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Abstract

In this paper, we consider the asymptotic form of the geretidbn error for the restricted Boltz-

mann machine in Bayesian estimation. It has been shown ttaining the maximum pole of

zeta functions is related to the asymptotic form of the galimation error for hierarchical learning
models (Watanabe, 2001a,b). The zeta function is definedsimg @ Kullback function. We use

two methods to obtain the maximum pole: a new eigenvalugyasisahethod and a recursive blow-
ing up process. We show that these methods are effectivébfaining the asymptotic form of the
generalization error of hierarchical learning models.

Keywords: Boltzmann machine, non-regular learning machine, remwluif singularities, zeta

function

1. Introduction

A learning system consists of data, a learning model and a learning algofitteypurpose of such
a system is to estimate an unknown true density function from data distributibe byue density
function. The data associated with image or speech recognition, artificiligetee, the control
of a robot, genetic analysis, data mining, time series prediction, and soeomer complicated
and usually not generated by a simple normal distribution, as they are icélddry many factors.
Learning models for analyzing such data should likewise have complicatedists. Hierarchical
learning models such as the Boltzmann machine, layered neural netwdukererank regression
and the normal mixture model are known to be effective learning modely. dree however, non-
regular statistical models, which cannot be analyzed using the classiethebregular statistical
models (Hartigan, 1985; Sussmann, 1992; Hagiwara, Toda, and 993; Eukumizu, 1996).

For example, consider a simple restricted Boltzmann machine that has twealtieamits and
one hidden unit with binary variables (Fig. 1). The model is expressdteéprobability form of
two observable units = (x1, %) € {1, —1}2 with a parametea = (a;, ay) € R?:

explaixy + azxXe) + exp(—ayxy — axXz)

pxja) = pxyla) = ;
Xa) = 3 pleyia) 2@l
wherey € {1, —1} is the hidden variable,
plxyia) = SRV TED) oz - S explavy+ay)
(a) X=+1y=+1
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Figure 1: Simple restricted Boltzmann machine model: Two observable unitsn@iadden unit.
The learning model ip(x|a) ~ exp(aixi + axXz) + exp(—aiXg — aXz).

We have
2
p(x|a) = {(|, (1+xtanh(a)) + l—l (1—x tanh(a) ))}l‘hlz(:(oajf(a.)
= rlizlz(:(();r(éli(2+2xlx2tanr(a1)tanr(az)) 1+X1X2tan§al)tank(a2)

Assume that the true density functionpéx|a®) with a* = 0. Then the true parameter set is
{a= (a, &) € R?|p(xja*) = p(x|a)} = {a1 = 0} U {ap, = 0}. This set does not consist of only
one point, resulting in a non-positive definite Fisher matrix function. On therdtand, the true
parameter set of regular models should be one point and its Fisher mattiofurs positive def-
inite. Usually, the true parameter set of non-regular models is an analytigittetomplicated
singularities. Consequently, the many theoretical problems, such asidguifgneralization errors
in learning theory, have remained unsolved.

The generalization error measures the difference between the trugydenstion q(x) and the
predictive density functiop(x|x") obtained using distributed training sampled = (xq, ..., X,) of
x from the true density functiog(x). We define it as the average Kullback distance betwggn

andp(x|x"):
=En{} a(x)log p?)gf;)n) I

whereE, is the expectation value overtraining samples. This function clarifies precisely how
p(x|x") can approximate|(x). Thus,G(n) is also called a learning curve or a learning efficiency.
For an arbitrary fixed parametef* in a parameter spad¥, we have

pOXw")
zq X|W* n{zq x]xn)}

The first and second terms are called the function approximation errdharstiatistical estimation
error, respectively. The asymptotic form of the generalization error isitapt for model selection
methods. The optimal model balances the function approximation error withatistisal estima-
tion error. Since the Fisher matrix function is singular, non-regular modelsat be analyzed using
the classic model selection methods of regular statistical models such as k&kéA1974), TIC
(Takeuchi, 1976), HQ (Hannan and Quinn, 1979), NIC (Muratah¥asva, and Amari, 1994), BIC
(Schwarz, 1978), and MDL (Rissanen, 1984). Therefore, it is itapoto construct a mathematical
foundation for clarifying the generalization error of non-regular madels
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STOCHASTIC COMPLEXITY OF RESTRICTEDBOLTZMANN MACHINE

In this paper, we clarify the generalization error of certain restricted Baltm machines, ex-
plicitly (Theorem 2 and Theorem 3), and give new bounds for the géimation error of the other
types (Theorem 4), using both a new method of eigenvalue analysis andraive blowing up pro-
cess. The restricted Boltzmann machine is one of the non-regular modedscanablete bipartite
graph type model that does not allow connections between hidden uniteifiH2004; Salakhutdi-
nov, Mnih, and Hinton, 2007). It has been applied efficiently in recaggiband-written digits and
faces.

Several papers (Yamazaki and Watanabe, 2005; Nishiyama and \bat20896) have reported
upper bounds for the asymptotic form of the generalization error for thiztBann machine model,
but not the exact main terms.

We usually consider the generalization error in terms of a direct and arsénpeoblem. The
direct problem involves solving the generalization error with a known teresitly function. The
inverse problem is finding proper learning models and learning algorithms imiméthe gener-
alization error under the condition of an unknown true density functiore iftierse problem is
important for practical usage, but in order to solve it, we first need tedbl direct problem. In
this paper, we consider the direct problem of the restricted Boltzmann neactudel.

We have already obtained the exact asymptotic forms of the generalizatioa far the three
layered neural network (Aoyagi and Watanabe, 2005a; Aoyagi6)2@hd for the reduced rank
regression (Aoyagi and Watanabe, 2005b). In addition, Rusake\Gaiger (2005) obtained the
same for Naive Bayesian networks (cf. Remark 1).

This paper consists of four sections. In Section 2, we summarize the fahefBayesian
learning models. In Section 3, we explain the restricted Boltzmann machinehandagir main
results, and we give our conclusions in Section 4.

2. Stochastic Complexity and Generalization Error in Bayesia Estimation

It is well known that Bayesian estimation is more appropriate than the maximum thkelimethod
when a learning machine is non-regular (Akaike, 1980; Mackay, 1982his paper, we consider
the stochastic complexity and the generalization error in Bayesian estimation.

Letq(x) be a true probability density function art:= {x; }{' ; ben training samples randomly
selected frong(x). Consider a learning model which is written by a probability fqgu(r|w), where
w is a parameter. The purpose of the learning system is to estgfgtéom x" by usingp(x|w).

Let p(w|x") be thea posterioriprobability density function:

1 n
wix") = ——(w Xi W),
POiX") = Z-(w) [ POSIW)
wherey(w) is ana priori probability density function on the parameterééand

n

Zo= [, W) [ PO i
W i=

So the average inferenggx|x") of the Bayesian density function is given by

POE) = [ p(xw)p(wix)

which is the predictive density function.
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Set
q(x)
p(XIx")
This function always has a positive value and satidfigg{|p) = 0 if and only ifq(x) = p(x|x").
The generalization errds(n) is its expectation valuE, overn training samples:

a(x)
P(X|x")

K(allp) = a(x)log

G(n) =En{ a(x)log }-

Let

12 q(x)
Kn(w) = ﬁi;Iog SO

The average stochastic complexity or the free energy is defined by

F () = ~En{log | exp(—nis(w))(w)dw}.

Then we haveG(n) = F(n+ 1) — F(n) for an arbitrary natural number (Levin, Tishby, and
Solla, 1990; Amari, Fujita, and Shinomoto, 1992; Amari and Murata, 1993)) is known as the
Bayesian criterion in Bayesian model selection (Schwarz, 1978), sticksamplexity in universal
coding (Rissanen, 1986; Yamanishi, 1998), Akaike's Bayesian cniténi@ptimization of hyper-
parameters (Akaike, 1980) and evidence in neural network learniragKdy, 1992). In addition,
F(n) is an important function for analyzing the generalization error.

It has recently been proved that the maximum pole of a zeta function gigagetieralization
error of hierarchical learning models asymptotically, assuming that thédmrepproximation error
is negligible compared to the statistical estimation error (Watanabe, 2001&ahg.agsumption
is natural for the model selection problem. To compare various models efdafitf parameter’s
dimension, we assume that the true distribution is a certain dimensional moded. pathmeter’s
dimension of the true distribution is larger than that of the learning model, dlagithe behavior
of the generalization error is rather easy. We assume, therefore, ¢himtithdensity distribution
q(x) is included in the learning model, that ¢gx) = p(x|w*) for w* € W, whereW is the parameter
space.

Define the zeta functiod(z) of a complex variable for the learning model by

@) = [Kwrpwdw,

whereK (w) is the Kullback function:

_ p(X{w)
K(w) = Z p(xjw*) log (W)

Then, for the maximum poleA of J(z) and its orde®, we have
F(n) =Alogn— (6 —1)loglogn+ O(1), 1)
whereO(1) is a bounded function af, and ifG(n) has an asymptotic expansion,

G(n)=A/n—(6—1)/(nlogn) asn — co. (2)
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Figure 2: A restricted Boltzmann machineM is the number of binary observable units
and N is the number of binary hidden units The learning model ip(x,y|a) O
exp(zi"ilzﬂ-\'zla;jxiyj), wherea;; is a parameter betweenandy;.

Therefore, our aim in this paper is to obtaimnd®.

To assist in achieving this aim, we use the desingularization in algebraic ggdWetianabe,
2009). It is, however, a new problem, even in mathematics, to obtain thegdésization of
Kullback functions, since the singularities of these functions are very koaigd and as such
most of them have not yet been investigated (Appendix A). We, thexef@ed a new method of
eigenvalue analysis and a recursive blowing up process.

3. Restricted Boltzmann Machine

From now on, for simplicity, we denote

U ={ 9 n2] mog s i )} = ({{m}) (i)

and we use the notationadnstead off]" |‘|JH:'1 dayj for a= (&;).
Let2<M € N andN < N. Set

exp(3 My 31l ajxy;)
Z(a) ’

p(x,yla) =
where
M N
Z(a) = exp( aijxy;j),

x=(x) €{1,—-1Mandy = (y;) € {1,-1}N (Fig. 2).
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Consider a restricted Boltzmann machine

|_|] 1(|_|| 19Xp(auxi)+l'l| 1eXFX a”X.))
p(xa) =
()= 3 pOxyIE) = =@

= T . . M oy - H’j\lzlng\ilcosﬁaij)
— {D(ﬂ(“x'ta”“a”)”ﬂ“ x tanh(aij)))} T

)% M1, coshiay)
Z(a)

X

N
]_| (2 z Z Xi Xi, -+ Xz, tanh(ay ) tanh(a;, ) - - - tanh(ai,, ).
J=1  0<p<M/2i1<’<izp

LetB = (bjj) = (tanh(a;j)). DenoteB’ = 1M, "L 1b andx’ =M, x >t , whereJ = (J;j)
is anM x N matrix with J;; € {0,1}. Then we have

2NN, M, cosHay)) By,

pl(xja) = 2@l

I{{sM,3;11=0for all j

Let
Z(a)

Z(b) = 2NV, M, cosHaj)”

Setl ={I = (I}) € {0, }M|{{3M,1;}} =0}, andB' = Y 5(sM, 5110 B for I € 1. Then we have
sy 3=

p(x|a):z<1b) ZBX

ler

andZ(b) = ZNBO, SinceZOSiSM/Z < ';/II > = ((1—|— 1)M —+ (1— 1)M)/2 = 2M*1, the number of ele-

ments inI is 2V,
Remark 1 Rusakov and Geiger (2005) obtaine@nd® for the following class of Naive Bayesian
networks with two hidden states and binary features:

M N
p(x|c,d,t) =t |_|ci(1+x‘)/2(1—ci)(1"q)/2+ (1-t) rldf”xi)/z(l—di)(l—XO/Z.
i= =

wherex € {1, -1}M, c= {¢}M, e RM, d = {di}M, € RM and 0<t < 1. Our models with one
hidden unit N = 1) are obtained by settirtg= 1/2, tania) = 2¢; — 1 andd; = —c;. The relation
di = —c creates a parameter space different from that of our models.

Assume that the true distributionfigx|a”) with a* = (&j) and seB* = b* = (bjj) = (tanh(&j;)).
Then the Kullback functioK(a) is

)Q:Zﬂp(XIa*)(logp(X|a*)_Iogp(x]a)) p(x|a’) ki . x]a* _l)k
(p(xja) — p(xja*))? - (—1)k p(x]a) K
=2 ) P2 ka2 piday
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Lemma 1 Watanabe, 2001df analytic functions K, Ky satisfyy1|Kz| < |K1| < y2|K2| for some
positive constantg andys, then the maximum pole and its order/gK;|“dw are those of |Kz|“dw.

By Lemma 1, since we consider a neighborhoodpi)@% =1, we only need to obtain the
maximum pole of)(z) = [ W§db, where

B B N2 SiesB'X _XlezB*IXI 2
‘Po—)qzél(poqa) p(xa’)) —)q;l( Z(b) Z(b") )

2

- 5.5 (75 79) 25 (2577 -

xi=+1 lerl ler

By Lemma 1 again, we can replad® by

BI B*I

BI B*I
(@ - @)? (3

Y — 22N(7_

)=
le{01M Z(b)  Z(b*) le{0aM

4. Main Results

Consider the zeta functiai(z) = J, ¥*db, whereV is a sufficiently small neighborhood ef.
From the eigenvalue analysis method, we obtain the following theorem.

Theorem 2 The average stochastic complexityrfy in Eg. (1) and the generalization error (@)
in Eq. (2) are given by using the following maximum pelkeof J(z) and its orderf.
2, ifN=1b*=0
(Case 1)If M =2thenA =1/2andb = { 1 otherwise.
3/4, ifN=1b*=0
1/2, ifN=1b"#0,2b;=0
3/2, ifN=13,b5#0
3/2, ifN>2
ifN=2b*=0,
ifN=2b"#0,b;; =b; =0for1<j <N,

|fN:2,b* by #ovblzjo:b;’] :0f0r1§|§371SJSN7J#JO7

~ Mlojo 1o
, otherwise,

io,i1,12 € {1,2,3} are different from each other arid< jo < N.

(Case 2)If M = 3thenA =

andb = where

P NN W

For its proof, we use the eigenvalues and the eigenvectors of the rﬁ@t&x(c'j",) where

b} = MMy bi, andc'j"/ =b!" with {{I"+1”}} =1, for1,1",1" € I. Its proof appears in Appendix B.
We obtainA and@ in Egs. (1) and (2) foM > N using a recursive blowing up.

Theorem 3 Assume that M> N and & = 0. The average stochastic complexitynf in Eq. (1)
and the generalization error @) in Eq. (2) are given by using the maximum peld = —MN of

4
] 1, ifM>N+1,
J(z) and its order@-{ M, ifM=N+1

We also bound values a&ffor other cases.
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Figure 3: The curve ok along they-axis andN along thex-axis, wherM = 2,3 4,5 anda* = 0.

Theorem 4 Let (ayj,apj,---,amj) #0for j =1,...,No and (ayj,aj,--- ,amj) = 0 for j = No+
1,...,NinV,whereV is a sufficiently small neighborhood &f a
Then we have

M(N—No)
a

<A< MNTo) | My, ifM >N — No

MM-1) | MN Mot (M—D)(M—-2) |, MN MNo | M(N—No) ,
7tz S)‘S%JFTO@ T“rfo)v ifM <N —No.

The proofs for these two theorems appear in Appendix C.

5. Conclusion

In this paper, we obtain the generalization error of restricted Boltzmannineschsymptotically
(Fig. 3).

We use a new method of eigenvalue analysis and a recursive blowing lgebraic geometry
and show that these are effective for solving the problem in learningytheo

We have not used the eigenvalue analysis method wMereN, which is usually the case in
applications. Eigenvalue analysis seems to be necessary for solvinghinédreof the restricted
Boltzmann machine model’s generalization errorNb N.

In this paper, we clarify the generalization error for M)= 3 (Theorem 2) and (iiM > N,
a* = 0 (Theorem 3) explicitly and give new bounds for the generalizatiorr efrthe other types
(Theorem 4). The case (i) shows thas independent of* for M — 1 =2 < N, and so implies that
we need more careful consideration for obtaining the exact valfiesthe case of Theorem 4.

Our future research aims to improve our methods, and to apply them to thefcHseorem 4
and to obtain the generalization error of the general Boltzmann machineh vghidso known as
the Bayesian network, the graphical model and the spin model, as suclsracelavidely used in
many fields. We believe that extending our results would provide a mathenfaticalation for the
analysis of various graphical models.

This study involves applying techniques of algebraic geometry to learninogytlaad it seems
that we can contribute to the development of both these fields in the future.
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The application of our results is as follows. The results of this paper inteodumathematical
measure of preciseness for numerical calculations such as the Mahein Monte Carlo. Using
the Markov Chain Monte Carlo (MCMC) method, estimated values for marginalitigkods had
previously been calculated for hyper-parameter estimations and moddi@elmethods of com-
plex learning models, but the theoretical values were not known. Thestiead values of marginal
likelihoods have been given in this paper. This enables us to construthemmatical foundation for
analyzing and developing the precision of the MCMC method (Nagata andchs¥sa2005). More-
over, Nagata and Watanabe (2007) studied the setting of temperatutthe fexchange MCMC
method and proved the mathematical relation between the symmetrized Kullbatikfuand the
exchange ratio, from which an optimal setting of temperatures could beedevidur theoretical
results will be helpful in these numerical experiments. Furthermore, ttedgesrhave been com-
pared with those of the generalization error of a localized Bayes estimaa&ar{atsu, Nakajima,
and Watanabe, 2005).
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Appendix A. Hironaka's Theorem
We introduce Hironaka’s Theorem about the desingularization.

Theorem 5 [Desingularization (Fig. 4)] (Hironaka, 1964)

Let f be a real analytic function in a neighborhood ofn(wy, - - - ,wg) € RY with f(w) = 0.
There exist an open set¥w, a real analytic manifold U, and a proper analytic map i from U to
V such that
() u:U —E —V — £710) is an isomorphism, wherg = pu~1(f=1(0)),

(2) for each ue U, there is a local analytic coordinate systefum,---,u,) such that fu(u)) =
iuilugz ---um, where g, - - -, $, are non-negative integers.

Applying Hironaka’s theorem to the Kullback functidt(w), for eachw € K=1(0) nW, we
have a proper analytic mag, from an analytic manifoldJ,, to a neighborhood, of w satisfying
Hironaka’s Theorem (1) and (2). Then the local integratio/grof the zeta functiord(z) of the
learning model is

W@ = [ KW pwdw
= [ S W) ) 0 @
Therefore, the poles a,(z) can be obtained. For example, the function
/U 0(u§$1u352 UG - Udu

has the poles-(t1 +1)/(2%1), -+, —(ta + 1) /(254), whereUp is a small neighborhood of 0. For
eachw € W\ K~1(0), there exists a neighborhoa|, such thatk (w') # 0, for all W € V4. So

1251



AOYAGI

i vV

Figure 4: Hironaka’s Theorem: This is the picture of a desingularizatioinf : £ maps tof ~1(0).
U — £ is isomorphic tov — f~1(0) by , whereV is a small neighborhood of with
f(w) =0.

In(2) = Jy, K(w)*@(w)dwhas no poles. Itis known thatof an arbitrary polynomial in Hironaka’s
Theorem can be obtained by using a blowing up process. Note that toeeaxp in the integral are
2s instead ofs as shown in Eq. (4), since the Kullback function is positive.

In spite of such results, it is still difficult to obtain the generalization error ipdar the follow-
ing two reasons. (a) The desingularization of any polynomial is in gemergldifficult, although
it is known to be a finite process. Furthermore, most of the Kullback furetaimon-regular
statistical models are degenerate (0R@rwith respect to their Newton polyhedrons, which is the
condition for using a toric resolution (Fulton, 1993; Watanabe, Hagiwdd@ho, Motomura, Fuku-
mizu, Okada, and Aoyagi, 2005). Also, points in the singularity{&et 0K /ow = 0} of Kullback
functionsK (w) are not isolated, and Kullback functions are not simple polynomials, as teir n
ber of variables and number of terms grow with parameters, for exafipédN in Eq. (3). It
is therefore, a new problem, even in mathematics, to obtain desingularizatisnstoKullback
functions, since their singularities are very complicated and as such ntbstofhave not yet been
investigated. (b) Since our main purpose is to obtain the maximum pole, obtaidesiraulariza-
tion is not enough. We need techniques for choosing the maximum one firpoies. However, to
the best of our knowledge, no theorems for such a purpose havelbeeloped.

We give below Lemmas 2 and 3 in (Aoyagi and Watanabe, 2005b), as thésequently used

in this paper. Define the norm of a mat@x= (cij) by [IC|| = /¥ j |cij|2.

Lemma 6 (Aoyagi and Watanabe, 2005b) et U be a neighborhood of gxc RY, C(w) be an
analytic Hx H’ matrix function from U i(w) be a C° function from U with compact support, and
P and Q be any regular kk H and H x H’ matrices, respectively. Then the maximum pole of
Ju IC(w) |22y (w)dw and its order are those df, || PC(w)Q|| %2y (w)dw

MW (xa)
Zx I'I'j“:lVVj (Xva)
p(x|a*))?}?w(w)da and its order are those of

Lemma 7 Assume that{x|a) = for x e X. Then the maximum pole ff{5 ycx (P(x|a) —

/{ % (logWi (x,a) — logWj (x,a*) — logW (X, a) + logW; (X, a*) ) }2g (w)dw.

xxex ]

(Proof)
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Consider the idedl generated by(x|a) — p(x|a*) for x € X.
,I'IJ l\NJxa) ZXHJ l\N](X )
|_|] 1V\/J(Xa*) Exl_lj lVVJ(Xa)

|_|j=1Wj(X~,a) _ rllj\‘:lvvj(xlva) f

Thenl i ner \
enl is generated by oW o) TTLW 00

and so by—y

x,X € X.
Since|x—1|/2 < |logx| < 2|x— 1| for [x— 1| < 1/2, we have

( MiLaWi(x,@) [iLWi(x,a)
xgéx |_|§‘\l:1Wj(Xa ar) ﬂ'j\‘:1V\/j(x’,a)

~1)%/4

N
< Y (3 (log(Wj(x,a)) —log(Wj(x,a")) +log(Wj (X, a*)) —log(Wj (X, a))))?
J

X, X' eX

5 (H?':1W(X7a) Mg W (X, &)

< o ——q - —1)%4
xX'eX |_|j:1VVj (x,a) |‘|j:1V\/j(x,a)

Q.E.D.

Appendix B. Eigenvalue Analysis

The purpose of eigenvalue analysis is to simplify the blowing up process.

Hierarchical learning machines often have Kullback functions involving tixnaroduct such
asK(w) = ||D1Dz---Dn||?, whereD; is a parameter matrix. Therefore, analyzing the eigenvalues of
these matrices and applying Lemma 6 sometimes results in an easier functionle Fanéxam-
ple, the restricted Boltzmann machine has a Kullback functi¢iy|? = (0 E)
Cn---CoC1(1,0,...,0)Y|2, whereE is the identity matrix { denotes the transpose). Theorem 9
(4) below shows that analyzing the eigenvalue€ginakes an easier functidiiRBy | % to blow up,
whereR is a certain regular matrix. This is the main point of this method.

Letl,I",1” € I. We setB| = B', b} = |M, bj}, and

BN — (Bl\l) _ (BN yeens , B&l,l,o,,o) ’ B§\Il70,1707...,0), B .).
We now haVEB}\l = Z{{|/+|//}}:| b}\/l/BI\llfl'
For convenience, we denote th@,1')th” element of a ¥~ x 2M-1 matrixC by ¢'"'".
Now consider the eigenvalues of the matix= (ck' ) whereck' = b\, with {{I’+17}} =1.
Note thatBy = CyBn_1.
Letl = ({1,...,0m1)= () e {-1, 1}2“"71 with £q .. o) = 1. £ is an eigenvector, if and only if

LI (0,,0) 4
Cn b =¥ b =4 beV, foralll € I.

That is,
¢is an eigenvector <= if {{I +1'}} =1" ({{I+1"+1"}}=0)
thentyn = 614 (6,44 = 1).
Denote the number of all elements in a Kdby #K.
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if #{i € Ky :1j =1} is odd,

otherwise Thenl = (4)) is

Theorem 8 Let Ky C {2,...,M}. Set/, = { Il’

an eigenvector of (fand its eigenvalue is

M3 (14 xibi) + M (1—xiby)

> , Where x=—1ifi e Ky, and ¥ = 1ifi € Kj.

fby =

Note thaty ., £bl, > 0 since b = tanh(a;).

(Proof)

Assume thaf{{I’+1”"+1"}} =0. Ifall #{i e Ky : I =1}, #{i e K1 : I/ = 1} and #i € Ky :
|W 1} are even, th6ﬁ| bynbym = 1.

If #{i e Ky : I/ = 1} is odd, then #i € Ky : 1" =1} or #{i € Ky : I{” = 1} is odd, since{{l’ +
I//_,_I///}} 0

If#{icKy:l{ =1} and #i €Ky :1 =1} are odd, then#f € Ky : I =1} is even and ¢, {yn =
1 since{{l"+1"+1"}} =0.

Q.E.D.

We have ¥~ eigenvectorg. Moreover, they are orthogonal to each other, since the eigenvec-
tors of a symmetric matrix are orthogonal. These eigenveéw®rtherefore, span the whole space
R,

Setl=(1,...,1)' € 2"~ (t denotes the transpose). LRt= (D"!") be a symmetric matrix

1 1t M_1 .
andDD =2 E, whereE is

formed by arranging the eigenvectdrs such thaD = < 1 D

the identity matrix and"'" is “(I,1’)th” element ofD.

2|\/|71 1tD/
SinceDD = ( 14D'1 11+DD' ) =2M-1E, we haveD’'1 = —1.
0 0 - 0
0 sy 0 - 0

LetCy =DC\D/Mt=DCyD=| . . . .
0 00 .. &1

We uses,, or s\ (I € I), depending on the situation.

SinceCy = D1} D, we haveb{(' ™) = 5, DIWg DIK /2M-1,

B.1 Example

LetM = 4.
We have the matrix by arranging the eigenvector§gf
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1 1 1 1 1 1 1 1
1 -1 -1 -1 1 1 1 -1
1 -1 1 1 -1 -1 1 -1
1 -1 1 -1 -1 1 -1 1 .
D= 1 1 -1 -1 -1 -1 1 1 and the eigenvalues
1 1 -1 1 -1 1 -1 -1
1 1 1 -1 1 -1 -1 -1
1 -1 -1 1 1 -1 -1 1
Sy = 1+ Dbinbon + binban + binban + banban 4 banban 4 banban + binbanbanban,
sy = 1+ bonban + banban + banban — bin (ban + ban + ban + banbanban),
& = 1+ byybay + binban 4 banban — ban(bin + ban + ban 4 binbanban),
sy = 1+ byybay + banban 4 binbanbanban — (bin -+ ban) (ban + ban),
s = 1+ binbon + banban + binbanbanban — (bin 4 ban) (ban + ban),
S = 1+ biybon + binban + banban — ban (bin + by 4 ban + binbanban),
= 1+ byybon + binban + banban — ban (bin + ban 4 ban + binbanban),
St = 1+ binban + banban + binbanbanban — (bin + ban ) (ban + ban).
Theorem 9 LetH=2M-1_1.
1, ifi=21orj=1,
1,J e i
(1) Letd;=¢{ P ®l="a 0o ... 0 1 0 .. 0
andJ= 3 o .. 0 1 o .. o).

Then B = [; j1,—19,-1j forall 1,3 e I.

DG, ---Cj1

(2) By =CnBno1 =Cn - --CoBr = DC{\I"-CéD_lB]_: oM 1

(3) We haveM-1p'-1 =D’ —11'.

(4) LetBy = (B)i0, By = (By)iz0 and

N 1 N 0
1 =S M=as N N \ \
S= —m ! . ( HjZZS}_HIZZSJQ I_ljzzsllﬂ_njzzs?
M=asT —Meas]

1 .- 1 |_|IJ\I—ZSJ'1 052 0 0
0 ' 2 0 0
HBRMLS?| ¢ ¢ ¢ | +BR =29 .
1 --- 1 )
0 0 0 |-|JN:2s'j*

We have
(detS) D'~ 1S 1D~ 12M-1(B\B*) — B*NBY)

1255



AOYAGI

M1 s Mizo Mz
= (dets)B; — (BR)"1(1 D) ;
MiLast Mizn NiL28
MizoM)=2S]
(5) The corresponding element to | dfi D') : consists of monomials
, Mizn ML28
caMitiMobif, where g € R,0< Jj € Zand{{3].; J;}} = Ii.
(Proof)
(1) FixKy € {2,...,M}.
Consider the eigenvectérdefined by usingd;.
Setdi — 1 anddi/ — £| f0r I — (17 0, e, O, :L 07 0) y | 2 2
Sincel; = iek,1,=1(—1) = ix,=1d andD is symmetric, we have statement (1).
(2) is obvious.
i 240 1D M-1E, we haveD'D’ = 2Y-1E/ — 11 andD'(D/
(3) SinceDD = 14D'1 11+DD > =2 , we have = — 11" andD'(D’ —
119 =2M-1g’ —11' —D/11 = 2M-1E/ — 110 + 111 = 2M-1E/, whereE! is the identity matrix.
4)

cey

2M-1(ByB*Y —BnBY) =2Y"1( —B*y B*JE )Bwn

M,y 0 0 0

0 N,ost 0 - 0
[Mj=25j

=( -By BRE)D DB,

0 0 0 .- I'I'j“:zS'j*
=(—Bn(1 1')+B}(1 D))
|—|E\‘:25§> 0 0o .- 0

0 N,st 0 - 0

» o M= R ):

0 0 0 --- |-|'j\l:251j4

HEzlS*Qi
_ (2 D) M=y |y
= H+1 : (
MiLyst
ﬂ’j\l—zs? 0 0 --- 0

0 i, 0 - 0

1) +B(1 D))

DB,
0 0 0 - s
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ﬂh 15*;)
, 1 M= 15‘k N QO N _H
=(1 D)7 ; (Mj=2s) - M=)
N H
Mj=15"]
m,¢ o 0. o0
0 st 0 - 0 1 1t -
BN o 5 )(<1>+<D’>Bl)
0 0 0o ... ﬂ'j\lzzsl;l
M2t - M Mest - e ~
=D'(-T° : +B'Y : )+D'SDB,
Mesy — NS Mi~es' — M2
Mo S+ 4,
whereT0 = 22220 =2
Also we haves; j11 = (detg) 1
<0 \H—2 i i i e ;
(BHOJ)r& 22:—2' olz#ll(ﬂlj\l 1S*|1+H H'J\l 13“2) |_|O<|<H L2 HIJ\I 28}, iy = Ja,
B*
(HJ)rg- 20<12<H 271, 11(|_|J 15*Il |_|J 15* *) Mo<i<H '*'L'ZHJ 2§
~ B H ST+ S ) Mosicn, |;e|1,11|_|1 28} i1 7 11
and deS= (BY)" 13 on, 1s*' Mizi, M=z
) .
MiL.ss I'Ilaéol'ljzz§ Mtes'] ”i#ln?ﬁé
Lets= ands=
I'IJ 15* |_||7£H|_|1 2SI I'IJ 13* |_||7£H|_|J 2SI
|_|J:15*1 H’;IZIS*(J') rlz\lzzsl I_IJZZSQ
Since(detS)S(—T° : +B )
Miyst — ity s N I'I,1 zSH I_lj 28
| | MaS T Miza M2
~ @ oM M M1 () -
My s Mizn M2
we have

D/_ls_lD/_le_l( 5 B*O _ é*NB%)

) N
— (detS)B; — (B*)" 1 z I'Ls*'fn $1-(H+1) (B D5
o= 0] i#ip =
i N
= (detS)B; — (B*)H 1 s2 s1— (B YD —11)3
Izzoll_ll J i|;i|2]* J

N .
= (detS)B; — (B*))" 159 J1— (B*H1D'3
aghlik

= (detS)B; — (B*))"1(1,D')s,
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by using (3).
(5) Slnceb{{”K}} 3 3¢1 D'IS]DIK /2M-1 we have forl’ € 1,

D' {{J+l Hpdk — pli'pl'K § pl i+ 1 gl I p{{a+1}1 K

_ 2M—1D|,|’D|’,Kb{{l+K}}
J )

by using (1).
Letlo=(0,...,0),Is = (1,1,0,...,0),1, = (1,0,1,0,...,0),....
The fact that
ﬂi;eoﬂzzzsij
Miza [Mj=25;
ni;éHn’j\I:ZSij
Mo M2 ON 0 - 0 1
_ b 0 |_|i7é1|_.|j:2§j 0 . D-1pM-1
0 0 0 - Mign[Mies) 0
L R 1
{1}
g T L)
|=2041'el : : : : : .
0 0 0 --- SJ{{IHH I3 0

andy ;. ; D'vJsJ{{JJr'/}}DJvK = 2'\"*1D'7"D"7ij{{'+K}} yields statement (5).
Q.E.D.
Proof of Theorem 2
By Theorem 9 (4) and Lemma 6, we only need to consider the maximum palézpt=
M 15*0|_I|¢0|_|J 28|
[|W||%db, whereW = (detS)B; — (B*)H1(1 D)
ML sy |_|i;éH MiL2s
(Case 1): The fact th@'' = Sy} ; bicby + - - - provides Case 1.
(Case 2): Assume thad = 3.

1"‘ bl] b2] + bl] b3] + b21b3j,

1 1 1 j
D 1+ by;bpj — byjbs; — byjbs;
WehaveD'=| -1 1 -1 142) i3] i03j;
( )7 ﬁ 1—byjbyj +bnjbsj —byjbgj,
i

-1 -1 1
1- le b2] bl] b3] + bZJ b3] )
s 0
b11b21 _ HJ ls* ;HJ Zsjl
andW’ = (detS) | bubar | — 2o\ o8 (B R2LD)| 13&/ W22
bo1b31 HJ e HJ [
|_|] 1SK /ﬂj 25?
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bt b3,
LetN = 1. The fact thatV’ = 4(B*{)2B; — 4(B*3)? ( bj,bj, ) yields the statement foy = 1.
2?,1
Assume thalN > 2, b* # 0 andbj; # 0,b%, # 0,b3; ;é O. Setb),; = by1bp1, by, = bi1bsg and
blll = b21b31 = b/21b{3>1/b§1' Then

I_IJ 1S*O/|_|J 25?
st

s 5 ) - AR ES | My

— (det / . R* , /
b’i il:!lJI:LJ N I_lj 151/“] 2312
I_lj 157 /I—l] 25’13

and its maximum pole is/2 and its order is 1.

Y1
Assume thatN > 2, b* # 0, bj; # 0 and |‘|i3:1bi*j =0 for all j. Lety = ( Yo ) =

Y3
I_lj 1S*O/I_|j 25?
(1,D') nl 181/“1 29 . By settmg( b, ):(detS)( b11b21>
h é H\Izsjz b3, b11b31
I_IJ lS* /I'IJ 2
|_|J 15*0/“,]\l Zj
Mo, (B 2<1 1 -1 _1> and
|_|70|_|172 ]( N) 1 -1 1 -1 I—IIJJ\I ls*i/l—lj zsf
|_|J 157 /I_lj 25]?’
W O
v ( ¥ ) I W PR S ’
w3 H':Onjzégl'detg = — (B RN ML 25 W3

and by using Lemma 6, we need the maximum polé¢|B#”||%2db. W" is singular in the following
cases: (i)o;b3, = b3; = bz; = 0 for all j, (ii) bj;b3;, # 0, bj; = b3; = bs; = 0 for all j, since we
haveg—g'”b*

s9/s9 lo . 0 0 by +bs;  bi;+by  bj+ b,
—_(1,D) 0 S“l/s*j 2O , 0 b;l-—b;gj b*ij—b:*;j —bij—bgj O
’ 0 0 s/ 3o . - §j+b§j — ;—béj Ii_bzi

W is not singular, its maximum pole is/3 and its order is 1. Assume th&X’ is singular that is,
(i) byyb3, = b3; = b3; = 0 for all j and (ii) by,b5, # 0,b}; = b5; = b; = 0 for all j. Construct the
blow-up of W along the submanifoldbzj = 0,2 < j < N}. Letbg; =u andbg>J = ul; for j > 2.

In the case (i), the coefficient dj, is around mbljoz] 2 b1jbg (l/b 4—4ulcgJO (1- bljo)
since[i o MMj2S; = M)La(1— bajbzj — ubyjby; — uszb31+2u@]b2J ) = 1430 (b —

ubyjby; — ubpjby; + 2Ub§1b21b3, + 3 jzy Ubnjbyjbaibhy, rli:On’j\l:ZSiqul = -
43, bajby, MicoMitaSW2 = —4u3fl 2b11b§p and  [licoM2Sj¥s =

435 5(—ubpjb; + 2ubbpiby) + 43 ). ubrjbyyboiby;. I Aubnj, T, bbg; (1/bF; — 1)+
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4“%0 (1-bg;,) =0 for all jo thenby; = 0 for all jo since|byj| < 1. It contradictsbz, = 1. So

3 B*O ZlIJ P " i .
(oM t%l]fjets) e (g0 y2 Mo M}2SjWs)/uis smooth.

In theNcase (ii), the coefficiert;, is aroun?\lm(l— b3,%)bs;, sinces*gﬂ#%ﬂg\‘?zs‘;j >~ 4(1+
b1105,) ﬂj:z(l— ubpjbg;) = 4(1+bj;b3;)(1-uy |, bjbs;), (14b71051) Mi—o [1j=2 SjW1 = 4bj;b3,,

[i= oI'I, 2§ llJz o 4ub’{1b§12'j\‘:2b2jb’3j, and |‘|i:0|'|’j\‘:2§j¢3 o —4uz'j\‘:2b2j » So
(M= S, (B )21y " ; )
gl s = — (B Mo M)28jWs)/uis smooth.
b5,
We havel” = ( - ) , for a variable,, for both cases (i) and (i) and we have the statement
ubb,

for N > 2,b* 0, bj; # 0 and[]2.; bj; =0 for all j.

LetN > 2 andb* = 0.
Construct the blow-up d#’ along the submanifoldb;; = 0,1 <i <M,1< j <N}.
Letbyy = uandbij = ul for (i, j) # (1,1).

b5y 2 b,kb/k+u2f1

We haveW” = u?(detS) |+ Zk b b k+U f, |, wherefy, f; and f3 are
b51b3, ko2 b’zkb (P T

polynomials ofoi’j of at least degree two.

e b, SN b by + U2y
By settin 21 ) = < 21 > +4< k=2 "1k "X detS), we have
Y g< 31 31 3 ko Dy +UP 2 /(dets)

2
" u

~ detS

x ( (detS)20,
(b, detS— 43R b, b, — 4u?f1) (b, detS— 43R, b, b, — 4u? )

0
+U? O .

By using Lemma 6 again, the maximum polefdi” ||?usNdbis that ofJ(z) = [||¥"||%uNdb,

b5y
whereW” = u2< - ) , and

01

(detS)?by, )

detS N
gl— Zzblkb2k+u fl Zb&kb3k+u f2 +7 Zzb bék—i-u f3

Construct the blow-up o#” along the submanifoldb}; = 0,b%, = 0,b; = 0,2 < k < N}.
Then we have cases (I) and (lI).
by
(I) Let by, = v, by, = v}, b3, = vb) andby, = vbj, for 3<k < N. ThenW"” = uzv( g/l ) ,
%
whereg) = (3o 0Dy + U7 1) (01 + 3R g Dybg + U f2/v) + 955 (0h, + YR 3D by + U fa /).
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By Theorem 9 (5), we can sét = vf; and fz = v}, wheref; and f; are polynomials.
We have

( N b/ b/ )( / + % b/ // )+ detS( / + % b/ // )
1k~2k/\M12 1k™3k 22 2k M3k

/
12 1
/ //
P , 13 P , detS b33
= (bp2,053, - ,baN) (bo,01 3, 17N)+74 E .
/ //
bin 3N
/
1,2
b/
: 13 , :
Since (b 5,0 5, ,0) ) + %5E is regular, we can change variables from
/
bin

(059,05 3,105 ) 10 (07 5,05 5, -+, b5 ) by

/

12
/
1,3 detS
(b32,053,--- by N) = (050,053, , by ) (b1 2,013, biN) + TE
;
LN
Moreover, let, =5 , + 5 305 3+ -+ + 105 b3 -
Then, we have
/1!
" 2 /2//l
wr o = u‘v ,
11/ +3:lLJZf
22 4
. . 3N N+1 3
wheref, is a polynomial. Therefore, we have the polesZ, —% and—é.
3N
(1) Let b5y = v, bg; = vb) andbl, = vbf, for 2 <k <N. Then we have the poles=- and—"N51,

Q.E.D.

Appendix C.

Definition 10 (1) Let R= (rjj;) be an Hx H’ matrix, | an element 0f0,1}", and f(Rr’) an
analytic function of {1,r21,...,rywr, 14, I, where f = (rh,...,rp). f(Rr’) is an I-type function
of (rij)ir<i<h,1<j<wr, if for any k, = 1 with ip > i,

/!
f(r117 e 7rlN7 r217 e 7ri0—l,N7 urio,l; e 7urio,N7 rio—‘rl,l’ T rM,N7 r )/u7

is an analytic function of u, where u is a variable.
(2) Let I’ € {0,1}". We denote K I’ if I; < I/ foralli = 1,...,H, and denote k I if | < 1" and
| #1.
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For exampleB' = B} is anl’-type function ofB for all I’ < I (I’ € {0, 1}M).

Letli= o ... o 1 0 ... 0 1 o .. o fori<i
Proof of Theorem 3

Assume that* = 0.

LetB'"i = Bli — S K1 bikbjk, which is a polynomial of at least degree four.

Forl € I, let1® € {0,1}M bel® = { 0 ifi<s

li, ifi>s.

Wesetl’=T—{ljj:1<i< j<M}

By using a blowing up process together with an inductive methas we have functions (5)
and (6) below.

1€
S .
T e T _rlvi'\'"’ldudb(s)dv, (5)
where
u%u%--uizum---uj{fi(js)+ )+uzB'ﬁ"‘)} i<j<s
B ={ W WU us{f,f'+b§,) BB}, i<s<],

li . .
U%U%-' Z{flj +Zk s+1b|(k)b§k>+u%B/(])} S<I<,

| S i /
B(S) — Ukk:k B(S)’ f0r| S I,

f(s> is anl —type function Of(b|((|))s+1<k<M 1<1<N»

s) = 07

‘min{i—l,s}ZO

fi(iS) ‘b O =..=p0

i,min{i—1,s} —

b(s) :b(
|

B’('S”) is an Ii(js)-type function of (b\))s 1<k<m1<1<n, and B’('s) (I € I') is an1®-type function of

(05 )s+ 1<k, 11 <N-
Fors+1</<Mand 1< ¢ <s,

/{ B Iu) PN M-DN-D | M-SHIN-T M-SN-T ()
{i<j<spu{i<s<j,i<tyu{i=0,j=0}
where
N U%U%"'U?UL+1--‘UjbﬁJ ifi<j<s
B = USUS - WPl 1 Usiaby,  if i <s<j,i<?,
UUS- - UBUpyg - -Uspr, ifi=0, )=/
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C.1 Step1l
Construct the blow-up of function (3) along the submaniffidg = 0,1 <i <M,1 < j <N}.
Letbyy = ug, bij = wbfj, (i, j) # (1,1).
Then we haveB'i = U%(b/jl—i- ZE:Z b’lkb/jk + B"li/uf) forj>2 andB'i = U%(ZE::L b’ikb/jk +
B'i /u2) for 2 <i < j.
Let b”jl = b/j1+ ZI'EI:Z bllkb/jk for j > 2.
Then for 2<i < |,

Z blkb K= bl,ll_ Z blkbllk jl_ Z b1kb/1k + z blkb jk

= b'i1(b"j1— Zzb wb'jk) — ;b wb'ik)b” j1+ ( ;b «b'ik) ;b wb'jk) + ;blkb/jk

b'12 b'j2
b'13 b'ia
= B+ N[ OB [
b'1n oin
b'jo
bis
+(b/i27-"7b/iN) :J y
b'in
where fi(jl) = b’ (b1 — ZE:z b k) — (ZE:z bubi)b’ji is an I —type function of
b//21 b/22 b/2N
b’31 a2 -+ by o
i . . with fl(j )‘bﬁ:b/j,lzo =0
b'm1 B'mz -+ Pun
Next, construct the blow-up along the submaniffiith, = b'13=--- = b/;n = 0}.
Letb'1o=vq, b1z =vib"13, -+, B'in = vab"1n.

Then we have, for X i < |,

b'1o b’jz b/jz
b'13 b'is b'js
(biz,.... )| (P2 D) | + (b'iz,...,b'W) | .
b'1n bin b'in
1 1 0 0 b’jz
b”13 0 1 O b/'3
= (i Bin) V] | (LD b ) + : -J
b 1n 00 - 1 b in
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1 b’y —b"y —b"1n
On Qs i1Q _
k)//l3 i 7b//13bl/l 7b”13b//1N
On Qs 10 On-10n
b'14 0 —b"14b"y; —b"14b" 1N
Qn Qi—1Qi Qn-10n
G= —b”Lile”lu
Qﬁ.
Q
0
%iz 0 .- 0 %
Then we have
1 10 0
b’13 01 0
V% : (17 b//l37 e )b”].N) +
b’ 1N 00 l
14054 +b"% 0 - 10 -0
0 0 - 0o 1 - 0
= ViG . . .
0 0 - 00 --- 1
1+b" 2,4 +b2, 0 0 10 - 0
= G|V . . . R W Ke;
0 o --- 0 0O 0 - 1
1+V2(14b"%54---+b"3) 0 -
= G . ] G.
0 0

Therefore, we can change the variables frida, b'is, - - - ,b/in) to (b”i2,0"i3,--- ,b"in) by

iy VIHRL+D Rt 0y 0 0 e
s | 0 100 | blis
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We have
1 10 0 bj2
(0, Wiz, -+ i) | V2 b’:13 (1,013, ,b'in) + ’ 1 ’ b/.j3
b1 00 - 1 o

N
— Zzb//ikb”jk
k=

Letb(” ="y for 1<i<M,1<k<Nand(i,k) # (1,1), B
andB|,, = B'/uzk iforl e I,

MNij

= Blijuffor1<i<j<M

/lij

We haveB'lJ = ul(b51>+u§B('1)‘) for 1< j, Bli = u2(f! i VSN, bl bgk) +UfBy)) for 1<i <

j and B' = u%k 1"B'( y for 1 e I', where fi(j ) is an Ii( ) -type function of(bl((,))2<k<,v| 1<1<N With

,J ]bl(ll 9o =0, B("J) is anl( -type function of(b{")o<k<m 1<1<N, andByy, is anlM-type func-

tion of (b|(<|))2§k§M,1§I§N-

C.2 Step2

Assume Eq. (5). Construct the blow-up of function (5) along the sublmidrﬁbi(js) =0,s+1<i<
M,1< j <N}

Letb” = ug /{7

We have
I o
U2U3 - - WU g - - u,{fIJ +b§|)+uzB/(‘)} i<j<s
lii lii . .
By =1 WU U1 usus+1{fIJ /us+1+b’§|) +u§B/ )/Usia},  T<s<,
m . .
ufug- - -uguZ, 1{fIJ 2+ 3N O b’Jk)Jru%B g/}, s<i<j,
and
| z /| | Z /. Ii
B(S) = ] K= B,< ) S_tlSﬂLl ,I S I/.
We may consideb’éi)LS+1 =1 orb’fg, =1forsomes+1</<Mand 1</ <s.

If b’fz, =1 for somes+1< /¢ <M and 1< /' < s, then we have function (6) by using

S,

:O’

fl(]S) ‘ _ ,b(s)

imin{i—1,s} —

=b{J = =b

3

min{i—1s}

and Lemma 6.

LetbY, ., =1.

Seth”(%,; =0/ 1+ 3N o0 b for j > s+2.
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Thenfors+2<i < j,
(9) ), 2 S O
/ /
fii /uspi+ > DIE
k=s+1
(9) ), 2 (9) S S (9 () S WOy, v (O
= fij /usa+ ("5 — Z b7 b ) (0751 — b'e7a b ) + Z b 0k
k=s+2 k=s+2 k=s+2

N N
= 20— S ) (S B )

k=s+2 k=s+2
S O Oy v O O, v OO
/ / / / / /
+( Z b)Y B+ > byTby.
k=5 k<52 k=52
s+1 S S 5 S S
Let f( = f” /Us+1+b”§ é+1(b”i(,s?+1_ Skisi2 bléJZl,kb,i(k)) _blll(s)+l(2k s42 b’éﬁl kb’ﬁk)) Then
b//(s) b/(s) . b/( s)
s+21 Psi22 s+2N
£ is anl{>-type function of : : : : with
(s) (s) (s)
b'vi Pmz 0 B
TS U . . —0.
L 4 o e
Next, construct the blow-up along the submanlf(ultrfé+1 sh2 = b’(&zl 3= = b’SZLN = 0}.
LethY oo =V, /) g = V" a oo
b/ ° 1N _Vsb//.gﬂzl,N
2 2
LetQ® = \/ 1+ b;’fis+3 4o b’s'fii and
1 _p'® _p'® _p'®
1 st15s+3 . st+1i . s+1,N
N Qs Q@l o QN Q)
b”(s?l,ys _1 . b”su s+3b”(s+1| . b//sru s+3b”ss+)1 N
o R i,
bN(erl st+4 0 . 7b”s+ s+4bN( . b” b”
Qv Q® Q. Q(S, QS
G(S) — sz+ 1i— lb”8+1|
T
Q¥
3
0
o’ S) Q<S),
gsl)N 0 0 QN<5>1
N N
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Change variables frorfty'® o2 b’i(fs)+37 0 10 (bﬂu(s)+2v b//i(2+3’ 07 by
b//_(s) 2 //(s) //(s) b/‘(S)
//I(§+2 1+v (1+bs+ls+3 +- +bs+lN ) o - 0 /|(7SS)+2
£ 0 0 1 e
We have

S S Oy e S L e
/ / / /
(> bl bid ) Zzbs+1,kbjk)+kzzbik bjx
=St

k=s+2 k=s+

- % b0y
k=s+2

Let b =bY fori,j < sandblT™ =b" fori,j > sand(i, ]) # (s+ 1,5+ 1). Also let

i =9 fori < j<s £ =Y ug fori <s< |, fs(jglf = £ /U2, for j > s+1,
B"(gﬂ) = B’("> fori<j<s B'('” o) = "' Blg/Usia fori <s<j, B"" ""/u fors<i< jand
B’(' = B" /qu/ “"forl e I Then we have Eq. (5) with+ 1.

C.3 Step3

From the above induction @ s< N+ 1), we finally have Eq. (6) since we assume tat M.
Note that we have the same inductive results for

N
J1 5 (3 buby2yech, )

1I<i<]<M k=1

instead of the function in Eqg. (3). This means that the maximum pole, and its ofdlee function
in Eqg. (3) are those of the function in Eq. (7).

Now we again consider the maximum pole of the function in Eq. (7) and its.order

In Step3, we use the same symbahther tharb® for the sake of simplicity.

We need to consider the following function with the inductive method with

N
{uiuz-- bf +ufu3- - ug (Y bikbik)?}?
/ 1<i<]§M,i§s g Ss+1§|z<j§M k:ZJrl
ﬁ (MK 1) (N 1)+ (M=) (k=D)L g 4 ®)

First, we set the variables the same as in Step 1. Then we have

N
/ Wy Brud Y (S b2y u™ dudb.
2<]<|v| 2<i<T<M K=2

i<J<
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By using Lemma 6 again, we need to consider

N
{ug b? + ug ('S bibix) 2 2UuMN~Ldudb.,
/ ZSJZSM : 2§i<zj§M k; < !

Assume Eq. (8). Construct the blow-up of function (8) along the submianib; = 0,1 <i <
j<Mi<sby=0s+1<k<M,s+1<|<N}.
Then we have

N

44 42 2 44 A4 212

/{ulu2"'usus+1 EM b% +U7Us - - UsUg, 1 ( z bikbiji)“}
1I<i<|<M,i<s SHISIKjEM k=s+1

(M=8)(N=8)+(2M—1—9)s/2—1 ﬁ

o UMk (N—ke 1)+ (M) (-1~ 4 41

u k

k=1 ’
where we can sdiy; =1 orbs;15.1 =1.
If bps = 1, we have the poles

(M —k+1)(N—k-+ 1)+ (2M — k) (k— 1)

k=1....s
4 M i )

and
(M—=s)(N-s)+(2M —1—s)s/2
5 .
If bs;1s+1 =1, then by setting the variables the same as in Step 2 and by using Lemma 6, we
have

404 AR 2
/{Uluz"‘usus+1 zM bji
1<i<J<M,i<s

N
44 44 2 2\12
U3 - - - UgUg 1 ( bf g1+ ( bibijk)) }
=t s+1<zjg|v| bst s+2§|z<j§M k:;uz
S
uéJl\il;s)(Nsz(ZMflfs)s/Zfl l—l ul((Mfk+1)(ka+1)+(2Mfk)(kfl)fldudb' ©)

k=1

Construct the blow-up of function (9) along the submanif¢lej = 0,1 <i < j < M,i <
S,Us+1 = 0}.
Then we have Eq. (8) with+ 1, that is,

4l A 2
/{Uluz“'usus+1 ZM b
1<i<]<M,i<s
N

4.4 44 2 2
FUG - UsUsi (> bisa+ > () bib)9)}*
s+1<j<M SH2<I<j<M k=s+2

UM-S(N-9)+(@M-1-5)s-1 ﬁ u|((M—k+1)(N—k+l)+(2M—k)(k—l)—ldudb‘

s+1
k=1
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or
JlufgdE sy B
1<i<j<M,i<s (i,1)#£(1,2)
N
UG UG5 (Y bt Y (Y bubi)?))
s+1<j<M S+2<I<j<M k=s+2
u(M s)(N—s)+(2M—1—s)s/2— 1b( S)(N—s)+(2M—1-s)s-1
s+1 21
I_l u (M—k+1) (N—k+1)+(2M—k) (k— dudb
which have the poles
(M —k+1)(N—k+41)+(2M —k)(k—1)’k: Lo.sil
and
(M—=s)(N-s)+(2M —1—s)s/2
> .
Finally, we have
K+1) (N—k+1)+(2M—k)(k—1)—1
{utug---uf; b% }* uM- dudb,
/ 1<i<jZ\A i<N I_l
and obtain the poles
(M—k+1)(N—k+1)+(2M—k)(k—l)’k: LN
4
and
(2M —1—N)N
—
Therefore, since we assume théat> N, we have the maximum poleh = —MN and its order
60— 1, if |\/|>N—|—:|.7 QED

M, ifM=N+1

Proof of Theorem 4

Assume thatd* =0

By the proof of Theorem 3, the maximum pole (ff{zl<,<J<M(B"J)2}Zdb is that of
f{21<|<J<M(Zk 1bikbjk)?}?db even forM < N. If M < N then the maximum pole of
f{Zl<|<]<M(Zk—1blkak) }4db is —M(M — 1)/4.  Therefore the maximum pole-A of
J{Z120¢:(B")?}7dbsatisfiesh > M(M — 1) /4, sincey 1<i<j<m(B")? < ¥140c,(B')%

Next let us prove thah < w. Consider Eq. (6) witt =M, ¢/ =M —1 and
s=M-1.

Letbj = uMB/ji fori < j < M. Then we have the pole

N+ (M-2)(M-1)/2
> .
Fora* # 0, Lemma 7 yields the statement.

Q.E.D.
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