Universidade Federal do Ceará - Fortaleza, Brasil. E-mail: bessa@mat.ufc.br

Abstract

Let M be a geodesically complete Riemannian manifold and $p \in C^{\infty}((0, \infty) \times M \times M)$ be its heat kernel. It has the following property $\int_{M} p(t, x, y) dy \leq 1$. The *heat kernel* has the following stochastic interpretation. For $x \in M$ and $U \subset M$ open, $\int_{U} p(t, x, y) dy$ is the probability that a random path emanating from x lies in U at time t. Thus if we have strict inequality $\int_{M} p(t, x, y) dy < 1$, then there is positive probability that the random path will reach infinity in finite time t. This motivates the following definition. A geodesically complete connected Riemannian manifold is called *stochastically complete* if $\int_{M} p(t, x, y) dy = 1$.

- Complete Riemannian manifolds with Ricci curvature bounded below are stochastically complete.
- For any $x \in M$ denote the closed ball of radius r > 0 about x by B(x,r). Write $V(x,r) := \operatorname{vol}(B(x,r))$ and $S(x,r) := \operatorname{area}(\partial B(x,r))$. Grigor'yan's criterion, says that if

$$\int^{\infty} \frac{r}{\log V(x,r)} = \infty$$

for some $x \in M$, then M is stochastically complete. This criteria can be applied if $V(x,r) \leq \exp(c \cdot r^2)$ for some c > 0 and all $r \geq r_0$.

• Model manifolds are \mathbb{R}^n equipped with the metric $g = dr^2 + f^2(r)g_{\mathbb{S}^{n-1}}$ where $f:[0,\infty) \to \mathbb{R}$ is a smooth function such that f(0) = 0, f'(0) = 1 and f(t) > 0 for t > 0. Here r = |x| is the distance from the origin $o \in \mathbb{R}^n$ and $g_{\mathbb{S}^{n-1}}$ is the standard metric of \mathbb{S}^{n-1} . Model manifolds are stochastically complete if and only if

$$\int^{\infty} \frac{V(o,r)}{S(o,r)} dr = \infty$$

• Grigor'yan asked/conjectured if/that for a general geodesically complete manifold M the condition

$$\int^{\infty} \frac{V(x,r)}{S(x,r)} dr = \infty$$
(0.1)

for some $x \in M$ is sufficient for stochastically completeness.

Our main result is the construction of counter-examples to this conjecture.

Theorem 0.1 (Bar-Bessa). In any dimension $n \ge 2$ there exists a geodesically complete but stochastically incomplete connected Riemannian manifold M such that for some $x \in M$ the volume grow condition 0.1 holds.

Remark 0.1. Conversely, one may ask if on a general geodesically complete manifold M the condition

$$\int^{\infty} \frac{V(x,r)}{S(x,r)} dr < \infty$$
(0.2)

for some $x \in M$ is sufficient for stochastically incompleteness. But this is false too. We construct a counterexample in the same spirit as in the Theorem 0.1.

Remark 0.2. The construction is based on a result due to Pigola-Rigoli-Setti where it is shown that stochastic completeness is equivalent to a weak form of the Omori-Yau maximum principle.