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ABSTRACT

Caching at small base stations (SBSs) has demonstrated sig-
nificant benefits in alleviating the backhaul requirement in
heterogeneous cellular networks (HetNets). While many ex-
isting works focus on what contents to cache at each SBS,
an equally important but much less investigated problem is
what contents to deliver given the cache status and user re-
quests. In this paper, we study the optimal content delivery
strategy in cache-enabled HetNets by taking into account the
inherent multicast capability of wireless medium. We es-
tablish a content-centric request queue model and then for-
mulate a stochastic multicast scheduling problem to jointly
minimize the average network delay and power costs. This s-
tochastic optimization problem is an infinite horizon average
cost Markov decision process (MDP), which is well known
to be challenging. By using relative value iteration algorith-

m and the special properties of the request queue dynamics,
we characterize some properties of the value function of the
MDP. Based on these properties, we show that the optimal
multicast scheduling policy, which is adaptive to the request
queue state, is of the threshold type. Finally, we propose a
low complexity optimal algorithm by exploiting the struc-
tural properties of the optimal policy.
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1. INTRODUCTION

The rapid proliferation of smart mobile devices has trigged
an unprecedented growth of the global mobile data traffic.
One promising approach to meet the dramatic traffic growth
is to deploy small base stations (SBSs) together with tradi-
tional macro base stations (MBSs) in a heterogeneous net-
work paradigm [1, 2]. However, the main drawback of this
approach is the requirement of expensive high-speed back-
haul links for connecting all the SBSs to the core network.
The backhaul capacity requirement can be enormously high
during peak traffic hours.

Recently, caching at base stations (BSs) has been pro-
posed as an effective way to alleviate the backhaul capac-
ity requirement in wireless networks [3–6]. Many existing
works have focused on cache placement (i.e., what contents
to cache), which is essential in cache-enabled wireless net-
works. These works, however, pay little attention to con-
tent delivery (i.e., what contents to deliver upon user re-
quests) which is equally important towards system optimiza-
tion. Few attempts have been made on the optimization of
content delivery or the joint optimization of cache place-
ment and content delivery. Note that the major distinction
of wireless communication from wireline communication is
the inherent broadcast nature of wireless medium. There-
fore, when multiple users request a same content in cache-
enabled wireless networks, the broadcast or multicast capa-
bility can be exploited for efficient content delivery. In [7],
the authors consider multicasting for inelastic services (with
strict deadline) in a cache-enabled small cell network and
propose a heuristic caching scheme to minimize the service
cost. In [8], the authors consider multicasting for inelastic
services in a cache-enabled multi-cell network, and propose
joint throughput-optimal caching and scheduling algorithms
to maximize the service rates of the inelastic services. In our
recent work [9], we consider optimal multicast scheduling to
jointly minimize the average delay and service costs of elas-
tic services (delay-sensitive services but without strict dead-
lines) for a cache-enabled single-cell network. However, it
remains unknown how to design optimal multicast schedul-
ing for elastic services in cache-enabled heterogeneous cel-
lular networks (HetNets).

In this paper, we consider a cache-enabled HetNet with
one MBS, N SBSs, K users and M contents (with possi-



bly different content sizes). The SBS coverage areas are as-
sumed to be disjoint. Assume that the MBS and the SBSs
are not allowed to operate concurrently, to avoid excessive
interference, while the SBSs are allowed to operate at the
same time. Each SBS is equipped with a cache storing a
certain number of contents, depending on the sizes of the
cached contents and the cache size. The MBS stores all con-
tents in the network. In each slot, each BS either schedules
one cached content for multicasting to serve the pending re-
quests from the users in its coverage area, or keeps idle, i.e.,
does not transmit any content.

We consider the optimal dynamic multicast scheduling to
jointly minimize the average network delay and power cost-
s. We formulate this stochastic optimization problem as an
infinite horizon average cost Markov decision process (MD-
P) [10], which is well-known to be challenging. Although
dynamic programming provides a systematic approach for
MDPs, there generally exist only numerical solutions. These
solutions do not typically offer many design insights and are
usually impractical due to the curse of dimensionality [10].
Thus, it is highly desirable to study the structural proper-
ties of the optimal policy. Specifically, our problem can be
viewed as a problem of scheduling a single broadcast server
(the MBS) or multiple broadcast servers (the SBSs) to paral-
lel (request) queues with general arrivals. However, existing
works have only studied the problems of scheduling a single
broadcast server to parallel queues (see [9] and references
therein). Therefore, the structural analysis of the optimal
multicast scheduling of a single broadcast server or multi-
ple broadcast servers to parallel queues with general arrivals
remains unknown and cannot be straightforwardly extended
from the existing solutions.

By using relative value iteration algorithm (RVIA) [10,
Chapter 4.3.1] and the special properties of the request queue
dynamics, we characterize some properties of the value func-
tion of the MDP. Based on these properties, we show that the
optimal multicast scheduling policy, which is adaptive to the
request queue state, is of the threshold type. This reveals the
tradeoff between the delay cost and the power cost. Finally,
we propose a low complexity optimal algorithm by exploit-
ing the structural properties of the optimal policy.

2. NETWORK MODEL

Consider a cache-enabled HetNet with one MBS, N SB-
Ss,K users andM contents, as illustrated in Fig. 1. Let N ,

{0, 1, 2, · · · , N} denote the set of all BSs, where BS 0 refers
to the MBS and BS n = 1, 2, · · · , N refers to SBS n. Let
N+ , {1, 2, · · · , N} denotes the set of N SBSs. The SBS

coverage areas are assumed disjoint. Let K , {1, 2, · · · ,K}
denote the set ofK users in the network. Let Kn ⊆ K denote
the set of users within the coverage area of SBS n ∈ N+.
Each user k ∈ Kn (n ∈ N+) can be served by the MBS
and the SBS n. Let K0 , K −

∪

n∈N+ Kn denote the set
of users not covered by any SBS. Each user k ∈ K0 can
only be served by the MBS. Let M , {1, 2, · · · ,M} de-
note the set of M contents (with possibly different content
sizes) in the network. Each BS is equipped with a cache s-
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Figure 1: Cache-enabled heterogeneous cellular network.

toring a certain number of contents, depending on the cache
size and the sizes of the cached contents. Let Mn ⊆ M
denote the set of cached contents in BS n ∈ N . We as-
sume M0 = M, i.e., the MBS stores all contents in the
network. This assumption can be easily removed by allow-
ing the MBS to fetch any uncached content from the core
network via a backhaul link with a fetching cost [9]. Let
Nm , {n|n ∈ N+ and m ∈ Mn} denote the set of S-
BSs caching content m ∈ M. We assume that the con-
tents stored in the caches are given (as in [11]) and consider
multicast scheduling for a given caching design. Notice that
caching is in a much larger time-scale (e.g., on a weekly
or monthly basis) while multicast scheduling is in a short-
er time-scale [3, 5, 12]. Consider time slots of unit length
(without loss of generality) indexed by t = 1, 2, · · · .

2.1 Request Arrival Traffic

In each slot, each user submits content requests to the
MBS. Note that each user can represent a group of users
in the same location. Let Am,k(t) ∈ {0, 1, · · · } denote the
number of the new request arrivals for content m from us-
er k at the end of slot t, where m ∈ M and k ∈ K. Let
A(t) , (Am,k(t))m∈M,k∈K denote the request arrival ma-
trix at the end of slot t. We assume that the request arrival
processes {Am,k(t)} (m ∈ M, k ∈ K) are mutually inde-
pendent with respect to m and k; and {Am,k(t)} are i.i.d.
with respect to t for allm ∈ M and k ∈ K. The MBS main-
tains separate request queues for each BS n ∈ N and each
associated cached content m ∈ Mn. The request queue
model will be further illustrated in Section 2.3.

2.2 Service Model

We consider multicast service for content delivery in the
network. In each slot, each BS n ∈ N either schedules one
cached content for multicasting to serve the pending request-
s from all users in its coverage area, or keeps idle (i.e., does
not transmit any content). Let p(n,m) denote the minimum
transmission power required by BS n for successfully deliv-
ering one cached content m to all users in its coverage area
within a scheduling slot, where n ∈ N and m ∈ Mn. We
set p(n, 0) = 0 for all n ∈ N . If BS n multicasts content m
with transmission power p(n,m), all pending requests for



content m from all users in the coverage area of BS n are
satisfied. Let un(t) ∈ Un , Mn ∪ {0} denote the schedul-
ing action of BS n ∈ N at slot t, where un(t) ̸= 0 in-
dicates that BS n multicasts the cached content un(t) with
transmission power p(n, un(t)) at slot t and un(t) = 0 indi-
cates that BS n does not transmit any content at slot t. Let
u(t) , (un(t))n∈N denote the multicast scheduling action
in the network at slot t.

The MBS is assumed to operate at much higher transmis-
sion power levels than the SBSs, for providing full coverage
of the network. To avoid excessive interference, we therefore
do not allow the MBS and the SBSs to operate concurrent-
ly. On the other hand, since the SBSs are spatially separated
and use much lower powers, we allow the SBSs to operate
at the same time. Mathematically, we require, for all t,

u0(t)
∑

n∈N+

un(t) = 0. (1)

Let U , {(un)n∈N |un ∈ Un ∀n ∈ N and u0
∑

n∈N+ un =
0} denote the feasible multicast scheduling action space. The
network power cost p(u) associated with u ∈ U is given by

p(u) ,
∑

n∈N

p(n, un). (2)

2.3 Request Queue Model

As illustrated above, for each SBS n ∈ N+, the request-
s for cached content m ∈ Mn from user k ∈ Kn can be
served by both the MBS and SBS n, while the requests for
uncached content m ∈ M0 \Mn can only be served by the
MBS. On the other hand, the MBS can serve the requests
for any content m ∈ M0 from any user k ∈ Kn. There-
fore, the request queues maintained by the MBS are con-
structed as follows. For each n ∈ N+ and each m ∈ Mn,
we construct a separate request queue, referred to as queue
(n,m), storing the requests for content m from all users in
Kn. Let Qn,m(t) denote the length of queue (n,m) at the
beginning of slot t, where n ∈ N+ and m ∈ Mn. For each
m ∈ M0, we also construct a separate request queue, re-
ferred to as queue (0,m), storing the requests for content m
from all users in

∪

n∈N+\Nm
Kn (the set of users covered

by the SBSs where content m is not cached) and K0. Let
Q0,m(t) denote the length of queue (0,m) at the beginning

of slot t, where m ∈ M0. Let Qn(t) , (Qn,m(t))m∈Mn
∈

Qn ,
∏

m∈Mn
Qn,m denote the request queue state vector

for BS n ∈ N at the beginning of slot t, where Qn,m ,

{0, 1, · · · , Nn,m}. Here, we assume Nn,m to be finite (can

be arbitrarily large) for technical tractability. Let Q(t) ,

(Qn(t))n∈N ∈ Q denote the request queue state of the net-

work at the beginning of slot t, where Q ,
∏

n∈N Qn de-
notes the request queue state space. Note that the request
queues can be implemented using counters and no data is
contained in these queues.

For each n ∈ N+ and each m ∈ Mn, all the pending
requests in queue (n,m) are satisfied, if content m is sched-
uled for multicasting by the MBS (i.e., u0(t) = m) or by
SBS n (i.e., un(t) = m) at slot t. Thus, for each n ∈ N+
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Figure 2: An example with 1 MBS, 2 SBSs, 3 users and 3
contents.

and m ∈ Mn, the request queue dynamics is as follows:

Qn,m(t+ 1) = min{1(u0(t) ̸=m & un(t) ̸= m)Qn,m(t)

+Bn,m(t), Nn,m}, (3)

whereBn,m(t) ,
∑

k∈Kn
Am,k(t) denotes the total number

of the new request arrivals for contentm from all users in Kn

at the end of slot t, and 1(·) denotes the indicator function.
For each m ∈ Mn, all the pending requests in queue (0,m)
are satisfied, if content m is scheduled for multicasting by
the MBS at slot t (i.e., u0(t) = m). Thus, for eachm ∈ M0,
the request queue dynamics is as follows:

Q0,m(t+ 1) = min{1(u0(t) ̸= m)Q0,m(t) +B0,m(t),

N0,m}, (4)

where

B0,m(t) ,
∑

n∈N+\Nm

∑

k∈Kn

Am,k(t) +
∑

k∈K0

Am,k(t)

denotes the total number of the new request arrivals for con-
tentm from all users in

∪

n∈N+\Nm
Kn and K0 at the end of

slot t. Note that the request arrivals for each m ∈ M from
each k ∈ K at the end of slot t are stored in only one queue.

2.4 Motivating Example

As illustrated in Fig. 2, consider a network with 1 MBS, 2
SBSs (N+ = {1, 2}), 3 users (K = {1, 2, 3}) and 3 contents
(M = {1, 2, 3}). We set K1 = {1}, K2 = {2}, K0 = {3},
M1 = {1, 2}, M2 = {2, 3} and M0 = {1, 2, 3}. Accord-
ing to Section 2.3, the MBS maintains seven request queues,
i.e., queues (0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (2, 2) and
(2, 3). Our goal is to design the optimal multicast scheduling
so as to jointly minimize the network delay cost and power
cost. This involves two challenging and coupled tasks.

First, at each time slot, shall we operate the MBS or the S-
BSs? If we schedule the MBS to multicast, then the pending
requests for one content in the whole network can be satis-
fied with a higher power cost, e.g., clear queues (0, 2), (1, 2)
and (2, 2) with power p(0, 2). Otherwise, if we schedule the
SBSs to multicast, the pending requests for (possibly differ-
ent) contents in different SBS coverage areas can be satisfied



with a lower power cost, e.g., clear queues (1, 2) and (2, 3)
with power p(1, 2) + p(2, 3).

Second, at each time slot, for each BS n ∈ N , which con-
tent should we schedule for multicasting, or should we keep
BS n idle? Take SBS 1 for an example. Suppose at certain
time slot t we have Q1,1(t) > Q1,2(t) and p(1, 1) > p(1, 2).
Should we schedule Content 1 for satisfying more requests
with a higher power cost or schedule Content 2 for satisfying
fewer requests with a lower power cost or do nothing at the
current slot?

We can see that, it is the flexibility of multicast transmis-
sion, the elasticity of services, and the heterogeneity of the
network that make it difficult to design the optimal multi-
cast scheduling. In the sequel, we formalize the multicast
scheduling problem and try to tackle these challenges.

3. PROBLEM FORMULATION AND OP-
TIMALITY EQUATION

3.1 Problem Formulation

Given an observed request queue state Q, the multicast
scheduling action u is determined according to a stationary
policy defined below.

DEFINITION 1 (STATIONARY POLICY). A feasible sta-

tionary multicast scheduling policy µ is a mapping from the

request queue state Q ∈ Q to the feasible multicast schedul-

ing action u ∈ U , where µ(Q) = u.

By the queue dynamics in (3) and (4), the induced random
process {Q(t)} under policy µ is a controlled Markov chain.
We restrict our attention to stationary unichain policies1. For
a given stationary unichain policy µ, the average network
delay cost is defined as

d̄(µ) , lim sup
T→∞

1

T

T
∑

t=1

E [d (Q(t))] , (5)

where the expectation is taken w.r.t. the measure induced by
the policy µ and d (Q) is a monotonically non-decreasing
function of Q. For example, if d (Q) =

∑

n∈N

∑

m∈Mn

Qn,m, then d̄(µ) reflects the average waiting time in the net-
work under policy µ according to Little’s law. For a given
stationary unichain policy µ, the average network power cost
is given by

p̄(µ) , lim sup
T→∞

1

T

T
∑

t=1

E [p(u(t))] . (6)

Therefore, under a given stationary unichain policy µ, the
average network cost is defined as

ḡ(µ) , d̄(µ) + wp̄(µ)

= lim sup
T→∞

1

T

T
∑

t=1

E [g(Q(t),u(t))] , (7)

1A unichain policy is a policy, under which the induced
Markov chain has a single recurrent class (and possibly some
transient states) [10].

where w is the weight for the power cost and g(Q,u) ,

d (Q) + wp(u) is the per-stage network cost.
We wish to find an optimal multicast scheduling policy to

minimize the average network cost ḡ(µ) in (7).

PROBLEM 1 (NETWORK COST MINIMIZATION).

ḡ∗ , min
µ

lim sup
T→∞

1

T

T
∑

t=1

E [g(Q(t),u(t))] , (8)

where µ is a stationary unchain policy in Definition 1 and ḡ∗

denotes the minimum average network cost achieved by the

optimal policy µ∗.

Note that, Problem 1 is an infinite horizon average cost MDP,
which is well known to be very challenging.

3.2 Optimality Equation

The optimal multicast scheduling policy µ∗ can be ob-
tained by solving the following Bellman equation.2

LEMMA 1 (BELLMAN EQUATION). There exist a scalar

θ and a real-valued function V (·) satisfying

θ + V (Q) = min
u∈U

{g(Q,u) + E [V (Q′)]} , ∀Q ∈ Q, (9)

where the expectation is taken over the distribution of re-

quest arrival A and Q′ , (Q′
n,m)n∈N ,m∈Mn

with Q′
0,m ,

min{1(u0 ̸= m)Q0,m +B0,m, N0,m} for all m ∈ M0 and

Q′
n,m , min{1(u0 ̸= m & un ̸= m)Qn,m +Bn,m, Nn,m}

for all n ∈ N+ and m ∈ Mn. θ = ḡ∗ is the optimal val-

ue to Problem 1 for all initial state Q(1) ∈ Q and V (·) is

called the value function. Furthermore, the optimal policy

achieving the optimal value ḡ∗ is given by

µ∗(Q) = argmin
u∈U

{g(Q,u) + E [V (Q′)]} , ∀Q ∈ Q. (10)

From Lemma 1, we can observe that µ∗ given by (10)
depends on Q through the value function V (·). Obtaining
V (·) involves solving the Bellman equation in (9) for all Q ∈
Q, which does not admit a closed-form solution in general
[10]. Brute force numerical solutions such as value iteration
and policy iteration are usually computationally impractical
to implement in practical systems, and do not typically yield
many design insights [10]. Thus, it is highly desirable to
study the structural properties of the optimal policy µ∗.

4. OPTIMALITY PROPERTIES

Problem 1 can be viewed as a problem of scheduling a sin-
gle broadcast server (the MBS) or multiple broadcast servers
(the SBSs) to parallel (request) queues with general arrivals.
The structural analysis is more challenging than the existing
structural analysis for the scheduling of a single broadcast
server. First, by RVIA and the special structure of the re-
quest queue dynamics, we can prove the following property
of the value function.

LEMMA 2 (MONOTONICITY OF V (Q)). For any Q1,Q2

∈ Q such that Q2 ≽ Q1, we have V (Q2) ≥ V (Q1).3

2All the proofs can be found in the full version in [13].
3The notation ≽ indicates component-wise ≥.



Next, we introduce the state-action cost function:

J(Q,u) , g(Q,u) + E [V (Q′)] . (11)

Note that J(Q,u) is related to the R.H.S. of the Bellman
equation in (9). Then, based on J(Q,u), we introduce:

∆u,v(Q) , J(Q,u)− J(Q,v). (12)

Note that ∆u,v(Q) = −∆v,u(Q). Action u is said to dom-
inate v at state Q if ∆u,v(Q) ≤ 0. In particular, by Lem-
ma 1, if u dominates any v ∈ U at state Q, then µ∗(Q) = u.
Based on Lemma 2, we have the following property of the
function defined in (12).

LEMMA 3 (MONOTONICITY OF ∆u,v(Q)). For any Q

∈ Q and u,v ∈ U , ∆u,v(Q) has the following properties.

1. If u0 = m ∈ M0, then ∆u,v(Q) is monotonically

non-increasing with Q0,m and Qn,m for all n ∈ Nm.

2. If un = m ∈ Mn for some n ∈ N+, then ∆u,v(Q) is

monotonically non-increasing with Qn,m.

Lemma 3 indicates that, if u dominates v at some state
Q, then by increasingQ0,u0

andQn,u0
for any n ∈ Nu0

and
u0 ̸= 0 or by increasingQn,un

for any n ∈ N+ and un ̸= 0,
u still dominates v. The properties of ∆u,v(Q) in Lemma 3
is similar to the diminishing-return property of submodular
functions used in the existing structural analysis [14]. Lem-
ma 3 stems from the special properties of multicasting and is
essential to characterize the optimality properties. By Lem-
ma 3, we can characterize the structural properties of the
optimal policy µ∗. We start with several definitions. Define:

Φu(Q−n,−m) , {Qn,m|Qn,m ∈ Qn,m and

∆u,v(Qn,m,Q−n,−m) ≤ 0 ∀v ∈ U and v ̸= u},

where Q−n,−m , (Qi,j)i∈N ,j∈Mi,(i,j) ̸=(n,m). Based on
Φu(·), we define:

φu(Q−n,−m) ,

{

maxΦu(Q−n,−m), if Φu(Q−n,−m) ̸= ∅

−∞, otherwise

ψu(Q−n,−m) ,

{

minΦu(Q−n,−m), if Φu(Q−n,−m) ̸= ∅

+∞, otherwise

Let 0n denote the 1 × n vector with all entries 0. Then, we
have the following theorem.

THEOREM 1 (STRUCTURAL PROPERTIES OF µ∗). For

any Q ∈ Q, the optimal policy µ∗(Q) = u∗ has the follow-

ing structural properties.

1. u∗ = 0N+1, if Q ∈ Q0 , {Q|Qn,m ≤ φu∗(Q−n,−m),
∀n ∈ N and m ∈ Mn}.

2. u∗ ̸= 0N+1 and u∗n = m if

Qn,m ≥ ψu
∗(Q−n,−m), (13)

where n ∈ N andm ∈ Mn. Moreover, ψu
∗(Q−0,−m)

is monotonically non-increasing withQn,m for all n ∈
Nm.

We verify the analytical results of Theorem 1 in Fig. 3,
where the optimal policy is computed numerically using pol-

icy iteration algorithm (PIA) [15, Chapter 8.6]. We can ob-
serve from Fig. 3(a) that, if the queue state falls in the region
of blue squares (i.e., Q0), the optimal control is (0, 0), i.e.,
both the MBS and the SBS keep idle. Hence, we refer to Q0

as the idle region of the optimal policy. From Fig. 3(b)-3(d),
we can observe that given Q−n,−m, the scheduling for con-
tent m ∈ Mn by BS n ∈ N is of the threshold type (Prop-
erty 2 of Theorem 1). This indicates that, it is not efficient to
schedule content m by BS n when Qn,m is small, (i.e., the
delay cost is small) as a higher power cost per request is con-
sumed. This shows the tradeoff between the delay cost and
the power cost. Fig. 3(c) illustrates the monotonically non-
increasing property of ψu

∗(Q−0,−1) in terms of Q1,1. This
reveals that the MBS is more willing to multicast content 1
when Q1,1 is large. The reason is that the MBS can satis-
fy more requests than any SBS. These optimality properties
provide design insights for multicast scheduling in practical
cache-enabled HetNets.

5. LOW COMPLEXITY OPTIMAL AL-
GORITHM

The results in Theorem 1 can be exploited to substantially
reduce the computational complexity of solving the Bellman
equation for (9) in obtaining µ∗. In particular, by Property 2
in Theorem 1, we know that, for all Q ∈ Q,

µ∗(Q) = u ⇒ µ∗(Q′) = u, (14)

where Q′ = (Q′
n)n∈N and

Q′
n =

{

Qn + en,un
or Qn if un ̸= 0

Qn, otherwise
.

Here, en,m denotes the 1 × |Mn| vector with all entries 0
except for a 1 in its m-th entry, where n ∈ N and m ∈
Mn. Therefore, by incorporating the property in (14) into
the standard PIA, we develop a low complexity algorithm
in Algorithm 1, which is referred to as the structured policy
iteration algorithm (SPIA). According to Theorem 8.6.6 and
Chapter 8.11.2 in [15], we know that SPIA converges to the
optimal policy µ∗ in (10) within a finite number of iterations,
and hence is an optimal algorithm.

Note that, in Step 3 (structured policy improvement) of
Algorithm 1, we do not need to perform the minimization
over U when the condition is satisfied (which is the case for
a large amount of queue states in Q). This can be seen in
Fig. 3 as an example. While, in the standard policy improve-
ment step of PIA, the new policy µ∗

l+1is obtained by:

µ∗
l+1(Q) = argmin

u∈U

{g(Q,u) + E [Vl(Q
′)]} , ∀Q ∈ Q.

(15)
By (15), obtaining µ∗

l+1 requires a brute-force minimization
over U for each Q ∈ Q, which can be very computation-
ally expensive when the numbers of the contents M and the
SBSs N are large. By comparing the structured policy im-
provement step of SPIA with the standard policy improve-



10

5

00

5

10

10

0

5

(a) Whole space.

0 2 4 6 8 10

0

2

4

6

8

10

(b) Fixed Q0,1.

0 2 4 6 8 10

0 

2

4

6

8

10

(c) Fixed Q0,2.

0 2 4 6 8 10

0 

2

4

6

8

10

(d) Fixed Q1,1.

Figure 3: Structure of the optimal scheduling. N = 1, K = {1, 2, 3, 4}, M = {1, 2}, K1 = {1, 2} and M1 = {1}.

ment step of PIA, we can see that SPIA can achieve consid-
erable computational saving.

Algorithm 1 Structured Policy Iteration Algorithm

1: Set µ∗
0(Q) = 0N+1 for all Q ∈ Q, select reference

state Q†, and set l = 0.
2: (Policy Evaluation) Given policy µ∗

l , compute the av-
erage cost θl and value function Vl(Q) from the linear
system of equations4

{

θl + Vl(Q) = g(Q, µ∗
l (Q)) + E [Vl(Q

′)] , ∀Q ∈ Q

Vl(Q
†) = 0

(16)
where Q′ is defined in Lemma 1.

3: (Structured Policy Improvement) Obtain a new policy
µ∗
l+1, where for each Q ∈ Q, µ∗

l+1(Q) is such that:
if ∃n ∈ N and m ∈ Mn such that µ∗

l (Q
′) = u where

un = m, Q′
n = Qn − en,m and Q′

i = Qi for all i ∈
N , i ̸= n then

µ∗
l+1(Q) = u.

else

µ∗
l+1(Q) = argmin

u∈U

{g(Q,u) + E [Vl(Q
′)]} .

endif

4: Go to Step 2 until µ∗
l+1 = µ∗

l .

6. CONCLUSION

In this paper, we study the optimal content delivery strat-
egy in a cache-enabled HetNet by taking into account the in-
herent multicast capability of wireless medium. We establish
a content-centric request queue model and then formulate a
stochastic multicast scheduling problem to jointly minimize
the average network delay and power costs. This stochas-
tic optimization problem is an infinite horizon average cost
MDP. We show that the optimal multicast scheduling policy,

4The solution to (16) can be obtained directly using Gaus-
sian elimination or iteratively using the relative value itera-
tion method [10].

which is adaptive to the request queue state, is of the thresh-
old type. The optimality properties provide design insights
for practical cache-enabled HetNets. Finally, we propose a
low complexity optimal algorithm by exploiting the struc-
tural properties of the optimal policy.
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