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Abstract

This paper considers stochastic optimization problems for a large class of objective func-
tions, including convex and continuous submodular. Stochastic proximal gradient methods
have been widely used to solve such problems; however, their applicability remains limited
when the problem dimension is large and the projection onto a convex set is computa-
tionally costly. Instead, stochastic conditional gradient algorithms are proposed as an
alternative solution which rely on (i) Approximating gradients via a simple averaging tech-
nique requiring a single stochastic gradient evaluation per iteration; (ii) Solving a linear
program to compute the descent/ascent direction. The gradient averaging technique re-
duces the noise of gradient approximations as time progresses, and replacing projection
step in proximal methods by a linear program lowers the computational complexity of
each iteration. We show that under convexity and smoothness assumptions, our proposed
stochastic conditional gradient method converges to the optimal objective function value
at a sublinear rate of O(1/t1/3). Further, for a monotone and continuous DR-submodular
function and subject to a general convex body constraint, we prove that our proposed
method achieves a ((1− 1/e)OPT− ǫ) guarantee (in expectation) with O(1/ǫ3) stochastic
gradient computations. This guarantee matches the known hardness results and closes the
gap between deterministic and stochastic continuous submodular maximization. Addition-
ally, we achieve ((1/e)OPT− ǫ) guarantee after operating on O(1/ǫ3) stochastic gradients
for the case that the objective function is continuous DR-submodular but non-monotone
and the constraint set is a down-closed convex body. By using stochastic continuous opti-
mization as an interface, we also provide the first (1− 1/e) tight approximation guarantee
for maximizing a monotone but stochastic submodular set function subject to a general
matroid constraint and (1/e) approximation guarantee for the non-monotone case.
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1. Introduction

Stochastic optimization arises in various applications including wireless communications
(Ribeiro, 2010), learning theory (Vapnik, 2013), machine learning (Bottou, 2010), adaptive
filters (Haykin, 2008), portfolio selection (Shapiro et al., 2009) to name a few. In this class
of problems the goal is to optimize an objective function defined as an expectation over a
set of random functions subject to a general convex constraint. In particular, consider an
optimization variable x ∈ X ⊂ R

n and a random variable Z ∈ Z that together determine
the choice of a stochastic function F̃ : X × Z → R. The goal is to solve the program

max
x∈C

F (x) := max
x∈C

Ez∼P

[

F̃ (x, z)
]

, (1)

where C is a convex compact set, z is the realization of the random variable Z drawn from a
distribution P , and F (x) is the expected value of the random functions F̃ (x, z) with respect
to the random variable Z. In this paper, our focus is on the cases where the function F
is either concave or continuous submodular. The first case which considers the problem
of maximizing a concave function is equivalent to stochastic convex minimization, and the
second case in which the goal is to maximize a continuous submodular function is called
stochastic continuous submodular maximization. Note that the main challenge here is to
solve Problem (1) without computing the objective function F (x) or its gradient ∇F (x)
explicitly, since we assume that either the probability distribution P is unknown or the cost
of computing the expectation is prohibitive.

In this regime, stochastic algorithms are the method of choice since they operate on
computationally cheap stochastic estimates of the objective function gradients. Stochas-
tic variants of the proximal gradient method are perhaps the most popular algorithms to
tackle this category of problems both in convex minimization and submodular maximiza-
tion. However, implementation of proximal methods requires projection onto a convex set at
each iteration to enforce feasibility, which could be computationally expensive or intractable
in many settings. To avoid the cost of projection, recourse to conditional gradient methods
arises as a natural alternative. Unlike proximal algorithms, conditional gradient methods
do not suffer from computationally costly projection steps and only require solving linear
programs which can be implemented at a significantly lower complexity in many practical
applications.

In deterministic convex minimization, in which the exact gradient information is given,
conditional gradient method, a.k.a., Frank-Wolfe algorithm (Frank and Wolfe, 1956; Jaggi,
2013), succeeds in lowering the computational complexity of proximal algorithms due to its
projection free property. However, in the stochastic regime, where only an estimate of the
gradient is available, stochastic conditional gradient methods either diverge or underperform
the proximal gradient methods. In particular, in stochastic convex minimization it is known
and proven that stochastic conditional gradient methods may not converge to the optimal
solution without an increasing batch size, whereas stochastic proximal gradient methods
converge to the optimal solution at the sublinear rate of O(1/

√
t). Hence, the possibility

of designing a convergent stochastic conditional gradient method with a small batch size
remains unanswered.

In deterministic continuous submodular maximization where objective function is sub-
modular, (neither convex nor concave), a variant of the condition gradient method called,
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continuous (Calinescu et al., 2011; Bian et al., 2017b) obtains a (1 − 1/e) approximation
guarantee for monotone functions, in contrast the best-known result for proximal gradient
methods is a (1/2) approximation guarantee (Hassani et al., 2017). However, in stochastic
submodular maximization setting, stochastic variants of the continuous greedy algorithm
with a small batch size fail to achieve a constant factor approximation (Hassani et al.,
2017), whereas stochastic proximal gradient method recovers the (1/2) approximation ob-
tained by proximal gradient method in deterministic settings (Hassani et al., 2017). It is
unknown if one can design a stochastic conditional gradient method that obtains a constant
approximation guarantee, ideally (1− 1/e), for Problem (1).

In this paper, we introduce a stochastic conditional gradient method for solving the
generic stochastic optimization Problem (1). The proposed method lowers the noise of gra-
dient approximations through a simple gradient averaging technique which only requires a
single stochastic gradient computation per iteration, i.e., the batch size can be as small as 1.
The proposed stochastic conditional gradient method improves the best-known convergence
guarantees for stochastic conditional gradient methods in both convex minimization and
submodular maximization settings. A summary of our theoretical contributions follows.

(i) In stochastic convex minimization, we propose a stochastic variant of the Frank-Wolfe
algorithm which converges to the optimal objective function value at the sublinear rate
of O(1/t1/3). In other words, the proposed SFW algorithm achieves an ǫ-suboptimal
objective function value after O(1/ǫ3) stochastic gradient evaluations.

(ii) In stochastic continuous submodular maximization, we propose a stochastic conditional
gradient method, which can be interpreted as a stochastic variant of the continuous
greedy algorithm, that obtains the first tight (1−1/e) approximation guarantee, when
the function is monotone. For the non-monotone case, the proposed method obtains
a (1/e) approximation guarantee. Moreover, for the more general case of γ-weakly
DR-submodular monotone maximization the proposed stochastic conditional gradient
method achieves a (1− e−γ)-approximation guarantee.

(iii) In stochastic discrete submodular maximization, the proposed stochastic conditional
gradient method achieves (1−1/e) and (1/e) approximation guarantees for monotone
and non-monotone settings, respectively, by maximizing the multilinear extension
of the stochastic discrete objective function. Further, if the objective function is
monotone and has curvature c the proposed stochastic conditional gradient method
achieves a (1− e−c)/c approximation guarantee.

We begin the paper by studying the related work on stochastic methods in convex mini-
mization and submodular maximization (Section 2). Then, we proceed by stating stochastic
convex minimization problem (Section 3). We introduce a stochastic conditional gradient
method which can be interpreted as a stochastic variant of Frank-Wolfe (FW) algorithm for
solving stochastic convex minimization problems (Section 3.1). The proposed Stochastic

Frank-Wolfe method (SFW) differs from the vanilla FW method in replacing gradients
by their stochastic approximations evaluated based on averaging over previously observed
stochastic gradients. We further analyze the convergence properties of the proposed SFW
method (Section 3.2). In particular, we show that the averaging technique in SFW lowers
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the noise of gradient approximation (Lemma 1) and consequently the sequence of objective
function values generated by SFW converges to the optimal objective function value at a
sublinear rate of O(1/t1/3) in expectation (Theorem 3). We complete this result by prov-
ing that the sequence of objective function values almost surely converges to the optimal
objective function value (Theorem 4).

We then focus on the application of the proposed stochastic conditional gradient method
in continuous submodular maximization (Section 4). After defining the notions of submod-
ularity (Section 4.1), we introduce the Stochastic Continuous Greedy (SCG) algorithm
for solving continuous submodular maximization problems (Section 4.2). The proposed
SCG algorithm achieves the optimal (1− 1/e)-approximation when the expected objective
function is DR-submodular, monotone, and smooth (Theorem 7). To be more precise, the
expected objective value of the iterates generated by SCG in expectation is not smaller
(1 − 1/e)OPT − ǫ after O(1/ǫ3) stochastic gradient evaluations. Moreover, for the case
that the expected function is not DR-submodular but γ weakly DR-submodular, the SCG
algorithm obtains an (1 − e−γ)-approximation guarantee (Theorem 8). We further ex-
tend our results to non-monotone setting by introducing the Non-monotone Stochastic

Continuous Greedy (NMSCG) method. We show that under the assumptions that the ex-
pected function is only DR-submodular and smooth NMSCG reaches a (1/e)-approximation
guarantee (Theorem 9).

The continuous multilinear extension of discrete submodular functions implies that the
results for stochastic continuous DR-submodular maximization can be extended to stochas-
tic discrete submodular maximization. We formalize this connection by introducing the
stochastic discrete submodular maximization problem and defining its continuous multilin-
ear extension (Section 5). By leveraging this connection, one can relax the discrete problem
to a stochastic continuous submodular maximization, use SCG to solve the relaxed continu-
ous problem within a (1− 1/e− ǫ) approximation to the optimum value (Theorem 12), and
use a proper rounding scheme (such as the contention resolution method (Chekuri et al.,
2014)) to obtain a feasible set whose value is a (1− 1/e− ǫ) approximation to the optimum
set in expectation. In summary, we show that SCG achieves an ((1−1/e)OPT − ǫ) approx-
imation for a generic discrete monotone stochastic submodular maximization problem after
O(n3/2/ǫ3) iterations where n is the size of the ground set (Corollary 13). We further prove
a 1/e approximation guarantee for NMSCG when we maximize a non-monotone stochastic
submodular set function (Theorem 15). Moreover, if the expected set function has curva-
ture c ∈ [0, 1], SCG reaches an (1/c)(1− e−c) approximation guarantee (Theorem 17). We
finally close the paper by concluding remarks (Section 7).

Notation. Lowercase boldface v denotes a vector and uppercase boldface A denotes a
matrix. We use ‖v‖ to denote the Euclidean norm of vector v. The i-th element of the
vector v is written as vi and the element on the i-th row and j-th column of the matrix A

is denoted by Ai,j .

2. Related Work

In this section we overview the literature on conditional gradient methods in convex mini-
mization as well as submodular maximization and compare our novel theoretical guarantees
with the existing results.
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Convex minimization. The problem of minimizing a stochastic convex function subject to
a convex constraint has been tackled by many researchers and many approaches have been
reported in the literature. Projected stochastic gradient descent (PSGD) and stochastic
variants of Frank-Wolfe algorithm are among the most popular approaches. PSGD updates
the iterates by descending through the negative direction of stochastic gradient with a
proper stepsize and projecting the resulted point onto the feasible set (Robbins and Monro,
1951; Nemirovski and Yudin, 1978; Nemirovskii et al., 1983). It is known that in convex
and smooth settings, the iterates of PSGD converge at a rate of O(1/

√
t), where t is the

number of iterations. Although stochastic gradient computation is inexpensive, the cost of
projection step can be high (Fujishige and Isotani, 2011) or intractable (Collins et al., 2008).
In such cases projection-free conditional gradient methods, a.k.a., Frank-Wolfe algorithm,
are more practical (Frank and Wolfe, 1956; Jaggi, 2013). The online Frank-Wolfe algorithm
proposed by Hazan and Kale (2012) requires O(1/ǫ4) stochastic gradient evaluations to
reach ǫ suboptimal objective function value, i.e., E [f(x)−OPT ] ≤ ǫ under the assumption
that the objective function is convex and has bounded gradients. The stochastic Frank-
Wolfe studied by Hazan and Luo (2016) obtains an improved complexity of O(1/ǫ3) under
the assumptions that the expected objective function is smooth (has Lipschitz gradients)
and Lipschitz continuous (the gradients are bounded). More importantly, the stochastic
Frank-Wolfe algorithm in (Hazan and Luo, 2016) requires an increasing batch size b as time
progresses, i.e., b = O(t). In this paper, we propose a stochastic variant of conditional
gradient method which achieves the complexity of O(1/ǫ3) under milder assumptions (only
requires smoothness of the expected function) and operates with a fixed batch size, e.g.,
b = 1.

Submodular maximization. Maximizing a deterministic submodular set function has
been extensively studied. The celebrated result of Nemhauser et al. (1978) shows that a
greedy algorithm achieves a (1 − 1/e) approximation guarantee for a monotone function
subject to a cardinality constraint. It is also known that this result is tight under rea-
sonable complexity-theoretic assumptions (Feige, 1998). Recently, variants of the greedy
algorithm have been proposed to extend the above result to non-monotone and more gen-
eral constraints (Feige et al., 2011; Buchbinder et al., 2015, 2014; Mirzasoleiman et al.,
2016; Feldman et al., 2017). While discrete greedy algorithms are fast, they usually do
not provide the tightest guarantees for many classes of feasibility constraints. This is why
continuous relaxations of submodular functions, e.g., the multilinear extension, have gained
a lot of interest (Vondrák, 2008; Calinescu et al., 2011; Chekuri et al., 2014; Feldman et al.,
2011; Gharan and Vondrák, 2011; Sviridenko et al., 2015). In particular, it is known that
the continuous greedy algorithm achieves a (1 − 1/e) approximation guarantee for mono-
tone submodular functions under a general matroid constraint (Calinescu et al., 2011).
An improved ((1− e−c)/c)-approximation guarantee can be obtained if the objective func-
tion has curvature c (Vondrák, 2010). Moreover, the best-known result for the case that
the objective function has curvature c is shown by (Sviridenko et al., 2015) which is a
((1 − c)/e)-approximation guarantee. The problem of maximizing submodular functions
also has been studied for the non-monotone case, and constant approximation guarantees
have been established (Feldman et al., 2011; Buchbinder et al., 2015; Ene and Nguyen, 2016;
Buchbinder and Feldman, 2016).
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Ref. setting assumptions batch rate complexity

Jaggi (2013) det. smooth — O(1/t) —

Hazan and Kale (2012) stoch. smooth, bounded grad. O(t) O(1/t1/2) O(1/ǫ4)
Hazan and Luo (2016) stoch. smooth, bounded grad. O(t2) O(1/t) O(1/ǫ3)

This paper stoch. smooth, bounded var. O(1) O(1/t1/3) O(1/ǫ3)

Table 1: Convergence guarantees of conditional gradient (FW) methods for convex mini-
mization

Ref. setting function const. utility complexity

Chekuri et al. (2015) det. mon.smooth sub. poly. (1− 1/e)OPT− ǫ O(1/ǫ2)

Bian et al. (2017b) det. mon. DR-sub. cvx-down (1− 1/e)OPT− ǫ O(1/ǫ)

Bian et al. (2017a) det. non-mon. DR-sub. cvx-down (1/e)OPT− ǫ O(1/ǫ)

Hassani et al. (2017) det. mon. DR-sub. convex (1/2)OPT− ǫ O(1/ǫ)

Hassani et al. (2017) stoch. mon. DR-sub. convex (1/2)OPT− ǫ O(1/ǫ2)

Hassani et al. (2017) stoch. mon. weak DR-sub. convex γ2

1+γ2OPT− ǫ O(1/ǫ2)

This paper stoch. mon. DR-sub. convex (1− 1/e)OPT− ǫ O(1/ǫ3)

This paper stoch. weak DR-sub. convex (1− e−γ)OPT− ǫ O(1/ǫ3)

This paper stoch. non-mon. DR-sub. convex (1/e)OPT− ǫ O(1/ǫ3)

Table 2: Convergence guarantees for continuous DR-submodular function maximization

Continuous submodularity naturally arises in many learning applications such as robust
budget allocation (Staib and Jegelka, 2017; Soma et al., 2014), online resource allocation
(Eghbali and Fazel, 2016), learning assignments (Golovin et al., 2014), as well as Adwords
for e-commerce and advertising (Devanur and Jain, 2012; Mehta et al., 2007). Maximizing
a deteministic continuous submodular function dates back to the work of Wolsey (1982).
More recently, Chekuri et al. (2015) proposed a multiplicative weight update algorithm that
achieves a (1−1/e− ǫ) approximation guarantee after Õ(n/ǫ2) oracle calls to gradients of a
monotone smooth submodular function F (i.e., twice differentiable DR-submodular) subject
to a polytope constraint. A similar approximation factor can be obtained after O(n/ǫ) ora-
cle calls to gradients of F for monotone DR-submodular functions subject to a down-closed
convex body using the continuous greedy method (Bian et al., 2017b). However, such results
require exact computation of the gradients ∇F which is not feasible in Problem (14). An
alternative approach is then to modify the current algorithms by replacing gradients∇F (xt)
by their stochastic estimates ∇F̃ (xt, zt); however, this modification may lead to arbitrarily
poor solutions as demonstrated in (Hassani et al., 2017). Another alternative is to estimate
the gradient by averaging over a (large) mini-batch of samples at each iteration. While this
approach can potentially reduce the noise variance, it increases the computational complex-
ity of each iteration and is not favorable. The work by Hassani et al. (2017) is perhaps
the first attempt to solve Problem (14) only by executing stochastic estimates of gradients
(without using a large batch). They showed that the stochastic gradient ascent method
achieves a (1/2− ǫ) approximation guarantee after O(1/ǫ2) iterations. Although this work
opens the door for maximizing stochastic continuous submodular functions using computa-
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Ref. setting function constraint approx method

Nemhauser and Wolsey (1981) det. mon. sub. cardinality 1− 1/e disc. greedy

Nemhauser and Wolsey (1981) det. mon. sub. matroid 1/2 disc. greedy

Calinescu et al. (2011) det. mon. sub. matroid 1− 1/e con. greedy

Hassani et al. (2017) stoch. mon. sub. matroid 1/2 SGA

This paper stoch. mon. sub. matroid 1− 1/e SCG

This paper stoch. mon. sub. matroid (1− 1/ec)/c SCG

This paper stoch. sub. matroid 1/e NMSCG

Table 3: Convergence guarantees for submodular set function maximization

tionally cheap stochastic gradients, it fails to achieve the optimal (1− 1/e) approximation.
To close the gap, we propose in this paper Stochastic Continuous Greedy which outputs
a solution with function value at least ((1−1/e)OPT− ǫ) after O(1/ǫ3) iterations. Notably,
our result only requires the expected function F to be monotone and DR-submodular and
the stochastic functions F̃ need not be monotone nor DR-submodular. Moreover, in con-
trast to the result in (Bian et al., 2017b), which holds for down-closed convex constraints,
our result holds for any convex constraints. For non-monotone DR-submodular functions,
we also propose the non-monotone stochastic continuous greedy (NMSCG) method that
achieves a solution with function value at least ((1/e)OPT− ǫ) after at most O(1/ǫ3) itera-
tions. Crucially, the feasible set in this case should be down-closed or otherwise no constant
approximation guarantee is possible (Chekuri et al., 2014).

Our result also has important implications for the problem of maximizing a stochastic
discrete submodular function subject to a matroid constraint. Since the proposed SCG
method works in stochastic settings, we can relax the discrete objective function f to a
continuous function F through the multi-linear extension (note that expectation is a linear
operator). Then we can maximize F within a (1− 1/e− ǫ) approximation to the optimum
value by using only O(1/ǫ3) oracle calls to the stochastic gradients of F when the functions
are monotone. Finally, a proper rounding scheme (such as the contention resolution method
(Chekuri et al., 2014)) results in a feasible set whose value is a (1 − 1/e) approximation
to the optimum set in expectation1. Using the same procedure we can also prove a (1/e)
approximation guarantee in expectation for the non-monotone case. Additionally, when the
set function f is monotone and has a curvature c < 1 – check (41) for the definition of
the curvature – we show that the approximation factor can be improved from (1− 1/e) to
((1− 1/ec)/c).

3. Stochastic Convex Minimization

Many problems in machine learning can be reduced to the minimization of a convex objective
function defined as an expectation over a set of random functions. In this section, our focus

1. For the ease of presentation, and in the discrete setting, we only present our results for the matroid

constraint. However, our stochastic continuous algorithms can provide constant factor approximations

for any constrained submodular maximization setting where an efficient and loss-less rounding scheme

exists. It includes, for example, knapsack constraints among many others.
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is on developing a stochastic variant of the conditional gradient method, a.k.a., Frank-
Wolfe, which can be applied to solve general stochastic convex minimization problems. To
make the notation consistent with other works on stochastic convex minimization, instead
of solving Problem (1) for the case that the objective function F is concave, we assume that
F is convex and intend to minimize it subject to a convex set C. Therefore, the goal is to
solve the program

min
x∈C

F (x) := min
x∈C

Ez∼P

[

F̃ (x, z)
]

. (2)

A canonical subset of problems having this form is support vector machines, least mean
squares, and logistic regression.

In this section we assume that only the expected (average) function F is convex and
smooth, and the stochastic functions F̃ may not be convex nor smooth. Since the expected
function F is convex, descent methods can be used to solve the program in (2). However,
computing the gradients (or Hessians) of the function F percisely requires access to the
distribution P , which may not be feasible in many applications. To be more specific, we
are interested in settings where the distribution P is either unknown or evaluation of the
expected value is computationally prohibitive. In this regime, stochastic gradient descent
methods, which operate on stochastic approximations of the gradients, are the mostly used
alternatives. In the following section, we aim to develop a stochastic variant of the Frank-
Wolfe method which converges to an optimal solution of (2), while it only requires access
to a single stochastic gradient ∇F̃ (x, z) at each iteration.

3.1. Stochastic Frank-Wolfe Method

In this section, we introduce a stochastic variant of the Frank-Wolfe method to solve Prob-
lem (2). Assume that at each iteration we have access to the stochastic gradient ∇F̃ (x, z)
which is an unbiased estimate of the gradient ∇F (x). It is known that a naive stochastic
implementation of Frank-Wolfe (replacing gradient ∇F (x) by ∇F̃ (x, z)) might diverge, due
to non-vanishing variance of gradient approximations. To resolve this issue, we introduce
a stochastic version of the Frank-Wolfe algorithm which reduces the noise of gradient ap-
proximations via a common averaging technique in stochastic optimization (Ruszczyński,
1980, 2008; Yang et al., 2016; Mokhtari et al., 2017).

By letting t ∈ N be a discrete time index and ρt a given stepsize which approaches zero
as t grows, the proposed biased gradient estimation dt is defined by the recursion

dt = (1− ρt)dt−1 + ρt∇F̃ (xt, zt), (3)

where the initial vector is given as d0 = 0. We will show that the averaging technique in (3)
reduces the noise of gradient approximation as time increases. More formally, the expected
noise of the gradient estimation E

[

‖dt −∇F (xt)‖2
]

approaches zero asymptotically. This
property implies that the biased gradient estimate dt is a better candidate for approximating
the gradient ∇F (xt) comparing to the unbiased gradient estimate ∇F̃ (xt, zt) that suffers
from a high variance approximation. We therefore define the descent direction vt of our
proposed Stochastic Frank-Wolfe (SFW) method as the solution of the linear program

vt ∈ argmin
v∈C

{dT
t v}. (4)
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Algorithm 1 Stochastic Frank-Wolfe (SFW)

Require: Stepsizes ρt > 0 and γt > 0. Initialize d0 = 0 and choose x0 ∈ C
1: for t = 1, 2, . . . do
2: Update the gradient estimate dt = (1− ρt)dt−1 + ρt∇F̃ (xt, zt);
3: Compute vt ∈ argmin

v∈C{dT
t v};

4: Compute the updated variable xt+1 = (1− γt+1)xt + γt+1vt;
5: end for

As in the traditional FW method, the updated variable xt+1 is a convex combination of vt

and the iterate xt

xt+1 = (1− γt+1)xt + γt+1vt, (5)

where γt is a proper positive stepsize. Note that each iteration of the proposed SFW method
only requires a single stochastic gradient computation, unlike the methods in (Hazan and
Luo, 2016; Reddi et al., 2016) which an require increasing number of stochastic gradient
evaluations as the number of iterations t grows.

The proposed SFW is summarized in Algorithm 1. The core steps are Steps 2-5 which
follow the updates in (3)-(5). The initial variable x0 can be any feasible vector in the convex
set C and the initial gradient estimate is set to be the null vector d0 = 0. The sequence of
positive parameters ρt and γt should be diminishing at proper rates as we describe in the
following convergence analysis section.

3.2. Convergence Analysis

In this section we study the convergence rate of the proposed SFW method for solving the
constraint convex program in (2). To do so, we first assume that the following conditions
hold.

Assumption 1 The convex set C is bounded with diameter D, i.e., for all x,y ∈ C we can
write

‖x− y‖ ≤ D. (6)

Assumption 2 The expected function F is convex. Moreover, its gradients ∇F are L-
Lipschitz continuous over the set C, i.e., for all x,y ∈ C

‖∇F (x)−∇F (y)‖ ≤ L‖x− y‖. (7)

Assumption 3 The variance of the unbiased stochastic gradients ∇F̃ (x, z) is bounded
above by σ2, i.e., for all random variables z and vectors x ∈ C we can write

E

[

‖∇F̃ (x, z)−∇F (x)‖2
]

≤ σ2. (8)

Assumption 1 is standard in constrained convex optimization and is implied by the fact
that the set C is convex and compact. The condition in Assumption 2 ensures that the ob-
jective function F is smooth on the set C. Note that here we only assume that the (average)
function F has Lipschitz continuous gradients, and the stochastic gradients ∇F̃ (x, z) may
not be Lipschitz continuous. Finally, the required condition in Assumption 3 is customary
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in stochastic optimization and guarantees that the variance of stochastic gradients ∇F̃ (x, z)
is bounded by a finite constant σ2 <∞.

To study the convergence rate of SFW, we first derive an upper bound on the error of
gradient approximation ‖∇F (xt)− dt‖2 in the following lemma.

Lemma 1 Consider the proposed Stochastic Frank-Wolfe (SFW) method outlined in Al-
gorithm 1. If the conditions in Assumptions 1-3 hold, the sequence of squared gradient errors
‖∇F (xt)− dt‖2 satisfies

E
[

‖∇F (xt)− dt‖2 | Ft

]

≤
(

1− ρt
2

)

‖∇F (xt−1)− dt−1‖2 + ρ2tσ
2 +

2L2D2γ2t
ρt

, (9)

where Ft is a sigma-algebra measuring all sources of randomness up to step t.

Proof Check Appendix A.

The result in Lemma 1 shows that squared error of gradient approximation ‖∇F (xt)−
dt‖2 decreases in expecation at each iteration by the factor (1−ρt/2) if the remaining terms
on the right hand side of (9) are negligible relative to the term (1−ρt/2)‖∇F (xt−1)−dt−1‖2.
This condition can be satisfied, if the parameters ρt and γt are properly chosen. This
observation verifies our intuition that the noise of the stochastic gradient approximation
diminishes as the number of iterations increases.

In the following lemma, we derive an upper bound on the suboptimality F (xt+1)−F (x∗)
which depends on the norm of gradient error ‖∇F (xt)− dt‖.

Lemma 2 Consider the proposed Stochastic Frank-Wolfe (SFW) method outlined in Al-
gorithm 1. If the conditions in Assumptions 1-3 are satisfied, the suboptimality F (xt+1)−
F (x∗) satisfies

F (xt+1)− F (x∗) ≤ (1− γt+1)(F (xt)− F (x∗)) + γt+1D‖∇F (xt)− dt‖+
LD2γ2t+1

2
. (10)

Proof Check Appendix B.

Based on Lemma 2, the suboptimality F (xt+1)− F (x∗) approaches zero if the error of
gradient approximation ‖∇F (xt)− dt‖ converges to zero sufficiently fast and the last term
(LD2γ2t+1)/2 is summable, i.e.,

∑∞
t=1 γ

2
t < ∞. In the special case of zero approximation

error, which is equivalent to the case that we have access to the expected gradient ∇F (xt),
by setting γt = O(1/t) it can be shown that the suboptimality F (xt)− F (x∗) converges to
zero at the sublinear rate of O(1/t). Therefore, the result in Lemma 2 is consistent with
the analysis of Frank-Wolfe method (Jaggi, 2013).

In the following theorem, by using the results in Lemmas 1 and 2, we establish an upper
bound on the expected suboptimality E [F (xt)− F (x∗)].

Theorem 3 Consider the proposed Stochastic Frank-Wolfe (SFW) method outlined in
Algorithm 1. Suppose the conditions in Assumptions 1-3 are satisfied. If we set γt = 2/(t+8)

10
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and ρt = 4/(t+8)2/3, then the expected suboptimality E [F (xt+1)− F (x∗)] is bounded above
by

E [F (xt)− F (x∗)] ≤ Q

(t+ 9)1/3
, (11)

where the constant Q is given by

Q := max

{

91/3(F (x0)−F (x∗)),
LD2

2
+ 2Dmax

{

3‖∇F (x0)− d0‖,
(

16σ2 + 2L2D2
)1/2

}

}

.

(12)

Proof Check Appendix C.

The result in Theorem 3 indicates that the expected suboptimality E [F (xt)− F (x∗)]
of the iterates generated by the SFW method converges to zero at least at a sublinear
rate of O(1/t1/3). In other words, it shows that to achieve the expected suboptimality
E [F (xt)− F (x∗)] ≤ ǫ, the number of required stochastic gradients (sample gradients) to
reach this accuracy is O(1/ǫ3).

To complete the convergence analysis of SFW we also prove that the sequence of the
objective function values F (xt) converges to the optimal value F (x∗) almost surely. This
result is formalized in the following theorem.

Theorem 4 Consider the proposed Stochastic Frank-Wolfe (SFW) method outlined in
Algorithm 1. Suppose that the conditions in Assumptions 1-3 are satisfied. If we choose
ρt and γt such that (i)

∑∞
t=0 ρt = ∞, (ii)

∑∞
t=0 ρ

2
t < ∞, (iii)

∑∞
t=0 γt = ∞, and (iv)

∑∞
t=0(γ

2
t /ρt) < ∞, then the suboptimality F (xt)− F (x∗) converges to zero almost surely,

i.e.,

lim
t→∞

F (xt)− F (x∗)
a.s.

= 0. (13)

Proof Check Appendix D.

Theorem 4 provides almost sure convergence of the sequence of objective function value
F (xt) to the optimal value F (x∗). In other words it shows that the sequence of the objective
function values F (xt) converges to F (x∗) with probability 1. Indeed, a valid set of choices for
γt and ρt to satisfy the required conditions in Theorem 4 are γt = O(1/t) and ρt = O(1/t2/3).

4. Stochastic Continuous Submodular Maximization

In the previous section, we focused on the convex setting, but what if the objective func-
tion F is not convex? In this section, we consider a broad class of non-convex optimiza-
tion problems that possess special combinatorial structures. More specifically, we focus on
constrained maximization of stochastic continuous submodular functions that demonstrate
diminishing returns, i.e., continuous DR-submodular functions,

max
x∈C

F (x)
.
= max

x∈C
Ez∼P [F̃ (x, z)]. (14)

11
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As before, the functions F̃ : X × Z → R+ are stochastic where x ∈ X is the optimization
variable, z ∈ Z is a realization of the random variable Z drawn from a distribution P , and
X ∈ R

n
+ is a compact set. In this section, we assume that F (x) ≥ 0 for all x ∈ X .

Our goal is to maximize the expected value of the random functions F̃ (x, z) over the
convex body C ⊆ X . Note that we only assume that F (x) is DR-submodular, and not
necessarily the stochastic functions F̃ (x, z). We also consider situations where the distribu-
tion P is either unknown (e.g., when the objective is given as an implicit stochastic model)
or the domain of the random variable Z is very large (e.g., when the objective is defined
in terms of an empirical risk) which makes the cost of computing the expectation very
high. In these regimes, stochastic optimization methods, which operate on computationally
cheap estimates of gradients, arise as natural solutions. In fact, very recently, it was shown
in (Hassani et al., 2017) that stochastic gradient methods achieve a (1/2) approximation
guarantee to Problem (14). In Section 3 of (Hassani et al., 2017), the authors also showed
that if we simply substitute gradients by stochastic gradients in the update of conditional
gradient methods (a.k.a., Frank-Wolfe), such as continuous greedy (Vondrák, 2008) or its
close variant (Bian et al., 2017b), the resulted method can perform arbitrarily poorly in
stochastic continuous submodular maximization settings. Our goal in this section is to de-
sign a stable stochastic variant of conditional gradient method to solve Problem (14) up to
a constant factor.

4.1. Preliminaries

We begin by recalling the definition of a submodular set function: A function f : 2V → R+,
defined on the ground set V , is called submodular if for all subsets A,B ⊆ V , we have

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B).

The notion of submodularity goes beyond the discrete domain (Wolsey, 1982; Vondrák,
2007; Bach, 2015). Consider a continuous function F : X → R+ where the set X is of the
form X =

∏n
i=1Xi and each Xi is a compact subset of R+. We call the continuous function

F submodular if for all x,y ∈ X we have

F (x) + F (y) ≥ F (x ∨ y) + F (x ∧ y), (15)

where x ∨ y := max(x,y) (component-wise) and x ∧ y := min(x,y) (component-wise).
Further, a submodular function F is monotone (on the set X ) if

x ≤ y =⇒ F (x) ≤ F (y), (16)

for all x,y ∈ X . Note that x ≤ y in (16) means that xi ≤ yi for all i = 1, . . . , n.
Furthermore, a differentiable submodular function F is called DR-submodular (i.e., shows
diminishing returns) if the gradients are antitone, namely, for all x,y ∈ X we have

x ≤ y =⇒ ∇F (x) ≥ ∇F (y). (17)

See (Eghbali and Fazel, 2016) for related definitions and check (Bilmes and Bai, 2017) for
more examples of DR-submodular functions. When the function F is twice differentiable,

12



Stochastic Conditional Gradient Methods

submodularity implies that all cross-second-derivatives are non-positive (Bach, 2015), i.e.,

for all i 6= j, for all x ∈ X , ∂2F (x)

∂xi∂xj
≤ 0, (18)

and DR-submodularity implies that all second-derivatives are non-positive (Bian et al.,
2017b), i.e.,

for all i, j, for all x ∈ X , ∂2F (x)

∂xi∂xj
≤ 0. (19)

4.2. Stochastic Continuous Greedy

We proceed to introduce, Stochastic Continuous Greedy (SCG), which is a stochas-
tic variant of the continuous greedy method (Vondrák, 2008) to solve Problem (14). We
only assume that the expected objective function F is monotone and DR-submodular and
the stochastic functions F̃ (x, z) may not be monotone nor submodular. Since the ob-
jective function F is monotone and DR-submodular, continuous greedy algorithm (Cali-
nescu et al., 2011; Bian et al., 2017b) can be used in principle to solve Problem (14).
Note that each update of continuous greedy requires computing the gradient of F , i.e.,
∇F (x) := E[∇F̃ (x, z)]. However, if we only have access to the (computationally cheap)
stochastic gradients ∇F̃ (x, z), then the continuous greedy method will not be directly us-
able (Hassani et al., 2017). This limitation is due to the non-vanishing variance of gradient
approximations. To resolve this issue, we use the gradient averaging technique in Section 3.1.
As in SFW, we define the estimated gradient dt by the recursion

dt = (1− ρt)dt−1 + ρt∇F̃ (xt, zt), (20)

where ρt is a positive stepsize and the initial vector is defined as d0 = 0. We therefore
define the ascent direction vt of our proposed SCG method as follows

vt ∈ argmax
v∈C

{dT
t v}, (21)

which is a linear objective maximization over the convex set C. Indeed, if instead of the
gradient estimate dt we use the exact gradient ∇F (xt) for the updates in (21), the con-
tinuous greedy update will be recovered. Here, as in continuous greedy, the initial decision
vector is the null vector, x0 = 0. Further, the stepsize for updating the iterates is equal to
1/T , and the variable xt is updated as

xt+1 = xt +
1

T
vt. (22)

The stepsize 1/T and the initialization x0 = 0 ensure that after T iterations the variable
xT ends up in the convex set C. We would like to highlight that the convex body C may
not be down-closed or contain 0. Nonetheless, the final iterate xT returned by SCG will be
a feasible point in C. The steps of the proposed SCG method are outlined in Algorithm 2.
Note that the major difference between SFW in Algorithm 1 and SCG in Algorithm 2 is in
Step 4 where the variable xt+1 is computed. In SFW, xt+1 is a convex combination of xt

and vt, while in SCG xt+1 is computed by moving from xt towards the direction vt with
the stepsize 1/T .

13
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Algorithm 2 Stochastic Continuous Greedy (SCG)

Require: Stepsizes ρt > 0. Initialize d0 = x0 = 0

1: for t = 1, 2, . . . , T do

2: Compute dt = (1− ρt)dt−1 + ρt∇F̃ (xt, zt);
3: Compute vt ∈ argmax

v∈C{dT
t v};

4: Update the variable xt+1 = xt +
1
T vt;

5: end for

Remark 5 Note that the update schemes for the convex case and submodular case are
slightly different. In the convex case, we follow the update in (5), while in the submodular
setting, we use the update in (22) to compute the new iterate. This modification is essential
to achieve a (1 − 1/e)-approximation guarantee for the monotone continuous submodular
setting. To better highlight this point, note that if we use an update rule of the form (5)
for the submodular setting it could lead to a 1/2-approximation. In other words, by starting
from a feasible point and using the update rule in (5), SCG will eventually converge to a
stationary point of the problem, when vt is computed according to the conditional gradi-
ent update. Converging to a stationary point in the convex setting is indeed desirable as
any first-order stationary point in the convex setting is an optimal solution. However, in
the continuous submodular setting, converging to a stationary point might lead to a 1/2-
approximation guarantee. In fact, in (Hassani et al., 2017) it has been shown that for
continuous submodular functions the value of objective function for a local maximum could
be at most 1/2 of the optimal objective function value. We refer the reader to (Hassani
et al., 2017) for the example that shows the existence of such local maximum. By starting
from the origin 0 (which is not a stationary point) and following the update rule in (22),
SCG finds a path in the feasible set that without converging to a stationary point leads to
an approximation factor of 1− 1/e.

We proceed to study the convergence properties of our proposed SCG method for solving
Problem (14). To do so, we first assume that the following conditions hold.

Assumption 4 The Euclidean norm of the elements in the constraint set C are uniformly
bounded, i.e., for all x ∈ C we can write

‖x‖ ≤ D. (23)

Assumption 5 The function F is DR-submodular and monotone. Further, its gradients
are L-Lipschitz continuous over the set X , i.e., for all x,y ∈ X

‖∇F (x)−∇F (y)‖ ≤ L‖x− y‖. (24)

Assumption 6 The variance of the unbiased stochastic gradients ∇F̃ (x, z) is bounded
above by σ2, i.e., for any vector x ∈ X we can write

E

[

‖∇F̃ (x, z)−∇F (x)‖2
]

≤ σ2, (25)

where the expectation is with respect to the randomness of z ∼ P .
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Due to the initialization step of SCG (i.e., starting from 0) we need a bound on the
furthest feasible solution from 0 that we can end up with; and such a bound is guaranteed
by Assumption 4. The condition in Assumption 5 ensures that the objective function F
is smooth. Note again that ∇F̃ (x, z) may or may not be Lipschitz continuous. Finally,
the required condition in Assumption 6 guarantees that the variance of stochastic gradients
∇F̃ (x, z) is bounded by a finite constant σ2 <∞. Note that Assumptions 5-6 are stronger
than Assumptions 2-3 since they ensure smoothness and bounded gradients for all points
x ∈ X and not only for the feasible points x ∈ C.

To study the convergence of SCG, we first derive an upper bound for the expected error
of gradient approximation (i.e., E[‖∇F (xt)− dt‖2]) in the following lemma.

Lemma 6 Consider Stochastic Continuous Greedy (SCG) outlined in Algorithm 2. If
Assumptions 4-6 are satisfied and ρt =

4
(t+8)2/3

, then for t = 0, . . . , T we have

E
[

‖∇F (xt)− dt‖2
]

≤ Q

(t+ 9)2/3
, (26)

where Q := max{5‖∇F (x0)− d0‖2, 16σ2 + 2L2D2}.

Proof Check Appendix E.

Let us now use the result of Lemma 6 to show that the sequence of iterates generated
by SCG reaches a (1− 1/e) approximation guarantee for Problem (14).

Theorem 7 Consider Stochastic Continuous Greedy (SCG) outlined in Algorithm 2.
If Assumptions 4-6 are satisfied and ρt =

4
(t+8)2/3

, then the expected objective function value

for the iterates generated by SCG satisfies the inequality

E [F (xT )] ≥ (1− 1/e)OPT− 15DQ1/2

T 1/3
− LD2

2T
, (27)

where OPT = maxx∈C F (x) and Q := max{5‖∇F (x0)− d0‖2, 16σ2 + 2L2D2}.

Proof Check Appendix F.

The result in Theorem 7 shows that the sequence of iterates generated by SCG, which
only has access to a noisy unbiased estimate of the gradient at each iteration, is able to
achieve the optimal approximation bound (1 − 1/e), while the error term vanishes at a
sublinear rate of O(T−1/3).

4.3. Weak Submodularity

In this section, we extend our results to a more general case where the expected objective
function F is weakly-submodular. A continuous function F is γ-weakly DR-submodular if

γ = inf
x,y∈X ,x≤y

inf
i∈[n]

[∇F (x)]i
[∇F (y)]i

, (28)
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Algorithm 3 Non-monotone Stochastic Continuous Greedy (NMSCG)

Require: Stepsizes ρt > 0. Initialize d0 = x0 = 0

1: for t = 1, 2, . . . , T do

2: Compute dt = (1− ρt)dt−1 + ρt∇F̃ (xt, zt);
3: Compute vt ∈ argmax

v∈C,v≤ū−xt
{dT

t v};
4: Update the variable xt+1 = xt +

1
T vt;

5: end for

where [a]i denotes the i-th element of vector a. In the following theorem, we prove that the
proposed SCG method achieves a (1 − e−γ) approximation guarantee when the expected
function F is monotone and weakly DR-submodular with parameter γ.

Theorem 8 Consider Stochastic Continuous Greedy (SCG) outlined in Algorithm 2.
If Assumptions 4-6 are satisfied and the function F is γ-weakly DR-submodular, then for
ρt =

4
(t+8)2/3

the expected objective function value of the iterates generated by SCG satisfies

the inequality

E [F (xT )] ≥ (1− e−γ)OPT− 15DQ1/2

T 1/3
− LD2

2T
, (29)

where OPT = maxx∈C F (x) and Q := max{5‖∇F (x0)− d0‖2, 16σ2 + 2L2D2}.

Proof Check Appendix G.

4.4. Non-monotone Continuous Submodular Maximization

In this section, we aim to extend the results for the proposed Stochastic Continuous

Greedy algorithm to maximize non-monotone stochastic DR-submodular. The problem
formulation of interest is similar to Problem (14) except the facts that the objective function
F : X → R+ may not be monotone and the set X is a bounded box. To be more precise,
we aim to solve the program

max
x∈C

F (x)
.
= max

x∈C
Ez∼P [F̃ (x, z)], (30)

where F : X → R is continuous DR-submodular, X =
∏n

i=1Xi, each Xi = [ui, ūi] is a
bounded interval, and the convex set C is a subset of X = [u, ū], where u = [u1; . . . ;un] and
ū = [ū1; . . . ; ūn]. In this section, we propose the first stochastic conditional gradient method
for solving the stochastic non-monotone maximization problem in (30). In this section, we
further assume that the convex set C is down-closed and 0 ∈ C.

We introduce a variant of the Stochastic Continuous Greedy method that achieves a
(1/e)-approximation guarantee for Problem (30). The proposed Non-monotone Stochastic

Continuous Greedy (NMSCG) method is inspired by the unified measured continuous
greedy algorithm in (Feldman et al., 2011) and the Frank-Wolfe method in (Bian et al.,
2017a) for non-monotone deterministic continuous submodular maximization. The steps
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of NMSCG are summarized in Algorithm 3. The stochastic gradient update (Step 2) and
the update of the variable (Step 4) are identical to the ones for SCG in Section 4.2. The
main difference between NMSCG and SCG is in the computation of the ascent direction vt.
In particular, in NMSCG the ascent direction vector vt is obtained by solving the linear
program

vt ∈ argmax
v∈C,v≤ū−xt

{dT
t v}, (31)

which differs from (21) by having the extra constraint v ≤ ū− xt. This extra condition is
added to ensure that the solution does not grow aggressively, since in non-monotone case
dramatic growth of the solution may lead to poor performance. In NMSCG, the initial
variable is x0 = 0, which is a legitimate initialization as we assume that the convex set C is
down-closed. In the following theorem, we establish a 1/e- guarantee for NMSCG.

Theorem 9 Consider Non-monotone Stochastic Continuous Greedy (NMSCG) outlined
in Algorithm 3 with the averaging parameter ρt = 4/(t+8)2/3. If Assumptions 4 and 6 hold
and the gradients ∇F are L-Lipschitz continuous and the convex set C is down-closed, then
the iterate xT generated by NMSCG satisfies the inequality

E [F (xT )] ≥ e−1F (x∗)− 15DQ1/2

T 1/3
− LD2

2T
, (32)

where Q := max{5‖∇F (x0)− d0‖2, 16σ2 + 2L2D2}.

Proof See Section H.

The result in Theorem 9 states that the sequence of iterates generated by NMSCG
achieves a ((1/e)OPT − ǫ) approximation guarantee after O(1/ǫ3) stochastic gradient com-
putations.

5. Stochastic Discrete Submodular Maximization

Even though submodularity has been mainly studied in discrete domains (Fujishige, 2005),
many efficient methods for optimizing such submodular set functions rely on continuous
relaxations either through a multi-linear extension (Vondrák, 2008) (for maximization) or
Lovas extension (Lovász, 1983) (for minimization). In fact, Problem (14) has a discrete
counterpart, recently considered in (Hassani et al., 2017; Karimi et al., 2017):

max
S∈I

f(S)
.
= max

S∈I
Ez∼P [f̃(S, z)], (33)

where the function f : 2V → R+ is submodular, the function f̃ : 2V × Z → R+ is an
arbitrary mapping from the product of 2V and the domain of the random variable Z to R,
S is the optimization set variable defined over a ground set V , z ∈ Z is the realization of a
random variable Z drawn from the distribution P , and I is a general matroid constraint.
Since P is unknown, problem (33) cannot be directly solved using the current state-of-the-
art techniques. Instead, Hassani et al. (2017) showed that by lifting the problem to the
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continuous domain (via multi-linear relaxation) and using stochastic gradient methods on
a continuous relaxation to reach a solution that is within a factor (1/2) of the optimum.
Contemporarily, (Karimi et al., 2017) used a concave relaxation technique to provide a
(1−1/e) approximation for the class of submodular coverage functions. Our work closes the
gap for maximizing the stochastic submodular set maximization, namely, Problem (33), by
providing the first tight (1−1/e) approximation guarantee for general monotone submodular
set functions subject to a matroid constraint. For the non-monotone case, we obtain a (1/e)
approximation guarantee. We, further, show that a ((1− e−c)/c)-approximation guarantee
can be achieved when the function f has curvature c.

According to the results in Section 4, SCG achieves in expectation a (1− 1/e)-optimal
solution for Problem (14) when the function F is monotone and DR-submodular, and
NMSCG obtains (1/e)-optimal solution for the non-monotone case. The focus of this section
is on extending these results into the discrete domain and showing that SCG and NMSCG
can be used to maximize a stochastic submodular set function f , namely Problem (33),
through the multilinear extension of the function f . To be more precise, in lieu of solving
the program in (33) one can solve the continuous optimization problem

max
x∈C

F (x) = max
x∈C

∑

S⊂V

f(S)
∏

i∈S

xi
∏

j /∈S

(1− xj), (34)

where F is the multilinear extension of the function f and the convex set C = conv{1I :
I ∈ I} is the matroid polytope (Calinescu et al., 2011) which is down-closed (note that in
(34), xi denotes the i-th element of the vector x). The fractional solution of the program
(34) can then be rounded into a feasible discrete solution without any loss (in expecta-
tion) in objective value by methods such as randomized PIPAGE ROUNDING (Calinescu
et al., 2011). Note that randomized PIPAGE ROUNDING requires O(n) computational
complexity (Karimi et al., 2017) for the uniform matroid and O(n2) complexity for general
matroids.

Indeed, the conventional continuous greedy algorithm is able to solve the program in
(34); however, each iteration of the method is computationally costly due to gradient ∇F (x)
evaluations. Instead, Feldman et al. (2011) and Calinescu et al. (2011) suggested approx-
imating the gradient using a sufficient number of samples from f . This mechanism still
requires access to the set function f multiple times at each iteration, and hence is not effi-
cient for solving Problem (33). The idea is then to use a stochastic (unbiased) estimate for
the gradient ∇F . In the following remark, we provide a method to compute an unbiased
estimate of the gradient using n samples from f̃(Si, z), where z ∼ P and Si’s, i = 1, · · · , n,
are carefully chosen sets.

Remark 10 (Constructing an Unbiased Estimator of the Gradient in Multilinear Exten-
sions) Recall that f(S) = Ez∼P [f̃(S, z)]. In terms of the multilinear extensions, we obtain
F (x) = Ez∼P [F̃ (x, z)], where F and F̃ denote the multilinear extension of f and f̃ , respec-
tively. So ∇F̃ (x, z) is an unbiased estimator of ∇F (x) when z ∼ P . Note that finding the
gradient of F̃ may not be easy as it contains exponentially many terms. Instead, we can
provide computationally cheap unbiased estimators for ∇F̃ (x, z). It can easily be shown that

∂F̃

∂xi
= F̃ (x, z;xi ← 1)− F̃ (x, z;xi ← 0). (35)
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where for example by (x;xi ← 1) we mean a vector which has value 1 on its i-th coordinate

and is equal to x elsewhere. To create an unbiased estimator for ∂F̃
∂xi

at a point x with
realization z we can simply sample a set S by including each element in it independently
with probability xi and use f̃(S ∪{i}, z)− f̃(S \ {i}, z) as an unbiased estimator for the i-th
partial derivative of F̃ . We can sample one single set S and use the above trick for all the
coordinates. This involves n function computations for f̃ .

Indeed, the stochastic gradient ascent method proposed by Hassani et al. (2017) can
be used to solve the multilinear extension problem in (34) using unbiased estimates of the
gradient at each iteration. However, the stochastic gradient ascent method fails to achieve
the optimal (1− 1/e) approximation. Further, the work of Karimi et al. (2017) achieves a
(1 − 1/e) approximation solution only when each f̃(·, z) is a coverage function. Here, we
show that SCG achieves the first (1 − 1/e) tight approximation guarantee for the discrete
stochastic submodular Problem (33). More precisely, we show that SCG finds a solution for
(34), with an expected function value that is at least (1−1/e)OPT−ǫ, in O(1/ǫ3) iterations.
To do so, we first show in the following lemma that the difference between any coordinates
of gradients of two consecutive iterates generated by SCG, i.e., ∇jF (xt+1) − ∇jF (xt) for
j ∈ {1, . . . , n}, is bounded by ‖xt+1 − xt‖ multiplied by a factor which is independent of
the problem dimension n.

Lemma 11 Consider Stochastic Continuous Greedy (SCG) outlined in Algorithm 2
with iterates xt, and recall the definition of the multilinear extension function F in (34). If
we define r as the rank of the matroid I and mf , maxi∈{1,··· ,n} f(i), then the following

|∇jF (xt+1)−∇jF (xt)| ≤ mf

√
r‖xt+1 − xt‖, (36)

holds for j = 1, . . . , n.

Proof See Appendix I.

The result in Lemma 11 states that in an ascent direction of SCG, the gradient is mf
√
r-

Lipschitz continuous. Here, mf is the maximum marginal value of the function f and r is
the rank of the matroid.

Let us now explain how the variance of the stochastic gradients of F relates to the
variance of the marginal values of f . Recall that the stochastic function F̃ is a multilinear
extension of the stochastic set function f̃ , and it can be shown that

∇jF̃ (x, z) = F̃ (x, z;xj = 1)− F̃ (x, z;xj = 0). (37)

Hence, from submodularity we have ∇jF̃ (x, z) ≤ f̃({j}, z). Using this simple fact we can
deduce that

E

[

‖∇F̃ (x, z)−∇F (x)‖2
]

≤ nmax
j∈[n]

E[f̃({j}, z)2]. (38)

Using the result of Lemma 11, the expression in (38), and a coordinate-wise analysis,
the bounds in Theorem 7 can be improved and specified for the case of multilinear extension
maximization problem as we show in the following theorem.
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Theorem 12 Consider Stochastic Continuous Greedy (SCG) outlined in Algorithm 2.
Recall the definition of the multilinear extension function F in (34) and the definitions of
r and mf in Lemma 11. Further, set the averaging parameter as ρt = 4/(t + 8)2/3. If
Assumption 4 holds and the function f is monotone and submodular, then the iterate xT

generated by SCG satisfies the inequality

E [F (xT )] ≥ (1− 1/e)OPT − 15DK

T 1/3
−mfrD

2

2T
, (39)

where K := max{3‖∇F (x0) − d0‖, 2
√
n
√

maxj∈[n] E[f̃({j}, z)2] +
√
3rmfD} and OPT it

the optimal value of Problem (34).

Proof The proof is similar to the proof of Theorem 7. Check Appendix J.

The result of Theorem 12 indicates that the sequence of iterates generated by SCG
achieves a (1−1/e)OPT− ǫ approximation guarantee. Note that the constants on the right
hand side of (39) are independent of n, except K that is at most proportional to

√
n. As a

result, we have the following guarantee for SCG in the case of multilinear functions.

Corollary 13 Consider Stochastic Continuous Greedy (SCG) outlined in Algorithm 2.
Suppose the conditions in Theorem 12 are satisfied. Then, the sequence of iterates generated
by SCG achieves a (1−1/e)OPT−ǫ solution after O(n3/2/ǫ3) iterations. As a consequence,
maximizing a stochastic Submodular set function with SCG requires O(n5/2/ǫ3) evaluations
of the function f̃ in order to reach a (1− 1/e)OPT − ǫ solution.

Proof According to the result in Theorem 12, SCG reaches a (1−1/e)OPT−O(n1/2/T 1/3)
solution after T iterations. Therefore, to achieve a ((1 − 1/e)OPT − ǫ) approximation,
O(n3/2/ǫ3) iterations are required. Since each iteration requires access to an unbiased
estimator of the gradient ∇F (x) and it can be computed by n samples from f̃(Si, z) (Re-
mark 10), then the total number of calls to the function f̃ to reach a (1 − 1/e)OPT − ǫ
solution is of order O(n5/2/ǫ3) for the SCG method.

The result in Corollary 13 shows that after at most O(n5/2/ǫ3) function evaluations of
the stochastic set function f̃ the iterates generated by SCG achieves a continuous solution
xt with an objective function value that satisfies E [F (xt)] ≥ (1−1/e)OPT−ǫ where OPT is
the optimal objective function value of Problem (34). Further, by using a lossless rounding
scheme we can obtain a discrete set S† such that E

[

f(S†)
]

≥ (1− 1/e)maxS∈I f(S)− ǫ.

Remark 14 According to Corollary 13, to reach a (1 − (1/e)OPT − ǫ) solution the total
number of calls to the function f̃ for our proposed SCG method is O(n5/2/ǫ3). The result
in [Badanidiyuru and Vondrak, 2013] shows that for the deterministic case where we have
access to f (not f̃), after O(n2/ǫ4) calls to f , one can find 1 − (1/e)OPT − ǫ solution.
Hence, if we apply both methods to the deterministic submodular case, the overall complexity
of our method is slightly worse than the one in [Badanidiyuru and Vondrak, 2013] in terms
of dependency on n, while the dependency of our result on ǫ is better than the one in
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[Badanidiyuru and Vondrak, 2013]. We would like to highlight that the proposed method and
its complexity bound in [Badanidiyuru and Vondrak, 2013] are for the deterministic setting,
and if one modifies the method in [Badanidiyuru and Vondrak, 2013] to be applicable to the
considered stochastic setting, its query complexity O(n2/ǫ4) will further increase.

Indeed, by following similar steps we can extend the result for NMSCG to the dis-
crete submodular maximization problem when the objective function is non-monotone and
stochastic. We formally prove this claim in the following theorem.

Theorem 15 Consider Non-monotone Stochastic Continuous Greedy (NMSCG) out-
lined in Algorithm 3. Recall the definition of the multilinear extension function F in (34)
and the definitions of r and mf in Lemma 11. Further, set the averaging parameter as
ρt = 4/(t+ 8)2/3. If Assumption 4 holds and the function f is non-monotone and submod-
ular, then the iterate xT generated by SCG satisfies the inequality

E [F (xT )] ≥ (1/e)OPT − 15DK

T 1/3
− mfrD

2

2T
, (40)

where K := max{3‖∇F (x0) − d0‖, 2
√
n
√

maxj∈[n] E[f̃({j}, z)2] +
√
3rmfD} and OPT it

the optimal value of Problem (34).

Proof The proof is similar to the proof of Theorem 9. Check Appendix K.

Corollary 16 Consider Non-monotone Stochastic Continuous Greedy (NMSCG) out-
lined in Algorithm 3. Suppose the conditions in Theorem 15 are satisfied. Then, the sequence
of iterates generated by NMSCG achieves a (1/e)OPT − ǫ solution after O(n3/2/ǫ3) iter-
ations. As a consequence, maximizing a stochastic Submodular set function with NMSCG
requires O(n5/2/ǫ3) evaluations of the function f̃ in order to reach a (1/e)OPT −ǫ solution.

5.1. Convergence Bounds Based on Curvature

For the continuous greedy method it has been shown that if the submodular function f has a
curvature c ∈ [0, 1] the algorithm reaches a (1/c)(1− e−c) approximation guarantee. In this
section, we show that the same improvement can be established for SCG in the stochastic
setting. To do so, we first formally define the curvature c of a monotone submodular function
f as

c := 1− min
S,j /∈S

f(S ∪ {j})− f(S)

f({j}) . (41)

Indeed, smaller curvature value c leads to an easier submodular maximization problem,
and, in this case, we should be able to achieve a tighter approximate solution. In the
following theorem, we match this expectation and show that if c < 1 the bound in (27) can
be improved.

Theorem 17 Consider the proposed Stochastic Continuous Greedy (SCG) defined in
(20)-(22). Further recall the definition of the function f curvature c in (41). If Assumption 4
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is satisfied and the function f is monotone and submodular, then the expected objective
function value for the iterate xT generated by SCG satisfies the inequality

E [F (xT )] ≥
1

c
(1− e−c)OPT − 15DK

T 1/3
− mfrD

2

2T
, (42)

where K := max{3‖∇F (x0)− d0‖, 2
√
n
√

maxj∈[n] E[f̃({j}, z)2] +
√
3rmfD}.

Proof Check Appendix L.

Corollary 18 Consider Stochastic Continuous Greedy (SCG) outlined in Algorithm 2.
Suppose the conditions in Theorem 17 are satisfied. Then, the sequence of iterates generated
by SCG achieves a ((1 − e−c)/c)OPT − ǫ solution after O(n3/2/ǫ3) iterations. As a con-
sequence, maximizing a stochastic submodular set function with SCG requires O(n5/2/ǫ3)
function evaluations.

6. Numerical Experiments

In this section, we compare the performances of the proposed stochastic conditional gradient
method with state-of-the-art algorithms in both convex and submodular settings.

6.1. Convex Setting

We first compare the proposed SFW algorithm and mini-batch FW for a stochastic quadratic
program of the form (2). Then, we compare their performances in solving a matrix comple-
tion problem. In this section, by mini-batch FW we refer to a variant of FW that simply
replaces gradients by a mini-batch of stochastic gradients.

Quadratic Programming. Consider a positive definite matrix A ∈ S
n
++, a vector

b ∈ R
n, a random variable z ∈ R

n, and the random diagonal matrix diag(z) ∈ R
n×n

defined by z. The function F is defined as

F (x) = E

[

F̃ (x, z)
]

= E

[

1

2
xT (A+ diag(z))x+ (b+ z)Tx

]

. (43)

We assume that each element of z is sampled from a normal distribution N (0, σ). Therefore,
the objective function can be simplified to F (x) = 1

2x
TAx+bTx. Further, we assume that

the set C is defined as C = {x ∈ R
n | l ≤ xi ≤ u}. Here, we assume that the distribution

is unknown to the algorithm and at each iteration we only have access to the stochastic
gradients ∇F̃ (x, z) = (A+ diag(z))x+ b+ z.

In our experiments, we set the dimension of the problem to n = 5 and the lower bound
and upper bounds for the set C to l = 10 and u = 100. We construct A and b in such a
way that the optimal solution of the unconstrained set, namely −A−1b, does not belong to
the set C.

Figure 1 demonstrates the suboptimality gap F (xT )− F (x∗) for the iterates generated
by the proposed SFW method (with batch size b = 1) as well as the naive stochastic
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Figure 1: Comparison of the performances of (deterministic) FW, mini-batch FW (b = 1,
b = 10, b = 50), and the proposed SFW method for the stochastic quadratic convex program
defined in (43). The left and right plots correspond to the cases that the variance is σ = 100
and σ = 300, respectively. In both settings, the proposed SFW method that only uses
a single stochastic gradient (b = 1) performs close to the full-batch (deterministic) FW
algorithm, and it outperforms the mini-batch FW method with even larger batch sizes
(b = {1, 10, 50}). This comparison is in terms of number of iterations. If we compare the
algorithms in terms of number of evaluated stochastic gradients the gap between SFW and
mini-batch FW algorithms with batch sizes larger than b = 1 will be even more significant
as in this experiment SFW uses only a single stochastic gradient per iteration.

implementation of FW with batch sizes b = {1, 10, 50} for the cases that the total number
of iterations is T = {100, 200, 400, 800, 1600, 3200, 6400, 12800}. We further illustrates the
performance of the (deterministic) FW as a benchmark. Indeed, to perform the update of
FW we use the exact gradient Ax+ b at each iteration. Note that the optimal solution x∗

and the optimal objective function value F (x∗) are pre-computed by solving the quadratic
program minx∈C

1
2x

TAx+bTx. The left and right plots correspond to the cases that σ = 100
and σ = 300, respectively. In the left plot, which corresponds to the case that σ = 100, we
observe that our proposed SFW method performs similar to the FW algorithm, while it uses
only a single noisy stochastic gradient per iteration. The vanilla mini-batch FW method
with a single stochastic gradient evaluation (b = 1) performs poorly. By increasing the size
of the batch, the performance of the mini-batch FW improves, but it still underperforms
SFW. In the right plot, which corresponds to the case with a larger variance, naturally the
gap between the deterministic FW method and the stochastic algorithms becomes more
significant. In this case, we observe that mini-batch FW even with large batch size of
b = 100 is significantly worse than the proposed SFW method that only uses a single
stochastic gradient per iteration. It is worth mentioning that increasing the batch size in
mini-batch FW accelerates convergence and improves convergence accuracy, however, the
suboptimality saturates at some point. In contrast, SFW converges to the optimal objective
function at a sublinear rate in both small and large variance cases, matching our theory.
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Matrix Completion. In this experiment, we study the performance of our proposed
SFW algorithm in solving a matrix completion problem which is a canonical application
of conditional gradient (Frank-Wolfe) type methods. We focus on a special case of matrix
completion in which matrices are assumed to be symmetric. In particular, consider a sym-
metric matrix C ∈ S

n, where we only have access to a subset of its indices indicated by O.
Note that as C is symmetric, if (i, j) is observed, i.e., (i, j) ∈ O, then the pair (j, i) is also
known, i.e., (j, i) ∈ O. Our goal is to find a symmetric positive semidefinite matrix X such
that its elements in the set O are close to the ones for C, while its nuclear rank is smaller
than a threshold. In other words, we focus on the optimization problem

min f(X) :=
1

2

∑

(i,j)∈O

‖Xij −Cij‖2

s. t. ‖X‖ � 0, ‖X‖∗ ≤ α. (44)

In our simulations, we set the dimension to n = 200. We form the observation matrix as
C = X̂ + E. Here, X̂ is defined as X̂ = WWT where W ∈ R

n×r has independent normal
distributed entries, and E is defined as E = 1

10(L + LT ) where L ∈ R
n×n has independent

normal distributed entries. In our experiments, we set the rank to r = 10 and the bound
on the nuclear norm to α = ‖X̂‖∗, where ‖X̂‖∗ is the nuclear norm of the matrix X̂. For
settings that X̂ is not known in advance, one might use different choices of α and pick
the one that performs better. We further define the set of observed entries O by sampling
the elements of the upper triangular part of C uniformly at random with probability 0.8.
Therefore, the size of the set O is around 0.8 × 2002 = 32, 000. In the realization that we
use the set O has 31, 884 elements.

To solve (44), by using FW method, we need to solve the subproblem (Hazan et al.,
2016, Chapter 7)

min tr(∇f(Xt)
TV)

s. t. ‖V‖ � 0, ‖V‖∗ ≤ α. (45)

where the gradient ∇f(Xk) ∈ R
n×n is defined as ∇f(Xt)i,j = Xij −Cij if (i, j) ∈ O, and

∇f(Xt)i,j = 0, otherwise. It can be shown that the solution to the subproblem (45) is given
by

Vt =

{

αvnv
T
n if λn ≥ 0,

0 if λn < 0,
(46)

where λn is the smallest eigenvalue of the gradient ∇f(Xt) and vn is its corresponding
eigenvector.

Indeed, evaluation of the gradient ∇f(Xt) requires access to all observed elements in
the set O which can be computationally costly. In such cases, one may use a subset of
the set O as an unbiased estimate of the gradient. In our experiments, we consider (i) the
mini-batch FW method that uses b elements of O to compute a stochastic approximation of
∇f(Xt), (ii) the growing mini-batch FW method proposed by Hazan and Luo (2016) which
uses a batch size of b = O(t2) at step t, and (iii) the proposed SFW method that uses the
average of stochastic gradients over time as suggested in (3).
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Figure 2: Comparison of the normalized error
∑

(i,j)∈O ‖Xij −Cij‖2/
∑

(i,j)∈O ‖Cij‖2 of the
mini-batch FW algorithm, the growing mini-batch FWmethod proposed in (Hazan and Luo,
2016), and our proposed SFW method for solving the matrix completion problem defined in
(44). For all the choices of batch sizes considered here (b = {10, 100, 1000}), the proposed
SFW method outperforms the corresponding version of the mini-batch FW algorithm. As
we observe, increasing the size of the mini-batch b improves the convergence speed of both
algorithms, but the mini-batch FW algorithm with b = 1000 still underperforms our pro-
posed method with b = 10. In terms of number of iterations, the growing-batch FW method
outperforms our proposed SFW method by using growing batches of size b = O(t2), e.g.,
at iteration t = 104 it uses 108 samples; however, in terms of number of samples processed,
SFW has the best performance as illustrated in the right plot.

Figure 2 illustrates the convergence paths of mini-batch FW and SFW for batch sizes
of b = {10, 100, 1000} as well as the convergence path of growing-batch FW in terms of
both number of iterations and number of samples processed. Here, the normalized error is
defined as

Normalized error :=

∑

(i,j)∈O ‖Xij −Cij‖2
∑

(i,j)∈O ‖Cij‖2
.

Note that the stepsize for all the three algorithms is γt =
1

t+1 and the averaging parameter

for our proposed SFW algorithm is ρt = 1
(t+1)2/3

. As we observe in Figure 2a, even for

a large batch size of b = 1000, the mini-batch FW algorithm cannot obtain a normalized
error better than 0.55 after 10, 000 iterations. On the other hand, SFW with a small batch
size of b = 10 achieves an error of 0.25 after 10, 000 iterations. Indeed, by increasing the
batch size for SFW its performance becomes better. In particular, SFW with b = 1000
achieves a normalized of error of 2.3 × 10−3 after 10, 000 iterations. We would like to
highlight that even for the case that we set b = 1000, we use less than 3.2% of the observed
elements at each iteration – The number of observed elements is 31, 884. However, the best
performance in terms of number of iterations belongs to the growing-batch FW method
that uses a batch size of b = O(t2). This is not surprising as the convergence rate of the
growing-batch FW algorithm is O(1/t), while the convergence rate of our proposed SFW is
O(1/t1/3). However, the number of processed samples at each iteration by our method is
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Figure 3: Comparison of the normalized error
∑

(i,j)∈O ‖Xij −Cij‖2/
∑

(i,j)∈O ‖Cij‖2 of the
proposed SFW method with different choices of the averaging parameter ρt for solving the
matrix completion problem defined in (44). In this case we set the other parameters to
b = 100 and γt = 1/(t + 1). As suggested by our theory, the best performance belongs to
the case that ρt = O(t−2/3).

much smaller than the one for growing-batch FW when t becomes large. To be more precise,
after T iterations our method uses Tb samples, where b is a constant much smaller than T ,
while the growing-batch FW uses O(T 3) samples. Therefore, to have a better comparison
between these algorithms we also compare their normalized errors versus the number of
processed samples which is a more accurate measure for comparing the sample complexity
of these algorithms. As we observe in Figure 2b, the proposed SFW method outperforms
both mini-batch FW and growing-batch FW algorithms when we compare their normalized
errors versus number of samples used. Note that in theory, both growing-batch FW and
SFWmay require processing O(1/ǫ3) samples to reach a suboptimality gap of f(xt)−f∗ ≤ ǫ,
but in practice we observe that the proposed SFW method outperforms growing-batch FW.

We proceed to study the effect of the averaging parameter ρt on the convergence of
SFW. Our theoretical bound suggests that the best convergence guarantee is achieved when
ρt = O(t−2/3). In this experiment we aim to check if this choice is reasonable relative to
other possible sublinear rates. To do so, we compare the convergence paths of SFW with
four different choices ρt = O(t−1/3), ρt = O(t−1/2), ρt = O(t−2/3), and ρt = O(t−1). As
it can be observed in Figure 3, the best performance among these four choices belongs
to ρt = O(t−2/3) used in our theoretical results. We would like to highlight that this
experiment does not prove that ρt = O(t−2/3) is the optimal choice.

6.2. Submodular Setting

For the submodular setting, we consider a movie recommendation application (Stan et al.,
2017) consisting of N users and n movies. Each user i has a user-specific utility function
f(·, i) for evaluating sets of movies. The goal is to find a set of k movies such that in
expectation over users’ preferences it provides the highest utility, i.e., max|S|≤k f(S), where
f(S)

.
= Ei∼P [f(S, i)]. This is an instance of the (discrete) stochastic submodular maximiza-

tion problem in (33). For simplicity, we assume f has the form of an empirical objective
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function, i.e. f(S) = 1
N

∑N
i=1 f(S, i). In other words, the distribution P is assumed to be

uniform over the set of users. The continuous counterpart of this problem is to consider the
the multilinear extension F (·, i) of any function f(·, i) and solve the problem in the contin-
uous domain as follows. Let F (x) = Ei∼D[F (x, i)] for x ∈ [0, 1]n and define the constraint
set C = {x ∈ [0, 1]N :

∑n
i=1 xi ≤ k}. The discrete and continuous optimization formulations

lead to the same optimal value (Calinescu et al., 2011):

max
S:|S|≤k

f(S) = max
x∈C

F (x).

Therefore, by running SCG we can find a solution in the continuous domain that is at
least 1− 1/e approximation to the optimal value. By rounding that fractional solution (for
instance via randomized Pipage rounding (Calinescu et al., 2011)) we obtain a set whose
utility is at least 1 − 1/e of the optimum solution set of size k. We note that randomized
Pipage rounding does not need access to the value of f . We also remark that each iteration
of SCG can be done very efficiently in O(n) time (the linear program step reduces to finding
the largest k elements of a vector of length n). Therefore, this approach easily scales to
big data scenarios where the size of the data set N (e.g. number of users) or the number of
items n (e.g. number of movies) are very large.

In our experiments, we consider the following baselines:

(i) Stochastic Continuous Greedy (SCG): with ρt =
1
2 t

−2/3 and mini-batch size b. The
details for computing an unbiased estimator for the gradient of F are given in Re-
mark 10.

(ii) Stochastic Gradient Ascent (SG/SGA) of (Hassani et al., 2017): with stepsize µt =
c/
√
t and mini-batch size b.

(iii) Frank-Wolfe (FW) variant of (Bian et al., 2017b; Calinescu et al., 2011): with param-
eter T for the total number of iterations and batch size b (we further let α = 1, δ = 0,
see Algorithm 1 in (Bian et al., 2017b) or the continuous greedy method of (Calinescu
et al., 2011) for more details).

(iv) Batch-mode Greedy (Greedy): by running the vanilla greedy algorithm (in the discrete
domain) in the following way. At each round of the algorithm (for selecting a new
element), b random users are picked and the function f is estimated by the average
over the b selected users.

To run the experiments we use the MovieLens data set. It consists of 1 million ratings
(from 1 to 5) by N = 6041 users for n = 4000 movies. Let ri,j denote the rating of user
i for movie j (if such a rating does not exist we assign ri,j to 0). In our experiments, we
consider two well motivated objective functions. The first one is called “facility location ”
where the valuation function by user i is defined as f(S, i) = maxj∈S ri,j . In words, the
way user i evaluates a set S is by picking the highest rated movie in S. Thus, the objective
function is

ffac(S) =
1

N

N
∑

i=1

max
j∈S

ri,j .
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Figure 4: Comparison of the performances of SG/SGA, Greedy, FW, and SCG in a movie
recommendation application. In all plots, y-axis represents the objective function value
f(S). Fig. 4a illustrates the performance of the algorithms in terms of the facility-location
objective value w.r.t. the cardinality constraint size k after T = 2000 iterations. Fig. 4b
compares the considered methods in terms of runtime (for a fixed k = 40) by illustrating the
facility location objective function value vs. the number of (simple) function evaluations.
Fig. 4c demonstrates the concave-over-modular objective function value vs. the size of the
cardinality constraint k after running the algorithms for T = 2000 iterations.

In our second experiment, we consider a different user-specific valuation function which
is a concave function composed with a modular function, i.e., f(S, i) = (

∑

j∈S ri,j)
1/2.

Again, by considering the uniform distribution over the set of users, we obtain

fcon(S) =
1

N

N
∑

i=1

(

∑

j∈S

ri,j

)1/2
.

Figure 4 depicts the performance of different algorithms for the two proposed objective
functions. As Figures 4a and 4c show, the FW algorithm needs a higher mini-batch size
to be comparable to SCG. Note that a smaller batch size leads to less computational effort
(under the same value for b, T , the computational complexity of FW, SGA, SCG is almost
the same). Figure 4b shows the performance of the algorithms with respect to the number
of times the simple functions f(·, i) are evaluated. Note that the total number of (simple)
function evaluations for SGA and SCG is nbT , where T is the number of iterations. Also,
for Greedy the total number of evaluations is nkb. This further shows that SCG has a
better computational complexity requirement w.r.t. SGA as well as the Greedy algorithm.

7. Conclusion

In this paper, we developed stochastic conditional gradient methods for solving convex
minimization and submodular maximization problems. The main idea of the proposed
methods in both domains was using a momentum term in the stochastic gradient ap-
proximation step to reduce the noise of the stochastic approximation. In particular, in
the convex setting, we proposed a stochastic variant of the Frank-Wolfe algorithm called
Stochastic Frank-Wolfe that achieves an ǫ-suboptimal objective function value after at
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most O(1/ǫ3) iterations, if the expected objective function is smooth. The main advantage
of the Stochastic Frank-Wolfe method (SFW) comparing to other stochastic conditional
gradient methods for stochastic convex minimization is the required condition on the batch
size. In particular, the batch size for SFW can be as small as 1, while the state-of-the-art
stochastic conditional gradient methods require a growing batch size.

In the submodular setting, we provided the first tight approximation guarantee for
maximizing a stochastic monotone DR-submodular function subject to a general convex
body constraint. We developed Stochastic Continuous Greedy that achieves a [(1 −
1/e)OPT − ǫ] guarantee (in expectation) with O(1/ǫ3) stochastic gradient computations.
We further extended our result to the non-monotone case and introduced Non-monotone

Stochastic Continuous Greedy that obtains a (1/e) approximation guarantee. We also
demonstrated that our continuous algorithm can be used to provide the first (1−1/e) tight
approximation guarantee for maximizing amonotone but stochastic submodular set function
subject to a general matroid constraint. Likewise, we provided the first 1/e approximation
guarantee for maximizing a non-monotone stochastic submodular set function subject to a
general matroid constraint. We believe that our results provide an important step towards
unifying discrete and continuous submodular optimization in the stochastic setting.
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Appendix

A. Proof of Lemma 1

Use the definition dt := (1− ρt)dt−1 + ρt∇F̃ (xt, zt) to write ‖∇F (xt)− dt‖2 as

‖∇F (xt)− dt‖2 = ‖∇F (xt)− (1− ρt)dt−1 − ρt∇F̃ (xt, zt)‖2. (47)
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Add and subtract the term (1 − ρt)∇F (xt−1) to the right hand side of (47), regroup the
terms and expand the squared term to obtain

‖∇F (xt)− dt‖2

= ‖∇F (xt)− (1− ρt)∇F (xt−1) + (1− ρt)∇F (xt−1)− (1− ρt)dt−1 − ρt∇F̃ (xt, zt)‖2

= ‖ρt(∇F (xt)−∇F̃ (xt, zt))+(1− ρt)(∇F (xt)−∇F (xt−1))+(1− ρt)(∇F (xt−1)−dt−1)‖2

= ρ2t ‖∇F (xt)−∇F̃ (xt, zt)‖2 + (1− ρt)
2‖∇F (xt)−∇F (xt−1)‖2

+ (1− ρt)
2‖∇F (xt−1)− dt−1‖2

+ 2ρt(1− ρt)(∇F (xt)−∇F̃ (xt, zt))
T (∇F (xt)−∇F (xt−1))

+ 2ρt(1− ρt)(∇F (xt)−∇F̃ (xt, zt))
T (∇F (xt−1)− dt−1)

+ 2(1− ρt)
2(∇F (xt)−∇F (xt−1))

T (∇F (xt−1)− dt−1). (48)

Compute the conditional expectation E [(.) | Ft] for both sides of (48), and use the fact

that ∇F̃ (xt, zt) is an unbiased estimator of the gradient ∇F (xt), i.e., E
[

∇F̃ (xt, zt) | Ft

]

=

∇F (xt), to obtain

E
[

‖∇F (xt)− dt‖2 | Ft

]

= ρ2tE
[

‖∇F (xt)−∇F̃ (xt, zt)‖2 | Ft

]

+ (1− ρt)
2‖∇F (xt)−∇F (xt−1)‖2

+ (1− ρt)
2‖∇F (xt−1)− dt−1‖2 + 2(1− ρt)

2(∇F (xt)−∇F (xt−1))
T (∇F (xt−1)− dt−1).

(49)

Use the condition in Assumption 3 to replace E
[

‖∇F (xt)−∇F̃ (xt, zt)‖2 | Ft

]

by its upper

bound σ2. Further, using Young’s inequality to substitute the inner product 2〈∇F (xt) −
∇F (xt−1),∇F (xt−1)−dt−1〉 by the upper bounded βt‖∇F (xt−1)−dt−1‖2+(1/βt)‖∇F (xt)−
∇F (xt−1)‖2 where βt > 0 is a free parameter. Applying these substitutions into (49) yields

E
[

‖∇F (xt)− dt‖2 | Ft

]

≤ ρ2tσ
2 + (1− ρt)

2(1 + βt
−1)‖∇F (xt)−∇F (xt−1)‖2

+ (1− ρt)
2(1 + βt)‖∇F (xt−1)− dt−1‖2. (50)

According to Assumption 2, the norm ‖∇F (xt)−∇F (xt−1)‖ is bounded above by L‖xt −
xt−1‖. In addition, the condition in Assumption 4 implies that L‖xt − xt−1‖ = L 1

T ‖vt −
xt‖ ≤ 1

T LD. Therefore, we can replace ‖∇F (xt) −∇F (xt−1)‖ in (50) by its upper bound
1
T LD and write

E
[

‖∇F (xt)− dt‖2 | Ft

]

≤ ρ2tσ
2 + γ2t (1− ρt)

2(1 + βt
−1)L2D2 + (1− ρt)

2(1 + βt)‖∇F (xt−1)− dt−1‖2. (51)

Since we assume that ρt ≤ 1 we can replace all the terms (1 − ρt)
2 in (51) by (1 − ρt).

Applying this substitution into (51) and setting β := ρt/2 lead to the inequality

E
[

‖∇F (xt)− dt‖2 | Ft

]

≤ ρ2tσ
2 + γ2t (1− ρt)(1 +

2

ρt
)L2D2

+ (1− ρt)(1 +
ρt
2
)‖∇F (xt−1)− dt−1‖2. (52)
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Now using the inequalities (1−ρt)(1+(2/ρt)) ≤ (2/ρt) and (1−ρt)(1+(ρt/2)) ≤ (1−ρt/2)
we obtain

E
[

‖∇F (xt)− dt‖2 | Ft

]

≤ ρ2tσ
2 +

2L2D2γ2t
ρt

+
(

1− ρt
2

)

‖∇F (xt−1)− dt−1‖2, (53)

and the claim in (9) follows.

B. Proof of Lemma 2

Based on the L-smoothness of the expected function F we show that F (xt+1) is bounded
above by

F (xt+1) ≤ F (xt) +∇F (xt)
T (xt+1 − xt) +

L

2
‖xt+1 − xt‖2. (54)

Replace the terms xt+1 − xt in (54) by γt+1(vt − xt) and add and subtract the term
γt+1d

T
t (vt − xt) to the right hand side of the resulted inequality to obtain

F (xt+1) ≤ F (xt) + γt+1(∇F (xt)− dt)
T (vt − xt) + γt+1d

T
t (vt − xt) +

Lγ2t+1

2
‖vt − xt‖2.

(55)

Since 〈x∗,dt〉 ≥ minv∈C{〈v,dt〉} = 〈vt,dt〉, we can replace the inner product 〈v,dt〉 in (55)
by its upper bound 〈x∗,dt〉. Applying this substitution leads to

F (xt+1) ≤ F (xt) + γt+1(∇F (xt)− dt)
T (vt − xt) + γt+1d

T
t (x

∗ − xt) +
Lγ2t+1

2
‖vt − xt‖2.

(56)

Add and subtract γt+1∇F (xt)
T (x∗ − xt) to the right hand side of (56) and regroup the

terms to obtain

F (xt+1) ≤ F (xt) + γt+1(∇F (xt)− dt)
T (vt − x∗) + γt+1∇F (xt)

T (x∗ − xt)

+
LDγ2t+1

2
‖vt − xt‖2. (57)

Using the Cauchy-Schwarz inequality, we can show that the inner product (∇F (xt) −
dt)

T (vt − x∗) is bounded above by ‖∇F (xt)− dt‖‖vt − x∗‖. Moreover, the inner product
∇F (xt)

T (x∗− xt) is upper bounded by F (x∗)−F (xt) due to the convexity of the function
F . Applying these substitutions into (57) implies that

F (xt+1) ≤ F (xt) + γt+1‖∇F (xt)− dt‖‖vt − x∗‖ − γt+1(F (xt)−F (x∗)) +
Lγ2t+1

2
‖vt − x∗‖2

≤ F (xt) + γt+1D‖∇F (xt)− dt‖ − γt+1(F (xt)− F (x∗)) +
LD2γ2t+1

2
, (58)

where the second inequality holds since ‖vt−x∗‖ ≤ D according to Assumption 1. Finally,
subtract the optimal objective function value F (x∗) from both sides of (58) and regroup
the terms to obtain

F (xt+1)− F (x∗) ≤ (1− γt+1)(F (xt)− F (x∗)) + γt+1D‖∇F (xt)− dt‖+
LD2γ2t+1

2
, (59)

and the claim in (10) follows.
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C. Proof of Theorem 3

Computing the expectation of both sides of (10) with respect to F0 yields

E [F (xt+1)−F (x∗)] ≤ (1− γt+1)E [(F (xt)−F (x∗))] + γt+1DE [‖∇F (xt)− dt‖] +
LD2γ2t+1

2
(60)

Using Jensen’s inequality, the expression E [‖∇F (xt)− dt‖] can be substituted by its upper
bound

√

E [‖∇F (xt)− dt‖2] to obtain

E [F (xt+1)− F (x∗)]

≤ (1− γt+1)E [(F (xt)− F (x∗))] + γt+1D
√

E [‖∇F (xt)− dt‖2] +
LD2γ2t+1

2
. (61)

Next, we study the rate that the sequence of expected gradient errors E
[

‖∇F (xt)− dt‖2
]

converges to zero. To do so, we first prove the following lemma which is an extension of
Lemma 8 in (Mokhtari and Ribeiro, 2015).

Lemma 19 Consider the scalars b ≥ 0 and c > 1. Let φt be a sequence of real numbers
satisfying

φt ≤
(

1− c

(t+ t0)α

)

φt−1 +
b

(t+ t0)2α
, (62)

for some 0 ≤ α ≤ 1 and t0 ≥ 0. Then, the sequence φt converges to zero at the following
rate

φt ≤
Q

(t+ t0 + 1)α
, (63)

where Q := max{φ0(t0 + 1)α, b/(c− 1)}.

Proof We prove the claim in (63) by induction. First, note that Q ≥ φ0(t0 + 1)α and
therefore φ0 ≤ Q/(t0+1)α and the base step of the induction holds true. Now assume that
the condition in (63) holds for t = k, i.e.,

φk ≤
Q

(k + 1 + t0)α
. (64)

The goal is to show that (63) also holds for t = k + 1. To do so, first set t = k + 1 in the
expression in (62) to obtain

φk+1 ≤
(

1− c

(k + 1 + t0)α

)

φk +
b

(k + 1 + t0)2α
. (65)

According to the definition of Q, we know that b ≤ Q(c−1). Moreover, based on the induc-
tion hypothesis it holds that φk ≤ Q

(k+1+t0)α
. Using these inequalities and the expression in

(65) we can write

φk+1 ≤
(

1− c

(k + 1 + t0)α

)

Q

(k + 1 + t0)α
+

Q(c− 1)

(k + 1 + t0)2α
. (66)
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Pulling out Q
(k+1+t0)α

as a common factor and simplifying and reordering terms it follows

that (66) is equivalent to

φk+1 ≤ Q

(

(k + 1 + t0)
α − 1

(k + 1 + t0)2α

)

. (67)

Based on the inequality

((k + 1 + t0)
α − 1)((k + 1 + t0)

α + 1) < (k + 1 + t0)
2α, (68)

the result in (67) implies that

φk+1 ≤
(

Q

(k + 1 + t0)α + 1

)

. (69)

Since (k + 1 + t0)
α + 1 ≥ (k + 1 + t0 + 1)α = (k + t0 + 2)α, the result in (69) implies that

φk+1 ≤
(

Q

(k + 2 + t0)α

)

, (70)

and the induction step is complete. Therefore, the result in (63) holds for all t ≥ 0.

Now using the result in Lemma 19 we can characterize the convergence of the sequence of
expected errors E

[

‖∇F (xt)− dt‖2
]

to zero. To be more precise, compute the expectation of

both sides of the result in (9) with respect to F0 and set γt = 2/(t+8) and ρt = 4/(t+8)2/3

to obtain

E
[

‖∇F (xt)− dt‖2
]

≤
(

1− 2

(t+ 8)2/3

)

E
[

‖∇F (xt−1)− dt−1‖2
]

+
16σ2 + 2L2D2

(t+ 8)4/3
. (71)

According to the result in Lemma 19, the inequality in (71) implies that

E
[

‖∇F (xt)− dt‖2
]

≤ Q

(t+ 9)2/3
, (72)

where Q = max{5‖∇F (x0) − d0‖2, 16σ2 + 2L2D2}. This result is achieved by setting
φt = E

[

‖∇F (xt)− dt‖2
]

, α = 2/3, b = 16σ2 + 2L2D2, c = 2, and t0 = 8 in Lemma 19.

Now we proceed by replacing the term E
[

‖∇F (xt)− dt‖2
]

in (61) by its upper bound
in (72) and γt+1 by 2/(t+ 9) to write

E [F (xt+1)− F (x∗)] ≤
(

1− 2

t+ 9

)

E [(F (xt)− F (x∗))] +
2D
√
Q

(t+ 9)4/3
+

2LD2

(t+ 9)2
. (73)

Note that we can write (t+9)2 = (t+9)4/3(t+9)2/3 ≥ (t+9)4/392/3 ≥ 4(t+s)4/3.Therefore,

E [F (xt+1)− F (x∗)] ≤
(

1− 2

t+ 9

)

E [(F (xt)− F (x∗))] +
2D
√
Q+ LD2/2

(t+ 9)4/3
. (74)
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Now we proceed to prove by induction for t ≥ 0 that

E [F (xt)− F (x∗)] ≤ Q′

(t+ 9)1/3
(75)

where Q′ = max{91/3(F (x0) − F (x∗)), 2D
√
Q + LD2/2}. To do so, first note that Q′ ≥

91/3(F (x0) − F (x∗)), and, therefore, F (x0) − F (x∗) ≤ Q′/91/3. This leads to to the
base of induction for t = 0. Now assume that the inequality (75) holds for t = k, i.e.,

E [F (xk)− F (x∗)] ≤ Q′

(k+9)1/3
and we aim to show that it also holds for t = k + 1.

To do so first set t = k in (74) and replace E [F (xk)− F (x∗)] by its upper bounds
Q′

(k+9)1/3
(as guaranteed by the hypothesis of the induction) to obtain

E [F (xk+1)− F (x∗)] ≤
(

1− 2

k + 9

)

Q′

(k + 9)1/3
+

2D
√
Q+ LD2/2

(k + 9)4/3
. (76)

Now as in the proof of Lemma 19, replace 2D
√
Q+LD2/2 by Q′ and simplify the terms to

reach the inequality

E [F (xk+1)− F (x∗)] ≤ Q′

(

k + 8

(k + 9)4/3

)

≤ Q′

(k + 10)1/3
, (77)

and the induction is complete. Therefore, the inequality in (75) holds for all t ≥ 0.

D. Proof of Theorem 4

To prove the claim in (13) we first show that the sum
∑∞

t=1 ρt‖∇F (xt−1)− dt−1‖2 is finite
almost surely. To do so, we construct a supermartingale using the result in Lemma 1. Let’s
define the stochastic process ζt as

ζt := ‖∇F (xt)− dt‖2 + 2L2D2
∞
∑

u=t+1

γ2u
ρu

+ σ2
∞
∑

u=t+1

ρ2u. (78)

Note that ζt is well defined because the sums on the the right hand side of (78) are finite
according to the hypotheses of Theorem 4. Further, define the stochastic process ξt as

ξt :=
ρt+1

2
‖∇F (xt)− dt‖2. (79)

Considering the definitions of the sequences ζt and ξt and expression (9) in Lemma 1 we
can write

E [ζt | xt] ≤ ζt−1 − ξt−1. (80)

Since the sequences ζt and ξt are nonnegative it follows from (80) that they satisfy the
conditions of the supermartingale convergence theorem; see e.g. (Theorem E7.4 in (Solo
and Kong, 1994)). Therefore, we can conclude that: (i) The sequence ζt converges almost
surely to a limit. (ii) The sum

∑∞
t=0 ξt <∞ is almost surely finite. Hence, the second result

implies that
∞
∑

t=1

ρt‖∇F (xt−1)− dt−1‖2 <∞, a.s. (81)
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Based on expression (10) in Lemma 2, we know that the suboptimality F (xt+1)− F (x∗) is
upper bounded by

F (xt+1)− F (x∗) ≤ (1− γt+1)(F (xt)− F (x∗)) + γt+1D‖∇F (xt)− dt‖+
LD2γ2t+1

2
. (82)

Further use Young’s inequality to replace γt+1‖∇F (xt) − dt‖ by the sum βt+1‖∇F (xt) −
dt‖2 + γ2t+1/βt+1 where βt+1 is a free positive parameter. Set βt+1 = ρt+1 to obtain
γt+1‖∇F (xt) − dt‖ ≤ ρt+1‖∇F (xt) − dt‖2 + γ2t+1/ρt+1. Applying this substitution into
(82) implies that

F (xt+1)− F (x∗) ≤ (1−γt+1)(F (xt)− F (x∗))+ρt+1D‖∇F (xt)−dt‖2+
Dγ2t+1

ρt+1
+

LD2γ2t+1

2
.

(83)
To conclude the almost sure convergence of the sequence F (xt)−F (x∗) to zero from the

expression in (82) we first state the following Lemma from (Bertsekas and Tsitsiklis, 1996).

Lemma 20 Let {Xt}, {Yt}, and {Zt} be three sequences of numbers such that Yt ≥ 0 for
all t ≥ 0. Suppose that

Xt+1 ≤ Xt − Yt + Zt, for t = 0, 1, 2, . . . (84)

and
∑∞

t=0 Zt < ∞. Then, either Xt → −∞ or else {Xt} converges to a finite value and
∑∞

t=0 Yt <∞.

From now on we focus on realizations that support
∑∞

t=1 ρt‖∇F (xt−1) − dt−1‖2 < ∞
which have probability 1, according to the result in (81).

Consider the outcome of Lemma 20 with the identifications Xt = F (xt) − F (x∗), Yt =

γt+1(F (xt)−F (x∗)), and Zt = ρt+1D‖∇F (xt)−dt‖2+ Dγ2
t+1

ρt+1
+

LD2γ2
t+1

2 . Since the sequence

Xt = F (xt) − F (x∗) is always non-negative, the first outcome of Lemma 20 is impossible
and therefore we obtain that F (xt)− F (x∗) converges to a finite limit and

∞
∑

t=0

γt+1F (xt)− F (x∗) <∞. (85)

Recall that both of these results hold almost surely, since they are valid for the realization
that

∑∞
t=1 ρt‖∇F (xt−1)−dt−1‖2 <∞, which occur with probability 1 as shown in (81). The

result in (85) implies that lim inft→∞ F (xt)−F (x∗) = 0 almost surely. Moreover, we know
that the sequence {F (xt) − F (x∗)} almost surely converges to a finite limit. Combining
these two observation we obtain that the finite limit is zero, and, therefore, limt→∞ F (xt)−
F (x∗) = 0 almost surely. Hence, the claim in (13) follows.

E. Proof of Lemma 6

By following the steps from (47) to (49) in the proof of Lemma 1 we can show that

E
[

‖∇F (xt)− dt‖2 | Ft

]

= ρ2tE
[

‖∇F (xt)−∇F̃ (xt, zt)‖2 | Ft

]

+ (1− ρt)
2‖∇F (xt−1)− dt−1‖2

+ (1− ρt)
2‖∇F (xt)−∇F (xt−1)‖2 + 2(1− ρt)

2〈∇F (xt)−∇F (xt−1),∇F (xt−1)− dt−1〉.
(86)
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The term E

[

‖∇F (xt)−∇F̃ (xt, zt)‖2 | Ft

]

can be bounded above by σ2 according to As-

sumption 6. Based on Assumptions 4 and 5, we can also show that the squared norm
‖∇F (xt) − ∇F (xt−1)‖2 is upper bounded by L2D2/T 2. Moreover, the inner product
2〈∇F (xt)−∇F (xt−1),∇F (xt−1)−dt−1〉 can be upper bounded by βt‖∇F (xt−1)−dt−1‖2+
(1/βt)L

2D2/T 2 using Young’s inequality (i.e., 2〈a,b〉 ≤ β‖a‖2 + ‖b‖2/β for any a,b ∈ R
n

and β > 0) and the conditions in Assumptions 4 and 5, where βt > 0 is a free scalar.
Applying these substitutions into (49) leads to

E
[

‖∇F (xt)− dt‖2 | Ft

]

≤ ρ2tσ
2 + (1− ρt)

2(1 +
1

βt
)
L2D2

T 2
+ (1− ρt)

2(1 + βt)‖∇F (xt−1)− dt−1‖2. (87)

Now by following the steps from (50) to (53) and computing the expected value with respect
to F0 we obtain

E
[

‖∇F (xt)− dt‖2
]

≤
(

1− ρt
2

)

E
[

‖∇F (xt−1)− dt−1‖2
]

+ ρ2tσ
2 +

2L2D2

ρtT 2
. (88)

Define φt := E
[

‖∇F (xt)− dt‖2
]

and set ρt =
4

(t+8)2/3
to obtain

φt ≤
(

1− 2

(t+ 8)2/3

)

φt−1 +
16σ2

(t+ 8)4/3
+

L2D2(t+ 8)2/3

2T 2
. (89)

Now use the conditions 8 ≤ T and t ≤ T to replace 1/T in (89) by its upper bound 2/(t+8).
Applying this substitution leads to

φt ≤
(

1− 2

(t+ 8)2/3

)

φt−1 +
16σ2 + 2L2D2

(t+ 8)4/3
. (90)

Now using the result in Lemma 19, we obtain that

φt ≤
Q

(t+ 9)2/3
, (91)

where Q := max{5φ0, 16σ
2 + 2L2D2}. Replacing φt by its definition E

[

‖∇F (xt)− dt‖2
]

yields (26).

F. Proof of Theorem 7

Let x∗ be the global maximizer within the constraint set C. Based on the smoothness of
the function F with constant L we can write

F (xt+1) ≥ F (xt) + 〈∇F (xt),xt+1 − xt〉 −
L

2
||xt+1 − xt||2

= F (xt) +
1

T
〈∇F (xt),vt〉 −

L

2T 2
||vt||2, (92)
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where the equality follows from the update in (22). Since vt is in the set C, it follows from
Assumption 4 that the norm ‖vt‖2 is bounded above by D2. Apply this substitution and
add and subtract the inner product 〈dt,vt〉 to the right hand side of (92) to obtain

F (xt+1) ≥ F (xt) +
1

T
〈vt,dt〉+

1

T
〈vt,∇F (xt)− dt〉 −

LD2

2T 2

≥ F (xt) +
1

T
〈x∗,dt〉+

1

T
〈vt,∇F (xt)− dt〉 −

LD2

2T 2
. (93)

Note that the second inequality in (93) holds since based on (21) we can write

〈x∗,dt〉 ≤ max
v∈C
{〈v,dt〉} = 〈vt,dt〉. (94)

Now add and subtract the inner product 〈x∗,∇F (xt)〉/T to the RHS of (93) to get

F (xt+1) ≥ F (xt) +
1

T
〈x∗,∇F (xt)〉+

1

T
〈vt − x∗,∇F (xt)− dt〉 −

LD2

2T 2
. (95)

We further have 〈x∗,∇F (xt)〉 ≥ F (x∗)−F (xt); this follows from monotonicity of F as well
as concavity of F along positive directions; see, e.g., (Calinescu et al., 2011). Moreover,
by Young’s inequality we can show that the inner product 〈vt − x∗,∇F (xt) − dt〉 is lower
bounded by

〈vt − x∗,∇F (xt)− dt〉 ≥ −
βt
2
||vt − x∗||2 − 1

2βt
||∇F (xt)− dt||2, (96)

for any βt > 0. By applying these substitutions into (95) we obtain

F (xt+1) ≥ F (xt) +
1

T
(F (x∗)− F (xt))−

LD2

2T 2
− 1

2T

(

βt||vt − x∗||2 + ||∇F (xt)− dt||2
βt

)

.

(97)

Replace ||vt − x∗||2 by its upper bound 4D2 and compute the expected value of (97) to
write

E [F (xt+1)]

≥ E [F (xt)] +
1

T
E [F (x∗)− F (xt))]−

1

2T

[

4βtD
2 +

E
[

||∇F (xt)− dt||2
]

βt

]

− LD2

2T 2
. (98)

Substitute E
[

||∇F (xt)− dt||2
]

by its upper bound Q/((t+ 9)2/3) according to the result in

(26). Further, set βt = (Q1/2)/(2D(t+9)1/3) and regroup the resulted expression to obtain

E [F (x∗)− F (xt+1)] ≤
(

1− 1

T

)

E [F (x∗)− F (xt)] +
2DQ1/2

(t+ 9)1/3T
+

LD2

2T 2
. (99)

By applying the inequality in (99) recursively for t = 0, . . . , T − 1 we obtain

E [F (x∗)− F (xT )] ≤
(

1− 1

T

)T

(F (x∗)− F (x0)) +
T−1
∑

t=0

2DQ1/2

(t+ 9)1/3T
+

T−1
∑

t=0

LD2

2T 2
. (100)
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Note that we can write

T−1
∑

t=0

1

(t+ 9)1/3
≤ 1

91/3
+

∫ T−1

t=0

1

(t+ 9)1/3
dt

=
1

91/3
+

3

2
(t+ 9)2/3 |t=T−1 −

3

2
(t+ 9)2/3 |t=0

≤ 3

2
(T + 8)2/3

≤ 15

2
T 2/3 (101)

where the last inequality holds since (T + 8)2/3 ≤ 5T 2/3 for any T ≥ 1. By simplifying the
terms on the right hand side (100) and using the inequality in (101) we can write

E [F (x∗)− F (xT )] ≤
1

e
(F (x∗)− F (x0)) +

15DQ1/2

T 1/3
+

LD2

2T
. (102)

Here, we use the fact that F (x0) ≥ 0, and hence the expression in (102) can be simplified
to

E [F (xT )] ≥ (1− 1/e)F (x∗)− 15DQ1/2

T 1/3
− LD2

2T
, (103)

and the claim in (27) follows.

G. Proof of Theorem 8

Following the steps of the proof of Theorem 7 we can derive the inequality

F (xt+1) ≥ F (xt) +
1

T
〈x∗,∇F (xt)〉+

1

T
〈vt − x∗,∇F (xt)− dt〉 −

LD2

2T 2
. (104)

Using the definition of weak DR-submodularity and monotonicity of F we can show that
〈x∗,∇F (xt)〉 ≥ γ(F (x∗)− F (xt)). Further, based on Young’s inequality the inner product
〈vt − x∗,∇F (xt) − dt〉 is lower bounded by −(βt/2)||vt − x∗||2 − (1/2βt)||∇F (xt)− dt||2
for any βt > 0. Applying these substitutions into (104) leads to

F (xt+1) ≥ F (xt) +
γ

T
(F (x∗)− F (xt))−

LD2

2T 2
− 1

2T

(

βt||vt − x∗||2 + ||∇F (xt)− dt||2
βt

)

.

(105)

Substitute ||vt− x∗||2 by its upper bound 4D2 and compute the expected value of (105) to
write

E [F (xt+1)]

≥ E [F (xt)] +
γ

T
E [F (x∗)− F (xt))]−

1

2T

[

4βtD
2 +

E
[

||∇F (xt)− dt||2
]

βt

]

− LD2

2T 2
. (106)
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Substitute E
[

||∇F (xt)− dt||2
]

by its upper bound Q/((t+ 9)2/3) according to the result in

(26). Further, set βt = (Q1/2)/(2D(t+9)1/3) and regroup the resulted expression to obtain

E [F (x∗)− F (xt+1)] ≤
(

1− γ

T

)

E [F (x∗)− F (xt)] +
2DQ1/2

(t+ 9)1/3T
+

LD2

2T 2
. (107)

By applying the inequality in (107) recursively for t = 0, . . . , T − 1 we obtain

E [F (x∗)− F (xT )] ≤
(

1− γ

T

)T
(F (x∗)− F (x0)) +

T−1
∑

t=0

2DQ1/2

(t+ 9)1/3T
+

T−1
∑

t=0

LD2

2T 2
. (108)

Simplify the terms on the right hand side (108) and use (101) to obtain

E [F (x∗)− F (xT )] ≤ e−γ(F (x∗)− F (x0)) +
15DQ1/2

T 1/3
+

LD2

2T
. (109)

Here, we use the fact that F (x0) ≥ 0, and hence the expression in (109) can be simplified
to

E [F (xT )] ≥ (1− e−γ)F (x∗)− 15DQ1/2

T 1/3
− LD2

2T
, (110)

and the claim in (29) follows.

H. Proof of Theorem 9

Using the update of the NMSCG method we can write

xi,t+1 = xi,t +
1

T
vi,t

≤ xi,t +
1

T
(ūi − xi,t)

≤
(

1− 1

T

)

xi,t +
1

T
ūi

=

(

1− 1

T

)t

xi,0 +
1

T
ūi

t
∑

j=0

(

1− 1

T

)j

= ūi

(

1−
(

1− 1

T

)t+1
)

(111)

where the first inequality follows by the condition vi,t ≤ ūi−xi,t. The result in (111) implies
that xt ≤ ū(1− (1− 1/T )t). Therefore, according to Lemma 3 in (Bian et al., 2017a) which
is a generalized version of Lemma 7 in (Chekuri et al., 2015) it follows that

F (xt ∨ x∗) ≥ (1− (1/T ))tF (x∗). (112)

Using this result and the Taylor’s expansion of the objective function F we can write

F (xt+1)− F (xt) ≥ 〈∇F (xt),xt+1 − xt〉 −
L

2
‖xt+1 − xt‖2

=
1

T
〈∇F (xt),vt〉 −

L

2T 2
‖vt‖2, (113)
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where the equality follows by the update of NMSCG. Add and subtract 〈dt,vt〉 to the right
hand side of (113) to obtain

F (xt+1)− F (xt) ≥
1

T
〈dt,vt〉+

1

T
〈∇F (xt)− dt,vt〉 −

L

2T 2
‖vt‖2

≥ 1

T
〈dt,xt ∨ x∗ − xt〉+

1

T
〈∇F (xt)− dt,vt〉 −

L

2T 2
‖vt‖2, (114)

where the second inequality is valid since {dT
t vt} ≥ {dT

t y} for all y ≤ ū− xt and we know
that xt ∨ x∗ − xt ≤ ū− xt. Now add and subtract (1/T )〈∇F (xt),xt ∨ x∗ − xt〉 to the right
hand side of (114) to obtain

F (xt+1)− F (xt)

≥ 1

T
〈∇F (xt),xt ∨ x∗ − xt〉+

1

T
〈dt −∇F (xt),xt ∨ x∗ − xt〉

+
1

T
〈∇F (xt)− dt,vt〉 −

L

2T 2
‖vt‖2

=
1

T
〈∇F (xt),xt ∨ x∗ − xt〉+

1

T
〈∇F (xt)− dt,vt + xt − xt ∨ x∗〉 − L

2T 2
‖vt‖2

≥ 1

T
〈∇F (xt),xt ∨ x∗ − xt〉 −

2D

T
‖∇F (xt)− dt‖ −

L

2T 2
‖vt‖2. (115)

The last inequality holds since the inner product 〈∇F (xt) − dt,vt + xt − xt ∨ x∗〉 can be
upper bounded by ‖∇F (xt)−dt‖‖vt + xt− xt ∨ x∗‖ using the Cauchy-Schwartz inequality
and further we can upper bound the norm ‖vt+xt−xt∨x∗‖ by 2D since ‖vt+xt−xt∨x∗‖ ≤
‖vt‖+ ‖xt − xt ∨ x∗‖ and both xt − xt ∨ x∗ and vt belong to the set C. This holds due to
the assumption that C is down-closed.

Now replace ‖vt‖2 by its upper bound D2 and use the concavity of the function F in
positive directions to write

F (xt+1)− F (xt) ≥
1

T
(F (xt ∨ x∗)− F (xt))−

2D

T
‖∇F (xt)− dt‖ −

LD2

2T 2
. (116)

Now use the expression in (112) to obtain

F (xt+1)− F (xt) ≥
1

T

[

(

1− 1

T

)t

F (x∗)− F (xt)

]

− 2D

T
‖∇F (xt)− dt‖ −

LD2

2T 2
. (117)

Computing the expectation of both sides and replacing E [‖∇F (xt)− dt‖] by its upper
bound

√
Q/((t+ 9)1/3) according to the result in (26) lead to

E [F (xt+1)] ≥
(

1− 1

T

)

E [F (xt)] +
1

T

(

1− 1

T

)t

F (x∗)− 2D
√
Q

T (t+ 9)1/3
− LD2

2T 2
. (118)
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By applying the inequality in (118) recursively for t = 0, . . . , T − 1 we obtain

E [F (xT )]

≥
(

1− 1

T

)T

F (x0) +
T−1
∑

i=0

(

1

T

(

1− 1

T

)i

F (x∗)− 2D
√
Q

T (i+ 9)1/3
− LD2

2T 2

)

(

1− 1

T

)T−1−i

=

(

1− 1

T

)T

F (x0) +

(

1− 1

T

)T−1

F (x∗)−
T−1
∑

i=0

(

2D
√
Q

T (i+ 9)1/3
+

LD2

2T 2

)(

1− 1

T

)T−1−i

≥
(

1− 1

T

)T

F (x0) +

(

1− 1

T

)T−1

F (x∗)−
T−1
∑

i=0

(

2D
√
Q

T (i+ 9)1/3
+

LD2

2T 2

)

, (119)

where the second inequality holds since (1− 1/T ) is strictly smaller than 1. Replacing the
sum

∑T−1
i=0

1
(i+9)1/3

in (119) by its upper bound in (101) leads to

E [F (xT )] ≥
(

1− 1

T

)T

F (x0) +

(

1− 1

T

)T−1

F (x∗)− 15D
√
Q

T 1/3
− LD2

2T
(120)

Use the fact that F (x0) ≥ 0 and the inequality
(

1− 1
T

)T−1 ≥ e−1 to obtain

E [F (xT )] ≥ e−1F (x∗)− 15D
√
Q

T 1/3
− LD2

2T
, (121)

and the claim in (32) follows.

I. Proof of Lemma 11

Based on the mean value theorem, we can write

∇F (xt +
1

T
vt)−∇F (xT ) =

1

T
H(x̃t)vt, (122)

where x̃t is a convex combination of xt and xt+
1
T vt and H(x̃t) := ∇2F (x̃t). This expression

shows that the difference between the coordinates of the vectors ∇F (xt+
1
T vt) and ∇F (xt)

can be written as

∇jF (xt +
1

T
vt)−∇jF (xt) =

1

T

n
∑

i=1

Hj,i(x̃t)vi,t, (123)

where vi,t is the i-th element of the vector vt and Hj,i denotes the component in the j-th
row and i-th column of the matrix H. Hence, the norm of the difference |∇jF (xt +

1
T vt)−

∇jF (xt)| is bounded above by

|∇jF (xt +
1

T
vt)−∇jF (xt)| ≤

1

T

∣

∣

∣

∣

∣

n
∑

i=1

Hj,i(x̃t)vi,t

∣

∣

∣

∣

∣

. (124)
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Note here that the elements of the matrix H(x̃t) are less than the maximum marginal value
(i.e. maxi,j |Hi,j(x̃t)| ≤ maxi∈{1,··· ,n} f(i) , mf ). We thus get

|∇jF (xt +
1

T
vt)−∇jF (xt)| ≤

mf

T

n
∑

i=1

|vi,t|. (125)

Note that at each round t of the algorithm, we have to pick a vector vt ∈ C s.t. the inner
product 〈vt,dt〉 is maximized. Hence, without loss of generality we can assume that the
vector vt is one of the extreme points of C, i.e. it is of the form 1I for some I ∈ I (note
that we can easily force integer vectors). Therefore by noticing that vt is an integer vector
with at most r ones, we have

|∇jF (xt +
1

T
vt)−∇jF (xt)| ≤

mf
√
r

T

√

√

√

√

n
∑

i=1

|vi,t|2, (126)

which yields the claim in (36).

J. Proof of Theorem 12

According to the Taylor’s expansion of the function F near the point xt we can write

F (xt+1) = F (xt) + 〈∇F (xt),xt+1 − xt〉+
1

2
〈xt+1 − xt,H(x̃t)(xt+1 − xt)〉

= F (xt) +
1

T
〈∇F (xt),vt〉+

1

2T 2
〈vt,H(x̃t)vt〉, (127)

where x̃t is a convex combination of xt and xt +
1
T vt and H(x̃t) := ∇2F (x̃t). Note that

based on the inequality maxi,j |Hi,j(x̃t)| ≤ maxi∈{1,··· ,n} f(i) , mf , we can lower bound Hij

by −mf . Therefore,

〈vt,H(x̃t)vt〉 =
n
∑

j=1

n
∑

i=1

vi,tvj,tHij(x̃t)

≥ −mf

n
∑

j=1

n
∑

i=1

vi,tvj,t = −mf

(

n
∑

i=1

vi,t

)2

= −mfr‖vt‖2, (128)

where the last equality is because vt is a vector with r ones and n − r zeros (see the
explanation in the proof of Lemma 11). Replace the expression 〈vt,H(x̃t)vt〉 in (127) by
its lower bound in (128) to obtain

F (xt+1) ≥ F (xt) +
1

T
〈∇F (xt),vt〉 −

mfr

2T 2
‖vt‖2. (129)

In the following lemma we derive a variant of the result in Lemma 6 for the multilinear
extension setting.
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Lemma 21 Consider Stochastic Continuous Greedy (SCG) outlined in Algorithm 2,
and recall the definitions of the function F in (34), the rank r, and mf , maxi∈{1,··· ,n} f(i).

If we set ρt =
4

(t+8)2/3
, then for t = 0, . . . , T and for j = 1, . . . , n it holds

E
[

‖∇F (xt)− dt‖2
]

≤ Q

(t+ 9)2/3
, (130)

where Q := max{5‖∇F (x0)− d0‖2, 16σ2 + 3m2
frD

2}.

Proof The proof is similar to the proof of Lemma 6. The main difference is to write the
analysis for the j-th coordinate and replace and L by mf

√
r as shown in Lemma 11. Then

using the proof techniques in Lemma 6 the claim in Lemma 21 follows.

The rest of the proof is identical to the proof of Theorem 7, by following the steps from
(92) to (103) and considering the bound in (130) we obtain

E [F (xT )] ≥ (1− 1/e)F (x∗)− 2DQ1/2

T 1/3
− mfrD

2

2T
, (131)

where Q := max{5‖∇F (x0)− d0‖2, 16σ2 + 3rm2
fD

2}. Therefore, the claim in Theorem 12

follows by replacing σ2 by nmaxj∈[n] E[f̃({j}, z)2] as shown in (38).

K. Proof of Theorem 15

Following the steps of the proof of Theorem 12 from (127) to (129) we obtain

F (xt+1) ≥ F (xt) +
1

T
〈∇F (xt),vt〉 −

mfr

2T 2
‖vt‖2. (132)

Then, by following the steps from (112) to (117) we obtain

F (xt+1)− F (xt) ≥
1

T

[

(

1− 1

T

)t

F (x∗)− F (xt)

]

− 2D

T
‖∇F (xt)− dt‖ −

mfrD
2

2T 2
. (133)

Note that the result in Lemma 21 holds for both monotone and non-monotone functions
F . Therefore, by computing the expected value of both sides of (117) we obtain Then, by
following the steps from (112) to (117) we obtain

E [F (xt+1)]− E [F (xt)] ≥
1

T

[

(

1− 1

T

)t

F (x∗)− E [F (xt)]

]

− 2D

T

√
Q

(t+ 9)1/3
− mfrD

2

2T 2
.

(134)

Now by following the steps from (118) to (121) the claim in (40) follows.
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L. Proof of Theorem 17

According to the result in Lemma 3 of (Hassani et al., 2017), it can be shown that when
the function F has a curvature c then

max
v

vT∇F (xt) ≥ F (x∗)− cF (xt), (135)

Using this inequality we can write

vT
t dt = max

v

{vTdt}

= max
v

{vT∇F (xt) + vT (∇F (xt)− dt)}

≥ max
v

{vT∇F (xt)} −max
v

{vT (∇F (xt)− dt)}
≥ F (x∗)− cF (xt)−D‖∇F (xt)− dt‖. (136)

Therefore, using the result in (129) we can write

F (xt+1) ≥ F (xt) +
1

T
〈vt,∇F (xt)〉 −

mfr

2T 2
||vt||2

= F (xt) +
1

T
〈vt,dt〉+

1

T
〈vt,∇F (xt)− dt〉 −

L

2T 2
||vt||2

≥ F (xt) +
1

T
(F (x∗)− cF (xt))−

2D

T
‖∇F (xt)− dt‖ −

mfrD
2

2T 2
. (137)

Compute the expected value of both sides and use the result of Lemma 21 to obtain

E [F (xt+1)] ≥ E [F (xt)] +
1

T
(F (x∗)− cE [F (xt)])−

2D
√
Q

T (t+ 9)1/3
− mfrD

2

2T 2
. (138)

Subtract F ∗ := F (x∗) from both sides and regroup the terms to obtain

E [F (xt+1)]− F ∗ ≥ (1− c

T
)(E [F (xt)]− F ∗) +

1− c

T
F ∗ − 2D

√
Q

T (t+ 9)1/3
− mfrD

2

2T 2
. (139)

Now applying the expression in (139) for t = 0, . . . , T − 1 recursively yields

E [F (xT )]− F ∗

≥ (1− c

T
)T (F (x0)− F ∗) +

T−1
∑

i=0

[

1− c

T
F ∗ − 2D

√
Q

T (i+ 9)1/3
− mfrD

2

2T 2

]

(1− c

T
)T−1−i

≥ (1− c

T
)T (F (x0)− F ∗) +

1− c

T
F ∗

T−1
∑

i=0

(1− c

T
)T−1−i −

T−1
∑

i=0

[

2D
√
Q

T (i+ 9)1/3
+

mfrD
2

2T 2

]

≥ (1− c

T
)T (F (x0)− F ∗) +

1− c

c

(

1− (1− c

T
)T
)

F ∗ − 15D
√
Q

T 1/3
− mfrD

2

2T

≥ −(1− c

T
)TF ∗ +

1− c

c

(

1− (1− c

T
)T
)

F ∗ − 15D
√
Q

T 1/3
− mfrD

2

2T

=

(

1− c

c
− 1

c
(1− c

T
)T
)

F ∗ − 15D
√
Q

T 1/3
− mfrD

2

2T
, (140)
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where in the second inequality we use the fact that (1−c/T ) ≤ 1, in the third inequality we
use the result in (101), and in the fourth inequality we use the assumption that F (x0) ≥ 0.
Therefore, by regrouping the terms we obtain that

E [F (xT )] ≥
1

c

(

1− (1− c

T
)T
)

F ∗ − 15D
√
Q

T 1/3
− mfrD

2

2T

≥ 1

c

(

1− e−c
)

F ∗ − 15D
√
Q

T 1/3
− mfrD

2

2T
, (141)

and the claim in (42) follows.
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