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Example from English Phonology

Consider the productive case of intervocalic alveolar flapping in

American
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-nglish e.g., compare the pronunciation of wet and wetter.
0 the underlying form /wetar/ to its surface form

text sensitive editing

Input Right Context

— /

S

rl#

#||W

>

/

Output Left Context

The distribution over possible
edits takes the -

conditional log

ple| C) <=

Training

Given (zg, y&) with unobservec
alignments (edit sequences), E
will locally maximize >, p(yx

The

1

L

alignment paths |
(forward-backwa

M-step uses L-

Torm:

Ce

c(C,e)

When L-

3

‘orm of a

iINnear model:

'd algo

-GS, T

takes the following well-

R

<NOWN

f(Ov 6) R ZPH(el ’ C)f(ov 6/) '

BFGS is not run to

convergence we recover a

generalized

on out-of-date counts.

Experiments

To demonstrate the utility of contextual edit transducers, we
examine spelling errors in social media data. \We report on test data
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Stochastic Choice of Edit in Context C:

p(cory|[t] | C)
p(INs[z] | C)
p(SUBJt, r] | C)
p(EL[t] | C)

The Contextual Edit Transducer

® \\Ve define a conditional probability distribution of an edit given a context using a
log-linear model.

® An edit IS one of four actions: COPY, SUBSTITUTE, DELETE Or INSERT.

® [he probability of a sequence of edits Is a product where each edit’s probabillity Is
conditioned on the context produced by the previous edits.

e A context consists of three context windows: input left, input right and output left.

¢ Right output context is unavailable in PFSTs, so the model is left/right asymmetric.

e Forx,y € ¥, let p(y | ) be the total probability of all edit sequences that map z
into y. Note that » _ p(y | ) = 1,Vz.

e \\e construct a single probabilistic finite-state transducer to compute p(y | z) .
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Algorithm 1 Training a PFST 1y by EM.

Probabilistic vs. Weighted Finite-State Transducers

1: while not converged do
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PESTs are locally normalized models. WFESTs, which are globally

peesied el commis fo 0 PR AEI: TR normalized models, do not suffer from label bias and are likely to beat
for kK < 1to K do > loop over training data , . . . L .
M =z 0 Ty oy > small acyclic WEST PESTs as a linguistic model. The distinction is identical to that between a

& = FORWARD-ALGORITHM(M)

3 = BACKWARD-ALGORITHM(M)
for arc A € M, from state ¢ — ¢’ do
if A was derived from an arc in 7y

representing edit e, from edit state g¢, then

MEMM and a CRF. So why are we interested in PFSTs?
Comparative Advantages

PFSTs WFSTs

c(C,e) += a4 - prob(A) - B,/ Bq,

6 < L-BFGS(f, EVAL, max_iters=5) > the “M step”
11: function EVAL(O)

F+0;,VF +0
for context C such that (Je)c(C,e) > 0 do
count <— 0; expected < 0; Z¢c + 0O

for possible edits e in context C' do
F+=c(C,e)-(0-f(C,e))

e

VFE +=c(C,e) - f(C,e)

count +=c(C, e)

expected +=exp(0 - f(C,e)) - f(

.

Zc +=exp(0- f(C,e))

F' -=count-log Z¢c; VF -=count - expected/Zc

return (F,VF)

s on the true yx. We also report how
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We use four different topologies (context configurations). Note that
(0,1,0) is standard weighted edit distance. We also use backoff
features that each context shares with other contexts and L

regularization.

> objective function & its gradient

C,e)

e PFSTs do not require the
computation of a separate partition
function Z,, for every x. This makes
them tractable when x Is uncertain
e.g., In noisy channel models, channel
cascades and Bayesian networks.

o A WEFST’s advantage is that the
probability of an edit can be indirectly
affected by the weights of other edits at
a distance.

® One could construct WFESTs where an

edit’s weight directly considers local right
® PFSTs are more efficient to train output context,
under conditional likelihood. It is faster

to compute the gradient, since we only
have to raise the probabilities of arcs

in T © 1" o Yy, relative to competing

arcsin xp ol

o\WFSTs can also use a simpler topology
while retaining determinism, since edits
can e scored “in retrospect” after they
have passed into the left context.

Future Work - Inferring Underlying Forms

We will use a PFST with features inspired by linguistic theory to model
phonology within a Bayesian network. Observed pronunciations are often
explained as arising from the “underlying forms” of morphemes. Linguists try
to reconstruct these latent strings. Our technigque involves loopy belief
propagation in a generative (directed) graphical model whose variables are
unknown strings and whose factors are finite-state machines with unknown

weights.
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1) Morpheme Underlying Representations

l Concatenation (e.g.)

2) Word Underlying Representations
l Phonology (PFST)

3) Word Surface Representations

l Phonetics

4) Word Pronunciations

See Keynote at MORPHFSM . . .
on Friday at 9:15am for more details. resignation damnation
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