
b c

y _

a bc

z _

a b

x _

a ba

x _
ε:z

 /

ε:ε
 /

ε:y /

ε:x /

insert z

insert x

substitute y for b

delete b
b c

x _

read c

c:ε / 1

 p(INSERT(x) | (a,bc,x))

 p(INS

ER
T(z) | (

a,b
c,x

))

p(SUBST(y) | (a,bc,x))

p(DEL

ETE
(b) | (a

,bc
,x))

a ba

x _

a bc

x _

To demonstrate the utility of contextual edit transducers, we

examine spelling errors in social media data. We report on test data

how much probability mass lands on the true . We also report how

much mass lands “near” , by measuring the expected edit distance

of the predicted to the truth. The graphs show that more context

improves the performance under both metrics on test data.

The Contextual Edit Transducer

• We define a conditional probability distribution of an edit given a context using a

log-linear model. .

• An edit is one of four actions: COPY, SUBSTITUTE, DELETE or INSERT.

• The probability of a sequence of edits is a product where each edit’s probability is

conditioned on the context produced by the previous edits.

• A context consists of three context windows: input left, input right and output left.

• Right output context is unavailable in PFSTs, so the model is left/right asymmetric.

• For , let be the total probability of all edit sequences that map

into . Note that .

• We construct a single probabilistic finite-state transducer to compute .

Training

-8

-7

-6

-5

-4

2000 4000 6000

Training Examples

M
ea

n
 L

o
g
-L

ik
el

ih
o
o
d

Backoff

FALSE

TRUE

Topology
T010

T020

T110

T111 2

3

4

5

6

2000 4000 6000

Training Examples

M
ea

n
 E

x
p
ec

te
d
 E

d
it

 D
is

ta
n
ce

Backoff

FALSE

TRUE

Topology
T010

T020

T110

T111

Stochastic Contextual Edit Distance

and Probabilistic FSTs
Ryan Cotterell, Nanyun Peng, Jason Eisner

Given with unobserved

alignments (edit sequences), EM

will locally maximize .

The E-step sums over all -to-

alignment paths in the transducer

(forward-backward algorithm). The

M-step uses L-BFGS. The gradient

takes the following well-known

form:

When L-BFGS is not run to

convergence we recover a

generalized EM algorithm, which is

more efficient because we do not

keep adjusting parameters based

on out-of-date counts.

Probabilistic vs. Weighted Finite-State Transducers

PFSTs are locally normalized models. WFSTs, which are globally

normalized models, do not suffer from label bias and are likely to beat

PFSTs as a linguistic model. The distinction is identical to that between a

MEMM and a CRF. So why are we interested in PFSTs?

• PFSTs do not require the

computation of a separate partition

function for every x. This makes

them tractable when x is uncertain

e.g., in noisy channel models, channel

cascades and Bayesian networks.

• PFSTs are more efficient to train

under conditional likelihood. It is faster

to compute the gradient, since we only

have to raise the probabilities of arcs

in relative to competing

arcs in .

We use four different topologies (context configurations). Note that

(0,1,0) is standard weighted edit distance. We also use backoff

features that each context shares with other contexts and

regularization.

• A WFST’s advantage is that the

probability of an edit can be indirectly

affected by the weights of other edits at

a distance.

• One could construct WFSTs where an

edit’s weight directly considers local right

output context.

•WFSTs can also use a simpler topology

while retaining determinism, since edits

can be scored “in retrospect” after they

have passed into the left context.

PFSTs WFSTs

Comparative Advantages

p(y | x) x

y

p(y | x)

x, y ∈ Σ
∗

Zx

xk � T � yk
xk � T

Input Left

Context

Input Right

Context

Output Left

Context

Local

normalization

prevents

conditioning

on output

right context

P
y
p(y | x) = 1, ∀x

(xk, yk)

P
k
p(yk | xk)

X

C,e

c(C, e)

"

~f(C, e)−
X

e0

pθ(e
0 | C)~f(C, e0)

#

.

Example from English Phonology

Consider the productive case of intervocalic alveolar flapping in

American English e.g., compare the pronunciation of wet and wetter.

We should map the underlying form /wɛtəәr/ to its surface form

[wɛɾəәr]. This is predicted by a left-to-right, context sensitive editing

process:

p(COPY[t] | C)

p(INS[z] | C)

p(SUB[t, ɾ] | C)

p(DEL[t] | C)
...

Input Left Context Input Right Context

Output Left Context

Unavailable due to

local normalization

Automaton head

Stochastic Choice of Edit in Context C:

= ...

= ...

= ...

= ...

The distribution over possible

edits takes the form of a

conditional log-linear model:

p(e | C)
def
==

1

Zc

exp
⇣

✓ · ~f(C, e)
⌘

Future Work - Inferring Underlying Forms

We will use a PFST with features inspired by linguistic theory to model

phonology within a Bayesian network. Observed pronunciations are often

explained as arising from the “underlying forms” of morphemes. Linguists try

to reconstruct these latent strings. Our technique involves loopy belief

propagation in a generative (directed) graphical model whose variables are

unknown strings and whose factors are finite-state machines with unknown

weights.

resignation resigns damns damnation

1) Morpheme Underlying Representations

2) Word Underlying Representations

3) Word Surface Representations

4) Word Pronunciations

Phonetics

Phonology (PFST)

Concatenation (e.g.)

See Keynote at MORPHFSM
on Friday at 9:15am for more details.

Experiments

rizajgn z eɪʃ#n dæmn

rizajgn#eɪʃ#n rizajgn#z dæmn#z dæmn#eɪʃ#n

rˌɛ.zɪg.nˈɛɪ.ʃ#n ri.zˈajnz dæmz dˌæm.nˈeɪ.ʃ#n

rˌɛzɪgnˈɛɪʃ#n rizˈajnz dˈæmz dˌæmnˈeɪʃ#n

xk yk

w ɛ t

ɾ

#

w ɛ#

r #ə

yk

yk

y

L2

Sunday, June 22, 14

