
Stochastic Constraint Programming

Toby Walsh
Department of Computer Science

University of York
York

England
twOcs, york. ac. uk

Abstract

To model decision problems involving uncertainty and
probability, we propose stochastic constraint program-
ming. Stochastic constraint programs contain both
decision variables (which we can set) and stochastic
variables (which follow some probability distribution),
and combine together the best features of traditional
constraint satisfaction, stochastic integer programming,
and stochastic satisfiability. We give a semantics for
stochastic constraint programs, and propose a number
of complete algorithms and approximation procedures.
Using these algorithms, we observe phase transition be-
havior in stochastic constraint programs. Interestingly,
the cost of both optimization and satisfaction peaks in
the satisfaction phase boundary. Finally, we discuss a
number of extensions of stochastic constraint program-
ming to relax various assumptions like the indepen-
dence between stochastic variables.

Introduction
Many real world decision problems contain uncertainty.
Data about events in the past may not be known exactly
due to errors in measuring or difficulties in sampling, whilst
data about events in the future may simply not be known
with certainty. For example, when scheduling power sta-
tions, we need to cope with uncertainty in future energy
demands. As a second example, nurse rostering in an ac-
cident and emergency department requires us to anticipate
variability in workload. As a final example, when construct-
ing a balanced bond portfolio, we must deal with uncertainty
in the future price of bonds. To deal with such situations,
we propose an extension of constraint programming called
stochastic constraint programming in which we distinguish
between decision variables, which we are free to set, and
stochastic (or observed) variables, which follow some prob-
ability distribution.

Stochastic constraint programs
We define a number of models of stochastic constraint pro-
gramming of increasing complexity. In an one stage stochas-
tic constraint satisfaction problem (stochastic CSP), the de-
cision variables are set before the stochastic variables are
given values. This can model situations in which we must

Copyright @ 2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

act now and observe later. For example, we may have to
decide now which nurses to have on duty and only later dis-
cover the actual workload. We can easily invert the instan-
tiation order if the application demands, with the stochastic
variables given values before the decision variables are set.

Constraints are defined (as in traditional constraint satis-
faction) by relations of allowed tuples of values. Constraints
can, however, be implemented with specialized and efficient
algorithms for consistency checking. The stochastic vari-
ables independently take values with probabilities given by
a fixed probability distribution. We discuss later how to re-
lax these assumptions, and how this model compares with
related frameworks like mixed constraint satisfaction. A one
stage stochastic CSP is satisfiable iff there exists values for
the decision variables so that, given random values for the
stochastic variables, the probability that all the constraints
are satisfied equals or exceeds some threshold probability,
8. The probabilistic satisfaction of constraints allows us to
ignore worlds (values for the stochastic variables) which are
too rare to require consideration.

In a two stage stochastic CSP, there are two sets of deci-
sion variables, Vat and Vd2, and two sets of stochastic vari-
ables, Vet and V82. The aim is to find values for the vari-
ables in Vat, so that given random values for Vst, we can
find values for Va2, so that given random values for V82, the
probability that all the constraints are satisfied equals or ex-
ceeds 8. Note that the values chosen for the second set of
decision variables Va2 are conditioned on both the values
chosen for the first set of decision variables Vat and on the
random values given to the first set of stochastic variables
Vst. This can model situations in which items are produced
and can be consumed or put in stock for later consumption.
Future production then depends both on previous production
(earlier decision variables) and on previous demand (earlier
stochastic variables). A m stage stochastic CSP is defined in
an analogous way to one and two stage stochastic CSPs.

A stochastic constraint optimization problem (stochastic
COP) is a stochastic CSP plus a cost function defined over
the decision and stochastic variables. The aim is to find a
solution that satisfies the stochastic CSP which minimizes
(or, if desired, maximizes) the expected value of the cost
function.

129

From: AAAI Technical Report FS-01-04. Compilation copyright © 2001, AAAI (www.aaai.org). All rights reserved.

Production planning example
The following m stage stochastic constraint program models
a simple m quarter production planning problem. In each
quarter, there is a equal chance that we will sell anywhere
between 100 and 105 copies of a book. To keep customers
happy, we want to satisfy demand in all m quarters with 80%
probability. At the start of each quarter, we must decide how
many books to print for that quarter. This problem can be
modelling by a m stage stochastic CSP. There are m deci-
sion variables, zi representing production in each of the ith
quarter. There are also ra stochastic variables, Yl represent-
ing demand in the ith quarter. These takes values between
100 and 105 with equal probability. There is a constraint to
ensure first quarter production meets first quarter demand:

Xl ~> Yl

There is a also constraint to ensure second quarter produc-
tion meets second quarter demand either plus any unsatisfied
demand from the first quarter or less any stock carried for-
ward from the first quarter:

x2 > y2 + (yl - xl)

And there is a constraint to ensure jth quarter production
(j >_ 2) meets jth quarter demand either plus any unsatis-
fied demand from earlier quarters or less any stock carried
forward from earlier quarters:

j-1

i=l

We must satisfy these m constraints with a threshold prob-
ability 0 = 0.8. This stochastic CSP has a number of solu-
tions including xl = 105 for each i (i.e. always produce as
many books as the maximum demand). However, this solu-
tion will tend to produce books surplus to demand which is
undesirable.

Suppose storing surplus book costs $1 per quarter. We
can define a m stage stochastic COP based on this stochastic
CSP in which we additionally miminize the expected cost of
storing surplus books. As the number of surplus books in the
jth quarter is min (~"~=1 xi - Yi, 0), we have a cost function
over all quarters of:

m j

i:l

Semantics
A stochastic constraint satisfaction problem is a 6-tuple
(V, S, D, P, C, 0) where V is a list of variables, S is the
subset of V which are stochastic varibles, D is a mapping
from V to domains, P is a mapping from S to probability
distributions for the domains, C is a set of constraints over
V, and 0 is a threshold probability in the interval [0, 1]. Con-
straints are defined (as in traditional constraint satisfaction)
by a set of variables and a relation giving the allowed tuples
of values for these variables. Variables are set in the order
in which they appear in V. Thus, in an one stage stochas-
tic CSP, V contains first all the decision variables and then

all the stochastic variables. In a two stage stochastic CSP,
V contains the first set of decision variables, the first set of
stochastic variables, then second set of decision variables,
and finally the second set of stochastic variables.

A policy is a tree with nodes labelled with variables, start-
ing with the first variable in V labelling the root, and ending
with the last variable in V labelling the nodes directly above
the leaves. Nodes labelled with decision variables have a
single child, whilst nodes labelled with stochastic variables
have one child for every possible value. Edges in the tree
are labelled with values assigned to the variable labelling
the node above. Finally, each leaf node is labelled with 1 if
the assignment of values to variables along the path to the
root satisfies all the constraints, and 0 otherwise. Each leaf
node corresponds to a possible world and has an associated
probability; if 81 is the ith stochastic variable on a path to
the root, di is the value given to si on this path (i.e. the label
of the following edge), and prob(8i = di) is the probabil-
ity that sl = di, then the probability of this world is simply
l-IiProb(8i = dl). We define the satisfaction of a policy
as the sum of the leaf values weighted by their probabili-
ties. A policy satisfies the constraints iff its satisfaction is
at least 0. A stochastic CSP is satisfiable iff there exists a
policy which satisfies the constraints. When S = {} and
/9 = 1, this reduces to the traditional definition of constraint
satisfaction. The optimal satisfaction of a stochastic CSP
is the maximum satisfaction of all policies. For a stochastic
COP, the expected value of a policy as sum of the objective
valuations of each of the leaf nodes weighted by their proba-
bilities. A policy is optimal if it satisfies the constraints and
maximizes (or, if desired, minimizes) the expected value.

Consider again the production planning problem and a
two-quarter policy that sets xl = 104 and if yl > 100 then
x2 = Yl + 1 else Yl = 100 and z2 = 100. We can represent
this policy by the following (partial) tree:

~1104

10~~~~-~1 O0

x~106 xl05 x~104x~ x~102 x~100

10~0~Y2 y2 /~
000000 1 1 1 1 1 1 0 1 1 1 1 1

By definition, each of the leaf nodes in this tree is equally
probable. There are 62 leaf nodes, of which only 7 are la-
belled 0. Hence, this policy’s satisfaction is (36 - 7)/36,
and the policy satisfies the constraints as this just exceeds
0=0.8.

Complexity
Constraint satisfaction is NP-complete in general. Not sur-
prisingly, stochastic constraint satisfaction moves us up the
complexity hierarchy. It may therefore be useful for mod-
elling problems like reasoning under uncertainty which lie
in these higher complexity classes. We show how a number

130

of satisfiability problems in these higher complexity classes
reduce to stochastic constraint satisfaction. In each case, the
reduction is very immediate. Note that each reduction can
be restricted to stochastic CSPs on binary constraints using
a hidden variable encoding to map non-binary constraints to
binary constraints. The hidden variables are added to the last
stage of the stochastic CSP.

PP, or probabilistic polynomial time is characterized by
the PP-complete problem, MAJSAT which decides if at least
half the assignments to a set of Boolean variables satisfy a
given clausal formula. This can be reduced to a one stage
stochastic CSP in which there are no decision variables,
the stochastic variables are Boolean, the constraints are the
clauses, the two truth values for each stochastic variable are
equally likely and the threshold probability 0 = 0.5. A num-
ber of other reasoning problems like plan evaluation in prob-
abilistic domains are PP-complete.

NPPP is the class of problems that can be solved by non-
deterministic guessing a solution in polynomial time (NP)
and then verifying this in probabilistic polynomial time (PP).
Given a clausal formula, E-MAJSAT is the problem of decid-
ing if there exists an assignment for a set of Boolean vari-
ables so that, given randomized choices of values for the
other variables, the formula is satisfiable with probability at
least equal to some threshold O. This can be reduced very
immediately to an one stage stochastic CSP. A number of
other reasoning problems like finding optimal size-bounded
plans in uncertain domains are NPPP-complete.

PSPACE is the class of problems that can be solved in
polynomial space. Note that NP C_ PP C_ NPPP C_ PSPACE.
SSAT, or stochastic satisfiability is an example ofa PSPACE-
complete problem. In SSAT, we are given a clausal for-
mula with ra alternating decision and stochastic variables,
and must decide if the formula is satisfiable with probabil-
ity at least equal to some threshold 0. This can be immedi-
ately reduced to a m stage stochastic CSP. A number of other
reasoning problems like propositional STRIPS planning are
PSPACE-complete.

Complete algorithms
We present a backtracking algorithm, which is then extended
to a forward checking procedure.

Backtracking
We assume that variables are instantiated in order. How-
ever, if decision variables occur together, we can choose in
which order to instantiate them. A branching heuristic like
fail first may therefore be useful to order decision variables
which occur together. On meeting a decision variable, the
backtracking (BT) algorithm tries each value in its domain
in turn. The maximum value found is returned to the previ-
ous recursive call. On meeting a stochastic variable, the BT
algorithm tries each value in turn, and returns the sum of the
all answers to the subproblems weighted by the probabilities
of their occurrence. At any time, if instantiating a decision
or stochastic variable breaks a constraint, we return 0. If
we manage to instantiate all the variables without breaking
any constraint, we return 1. The algorithm can be trivially
adapted to record the optimal policy.

procedure BT(i,Ol,Oh
ifi > n then return 1
0:=O
q:=l
for each dj 6 D(zi)

ifxl E S then
p := prob(xi ~ dj)
q:=q-p
ff consistent(zi -} dj) then

0 := 0 +px BT(i + 1 o~-o-v o~-o~~, p ’ p J

if 8 > Oh then return 0
if 0 + q < 0l then return 0

else
if consistent(xi --~ dj) then

0 := max(O,BT(i + 1,max(0, Ot),Oh))
if 0 > Oh then return 0

return 0

Figure 1: The backtracking (BT) algorithm for stochastic
CSPs. The algorithm is called with the search depth, i and
with upper and lower bounds, 8h and 01. If the optimal satis-
faction lies between these bounds, BT returns the exact satis-
faction. If the optimal satisfaction is Oh or more, BT returns
a value greater than or equal to Oh. If the optimal satisfaction
is 0~ or less, BT returns a value less than or equal to Or. S is
the set of stochastic variables.

As in the Davis-Putnam like algorithm for stochastic sat-
isfiability (Littman, Majercik, & Pitassi 2000), upper and
lower bounds, Oh and Ot are used to prune search. By set-
ting Ot = Oh = 0, we can determine if the optimal satis-
faction is at least 0. Alternatively, by setting Ot = 0 and
Oh = 1, we can determine the optimal satisfaction. The
calculation of upper and lower bounds in recursive calls re-
quires some explanation. Suppose that the current assign-
ment to a stochastic variable returns a satisfaction of 0o. We
can safely ignore other values for this stochastic variable if
0 + p x 00 > Oh. That is, if 0o > 0h--0 This gives the_ -- p "

upper bound in the recursive call to BT on a stochastic vari-
able. Alternatively, we cannot hope to satisfy the constraints
adequately if O + p x Oo + q < Ot as q is the maximum that
the remaining values can contribute to the satisfaction. That
is, if Oo < 0~-0-q. This gives the lower bound in the re-- p
cursive call to BT on a stochastic variable. Finally, suppose
that the current assignment to a decision variable returns a
satisfaction of 0. If this is more that 0l, then any other val-
ues must better 0 to be part of a better policy. Hence, we
can replace the lower bound in the recursive call to BT on
a decision variable by max(0, Or). Note that value order-
ing heuristics may reduce search. For decision variables, we
should choose values that are likely to return the optimal sat-
isfaction. For stochastic variables, we should choose values
that are more likely.

Forward checking
The Forward Checking (FC) procedure is based on the
algorithm. On instantiating a decision or stochastic variable,

131

the FC algorithm checks forward and prunes values from the
domains of future decision and stochastic variables which
break constraints. Checking forwards fails if a stochastic or
decision variable has a domain wipeout, or if a stochastic
variable has so many values removed that we cannot hope
to satisfy the constraints. As in the regular forward check-
ing algorithm, we use an 2-dimensional array, prune(i,j)
to record the depth at which the value dj for the variable xi
is removed by forward checking. This is used to restore val-
ues on backtracking. In addition, each stochastic variable,
zi has an upper bound, qi on the probability that the values
left in its domain can contribute to a solution. When forward
checking removes some value, dj from xl, we reduce ql by
prob(xi --} dj), the probability that xi takes the value dj.
This reduction of qj is undone on backtracking. If forward
checking ever reduces qi to less than 0t, we can immediately
backtrack as it is now impossible to set xi and satisfy the
constraints adequately.

Phase transition behavior

As in other search problems (Cheeseman, Kanefsky, & Tay-
lor 1991), stochastic constraint programs display phase tran-
sition behavior. To investigate such behavior, we have devel-
oped a model of random stochastic constraint programs with
four parameters: the number of variables n, the domain size
m, the constraint density Pt, and the constraint tightness/~.
For simplicity, we assume that decision and stochastic vari-
ables strictly alternate, and that each of the rn values for a
stochastic variable are equally likely. It would be interesting
to relax these assumptions.

Binary constraints are generated between two decision
variables or one decision and one stochastic variable. As
with the usual models of random CSPs, Pl and pz can be
either probabilities or fractions. For example, we can con-
struet a fraction Pt of the possible binary constraints. Al-
ternatively, we can add each possible binary constraint with
probability/71. Similarly, when generating conflict matrices,
either we generate a fixed fraction ofpz.mz nogoods or we
add each of the m2 possible nogoods with probability p2. To
prevent trivially insoluble problems, we recommend "flaw-
less" conflict matrices are generated so that each value has
at least one support (Maclntyre et al. 1998).

In Figure 3, we plot the average optimal satisfaction as the
constraint density and tightness is varied. As in traditional
constraint satisfaction, we observe a ridge along which there
is a rapid change in the satisfaction of problems. As might
be expected, there is a complexity peak in the cost to solve
problems along this ridge. In Figure 4, we plot the search
cost to find the optimal satisfaction. Although this is an op-
timization and not a decision problem as often studied in
phase transition experiments, we observe a complexity peak
along the ridge. The search cost for the decision problem of
determining if a policy exists to meet a given fixed thresh-
old 0 displays a similar (but slightly lower) complexity peak.
The runtime (as well as nodes visited) for FC dominates
at least a factor of 2 on all but the easiest problems.

procedure FC(i,Ot,Oh)
ifi > n then return 1
O:=O
for each dj E D(xi)

ifprune(i,j) = 0 then
ifcheck(xi -+ dj,Ot)then

if xi E S then
p := prob(zi ~ dj)
qi := qi - P
0 := O+p× FC(i + 1,°’-°-~’,°~-°)
restore(i)
if 0 + qi < Ot then return 0
if 0 > Oh then return 0

else
0 := max(O,FC(i + 1,max(O, Ot),Oh))
restore(i)
if 0 > Oh then return 0

else restore(i)
return 0

procedure check(zl --+ dj,Ot)
for k = i + l to n

dwo := true
fordt E D(zk)

if prune(k, i) = 0 then
ifinconsistent(xl ~ dj,xk ~ all)then

prune(k,i) := i
ifzk E S then

qk := qk-- prob(xk ~ dr)
ifqk < Ol then return false

else dwo := false
if dwo then return false

return true

procedure restore(i)
for j = i + l to n

ford~ ~ D(xj)
if prune(j, k) = then

prune(j, k) =
ifxj E S then qj := qj+ prob(zj --+ dR)

Figure 2: The forward checking (FC) algorithm for stochas-
tic CSPs. The algorithm is called with the search depth, i
and with upper and lower bounds, Oh and Ol. S is the set
of stochastic variables. The array qi is an upper bound on
the probability that the stochastic variable xi satisfies the
constraints and is initially set to 1, whilst prune(i, d) is the
depth at which the value d is pruned from zi and is initially
set to 0 which indicates that the value is not yet pruned.

132

n=lO,m=3 --

0.6
0.4

o.~
1

8

Figure 3: Average optimal satisfaction (z-axis) against con-
straint density (x-axis) and tightness (y-axis). Problems

10 variables, each with 3 values. 100 problems are ~enerated
at each value of pl and p2 from 0 to 1 in steps of i’6.

nodes visited
n=lO, m=3 --

70000
6OOO0
5OOO0
40000
3O0O0
20000

o . I__~ p~

Figure 4: Mean nodes visited by FC computing the optimal
satisfaction (z-axis) against constraint density (x-axis)
tightness (y-axis).

Approximation procedures

There are a number of methods for approximating the an-
swer to a stochastic constraint program. For example, we
can replace the stochastic variables in a stochastic CSP by
their most probable values (or in ordered domains like in-
tegers by their median or integer mean values), and then
solve (or approximate the answer to) the resulting tradi-
tional constraint satisfaction problem. Similarly, we can es-
timate the optimal solution for a stochastic COP by replac-
ing the stochastic variables by their most probable values
and then finding (or approximating the answer to) the result-
ing traditional constraint optimization problem. We can also
use Monte Carlo sampling to test a subset of the possible
worlds. For example, we can randomly generate values for
the stochastic variables according to their probability distri-
bution. It would also be interesting to develop local search
procedures like GSAT and WalkSAT which explore the"pol-
icy space" of stochastic constraint programs.

Extensions
We have assumed that stochastic variables are independent.
There are problems which may require us to relax this re-
striction. For example, a stochastic variable representing
electricity demand may depend on a stochastic variable rep-
resenting temperature. It may therefore be useful to com-
bine stochastic programming with techniques like Bayes
networks which allow for conditional dependencies to be ef-
ficiently and effectively represented. An alternative solution
is to replace the dependent stochastic variables by a single
stochastic variable whose domain is the product space of the
dependent variables. This is only feasible when there are a
small number of dependent variables with small domains.

We have also assumed that the probability distribution of
stochastic variables is fixed. In particular, we have assumed
that it does not depend on earlier decision variables. Again,
there are problems which may require us to relax this restric-
tion. For example, the decision variable representing price
may influence a stochastic variable representing demand. A
solution may again be to combine stochastic programming
with techniques like Bayes networks.

We have also assumed that all variable domains are fi-
nite. There are problems which may require us to relax this
restriction. For example, in scheduling power stations, we
may use 0/1 decision variables to model whether a power
station runs or not, but have continuous (observed) variables
to model future electricity demands. A continuous probabil-
ity density function could be associated with these variables.
Similarly, a continuous decision variable could be useful to
model the power output of the power stations that we decide
to operate. Interval reasoning techniques could be extended
to deal with such variables.

Related work
Stochastic constraint programming is inspired by both
stochastic integer programming and stochastic satisfiability
(Littman, Majercik, & Pitassi 2000). It shares the advan-
tages that constraint programming has over integer program-
ming (e.g. global constraints, non-linear constraints, and
constraint propagation). It also shares the advantages that
constraint programming has over satisfiability (e.g. global
constraints, and arithmetic constraints). Optimization is
likely to play a fundamental role in stochastic constraint pro-
gramming. This adds to the distinction with stochastic satis-
fiability as the latter purely concerns decision problems.

Mixed constraint satisfaction (Fargier, Lang, & Sehiex
1996) is closely related to one stage stochastic constraint
satisfaction. In a mixed CSP, the decision variables are set
after the stochastic variables are given random values. In ad-
dition, the random values are chosen uniformly. In the ease
of full observability, the aim is to find conditional values for
the decision variables so that we satisfy all possible worlds.
In the case of no observability, the aim is to find values for
the decision variables so that we satisfy as many possible
worlds. An earlier constraint satisfaction model for decision
making under uncertainty (Fargier et al. 1995) also included
a probability distribution over the space of possible worlds.

Constraint satisfaction has been extended to include prob-

133

abilistie preferences on the values assigned to variables
(Shazeer, Littman, & Keim 1999). Associated with the val-
ues for each variable is a probability distribution. A "best"
solution to the constraint satisfaction problem is then found.
This may be the maximum probability solution (which sat-
isfies the constraints and is most probable), or the maximum
expected overlap solution (which is most like the true solu-
tion). The latter can be viewed as the solution which has the
maximum expected overlap with one generated at random
using the probability distribution. The maximum expected
overlap solution could be found by solving a suitable one
stage stochastic constraint optimization problem.

Branching constraint satisfaction (Fowler & Brown 2000)
models problems in which there is uncertainty in the number
of variables. For example, we can model a nurse rostering
problem by assigning shifts to nurses. Branching constraint
satisfaction then allows us to deal with the uncertainty in
which nurses are available for duty. We can represent such
problems with a stochastic CSP with a stochastic 0/1 vari-
able for each nurse representing their availability.

A number of extensions of the traditional constraint satis-
faction problem model constraints that are uncertain, prob-
abilistic or not necessarily satisfied. For example, in par-
tial constraint satisfaction we maximize the number of con-
straints satisfied (Freuder & Wallacs 1992). As a second ex-
ample, in probabilistic constraint satisfaction each constraint
has a certain probability independent of all other probabili-
ties of being part of the problem (Fargier & Lang 1993).
a third example, both valued and semi-ring based constraint
satisfaction (Bistarelli et al. 1996) generalizes probabilistic
constraint satisfaction as well as a number of other frame-
works. In semi-ring based constraint satisfaction, a value is
associated with each tuple in a constraint, whilst in valued
constraint satisfaction, a value is associated with each con-
straint. However, none of these extensions deal with vari-
ables that may have uncertain or probabilistic values. In-
deed, stochastic constraint programming can easily be com-
bined with most of these techniques. For example, we can
define stochastic partial constraint satisfaction in which we
maximize the number of satisfied constraints, or stochastic
probabilistic constraint satisfaction in which each constraint
has an associated probability of being in the problem.

Stochastic constraint programs are closely related to
Markov decision problems (MDPs). These have been very
influential in AI of late for dealing with situations involving
reasoning under uncertainty (Kaelbling, Littman, & Cassan-
dra 1998). Stochastic constraint programming could be used
to model problems which lack the Markov property that the
next state and reward depend only on the previous state and
action taken. Stochastic constraint optimization could also
be used to model more complex reward functions than the
(discounted) sum of individual rewards. On the other hand,
MDPs can, at least in theory, be solved efficiently using lin-
ear programming (Littrnan, Dean, & Kaelbling 1995) and
can have infinite state spaces.

Conclusions
We have proposed stochastic constraint programming, an
extension of constraint programming to deal with both de-

cision variables (which we can set) and stochastic variables
(which follow some probability distribution). This frame-
work is designed to take advantage of the best features of tra-
ditional constraint satisfaction, stochastic integer program-
ming, and stochastic satisfiability. It can be used to model a
wide variety of decision problems involving uncertainty and
probability. We have given a semantics for stochastic con-
straint programs based upon policies. These determine how
decision variables are set depending on earlier decision and
stochastic variables. We have proposed a number of com-
plete algorithms and approximation procedures for stochas-
tic constraint programming. Using these algorithms, we
have observed phase transition behavior in stochastic con-
straint programs. Interestingly, the cost of both optimization
and satisfaction peaks along the satisfaction phase bound-
ary. Finally, we have discussed a number of extensions of
stochastic constraint programming to relax assumptions like
the independence between stochastic variables.

Acknowledgements
The author is an EPSRC advanced research fellow. He
thanks the other members of the APES research group
(http://apes.cs.strath.ac.uk/), especially Ian Gent for his
helpful discussions.

References
Bistarelli, S.; Fargier, H.; Montanari, U.; Rossi, F.; Schiex,
T.; and Verfaillie, G. 1996. Semi-ring based CSPs and
valued CSPs: Basic properties and comparison. In Jample,
M.; Freuder, E., and Maher, M., eds., Over-Constrained
Systems, 111-150. Springer-Verlag. LNCS 1106.
Cheeseman, P.; Kanefsky, B.; and Taylor, W. 1991. Where
the really hard problems are. In Proc. of the 12th IJCAL
331-337. Int. Joint Conference on Artificial Intelligence.
Fargier, H., and Lang, J. 1993. Uncertainty in constraint
satisfaction problems: a probabilistic approach. In Proc.
ofECSQARU. Springer-Verlag. LNCS 747.
Fargier, H., Lang, J.; Martin-Clouaire, R.; and Schiex, T.
1995. A constraint satisfaction framework for decision un-
der uncertainty. In Proc. of the 11th Int. Conference on
Uncertainty in Artificial Intelligence.
Fargier, H.; Lang, J.; and Schiex, T. 1996. Mixed con-
straint satisfaction: a framework for decision problems un-
der in complete information. In Proc. of the 13th National
Conference on Artificial Intelligence.
Fowler, D., and Brown, K. 2000. Branching constraint
satisfaction problems for solutions robust under likely
changes. In Proc. of 6th lnt. Conference on Principles and
Practices of Constraint Programming. Springer-Verlag.

Freuder, E., and Wallacs, R. 1992. Partial constraint satis-
faction. Artificial Intelligence 58:21-70.
Kaelbling, L.; Littman, M.; and Cassandra, A. 1998. Plan-
ning and acting in partially observable stochastic domains.
Artificial lntelligence 101(I-2):99-134.
Littman, M.; Dean, T., and Kaelbling, L. 1995. On the
complexity of solving Markov decision problems. In Proc.
of the 8th Annual Conference on Uncertainty in AL

134

Littman, M.; Majereik, S.; and Pitassi, T. 2000. Stochastic
Boolean satisfiability. Journal of Automated Reasoning.
Maclntyre, E.; Prosser, P.; Smith, B.; and Walsh, T. 1998.
Random constraint satisfaction: Theory meets practice. In
4th Int. Conference on Principles and Practices of Con-
straint Programming (CP-98), 325-339. Springer.

Shazeer, N.; Littman, M.; and Keim, G. 1999. Constraint
satisfaction with probabilistic preferences on variable val-
ues. In Proc. of the 16th National Conference on Artificial
Intelligence.

135

