
b     c

y     _

a     bc

z       _

a      b

x      _

a     ba

x       _
ε:z

 /

ε:ε
 / 

ε:y /

ε:x / 

insert z

insert x

substitute y for b

delete b
b      c

x      _   

read c

c:ε / 1

      p(INSERT(x) | (a,bc,x) )

     
  p(INS

ER
T(z) | (

a,b
c,x

) )

p(SUBST(y) | (a,bc,x) )

      
p(DEL

ETE
(b) | (a

,bc
,x) )

a     ba

x       _

a      bc

x       _

To demonstrate the utility of contextual edit transducers, we

examine spelling errors in social media data. We report on test data 

how much probability mass lands on the true     .  We also report how 

much mass lands “near”     , by measuring the expected edit distance 

of the predicted     to the truth. The graphs show that more context 

improves the performance under both metrics on test data.

The Contextual Edit Transducer

• We define a conditional probability distribution of an edit given a context using a 

log-linear model.                                               .

• An edit is one of four actions: COPY, SUBSTITUTE, DELETE or INSERT.

• The probability of a sequence of edits is a product where each edit’s probability is 

conditioned on the context produced by the previous edits.

• A context consists of three context windows: input left, input right and output left.

• Right output context is unavailable in PFSTs, so the model is left/right asymmetric. 

• For                , let               be the total probability of all edit sequences that map                                  

into   . Note that                                .    

• We construct a single probabilistic finite-state transducer to compute              .
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Stochastic Contextual Edit Distance 

and Probabilistic FSTs
Ryan Cotterell, Nanyun Peng, Jason Eisner

Given              with unobserved 

alignments (edit sequences), EM 

will locally maximize                      .                   

The E-step sums over all     -to-

alignment paths in the transducer 

(forward-backward algorithm). The 

M-step uses L-BFGS. The gradient 

takes the following well-known 

form:

When L-BFGS is not run to 

convergence we recover a 

generalized EM algorithm, which is 

more efficient because we do not 

keep adjusting parameters based 

on out-of-date counts. 

Probabilistic vs. Weighted Finite-State Transducers

PFSTs are locally normalized models. WFSTs, which are globally 

normalized models, do not suffer from label bias and are likely to beat 

PFSTs as a linguistic model. The distinction is identical to that between a 

MEMM and a CRF.  So why are we interested in PFSTs? 

• PFSTs do not require the 

computation of a separate partition 

function      for every x. This makes 

them tractable when x is uncertain 

e.g., in noisy channel models, channel 

cascades and Bayesian networks.

• PFSTs are more efficient to train 

under conditional likelihood. It is faster 

to compute the gradient, since we only 

have to raise the probabilities of arcs 

in                                 relative to competing 

arcs in             . 

We use four different topologies (context configurations). Note that 

(0,1,0) is standard weighted edit distance. We also use backoff 

features that each context shares with other contexts and      

regularization. 

• A WFST’s advantage is that the 

probability of an edit can be indirectly 

affected by the weights of other edits at 

a distance.

• One could construct WFSTs where an 

edit’s weight directly considers local right 

output context.

•WFSTs can also use a simpler topology 

while retaining determinism, since edits 

can be scored “in retrospect” after they 

have passed into the left context.

PFSTs WFSTs

Comparative Advantages

p(y | x) x

y

p(y | x)

x, y ∈ Σ
∗
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Input Left 

Context

Input Right 

Context

Output Left 

Context

Local 

normalization 

prevents 

conditioning 

on output 

right context
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c(C, e)
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~f(C, e)−
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e0
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Example from English Phonology

Consider the productive case of intervocalic alveolar flapping in 

American English e.g., compare the pronunciation of wet and wetter. 

We should map the underlying form /wɛtəәr/ to its surface form 

[wɛɾəәr]. This is predicted by a left-to-right, context sensitive editing 

process: 

p(COPY[t] | C) 

p(INS[z] | C)    

p(SUB[t, ɾ] | C)  

p(DEL[t] | C)    
...

Input Left Context Input Right Context

Output Left Context

Unavailable due to 

local normalization

Automaton head

 

Stochastic Choice of Edit in Context C:

= ...

= ...

= ...

= ...

The distribution over possible 

edits takes the form of a 

conditional log-linear model:

p(e | C)
def
==

1

Zc

exp
⇣

✓ · ~f(C, e)
⌘

Future Work - Inferring Underlying Forms

We will use a PFST with features inspired by linguistic theory to model 

phonology within a Bayesian network. Observed pronunciations are often 

explained as arising from the “underlying forms” of morphemes. Linguists try 

to reconstruct these latent strings. Our technique involves loopy belief 

propagation in a generative (directed) graphical model whose variables are 

unknown strings and whose factors are finite-state machines with unknown 

weights.

resignation resigns damns damnation

1) Morpheme Underlying Representations

2) Word Underlying Representations

3) Word Surface Representations

4) Word Pronunciations

Phonetics

Phonology (PFST)

Concatenation (e.g.)

See Keynote at MORPHFSM
on Friday at 9:15am for more details. 
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