
The Annals of Probability
2018, Vol. 46, No. 1, 551–603
https://doi.org/10.1214/17-AOP1191
© Institute of Mathematical Statistics, 2018
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We consider a stochastic control problem for a class of nonlinear ker-
nels. More precisely, our problem of interest consists in the optimization,
over a set of possibly nondominated probability measures, of solutions of
backward stochastic differential equations (BSDEs). Since BSDEs are non-
linear generalizations of the traditional (linear) expectations, this problem can
be understood as stochastic control of a family of nonlinear expectations, or
equivalently of nonlinear kernels. Our first main contribution is to prove a dy-
namic programming principle for this control problem in an abstract setting,
which we then use to provide a semimartingale characterization of the value
function. We next explore several applications of our results. We first obtain a
wellposedness result for second order BSDEs (as introduced in Soner, Touzi
and Zhang [Probab. Theory Related Fields 153 (2012) 149–190]) which does
not require any regularity assumption on the terminal condition and the gen-
erator. Then we prove a nonlinear optional decomposition in a robust setting,
extending recent results of Nutz [Stochastic Process. Appl. 125 (2015) 4543–
4555], which we then use to obtain a super-hedging duality in uncertain, in-
complete and nonlinear financial markets. Finally, we relate, under additional
regularity assumptions, the value function to a viscosity solution of an appro-
priate path–dependent partial differential equation (PPDE).

CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
2. Stochastic control for a class of nonlinear stochastic kernels . . . . . . . . . . . . . . . . . 556

2.1. Probabilistic framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
2.1.1. Canonical space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556

Received January 2016; revised January 2017.
1This work was started while the first and second authors were visiting the National University of

Singapore, whose hospitality is kindly acknowledged.
2Supported by the ANR Pacman ANR-16-CE05-0027.
3Supported in part by the ERC 321111 Rofirm, the ANR Isotace, the Chairs Financial Risks (Risk

Foundation, sponsored by Société Générale) and Finance and Sustainable Development (IEF spon-
sored by EDF and CA).

4Supported by NUS Grant R-146-000-179-133 and Singapore MOE AcRF Grant R-146-000-219-
112.

MSC2010 subject classifications. 60H10, 60H30.
Key words and phrases. Stochastic control, measurable selection, nonlinear kernels, second-order

BSDEs, path–dependent PDEs, robust super-hedging.

551

http://www.imstat.org/aop/
https://doi.org/10.1214/17-AOP1191
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


552 D. POSSAMAÏ, X. TAN AND C. ZHOU

2.1.2. Semimartingale measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
2.1.3. Conditioning and concatenation of probability measures . . . . . . . . . . . . . 558
2.1.4. Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559

2.2. Spaces and norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
2.3. Control on a class of nonlinear stochastic kernels and the dynamic programming

principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
2.4. Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563

2.4.1. An equivalent formulation on enlarged canonical space . . . . . . . . . . . . . 563
2.4.2. An iterative construction of the solution to BSDE (2.5) . . . . . . . . . . . . . . 565
2.4.3. On the measurability issues of the iteration . . . . . . . . . . . . . . . . . . . . 567
2.4.4. End of the Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 569
2.4.5. Further discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571

3. Path regularization of the value function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
4. Application to 2BSDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582

4.1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582
4.2. Uniqueness, stochastic control representation and comparison . . . . . . . . . . . . . 583
4.3. A priori estimates and stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
4.4. Existence through dynamic programming . . . . . . . . . . . . . . . . . . . . . . . . . 589

5. Nonlinear optional decomposition and super-hedging duality . . . . . . . . . . . . . . . . . 590
5.1. Saturated 2BSDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590
5.2. A super-hedging duality in uncertain, incomplete and nonlinear markets . . . . . . . . 591

6. Path-dependent PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596

A.1. Technical results for BSDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599

1. Introduction. The dynamic programming principle (DPP for short) has
been a major tool in the control theory, since the latter took off in the 1970s. In-
formally speaking, this principle simply states that a global optimization problem
can be split into a series of local optimization problems. Although such a princi-
ple is extremely intuitive, its rigorous justification has proved to be a surprisingly
difficult issue. Hence, for stochastic control problems, the dynamic programming
principle is generally based on the stability of the controls with respect to condi-
tioning and concatenation, together with a measurable selection argument, which
roughly speaking, allow to prove the measurability of the associated value func-
tion, as well as constructing almost optimal controls through “pasting”. This is
exactly the approach followed by Bertsekas and Shreve [6], and Dellacherie [24]
for discrete time stochastic control problems. In continuous time, a comprehen-
sive study of the dynamic programming principle remained more elusive. Thus,
El Karoui, in [33], established the dynamic programming principle for the optimal
stopping problem in a continuous time setting, using crucially the strong stability
properties of stopping times, as well as the fact that the measurable selection ar-
gument can be avoided in this context, since an essential supremum over stopping
times can be approximated by a supremum over a countable family of random vari-
ables. Later, for general controlled Markov processes (in continuous time) prob-
lems, El Karoui, Huu Nguyen and Jeanblanc [35] provided a framework to derive
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the dynamic programming principle using the measurable selection theorem, by
interpreting the controls as probability measures on the canonical trajectory space
(see, e.g., Theorems 6.2, 6.3 and 6.4 of [35]). Another commonly used approach to
derive the DPP was to bypass the measurable selection argument by proving, under
additional assumptions, a priori regularity of the value function. This was the strat-
egy adopted, among others, by Fleming and Soner [42], and in the so-called weak
DPP of Bouchard and Touzi [14], which has then been extended by Bouchard and
Nutz [9, 11] and Bouchard, Moreau and Nutz [8] to optimal control problems with
state constraints as well as to differential games (see also Dumitrescu, Quenez and
Sulem [29] for a combined stopping-control problem on BSDEs). One of the main
motivations of this weak DPP is that it is generally enough to characterize the value
function as a viscosity solution of the associated Hamilton–Jacobi–Bellman partial
differential equation (PDE). Let us also mention the so-called stochastic Perron’s
method, which has been developed by Bayraktar and Sîrbu (see, e.g., [4, 5]), which
allows for Markov problems to obtain the viscosity solution characterization of the
value function without using the DPP, and then to prove the latter a posteriori. Re-
cently, motivated by the emerging theory of robust finance, Nutz et al. [65, 71] gave
a framework, which allowed to prove the dynamic programming principle for sub-
linear expectations (or equivalently a non-Markovian stochastic control problem),
where the essential arguments are close to those in [35], though the presentation is
more modern, pedagogic and accessible. The problem in continuous-time has also
been studied by El Karoui and Tan [40, 41], in a more general context than the
previous references, but still based on the same arguments as in [35] and [65].

However, all the above works consider only what needs to be qualified as the
sublinear case. Indeed, the control problems considered consists generically in the
maximization of a family of expectations over the set of controls. Nonetheless, so-
called nonlinear expectations on a given probability space (that is to say operators
acting on random variables which preserve all the properties of expectations but
linearity) have now a long history, be it from the capacity theory, used in economics
to axiomatize preferences of economic agents which do not satisfy the usual ax-
iom’s of von Neumann and Morgenstern, or from the seminal g-expectations (or
BSDEs) introduced by Peng [74]. Before pursuing, let us just recall that in the sim-
ple setting of a probability space carrying a Brownian motion W , with its (com-
pleted) natural filtration F, finding the solution of a BSDE with generator g and
terminal condition ξ ∈ FT amounts to finding a pair of F-progressively measurable
processes (Y,Z) such that

Yt = ξ −

∫ T

t
gs(Ys,Zs) ds −

∫ T

t
Zs · dWs, t ∈ [0, T ], a.s.

This theory is particularly attractive from the point of view of stochastic control,
since it is constructed to be filtration (or time) consistent, that is to say that its
conditional version satisfies a tower property similar to that of linear expectations,
which is itself a kind of dynamic programming principle. Furthermore, it has been
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proved by Coquet et al. [18] that essentially all filtration consistent nonlinear ex-
pectations satisfying appropriate domination properties could be represented with
BSDEs (we refer the reader to [49] and [17] for more recent extensions of this re-
sult). Our first contribution in this paper, in Section 2, is therefore to generalize the
measurable selection argument to derive the dynamic programming principle in the
context of optimal stochastic control of nonlinear expectations (or kernels), which
can be represented by BSDEs (which as mentioned above is not such a stringent
assumption). We emphasize that such an extension is certainly not straightforward.
Indeed, in the context of linear expectations, there is a very well established the-
ory studying how the measurability properties of a given map are impacted by its
integration with respect to a so-called stochastic kernel (roughly speaking, one can
see this as a regular version of a conditional expectation in our context; see, for
instance, [6], Chapter 7). For instance, integrating a Borel map with respect to a
Borel stochastic kernel preserves the Borel measurability. However, in the context
of BSDEs, one has to integrate with respect to nonlinear stochastic kernels, for
which, as far as we know, no such theory of measurability exists. Moreover, we
also obtain a semimartingale decomposition for the value function of our control
problem. This is the objective of Section 3.

Let us now explain where our motivation for studying this problem stems from.
The problem of studying a controlled system of BSDEs is not new. For instance,
it was shown by El Karoui and Quenez [38, 39] and Hamadène and Lepeltier [46]
(see also [37] and the references therein) that a stochastic control problem with
control on the drift only could be represented via a controlled family of BSDEs
(which can actually be itself represented by a unique BSDE with convex genera-
tor). More recently, motivated by obtaining probabilistic representations for fully
nonlinear PDEs, Soner, Touzi and Zhang [84, 85] (see also the earlier works [15]
and [83]) introduced a notion of second-order BSDEs (2BSDEs for short), whose
solutions could actually be written as a supremum, over a family of nondomi-
nated probability measures (unlike in [39] where the family is dominated), of stan-
dard BSDEs. Therefore, the 2BSDEs fall precisely in the class of problem that
we want to study, that is, stochastic control of nonlinear kernels. The authors of
[84, 85] managed to obtain the dynamic programming principle, but under very
strong continuity assumptions w.r.t. ω on the terminal condition and the generator
of the BSDEs, and obtained a semimartingale decomposition of the value function
of the corresponding stochastic control problem, which ensured well-posedness
of the associated 2BSDE. Again, these regularity assumptions are made to obtain
the continuity of the value function a priori, which allows to avoid completely the
use of the measurable selection theorem. Since then, the 2BSDE theory has been
extended by allowing more general generators, filtrations and constraints (see [52,
53, 62, 63, 77, 79]), but no progress has been made concerning the regularity as-
sumptions. However, the 2BSDEs (see, for instance, [64]) have proved to provide
a particularly nice framework to study the so-called robust problems in finance,
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which were introduced by [2, 60] and in a more rigorous setting by [26]. How-
ever, the regularity assumptions put strong limitations to the range of the potential
applications of the theory.

We also would like to mention a related theory introduced by Peng [76], and
developed around the notion of G–expectations, which lead to the so-called G-
BSDEs (see [47, 48]). Instead of working on a fixed probability space carrying
different probability measures corresponding to the controls, they work directly on
a so-called sublinear expectation space in which the canonical process already in-
corporates the different measures, without having to refer to a probabilistic setting.
Although their method of proof is different, since they mainly use PDE arguments
to construct a solution in the Markovian case and then a closure argument, the fi-
nal objects are extremely close to 2BSDEs, with similar restrictions in terms of
regularity. Moreover, the PDE approach they use is unlikely to be compatible with
a theory without any regularity, since the PDEs they consider need at the very
least to have a continuous solution. On the other hand, there is more hope for the
probabilistic approach of the 2BSDEs, since, as shown in [71] in the case of linear
expectations (i.e., when the generator of the BSDEs is 0), everything can be well
defined by assuming only that the terminal condition is (Borel) measurable.

There is a third theory which shares deep links with 2BSDEs, namely that of vis-
cosity solutions of fully nonlinear path dependent PDEs (PPDEs for short), which
has been introduced recently by Ekren, Keller, Touzi and Zhang [30–32]. Indeed,
they showed that the solution of a 2BSDE, with a generator and a terminal con-
dition uniformly continuous (in ω), was nothing else than the viscosity solution
of a particular PPDE, making the previous theory of 2BSDEs a special case of
the theory of PPDEs. The second contribution of our paper is therefore that we
show (a suitable version of) the value function for which we have obtained the dy-
namic programming principle provides a solution to a 2BSDE without requiring
any regularity assumption, a case which cannot be covered by the PPDE theory.
This takes care of the existence problem, while we tackle, as usual, the uniqueness
problem through a priori Lp estimates on the solution, for any p > 1. We empha-
size that in the very general setting that we consider, the classical method of proof
fails (in particular since the filtration we work with is not quasi-left continuous
in general), and the estimates follow from a general result that we prove in our
accompanying paper [13]. In particular, our wellposedness results contains as a
special case the theory of BSDEs, which was not the case neither for the 2BSDEs
of [84], nor the G-BSDE. Moreover, the class of probability measures that we can
consider is much more general than the ones considered in the previous literature,
even allowing for degeneracy of the diffusion coefficient. This is the objective of
Section 4.

The rest of the paper is mainly concerned with applications of the previous the-
ory. First, in Section 5, we use our previous results to obtain a nonlinear and robust
generalization of the so-called optional decomposition for supermartingales (see,
for instance, [39, 56] and the other references given in Section 5 for more details),
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which is new in the literature. This allows us to introduce, under an additional
assumption stating that the family of measures is roughly speaking rich enough, a
new notion of solutions, which we coined saturated 2BSDEs. This new formulation
has the advantage that it allows us to get rid of the orthogonal martingales, which
generically appear in the definition of a 2BSDE (see Definitions 4.1 and 5.2 for
more details). This is particularly important in some applications; see, for instance,
the general principal-agent problem studied in [21]. We then give a duality result
for the robust pricing of contingent claims in nonlinear and incomplete financial
markets. Finally, in Section 6, we recall in our context the link between 2BSDEs
and PPDEs when we work under additional regularity assumptions. Compared to
[31], our result can accommodate degenerate diffusions.

To conclude this Introduction, we really want to insist on the fact that our new
results have much more far-reaching applications, and are not a mere mathemat-
ical extension. Indeed, in the paper [21], the well-posedness theory of 2BSDEs
we have obtained is used crucially to solve general principal-agent problems in
contracting theory, when the agent controls both the drift and the volatility of the
corresponding output process (we refer the reader to the excellent monograph [22]
for more details on contract theory), a problem which could not be treated with the
technics prevailing in the previous literature. Such a result has potential applica-
tions in many fields, ranging from economics (see, for instance, [20, 61]) to energy
management (see [1]).

Notations: Throughout this paper, we fix a constant p > 1. Let N∗ := N \ {0}

and let R∗
+ be the set of real positive numbers. For every d-dimensional vector b

with d ∈N∗, we denote by b1, . . . , bd its coordinates and for α,β ∈ Rd we denote
by α · β the usual inner product, with associated norm ‖ · ‖, which we simplify
to | · | when d is equal to 1. We also let 1d be the vector whose coordinates are
all equal to 1. For any (ℓ, c) ∈ N∗ × N∗, Mℓ,c(R) will denote the space of ℓ × c

matrices with real entries. Elements of the matrix M ∈ Mℓ,c will be denoted by
(M i,j )1≤i≤ℓ,1≤j≤c, and the transpose of M will be denoted by M⊤. When ℓ =

c, we let Mℓ(R) := Mℓ,ℓ(R). We also identify Mℓ,1(R) and Rℓ. The identity
matrix in Mℓ(R) will be denoted by Iℓ. Let S≥0

d denote the set of all symmetric

positive semi-definite d × d matrices. We fix a map ψ : S
≥0
d −→ Md(R) which

is (Borel) measurable and satisfies ψ(a)ψ(a)⊤ = a for all a ∈ S
≥0
d , and denote

a
1
2 := ψ(a). Finally, we denote by a⊕ the Moore–Penrose pseudo-inverse of a ∈

S
≥0
d . In particular, we know that a 
−→ a⊕ = limδց0(a

⊤a + δId)−1a⊤ is Borel
measurable.

2. Stochastic control for a class of nonlinear stochastic kernels.

2.1. Probabilistic framework.

2.1.1. Canonical space. Let d ∈ N∗. We denote by 	 := C([0, T ],Rd) the
canonical space of all Rd -valued continuous paths ω on [0, T ] such that ω0 =
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0, equipped with the canonical process X, that is, Xt (ω) := ωt , for all ω ∈ 	.
Denote by F = (Ft )0≤t≤T the canonical filtration generated by X, and by F+ =

(F+
t )0≤t≤T the right limit of F with F

+
t :=
⋂

s>t Fs for all t ∈ [0, T ) and F
+
T :=

FT . We equip 	 with the uniform convergence norm ‖ω‖∞ := sup0≤t≤T ‖ωt‖, so
that the Borel σ -field of 	 coincides with FT . Let P0 denote the Wiener measure
on 	 under which X is a Brownian motion.

Let M1 denote the collection of all probability measures on (	,FT ). Notice that
M1 is a Polish space equipped with the weak convergence topology. We denote by
B its Borel σ -field. Then for any P ∈ M1, denote by FP

t the completed σ -field
of Ft under P. Denote also the completed filtration by FP = (FP

t )t∈[0,T ] and FP
+

the right limit of FP, so that FP
+ satisfies the usual conditions. Moreover, for P ⊂

M1, we introduce the universally completed filtration FU := (FU
t )0≤t≤T , FP :=

(FP
t )0≤t≤T , and FP+ := (FP+

t )0≤t≤T , defined as follows:

FU
t :=

⋂

P∈M1

FP
t , FP

t :=
⋂

P∈P

FP
t , t ∈ [0, T ],

FP+
t := FP

t+, t ∈ [0, T ), and F
P+
T := FP

T .

We also introduce an enlarged canonical space 	 := 	 × 	′, where 	′ is identi-
cal to 	. By abuse of notation, we denote by (X,B) its canonical process, that is,
Xt (ω̄) := ωt , Bt (ω̄) := ω′

t for all ω̄ := (ω,ω′) ∈ 	, by F = (F t )0≤t≤T the canoni-

cal filtration generated by (X,B), and by F
X

= (F
X

t )0≤t≤T the filtration generated

by X. Similarly, we denote the corresponding right-continuous filtrations by F
X

+

and F+, and the augmented filtration by F
X,P

+ and F
P

+, given a probability measure
P on 	.

2.1.2. Semimartingale measures. We say that a probability measure P on
(	,FT ) is a semimartingale measure if X is a semimartingale under P. Then on
the canonical space 	, there is some F-progressively measurable nondecreasing
process (see, e.g., Karandikar [51]), denoted by 〈X〉 = (〈X〉t )0≤t≤T , which co-
incides with the quadratic variation of X under each semimartingale measure P.
Denote further

ât := lim sup
εց0

〈X〉t − 〈X〉t−ε

ε
.

For every t ∈ [0, T ], let PW
t denote the collection of all probability measures P on

(	,FT ) such that:

• (Xs)s∈[t,T ] is a (P,F)-semimartingale admitting the canonical decomposition
(see, e.g., [50], Theorem I.4.18)

Xs =

∫ s

t
bPr dr + Xc,P

s , s ∈ [t, T ],P-a.s.,
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where bP is a FP-predictable Rd -valued process, and Xc,P is the continuous
local martingale part of X under P.

• (〈X〉s)s∈[t,T ] is absolutely continuous in s with respect to the Lebesgue measure,
and â takes values in S

≥0
d , P-a.s.

Given a random variable or process λ defined on 	, we can naturally define its
extension on 	 (which, abusing notation slightly, we still denote by λ) by

(2.1) λ(ω̄) := λ(ω), ∀ω̄ :=
(
ω,ω′) ∈ 	.

In particular, the process â can be extended on 	. Given a probability measure
P ∈ PW

t , we define a probability measure P on the enlarged canonical space 	 by
P := P⊗ P0, so that X in (	,FT ,P,F) is a semimartingale with the same triplet
of characteristics as X in (	,FT ,P,F), B is a F-Brownian motion, and X is
independent of B . Then for every P ∈ PW

t , there is some Rd -valued, F-Brownian
motion WP = (WP

r )t≤r≤s such that (see, e.g., Theorem 4.5.2 of [87])

(2.2) Xs =

∫ s

t
bPr dr +

∫ s

t
â1/2
r dWP

r , s ∈ [t, T ],P-a.s.,

where we extend the definition of bP and â on 	 as in (2.1), and where we recall
that â1/2 has been defined in Notation above.

Notice that when â
1/2
r is nondegenerate P-a.s., for all r ∈ [t, T ], we can con-

struct the Brownian motion WP on 	 as follows:

WP
t :=

∫ t

0
â−1/2
s dXc,P

s , t ∈ [0, T ],P-a.s.,

and do not need to consider the above enlarged space equipped with an indepen-
dent Brownian motion to construct WP.

REMARK 2.1 (On the choice of â1/2). The measurable map a 
−→ a1/2 is
fixed throughout the paper. A first choice is to take a1/2 as the unique nonnegative
symmetric square root of a (see, e.g., Lemma 5.2.1 of [87]). One can also use the
Cholesky decomposition to obtain a1/2 as a lower triangular matrix. Finally, when
d = m + n for m,n ∈ N∗, and â has the specific structure of Remark 2.2 below,
one can take a1/2 in the following way:

(2.3) a =

(
σσ⊤ σ

σ⊤ In

)
and a1/2 =

(
σ 0
In 0

)
, for some σ ∈ Mm,n.

2.1.3. Conditioning and concatenation of probability measures. We also re-
call that for every probability measure P on 	 and F-stopping time τ taking
value in [0, T ], there exists a family of regular conditional probability distribution
(r.c.p.d. for short) (Pτ

ω)ω∈	 (see, e.g., Stroock and Varadhan [87]), satisfying:

(i) For every ω ∈ 	, Pτ
ω is a probability measure on (	,FT ).
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(ii) For every E ∈ FT , the mapping ω 
−→ Pτ
ω(E) is Fτ -measurable.

(iii) The family (Pτ
ω)ω∈	 is a version of the conditional probability measure of

P on Fτ , that is, for every integrable FT -measurable random variable ξ we have
EP[ξ |Fτ ](ω) = EPτ

ω [ξ ], for P-a.e. ω ∈ 	.
(iv) For every ω ∈ 	, Pτ

ω(	ω
τ ) = 1, where 	ω

τ := {ω ∈ 	 : ω(s) = ω(s),0 ≤

s ≤ τ(ω)}.

Furthermore, given some P and a family (Qω)ω∈	 such that ω 
−→ Qω is Fτ -
measurable and Qω(	ω

τ ) = 1 for all ω ∈ 	, one can then define a concatenated
probability measure P⊗τ Q· by

P⊗τ Q·[A] :=

∫

	
Qω[A]P(dω) ∀A ∈ FT .

2.1.4. Hypotheses. We shall consider a random variable ξ : 	 −→ R and a
generator function

f : (t,ω, y, z, a, b) ∈ [0, T ] × 	 ×R×Rd × S
≥0
d ×Rd −→ R.

Define for simplicity

f̂ P
s (y, z) := f

(
s,X·∧s, y, z, âs, b

P
s

)
and f̂ P,0

s := f
(
s,X·∧s,0,0, âs, b

P
s

)
.

Moreover, we are given a family (P(t,ω))(t,ω)∈[0,T ]×	 of sets of probability mea-
sures on (	,FT ), where P(t,ω) ⊂ PW

t for all (t,ω) ∈ [0, T ] × 	. Denote also
Pt :=

⋃
ω∈	P(t,ω). We make the following assumption on ξ , f and the family

(P(t,ω))(t,ω)∈[0,T ]×	.

ASSUMPTION 2.1. (i) The random variable ξ is FT -measurable, the generator
function f is jointly Borel measurable and such that for every (t,ω, y, y′, z, z′,

a, b) ∈ [0, T ] × 	 ×R×R×Rd ×Rd × S
≥0
d ×Rd

∣∣f (t,ω, y, z, a, b) − f
(
t,ω, y′, z′, a, b

)∣∣≤ C
(∣∣y − y′

∣∣+
∥∥z − z′

∥∥),

and for every fixed (y, z, a, b), the map (t,ω) 
−→ f (t,ω, y, z, a, b) is F-
progressively measurable.

(ii) For the fixed constant p > 1, one has, for every (t,ω) ∈ [0, T ] × 	,

(2.4) sup
P∈P(t,ω)

EP

[
|ξ |p +

∫ T

t

∣∣f
(
s,X·∧s,0,0, âs, b

P
s

)∣∣p ds

]
< +∞.

(iii) For every (t,ω) ∈ [0, T ]×	, one has P(t,ω) = P(t,ω·∧t) and P(	ω
t ) = 1

whenever P ∈ P(t,ω). The graph [[P]] of P , defined by [[P]] := {(t,ω,P) : P ∈

P(t,ω)}, is upper semi-analytic in [0, T ] × 	 ×M1.
(iv) P is stable under conditioning, that is, for every (t,ω) ∈ [0, T ] × 	 and

every P ∈ P(t,ω) together with an F-stopping time τ taking values in [t, T ], there
is a family of r.c.p.d. (Pw)w∈	 such that Pw ∈ P(τ (w),w), for P-a.e. w ∈ 	.
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(v) P is stable under concatenation, that is, for every (t,ω) ∈ [0, T ] × 	 and
P ∈P(t,ω) together with a F-stopping time τ taking values in [t, T ], let (Qw)w∈	

be a family of probability measures such that Qw ∈ P(τ (w),w) for all w ∈ 	 and
w 
−→ Qw is Fτ -measurable, then the concatenated probability measure P⊗τ Q· ∈

P(t,ω).

We notice that for t = 0, we have P0 := P(0,ω) for any ω ∈ 	.

2.2. Spaces and norms. We now give the spaces and norms which will be
needed in the rest of the paper. Fix some t ∈ [0, T ] and some ω ∈ 	. In what
follows, X := (Xs)t≤s≤T will denote an arbitrary filtration on (	,FT ), and P an
arbitrary element in P(t,ω). Denote also by XP the P-augmented filtration asso-
ciated to X:

• For p ≥ 1, L
p
t,ω(X) (resp., L

p
t,ω(X,P)) denotes the space of all XT -

measurable scalar random variable ξ with

‖ξ‖
p

L
p
t,ω

:= sup
P∈P(t,ω)

EP
[
|ξ |p
]
< +∞

(
resp. ‖ξ‖

p

L
p
t,ω(P)

:= EP
[
|ξ |p
]
< +∞

)
.

• H
p
t,ω(X) (resp., Hp

t,ω(X,P)) denotes the space of all X-predictable Rd -valued
processes Z, which are defined âs ds-a.e. on [t, T ], with

‖Z‖
p

H
p
t,ω

:= sup
P∈P(t,ω)

EP

[(∫ T

t

∥∥(â1/2
s

)⊤
Zs

∥∥2 ds

)p
2
]

< +∞

(
resp., ‖Z‖

p

H
p
t,ω(P)

:= EP

[(∫ T

t

∥∥(â1/2
s

)⊤
Zs

∥∥2 ds

)p
2
]

< +∞

)
.

• M
p
t,ω(X,P) denotes the space of all (X,P)-optional martingales M with

P-a.s. càdlàg paths on [t, T ], with Mt = 0, P-a.s., and

‖M‖
p

M
p
t,ω(P)

:= EP[[M]
p
2
T

]
< +∞.

Furthermore, we will say that a family (MP)P∈P(t,ω) belongs to M
p
t,ω((XP)P∈P(t,ω))

if, for any P ∈ P(t,ω), MP ∈M
p
t,ω(XP,P) and

sup
P∈P(t,ω)

∥∥MP
∥∥
M

p
t,ω(P) < +∞.

• I
p
t,ω(X,P) (resp., Io,p

t,ω (X,P)) denotes the space of all X-predictable (resp. X-
optional) processes K with P-a.s. càdlàg and nondecreasing paths on [t, T ], with
Kt = 0, P-a.s., and

‖K‖
p

I
p
t,ω(P)

:= EP
[
K

p
T

]
< +∞

(
resp. ‖K‖

p

I
o,p
t,ω (P)

:= EP
[
K

p
T

]
< +∞

)
.



STOCHASTIC CONTROL FOR NONLINEAR KERNELS 561

Similarly we will say that a family (KP)P∈P(t,ω) belongs to I
p
t,ω((XP)P∈P(t,ω))

(resp., Io,p
t,ω ((XP)P∈P(t,ω))) if, for any P ∈ P(t,ω), KP ∈ I

p
t,ω(XP,P) (resp. KP ∈

I
o,p
t,ω (XP,P)) and

sup
P∈P(t,ω)

∥∥KP
∥∥
I
p
t,ω(P) < +∞

(
resp. sup

P∈P(t,ω)

∥∥KP
∥∥
I
o,p
t,ω (P) < +∞

)
.

• D
p
t,ω(X) (resp., Dp

t,ω(X,P)) denotes the space of all X-progressively measur-
able R-valued processes Y with P(t,ω)-q.s. (resp., P-a.s.) càdlàg paths on [t, T ],
with

‖Y‖
p

D
p
t,ω

:= sup
P∈P(t,ω)

EP
[

sup
t≤s≤T

|Ys |
p
]
< +∞

(
resp. ‖Y‖

p

D
p
t,ω(P)

:= EP
[

sup
t≤s≤T

|Ys |
p
]
< +∞

)
.

• For each ξ ∈ L1
t,ω(X) and s ∈ [t, T ], denote

EP,t,ω,X
s [ξ ] := ess supP

P′∈Pt,ω(s,P,X)

EP′

[ξ |Xs]

where Pt,ω(s,P,X) :=
{
P′ ∈ P(t,ω),P′ = P on Xs

}
.

Then we define for each p ≥ κ ≥ 1,

L
p,κ
t,ω (X) :=

{
ξ ∈ L

p
t,ω(X),‖ξ‖Lp,κ

t,ω
< +∞

}
,

where

‖ξ‖
p

L
p,κ
t,ω

:= sup
P∈P(t,ω)

EP
[ P
ess sup
t≤s≤T

(
EP,t,ω,F+

s

[
|ξ |κ
])p

κ
]
.

• Similarly, given a probability measure P and a filtration X on the enlarged
canonical space 	, we denote the corresponding spaces by D

p
t,ω(X,P), Hp

t,ω(X,P),
M

p
t,ω(X,P), . . . Furthermore, when t = 0, there is no longer any dependence on ω,

since ω0 = 0, so that we simplify the notation by suppressing the ω-dependence
and write H

p
0 (X), Hp

0 (X,P), . . . Similar notation are used on the enlarged canoni-
cal space.

2.3. Control on a class of nonlinear stochastic kernels and the dynamic pro-
gramming principle. For every (t,ω) ∈ [0, T ] × 	 and P ∈P(t,ω), we consider
the following BSDE:

(2.5)

Ys = ξ −

∫ T

s
f
(
r,X·∧r ,Yr ,

(
â1/2
r

)⊤
Zr , âr , b

P
r

)
dr

−

(∫ T

s
Zr · dXc,P

r

)P
−

∫ T

s
dMr , P-a.s.,
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where (
∫ T
s Zr · dXc,P

r )P denotes the stochastic integrable of Z w.r.t. Xc,P under
the probability P. Following El Karoui and Huang [34], we define a solution
to BSDE (2.5) as a triple (YP

s ,ZP
s ,MP

s )s∈[t,T ] ∈ D
p
t,ω(FP

+,P) × H
p
t,ω(FP

+,P) ×

M
p
t,ω(FP

+,P) satisfying the equality (2.5) under P (well-posedness is a conse-
quence of Lemma 2.2 below). We then define, for every (t,ω) ∈ [0, T ] × 	,

(2.6) Ŷt (ω) := sup
P∈P(t,ω)

EP[YP
t

]
.

Our first main result is the following dynamic programming principle.

THEOREM 2.1. Suppose that Assumption 2.1 holds true. Then for all (t,ω) ∈

[0, T ] × 	, one has Ŷt (ω) = Ŷt (ωt∧·), and (t,ω) 
−→ Ŷt (ω) is B([0, T ]) ⊗ FT -
universally measurable. Moreover, for all (t,ω) ∈ [0, T ] × 	 and F-stopping time
τ taking values in [t, T ], we have

Ŷt (ω) = sup
P∈P(t,ω)

EP[YP
t (τ, Ŷτ )

]
,

where YP
t (τ, Ŷτ ) is obtained from the solution to the following BSDE with terminal

time τ and terminal condition Ŷτ , verifying for any t ∈ [0, τ ], P-a.s.:

(2.7)

Yt = Ŷτ −

∫ τ

t
f
(
s,X·∧s,Ys,

(
â1/2
s

)⊤
Zs, âs, b

P
s

)
ds

−

(∫ τ

t
Zs · dXc,P

s

)P
−

∫ τ

t
dMs,

where (
∫ τ
t Zs ·dXc,P

s )P denotes the stochastic integral of Z w.r.t. Xc,P under prob-
ability P.

REMARK 2.2. In some contexts, the sets P(t,ω) are defined as the collections
of probability measures induced by a family of controlled diffusion processes. For
example, let C1 (resp., C2) denote the canonical space of all continuous paths ω1

in C([0, T ],Rn) (resp., ω2 in C([0, T ],Rm)) such that ω1
0 = 0 (resp., ω2

0 = 0),
with canonical process B , canonical filtration F1, and let P0 be the corresponding
Wiener measure. Let U be a Polish space, (μ,σ ) : [0, T ] × C1 × U −→ Rn ×

Mn,m be the coefficient functions. Then given (t,ω1) ∈ [0, T ]×C1, we denote by
J (t,ω1) the collection of all terms

α :=
(
	α,Fα,Pα,Fα =

(
Fα

t

)
t≥0,W

α,
(
να
t

)
t≥0,X

α),
where (	α,Fα,Pα,Fα) is a filtered probability space, Wα is a Fα-Brownian mo-
tion, να is a U -valued Fα-predictable process and Xα solves the SDE (under some
appropriate additional conditions on μ and σ), with initial condition Xα

s = ω1
s for

all s ∈ [0, t],

Xα
s = ω1

t +

∫ s

t
μ
(
r,Xα

r∧·, ν
α
r

)
dr +

∫ s

t
σ
(
r,Xα

r∧·, ν
α
r

)
dWα

r ,

s ∈ [t, T ],Pα-a.s.
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In this case, one can let d = m + n so that 	 = C1 × C2 and define P(t,ω)

for ω = (ω1,ω2) as the collection of all probability measures induced by
(Xα,Bα)α∈J (t,ω1).

Then, with the choice of â1/2 as in (2.3), one can recover σ from it directly,
which may be useful for some applications. Moreover, notice that P(t,ω) depends
only on (t,ω1) for ω = (ω1,ω2), then the value Ŷt (ω) in (2.6) depends also only
on (t,ω1).

2.4. Proof of Theorem 2.1.

2.4.1. An equivalent formulation on enlarged canonical space. We would like
formulate the BSDE (2.5) on the enlarged canonical space in an equivalent way.
Remember that 	 := 	×	′ and for a probability measure P on 	, we define P :=

P⊗ P0. Then a P-null event on 	 becomes a P-null event on 	 if it is considered
in the enlarged space. Let π : 	 × 	′ −→ 	 be the projection operator defined by
π(ω,ω′) := ω, for any (ω,ω′) ∈ 	.

LEMMA 2.1. Let A ⊆ 	 be a subset in 	. Then saying that A is a P-null set
is equivalent to saying that {ω̄ : π(ω̄) ∈ A} is a P := P⊗ P0-null set.

PROOF. For A ⊆ 	, denote A := {ω̄ : π(ω̄) ∈ A} = A × 	′. Then by the defi-
nition of the product measure, it is clear that

P(A) = 0 ⇐⇒ P⊗ P0(A) = 0,

which concludes the proof. �

We now consider two BSDEs on the enlarged canonical space, w.r.t. two differ-

ent filtrations. The first one is the following BSDE on (	,F
X

T ,P) w.r.t the filtration

F
X,P

:

(2.8)

Ys = ξ(X·) −

∫ T

s
f
(
r,X·∧r ,Yr ,

(
â1/2
r

)⊤
Zr , âr , b

P
r

)
dr

−

(∫ T

s
Zr · dXc,P

r

)P
−

∫ T

s
dMr ,

a solution being a triple (Y
P

s ,Z
P

s ,M
P

s )s∈[t,T ] ∈ D
p
t,ω(F

X,P

+ ,P) × H
p
t,ω(F

X,P

+ ,P) ×

M
p
t,ω(F

X,P

+ ,P) satisfying (2.8). Notice that in the enlargement, the Brownian mo-
tion B is independent of X, so that the above BSDE (2.8) is equivalent to BSDE
(2.5) (see Lemma 2.2 below for a precise statement and justification).
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We then introduce a second BSDE on the enlarged space (	,FT ,P), w.r.t. the
filtration F

(2.9)

Ỹs = ξ(X·) −

∫ T

s
f
(
r,X·∧r , Ỹr ,

(
â1/2
r

)⊤
Z̃r , âr , b

P
r

)
dr

−

(∫ T

s
Z̃r · â1/2

r dWP
r

)P
−

∫ T

s
dM̃r ,

a solution being a triple (ỸP
s , Z̃P

s ,M̃P
s )s∈[t,T ] ∈ D

p
t,ω(F

P

+,P) × H
p
t,ω(F

P

+,P) ×

M
p
t,ω(F

P

+,P) satisfying (2.9).

LEMMA 2.2. Let (t,ω) ∈ [0, T ]×	, P ∈P(t,ω) and P := P⊗P0, then each
of the three BSDEs (2.5), (2.8) and (2.9) has a unique solution, denoted respec-
tively by (Y,Z,M), (Y,Z,M) and (Ỹ, Z̃,M̃). Moreover, their solution coincide
in the sense that there is some functional

� :=
(
�Y ,�Z,�M) : [t, T ] × 	 −→ R×Rd ×R,

such that �Y and �M are F+-progressively measurable and P-a.s. càdlàg, �Z is
F-predic-table, and

Ys = �Y
s , Zr = �Z

r , âr dr-a.e. on [t, s],

Ms = �M
s , for all s ∈ [t, T ],P-a.s.,

Ys = Ỹs = �Y
s (X·), Zr = Z̃r = �Z

r (X·), âr dr-a.e. on [t, s],

Ms = M̃s = �M
s (X·),

for all s ∈ [t, T ], P-a.s.

PROOF. (i) The existence and uniqueness of a solution to (2.9) is a classical
result; we can, for example, refer to Theorem 4.1 of [13]. Then it is enough to show
that the three BSDEs share the same solution in the sense given in the statement.
Without loss of generality, we assume in the following t = 0.

(ii) We next show that (2.8) and (2.9) admit the same solution in (	,F
P

T ,P).
Notice that a solution to (2.8) is clearly a solution to (2.9) by (2.2). We then show
that a solution to (2.9) is also a solution to (2.8).

Let ζ : 	 −→ R be a F
X,P

T -measurable random variable, which admits a unique
martingale representation

(2.10) ζ = EP[ζ ] +

∫ T

0
Z

ζ

s · dXc,P
s +

∫ T

0
M

ζ

s ,

w.r.t. the filtration F
X,P

+ . Since B is independent of X in the enlarged space, and
since X admits the same semimartingale triplet of characteristics in both space,



STOCHASTIC CONTROL FOR NONLINEAR KERNELS 565

the above representation (2.10) w.r.t. F
X,P

+ is the same as the one w.r.t. F
P

+, which
are all unique up to a P-evanescent set. Remember now that the solution of BSDE
(2.9) is actually obtained as an iteration of the above martingale representation
(see, e.g., Section 2.4.2 below). Therefore, a solution to (2.9) is clearly a solution
to (2.8).

(iii) We now show that a solution (Y,Z,M) to (2.8) induces a solution to (2.5).

Notice that Y and M are F
X,P

+ -optional, and Z is F
X,P

+ -predictable, then (see, e.g.,
Lemma 2.4 of [85] and Theorem IV.78 and Remark IV.74 of [25]) there exists a
functional (�

Y
,�

Z
,�

M
) : [0, T ]×	 −→ R×Rd ×R such that �

Y
and �

M
are

F
X

+-progressively measurable and P-a.s. càdlàg, �
Z

is F
X

-predictable and Y t =

�
X
t , Z t = �

Z
t and Mt = �

M
t , for all t ∈ [0, T ], P-a.s. Define

(
�

Y,0
(ω),�

Z,0
(ω),�

M,0
(ω)
)
:=
(
�

Y
(ω,0),�

Z
(ω,0),�

M
(ω,0)
)
,

where 0 denotes the path taking value 0 for all t ∈ [0, T ].

Since (�
Y
,�

Z
,�

M
) are F

X
-progressively measurable, the functions (�

Y,0
,

�
Z,0

,�
M,0

) are then F-progressively measurable, and it is easy to see that they
provide a version of a solution to (2.5) in (	,FP

T ,P).
(iv) Finally, let (Y,Z,M) be a solution to (2.5), then there is a function

(�Y ,�Z,�M) : [0, T ] × 	 −→ R × Rd × R such that �Y and �M are F+-
progressively measurable and P-a.s. càdlàg, �Z is F-predictable, and Yt = �t ,
Zt = �Z

t and Mt = �M
t , for all t ∈ [0, T ], P-a.s. Since P := P⊗ P0, it is easy to

see that (�Y ,�Z,�M) is the required functional in the lemma. �

The main interest of Lemma 2.2 is that it allows us, when studying the BSDE
(2.5), to equivalently work with the BSDE (2.9), in which the Brownian motion
WP appears explicitly. This will be particularly important for us when using lin-
earization arguments. Indeed, in such type of arguments, one usually introduce a
new probability measure equivalent to P. But if we use formulation (2.5), then one
must make the inverse of â appear explicitly in the Radon–Nykodym density of
the new probability measure. Since such an inverse is not always defined in our
setting, we therefore take advantage of the enlarged space formulation to bypass
this problem.

2.4.2. An iterative construction of the solution to BSDE (2.5). In preparation
of the proof of the dynamic programming principle for control problem in Theo-
rem 2.1, let us first recall the classical construction of the YP part of the solution
to the BSDE (2.5) under some probability P ∈ P(t,ω) using Picard’s iteration. Let
us first define for any m ≥ 0

ξm := (ξ ∧ m) ∨ (−m),

f m(t,ω, y, z, a, b) :=
(
f (t,ω, y, z, a, b) ∧ m

)
∨ (−m).
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(i) First, let YP,0,m
s ≡ 0 and ZP,0,m

s ≡ 0, for all s ∈ [t, T ].
(ii) Given a family of F+-progressively measurable processes (YP,n,m

s ,

ZP,n,m
s )s∈[t,T ], we let

(2.11)
Y
P,n+1,m

s := EP

[
ξm −

∫ T

s
f m(r,X·∧r ,Y

P,n,m
r ,

(
â1/2
r

)⊤
ZP,n,m

r ,

âr , b
P
r

)
dr
∣∣∣Fs

]
, P-a.s.

(iii) Let YP,n+1,m be a right-continuous modification of Y
P,n+1,m

defined by

(2.12) YP,n+1,m
s := lim sup

Q∋r↓s

Y
P,n+1,m

r , P-a.s.

(iv) Notice that YP,n+1,m is a semimartingale under P. Let 〈YP,n+1,m,X〉P

be the predictable quadratic covariation of the process YP,n+1,m and X under P.
Define

(2.13) ZP,n+1,m
s := â⊕

s

(
lim sup
Q∋ε↓0

〈YP,n+1,m,X〉Ps − 〈YP,n+1,m,X〉Ps−ε

ε

)
.

(v) Notice that the sequence (YP,n,m)n≥0 is a Cauchy sequence for the norm

∥∥(Y,Z)
∥∥2
α := EP

[∫ T

0
eαs |Ys |

2 ds

]2
+EP

[∫ T

0
eαs
∥∥(â1/2

s

)⊤
Zs

∥∥2 ds

]2
,

for α large enough. Indeed, this is a consequence of the classical estimates for
BSDEs, for which we refer to Section 4 of [13].5 Then by taking some suitable
subsequence (n

P,m
k )k≥1, we can define

YP,m
s := lim sup

k→∞

Y
P,n

P,m
k ,m

s .

(vi) Finally, we can again use the estimates given in [13] (see again Section 4)

to show that the sequence (YP,m)m≥0 is a Cauchy sequence in D
p
0 (F

P

+,P), so that
by taking once more a suitable subsequence (mP

k )k≥1, we can define the solution
to the BSDE as

(2.14) YP
s := lim sup

k→∞

Y
P,mP

k
s .

5Notice here that the results of [13] apply for BSDEs of the form (2.9) in the enlarged space.
However, by Lemma 2.2, this implies the same convergence result in the original space.
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2.4.3. On the measurability issues of the iteration. Here, we show that the
iteration in Section 2.4.2 can be taken in a measurable way w.r.t. the reference
probability measure P, which allows us to use the measurable selection theorem to
derive the dynamic programming principle.

LEMMA 2.3. Let P be a measurable set in M1, (P,ω, t) 
−→ HP
t (ω) be a

measurable function such that for all P ∈ P , HP is right-continuous, F+-adapted
and a (P,FP

+)-semimartingale. Then there is a measurable function (P,ω, t) 
−→

〈H 〉Pt (ω) such that for all P ∈ P , 〈H 〉P is right-continuous, F+-adapted and FP
+-

predictable, and

〈H 〉P· is the predictable quadratic variation of the semimartingale HP under P.

PROOF. (i) For every n ≥ 1, we define the following sequence of random
times:

(2.15)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

τ
P,n
0 (ω) := 0, ω ∈ 	,

τ
P,n
i+1(ω) := inf

{
t ≥ τ

P,n
i (ω),

∣∣HP
t (ω) − HP

τ
P,n
i

(ω)
∣∣≥ 2−n}∧ T ,

ω ∈ 	, i ≥ 0.

We notice that the τ
P,n
i are all F+-stopping times since the HP are right-continuous

and F+-adapted. We then define

(2.16)
[
HP]

·(ω) := lim sup
n→+∞

∑

i≥0

(
HP

τ
P,n
i+1∧·

(ω) − HP

τ
P,n
i ∧·

(ω)
)2

.

It is clear that (P,ω, t) 
−→ [HP]t (ω) is a measurable function, and for all
P ∈ P , [HP] is nondecreasing, F+-adapted and FP

+-optional. Then it follows by
Karandikar [51] that [HP] coincides with the quadratic variation of the semi-
martingale HP under P. Moreover, by taking its right limit over rational time in-
stants, we can choose [HP] to be right continuous.

(ii) Finally, using Proposition 5.1 of Neufeld and Nutz [66], we can then con-
struct a process 〈H 〉Pt (ω) satisfying the required conditions. �

Notice that the construction above can also be carried out for the predictable
quadratic covariation 〈HP,1,HP,2〉P, by defining it through the polarization iden-
tity

(2.17)
〈
HP,1,HP,2〉P :=

1

4

(〈
HP,1 + HP,2〉P −

〈
HP,1 − HP,2〉P),

for all measurable functions H
P,1
t (ω) and H

P,2
t (ω) satisfying the conditions in

Lemma 2.3. We now show that the iteration in Section 2.4.2 can be taken in a
measurable way w.r.t. P, which provides a key step for the proof of Theorem 2.1.
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LEMMA 2.4. Let m,n > 0 be fixed, (s,ω,P) 
−→ (YP,n,m
s (ω),ZP,n,m

s (ω)) be
a measurable map such that for every P ∈ Pt , YP,n,m is right-continuous, F+-
adapted and FP

+-optional, ZP,n,m is F+-adapted and FP
+-predictable. Then we

can choose a measurable map (s,ω,P) 
−→ (YP,n,m
s (ω),ZP,n,m

s (ω)) such that for
every P ∈ Pt , YP,n+1,m is right-continuous, F+-adapted and FP

+-optional, and
ZP,n+1,m is F+-adapted and FP

+-predictable.

PROOF. (i) First, using Lemma 3.1 of Neufeld and Nutz [66], there is a ver-

sion of (Y
P,n+1,m

) defined by (2.11), such that (P,ω) 
−→ Y
P,n+1,m

s is B⊗ Fs-
measurable for every s ∈ [t, T ].

(ii) Next, we notice that the measurability is not lost by taking the limit along

a countable sequence. Then with the above version of (Y
P,n+1,m

), it is clear that
the family (YP,n+1,m

s (ω)) defined by (2.12) is measurable in (s,ω,P), and for all
P ∈Pt , YP,n+1,m is F+-adapted and FP

+-optional.
(iii) Then using Lemma 2.3 as well as the definition of the quadratic covariation

in (2.17), it follows that there is a measurable function:

(s,ω,P) 
−→
〈
YP,n+1,m,X

〉P
s (ω),

such that for every P ∈ Pt , 〈YP,n+1,m,X〉P is right–continuous, F+-adapted and
coincides with the predictable quadratic covariation of YP,n+1,m and X under P.

(iv) Finally, with the above version of (〈YP,n+1,m,X〉P), it is clear that the
family (ZP,n+1,m

s (ω)) defined by (2.13) is measurable in (s,ω,P) and for every
P ∈Pt , ZP,n+1,m is F+-adapted and FP

+-predictable. �

LEMMA 2.5. For every P ∈ Pt , there is a right–continuous, FP
+-martingale

MP,n+1,m orthogonal to X under P, such that P-a.s.

Y
P,n+1,m
t = ξm −

∫ T

t
f m(s,X·∧s,Y

P,n,m
s ,

(
â1/2
s

)⊤
ZP,n,m

s , âs, b
P
s

)
ds

(2.18)

−

∫ T

t
dMP,n+1,m

s −

(∫ T

t
ZP,n+1,m

s · dXc,P
s

)P
.

PROOF. Using Doob’s upcrossing inequality, the limit limr↓s Y
P,n+1,m

r exists
P-almost surely, for every P ∈Pt . In other words, YP,n+1,m is version of the right-

continuous modification of the semimartingale Y
P,n+1,m

. Using the martingale
representation, it follows that there is a right-continuous, FP

+-martingale MP,n+1,m

orthogonal to X under P, and an FP
+-predictable process ẐP,n+1,m such that

Y
P,n+1,m
t = ξm −

∫ T

t
f m(s,X·∧s,Y

P,n,m
s ,

(
â1/2
s

)⊤
ZP,n,m

s , âs, b
P
s

)
ds

−

∫ T

t
dMP,n+1,m

s −

(∫ T

t
ẐP,n+1,m

s · dXc,P
s

)P
.
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In particular, ẐP,n+1,m satisfies

〈
YP,n+1,m,Xc,P〉

t =

∫ t

0
âsẐ

P,n+1,m
s ds, P-a.s.

Besides, by the definition of ZP,n+1,m in (2.13), one has
∫ t

0
âsZ

P,n+1,m
s ds =

〈
YP,n+1,m,Xc,P〉

t =

∫ t

0
âsẐ

P,n+1,m
s ds, P-a.s.

It follows that
∫ t

0

∥∥(â1/2
s

)⊤(
ZP,n+1,m

s − ẐP,n+1,m
s

)∥∥2 ds

=

∫ t

0

(
ZP,n+1,m

s − ẐP,n+1,m
s

)⊤
âs

(
ZP,n+1,m

s − ẐP,n+1,m
s

)
ds = 0, P-a.s.

Hence, (2.18) holds true. �

LEMMA 2.6. There are families of subsequences (n
P,m
k , k ≥ 1) and (mP

i ,

i ≥ 1) such that the limit YP
s (ω) = limi→∞ limk→∞Y

P,n
P,m
k ,mP

i
s exists for all s ∈

[t, T ], P-almost surely, for every P ∈ Pt , and (s,ω,P) 
−→ YP
s (ω) is a measurable

function. Moreover, YP provides a solution to the BSDE (2.5) for every P ∈ Pt .

PROOF. By the conditions in (2.4), (YP,n,m,ZP,n,m)n≥1 provides a Picard it-
eration under the (P, β)-norm, for β > 0 large enough (see, e.g., Section 4 of
[13]6), defined by

‖ϕ‖2
P,β := EP

[
sup

t≤s≤T

eβs |ϕs |
2
]
.

Hence, YP,n,m converges (under the (P, β)-norm) to some process YP,m as n −→

∞, which solves the BSDE (2.5) with the truncated terminal condition ξm and
truncated generator f m. Moreover, by the estimates in Section 4 of [13] (see

again Footnote 6), (YP,m)m≥1 is a Cauchy sequence in D
p
t,ω(F

P

+,P). Then using

Lemma 3.2 of [66], we can find two families of subsequences (n
P,m
k , k ≥ 1,P ∈ Pt )

and (mP
i , i ≥ 1,P ∈ Pt ) satisfying the required properties. �

2.4.4. End of the Proof of Theorem 2.1. Now we can complete the proof of
the dynamic programming in Theorem 2.1. Let us first provide a tower property
for the BSDE (2.5).

6Again, we remind the reader that one should first apply the result of [13] to the corresponding
Picard iteration of (2.9) in the enlarged space and then use Lemma 2.2 to go back to the original
space.
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LEMMA 2.7. Let (t,ω) ∈ [0, T ] × 	, P ∈ P(t,ω), τ be an F-stopping time
taking values in [t, T ] and (YP,ZP,MP) be a solution to the BSDE (2.5) under P.
Then one has

YP
t (T , ξ) = YP

t

(
τ,YP

τ

)
= YP

t

(
τ,EP[YP

τ |Fτ

])
, P-a.s.

PROOF. (i) Given a solution (YP,ZP,MP) to the BSDE (2.5) under P w.r.t
the filtration FP

+ = (FP
s+)t≤s≤T , one then has

YP
t = YP

τ −

∫ τ

t
f
(
s,X·∧s,Y

P
s ,
(
â1/2
s

)⊤
ZP

s , âs, b
P
s

)
ds

−

(∫ τ

t
ZP

s · dXc,P
s

)P
−

∫ τ

t
dMP

s , P-a.s.

By taking conditional expectation w.r.t. FP
τ under P, it follows that, P-a.s.,

YP
t = EP[YP

τ |FP
τ

]
+

∫ τ

t
f
(
s,X·∧s,Y

P
s ,
(
â1/2
s

)⊤
ZP

s , âs, b
P
s

)
ds

−

(∫ τ

t
ZP

s · dXc,P
s

)P
−

∫ τ

t
dM̃P

s ,

where M̃P
τ := EP[MP

τ |FP
τ ], and M̃P

s := MP
s when s < τ . By identification, we

deduce that M̃P
τ = MP

τ + EP[YP
τ |Fτ ] − YP

τ . Moreover, it is clear that M̃P ∈

M
p
t (FP

+,P) and M̃P is orthogonal to the continuous martingale X under P.
(ii) Let us now consider the BSDE with generator f and terminal condition

EP[YP
τ |FP

τ ], on [t, τ ]. By uniqueness of the solution to BSDE, it follows that

YP
t (T , ξ) = YP

t

(
τ,YP

τ

)
= YP

t

(
τ,EP[YP

τ |Fτ

])
, P-a.s. �

PROOF OF THEOREM 2.1. (i) First, by the item (iii) of Assumption 2.1, it
is clear that Ŷt (ω) = Ŷt (ωt∧·). Moreover, since (t,ω,P) 
−→ YP

t (ω) is a Borel
measurable map from [0, T ] × 	 × M1 to R by Lemma 2.6, and the graph [[P]]

is also a Borel measurable in [0, T ] × 	 × M1 by Assumption 2.1, it follows
by the measurable selection theorem that (t,ω) 
−→ Ŷt (ω) is B([0, T ]) ⊗ FT -
universally measurable (or more precisely upper semi-analytic; see, for example,
Proposition 7.47 of Bertsekas and Shreve [6] or Theorem III.82 (page 161) of
Dellacherie and Meyer [25].

(ii) Now, using the measurable selection argument, the DPP is a direct conse-
quence of the comparison principle and the stability of BSDE (2.5). First, for every
P ∈Pt , we have

YP
t (T , ξ) = YP

t

(
τ,YP

τ

)
= YP

t

(
τ,EP[YP

τ |Fτ

])
, P-a.s.
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It follows by the comparison principle of the BSDE (2.5) (see Lemma A.3 in the
Appendix together with Lemma 2.2) that

Ŷt (ω) := sup
P∈P(t,ω)

EP[YP
t (T , ξ)

]
= sup

P∈P(t,ω)

EP[YP
t

(
τ,EP[YP

τ |Fτ

])]

≤ sup
P∈P(t,ω)

YP
t (τ, Ŷτ ).

Next, for every P ∈ P(t,ω) and ε > 0, using the measurable selection theorem
(see, e.g., Proposition 7.50 of [6] or Theorem III.82 in [25]), one can choose a
family of probability measures (Qε

w
)w∈	 such that w 
−→ Qε

w
is Fτ -measurable,

and for P-a.e. w ∈ 	,

Qε
w

∈ P
(
τ(w),w

)
and EQε

w

[
Y
Qε

w

τ(w)(T , ξ)
]
≥ Ŷτ(w)(w) − ε.

We can then define the concatenated probability Pε := P ⊗τ Qε
· so that, by As-

sumption 2.1(v), Pε ∈ P(t,ω). Finally, using the stability of the solution to BSDE
(2.5) in Lemma A.1 (together with Lemma 2.2), it follows that

Ŷt (ω) ≥ EPε [
YPε

t

]
= EPε [

YPε

t

(
τ,YPε

τ

)]
= EP[YP

t

(
τ,EPε[

YPε

τ |Fτ

])]

≥ EP
[
YP

t (τ, Ŷτ )
]
− Cε,

for some constant C > 0 independent of ε, and hence the other inequality of the
DPP holds true by the arbitrariness of ε > 0 as well as that of P ∈P(t,ω). �

2.4.5. Further discussions. Notice that the essential arguments to prove the
measurability of Ŷt (ω) is to construct the solution of the BSDE in a measurable
way with respect to different probabilities. Then the dynamic programming prin-
ciple follows directly from the measurable selection theorem together with the
comparison and stability of the BSDE. This general approach is not limited to
BSDEs with Lipschitz generator. Indeed, the solution of any BSDEs that can be
approximated by a countable sequence of Lipschitz BSDEs inherits directly the
measurability property. More precisely, we have the following proposition which
also applies to specific super-solutions (see Section 2.3 in [37] for a precise defi-
nition) of the BSDEs.

PROPOSITION 2.1. Let YP be the first component of the (minimal) super-
solution of a BSDE with possibly non-Lipschitz generator. We have:

(i) If there is a family (YP,n), which corresponds to the first component of a
family of Lipschitz BSDEs, and a family of subsequence (nPk )k≥1 such that, P 
−→

nPk is (Borel) measurable, and YP = limk→∞YP,nPk . Then (s,ω,P) 
−→ EP[YP
s ] is

a measurable map, and (t,ω) 
−→ Ŷt (ω) is B([0, T ]) ⊗ FT -universally measur-
able.
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(ii) Furthermore, if the (possibly non-Lipschitz) BSDE for YP admits the com-
parison principle and the stability result w.r.t. the terminal conditions, then for all
(t,ω) ∈ [0, T ] × 	 and F-stopping times τ taking value in [t, T ], we have

Ŷt (ω) = sup
P∈P(t,ω)

EP[YP
t (τ, Ŷτ )

]
.

In particular, this result can be applied to BSDEs with linear growth [59], to
BSDEs with general growth in y [73], to quadratic BSDEs [3, 54, 55], to BSDEs
with unbounded horizon [23], to reflected BSDEs [36], to constrained BSDEs [19,
75] (for the point (i) only), etc.

REMARK 2.3. In Assumption 2.1, the terminal condition ξ : 	 −→ R is as-
sumed to be Borel measurable, which is more restrictive comparing to the results
in the context of controlled diffusion/jump process problems (where ξ is only
assumed to be upper semi-analytic; see, e.g., [65] or [40]). This Borel measur-
ability condition is however crucial in our BSDE context. For example, when
f (t,ω, y, z, a, b) = |z|, we know the solution of the BSDE (2.5) is given by

inf
P̃∈P̃

EP̃[ξ ] for some family P̃ of probability measure equivalent to P. However,
as is well known, the upper semi-analytic property is stable by taking supremum
but not by taking infimum.

3. Path regularization of the value function. In this section, we will char-
acterize a càdlàg modification of the value function Ŷ as a semimartingale under
any P ∈ P0 and give its decomposition. In the next section, we will show that this
càdlàg modification of the value function Ŷ is the solution to some second-order
BSDE defined there (see Definition 4.1). First of all, we recall from Theorem 2.1
that we have for any F-stopping times τ ≥ σ ,

(3.1) Ŷσ(ω)(ω) = sup
P∈P(σ (ω),ω)

EP
[
YP

σ(ω)(τ, Ŷτ )
]
.

Moreover, we also have

(3.2) Ŷσ(ω)(ω) = sup
P∈P(σ (ω),ω)

EP⊗P0
[
Ỹ
P⊗P0
σ(ω) (τ, Ŷτ )

]
,

where Ỹ
P⊗P0
σ(ω) (τ, Ŷτ ) is the equivalent of YP

σ(ω)(τ, Ŷτ ) but defined on the enlarged
space, recall (2.9) and Lemma 2.2.

Let us start with the following technical lemma. Formally, it can be obtained by
simply taking conditional expectations of the corresponding BSDEs. However, this
raises subtle problems about negligible sets and conditional probability measures.
We therefore refer the reader to [16] for the precise details.
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LEMMA 3.1. For any P ∈ P0, for any F-stopping times 0 ≤ σ ≤ τ ≤ T , we
have

EP
σ(ω)
ω ⊗P0

[
Ỹ
P

σ(ω)
ω ⊗P0

σ(ω) (τ, Ŷτ )
]

= EP⊗P0
[
ỸP⊗P0

σ (τ, Ŷτ )|Fσ

](
ω,ω′), P⊗ P0-a.e. on 	,

EP
σ(ω)
ω
[
Y
P

σ(ω)
ω

σ(ω) (τ, Ŷτ )
]

= EP[YP
σ (τ, Ŷτ )|Fσ

]
(ω), for P-a.e. ω ∈ 	.

Let us next remark the following immediate consequences of (3.1) and (3.2):

Ŷσ(ω) ≥ EP[YP
σ(ω)(τ, Ŷτ )

]
, for any P ∈P

(
σ(ω),ω

)
,(3.3)

Ŷσ(ω) ≥ EP⊗P0
[
Ỹ
P⊗P0
σ(ω) (τ, Ŷτ )

]
, for any P ∈ P

(
σ(ω),ω

)
.(3.4)

With these inequalities, we can prove a down-crossing inequality for Ŷ , which
ensures that Ŷ admits right- and left-limits outside a P0-polar set. Recall that

f̂ P
s (y, z) := f

(
s,X·∧s, y, z, âs, b

P
s

)
, f̂ P,0

s := f
(
s,X·∧s,0,0, âs, b

P
s

)
.

Let J := (τn)n∈N be a countable family of F-stopping times taking values in [0, T ]

such that for any (i, j) ∈N2, one has either τi ≤ τj , or τi ≥ τj , for every ω ∈ 	. Let
a > b and Jn ⊂ J be a finite subset (Jn = {0 ≤ τ1 ≤ · · · ≤ τn ≤ T }). We denote by
Db

a(Ŷ, Jn) the number of down-crossings of the process (Ŷτk
)1≤k≤n from b to a.

We then define

Db
a(Ŷ, J ) := sup

{
Db

a(Ŷ, Jn) : Jn ⊂ J, and Jn is a finite set
}
.

The following lemma follows very closely the related result proved in Lemma A.1
of [12]. However, since Ŷ is not exactly an E f̂ P

-supermartingale in their terminol-
ogy, we give a short proof.

LEMMA 3.2. Fix some P ∈ P0 and let Assumption 2.1 hold. Denote by L the
Lipschitz constant of the generator f . Then, for all a < b, there exists a probability
measure Q, equivalent to P⊗ P0, such that

EQ
[
Db

a(Ŷ, J )
]

≤
eLT

b − a
EQ

[
eLT (Ŷ0 ∧ b − a) − e−LT (ŶT ∧ b − a)+ + eLT (ŶT ∧ b − a)−

+ eLT
∫ T

0

∣∣f̂ P
s (a,0)

∣∣ds

]
.
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Moreover, outside a P0-polar set, we have

lim
r∈Q∩(t,T ],r↓t

Ŷr(ω) = lim
r∈Q∩(t,T ],r↓t

Ŷr(ω), and

lim
r∈Q∩(t,T ],r↑t

Ŷr(ω) = lim
r∈Q∩(t,T ],r↑t

Ŷr(ω).

PROOF. Without loss of generality, we can always suppose that 0 and T be-
long to J and b > a = 0. Let Jn = {τ0, τ1, . . . , τn} with 0 = τ0 < τ1 < · · · <

τn = T . We then consider for any i = 1, . . . , n, and any ω ∈ 	, the following

BSDE in the enlarged space under P
τi−1(ω)

ω := P
τi−1(ω)
ω ⊗ P0 on [τi−1, τi]:

Ỹ
i,P

τi−1(ω)
ω

t := Ŷτi
−

∫ τi

t

(
f̂ P

τi−1(ω)
ω ,0

s + λi
sỸ

i,P
τi−1(ω)
ω

s + ηi
s ·
(
â1/2
s

)⊤
Z̃

i,P
τi−1(ω)
ω

s

)
ds

−

∫ τi

t
Z̃

i,P
τi−1(ω)
ω

s · â1/2
s dWP

τi−1(ω)
ω

s −

∫ τi

t
dM̃

i,P
τi−1(ω)
ω

s ,

P
τi−1(ω)

ω -a.s.,

where λi and ηi are the two bounded processes appearing in the linearization of f̂

[recall Assumption 2.1(i)]. We consider then the linear BSDE, also on the enlarged
space:

Y
i,P

τi−1(ω)
ω

t := Ŷτi
−

∫ τi

t

(∣∣f̂ P
τi−1(ω)
ω ,0

s

∣∣+ λi
sY

i,P
τi−1(ω)
ω

s + ηi
s ·
(
â1/2
s

)⊤
Z

i,P
τi−1(ω)
ω

s

)
ds

−

∫ τi

t
Z

i,P
τi−1(ω)
ω

s · â1/2
s dWP

τi−1(ω)
ω

s −

∫ τi

t
dM

i,P
τi−1(ω)
ω

s ,

P
τi−1(ω)

ω -a.s.

It is immediate that

Y
i,P

τi−1(ω)
ω

τi−1
= EP

τi−1(ω)
ω

[
Lτi

(
Ŷτi

e
∫ τi
τi−1 λi

s ds

−

∫ τi

τi−1

e

∫ s
τi−1

λi
r dr ∣∣f̂ P

τi−1(ω)
ω ,0

s

∣∣ds

)∣∣∣F+

τi−1

]
,

where

Lt := E

(∫ t

τi−1

ηi
s · dW

P
τi−1(ω)
ω

s

)
, t ∈ [τi−1, τi].

By Assumption 2.1(iv), for P-a.e. ω ∈ 	, Pτi−1(ω)
ω ∈ P(τi−1(ω),ω). Hence, by the

comparison principle for BSDEs, recalled in Lemma A.3 below, and (3.2), it is
clear that

EP
τi−1(ω)
ω

[
Lτi

(
Ŷτi

e
∫ τi
τi−1 λi

s ds
−

∫ τi

τi−1

e

∫ s
τi−1

λi
r dr ∣∣f̂ P

τi−1(ω)
ω ,0

s

∣∣ds

)∣∣∣F+

τi−1

]

≤ Ŷτi−1(ω).
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But, by the definition of the r.p.c.d., this implies that

EQ

[
Ŷτi

e
∫ τi
τi−1 λi

s ds
−

∫ τi

τi−1

e

∫ s
τi−1

λi
r dr ∣∣f̂ P

τi−1(·)
· ,0

s

∣∣ds
∣∣∣F τi−1

]
≤ Ŷτi−1,

P⊗ P0-a.s.,

where the probability measure Q is equivalent to P⊗ P0 and defined by

dQ

dP⊗ P0
:= E

(∫ t

τi−1

ηi
s · dWP

s

)
, t ∈ [τi−1, τi].

Let λs :=
∑n

i=1 λi
s1[τi−1,τi)(s), then one has that the discrete process (Vτi

)0≤i≤n

defined by

Vτi
:= Ŷτi

e
∫ τi

0 λs ds −

∫ τi

0
e
∫ s

0 λr dr
∣∣f̂ P,0

s

∣∣ds,

is a Q-supermartingale relative to F. Then the control on the down-crossings can
be obtained exactly as in the proof of Lemma A.1 in [12]. Indeed, it is enough to
observe that the original down-crossing inequality for supermartingales (see, e.g.,
[28], page 446) does not require the filtration to satisfy the usual assumptions. We
now prove the second part of the lemma. We define the set

� :=
{
ω ∈ 	 s.t. Ŷ·(ω) has no right- or left-limits along the rationals

}
.

We claim that � is a P0-polar set. Indeed, suppose that there exists P ∈ P0 sat-
isfying P(�) > 0. Then, � is nonempty and for any ω ∈ �, the path Ŷ·(ω) has,
for example, no right-limit along the rationals at some point t ∈ [0, T ]. We can
therefore find two rational numbers a, b such that

lim
r∈Q∩(t,T ],r↓t

Ŷr(ω) < a < b < lim
r∈Q∩(t,T ],r↓t

Ŷr(ω),

and the number of down-crossings Db
a(Ŷ, J )(ω) of the path Ŷ·(ω) on the interval

[a, b] is equal to +∞. However, the down-crossing inequality proved above shows
that Db

a(Ŷ, J ) is Q-a.s., and thus P-a.s. (see Lemma 2.1), finite, for any pair (a, b).
This implies a contradiction since we assumed that P(�) > 0. Therefore, outside
the P0-polar set �, Ŷ admits both right- and left-limits along the rationals. �

We next define, for all (t,ω) ∈ [0, T ) × 	,

(3.5) Ŷ+
t := lim

r∈Q∩(t,T ],r↓t
Ŷr ,

and Ŷ
+
T := YT . By Lemma 3.2,

Ŷ+
t := lim

r∈Q∩(t,T ],r↓t
Ŷr , outside a P0-polar set,

and we deduce that Ŷ+ is càd outside a P0-polar set. Hence, since for any t ∈

[0, T ], Ŷ+
t is by definition F

U+
t -measurable, we deduce that Ŷ+ is actually FP0+-

optional. Our next result extends (3.3) to Ŷ+.
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LEMMA 3.3. For any 0 ≤ s ≤ t ≤ T , for any P ∈ P0, we have

Ŷ+
s ≥ YP

s

(
t, Ŷ+

t

)
, P-a.s.

PROOF. Fix some (s, t,ω) ∈ [0, T ] × [s, T ] × 	 and some P ∈ P0. Let r1
n ∈

Q ∩ (s, T ], r1
n ↓ s and r2

n ∈ Q ∩ (t, T ], r2
n ↓ t . By (3.3), we have for any m,n ≥ 1

and P̃ ∈P(r1
n,ω):

Ŷr1
n
(ω) ≥ EP̃[Y P̃

r1
n

(
r2
m, Ŷr2

m

)]
.

In particular, thanks to Assumption 2.1(iv), for P-a.e. ω ∈ 	, we have

(3.6) Ŷr1
n
(ω) ≥ EP

r1
n

ω
[
Y
P

r1
n

ω

r1
n

(
r2
m, Ŷr2

m

)]
= EP[YP

r1
n

(
r2
m, Ŷr2

m

)
|Fr1

n

]
(ω),

where we have used Lemma 3.1. By definition, we have

lim
n→+∞

Ŷr1
n
= Ŷ+

s , P-a.s.

Next, we want to show that

EP[YP
r1
n

(
r2
m, Ŷr2

m

)
|Fr1

n

]
−→

n→+∞
YP

s

(
r2
m, Ŷr2

m

)
, for the norm ‖ · ‖L1

s,ω
.

Indeed, we have

EP[∣∣EP[YP
r1
n

(
r2
m, Ŷr2

m

)
|Fr1

n

]
−YP

s

(
r2
m, Ŷr2

m

)∣∣]

= EP[∣∣EP[YP
r1
n

(
r2
m, Ŷr2

m

)
−YP

s

(
r2
m, Ŷr2

m

)
|Fr1

n

]∣∣]

≤ EP
[
EP
[∣∣YP

r1
n

(
r2
m, Ŷr2

m

)
−YP

s

(
r2
m, Ŷr2

m

)∣∣|Fr1
n

]]

= EP[∣∣YP
r1
n

(
r2
m, Ŷr2

m

)
−YP

s

(
r2
m, Ŷr2

m

)∣∣].

Then, since YP
r1
n
(r2

m, Ŷr2
m
) is càdlàg, we know that YP

r1
n
(r2

m, Ŷr2
m
) converges, P-a.s.,

to YP
s (r2

m, Ŷr2
m
), as n goes to +∞. Moreover, by the estimates of Lemma A.1

(together with Lemma 2.2), the quantity in the expectation above is uniformly
bounded in Lp(FP+

T ,P) and, therefore, forms a uniformly integrable family by
de la Vallée–Poussin criterion (since p > 1). Therefore, the desired convergence
is a simple consequence of the dominated convergence theorem. Hence, taking a
subsequence if necessary, we have that the right-hand side of (3.6) goes P-a.s. to
YP

s (r2
m, Ŷr2

m
) as n goes to +∞, so that we have

Ŷ+
s ≥ YP

s

(
r2
m, Ŷr2

m

)
, P-a.s.

Next, we have by the dynamic programming for BSDEs

YP
s

(
r2
m, Ŷr2

m

)
−YP

s

(
t, Ŷ+

t

)

= YP
s

(
r2
m, Ŷr2

m

)
−YP

s

(
r2
m, Ŷ+

t

)
+YP

s

(
t,YP

t

(
r2
m, Ŷ+

t

))
−YP

s

(
t, Ŷ+

t

)
.
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The first difference on the right-hand side converges to 0, P-a.s., once more thanks
to the estimates of Lemma A.1 (together with Lemma 2.2) and the definition of
Ŷ+. As for the second difference, the same estimates show that it is controlled by

EP[∣∣Ŷ+
t −YP

t

(
r2
m, Ŷ+

t

)∣∣p̃|Fs

]
,

for some 1 < p̃ < p. This term goes P-a.s. (at least along a subsequence) to 0 as m

goes to +∞ as well by Lemma A.2 (together with Lemma 2.2), which completes
the proof. �

The next lemma follows the classical proof of the optional sampling theorem
for càdlàg supermartingales and extends the previous result to stopping times.

LEMMA 3.4. For any F-stopping times 0 ≤ σ ≤ τ ≤ T , for any P ∈ P0, we
have

Ŷ+
σ ≥ YP

σ

(
τ, Ŷ+

τ

)
, P-a.s.

In particular Ŷ+ is càdlàg, P0-q.s.

PROOF. Assume first that σ takes a finite number of values {t1, . . . , tn} and
that τ is deterministic. Then we have for any P ∈ P0

Ŷ+
σ =

n∑

i=1

Ŷ+
t1

1{σ=ti} ≥

n∑

i=1

YP
ti

(
τ, Ŷ+

τ

)
1{σ=ti} = YP

σ

(
τ, Ŷ+

τ

)
, P-a.s.

Assume next that both τ and σ take a finite number of values {t1, . . . , tn}. We have
similarly

YP
σ

(
τ, Ŷ+

τ

)
=

n∑

i=1

YP
σ

(
ti, Ŷ

+
ti

)
1{τ=ti} ≤

n∑

i=1

Ŷ+
σ 1{τ=ti} = Ŷ+

σ , P-a.s.

Then, if σ is general, we can always approach it from above by a decreasing se-
quence of F+-stopping times (σ n)n≥1 taking only a finite number of values. The
above results imply directly that

Ŷ
+
σ n∧τ ≥ YP

σ n∧τ

(
τ, Ŷ+

τ

)
, P-a.s.

Then we can use the right-continuity of Ŷ+ and YP(τ, Ŷ+
τ ) to let n go to +∞ and

obtain

Ŷ+
σ ≥ YP

σ

(
τ, Ŷ+

τ

)
, P-a.s.

Finally, let us take a general stopping time τ . We once more approach it by a
decreasing sequence of F+-stopping times (τn)n≥1 taking only a finite number of
values. We thus have

Ŷ+
σ ≥ YP

σ

(
τn, Ŷ+

τn

)
, P-a.s.
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The term on the right-hand side converges (along a subsequence if necessary)
P-a.s. to YP

σ (τ, Ŷ+
τ ) by Lemma A.2 (together with Lemma 2.2).

It remains to justify that Ŷ+ admits left-limits outside a P0-polar set. Fix some
P ∈ P0. Following the same arguments as in the proof of Lemma 3.2, we can
show that for some probability measure Q equivalent to P⊗P0 and some bounded
process λ,

Vt := Ŷte
∫ t

0 λs ds −

∫ t

0
e
∫ s

0 λu du
∣∣f̂ P,0

s

∣∣ds,

is a right-continuous (Q,F+)-supermartingale, which is in addition uniformly in-
tegrable under Q since Ŷ and f̂ P,0 are uniformly bounded in Lp(FT ,P⊗P0), and
thus in Lp̃(FT ,Q) for some 1 < p̃ < p. Therefore, for any increasing sequence
of F

+
-stopping times (ρn)n≥0 taking values in [0, T ], the sequence (EQ[Vρn])n≥0

is nonincreasing and admits a limit. By Theorem VI-48 and Remark VI-50(f) of
[25], we deduce that V , and thus Ŷ+, admit left-limits outside a Q-negligible (and
thus P-negligible by Lemma 2.1) set. Moreover, the above implies that the set

{
ω ∈ 	 : Ŷ+(ω) admits left-limits

}
,

is P0-polar, which completes the proof. �

Our next result shows that Ŷ+ satisfies the representation formula (4.3). Part of
it requires the following stronger integrability assumption.

ASSUMPTION 3.1. There is some κ ∈ (1,p] such that, ξ ∈ L
p,κ
0 (F),

φ
p,κ
f := sup

P∈P0

EP

[
P

ess sup
0≤t≤T

(
ess supP

P′∈P0(t,P,F+)

EP′
[∫ T

0

∣∣f̂ P′,0
s

∣∣κ ds
∣∣∣F+

t

])p
κ
]

< +∞.

LEMMA 3.5. For any F-stopping times 0 ≤ σ ≤ τ ≤ T , for any 0 ≤ t ≤ T ,
and for any P ∈P0, we have

Ŷσ = ess supP
P′∈P0(σ,P,F)

EP′[
YP′

σ

(
τ,YP′

τ

)
|Fσ

]
, P-a.s., and

Ŷ+
t = ess supP

P′∈P0(t,P,F+)

YP′

t (T , ξ), P-a.s.,

where P0(σ,P,F) is defined in Section 2.2. In particular, if Assumption 3.1 holds,
one has Ŷ+ ∈ D

p
0 (FP0+).

PROOF. We start with the first equality. By definition and Lemma 3.1, for any
P′ ∈ P0(σ,P,F) we have

Ŷσ ≥ EP′[
YP′

σ

(
τ,YP′

τ

)
|Fσ

]
, P′-a.s.
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But since both sides of the inequality are FU
σ -measurable and P′ coincides with

P on Fσ (and thus on FU
σ , by uniqueness of universal completion) the above also

holds P-a.s. We deduce

Ŷσ ≥ ess supP
P′∈P0(σ,P,F)

EP′[
YP′

σ

(
τ,YP′

τ

)
|Fσ

]
, P-a.s.

Next, notice that by Lemmas 2.6 and 2.7, (t,ω,Q) 
−→ EQ[Y
Q
t (T , ξ)] =

EQ[Y
Q
t (τ,YQ

τ )] is Borel measurable. As in the proof of Theorem 2.1, it follows by
the measurable selection theorem (see, e.g., Proposition 7.47 of [6]) that for every
ε > 0, there is a family of probability measures (Qε

w
)w∈	 such that w 
−→ Qε

w
is

Fσ measurable and for P-a.e. w ∈ 	,

Ŷσ(w)(w) ≤ EQε
w

[
Y
Qε

w

σ(w)

]
+ ε, P-a.s.

Let us now define the concatenated probability Pε := P ⊗σ Qε
· so that Pε ∈

P0(σ,P,F), it follows then by Lemma 3.1 that

Yσ ≤ EPε [
YPε

σ

(
τ,YPε

τ

)
|Fσ

]
+ε ≤ ess supP

P′∈P0(σ,P,F)

EP′[
YP′

σ

(
τ,YP′

τ

)
|Fσ

]
+ε, P-a.s.

We hence complete the proof of the first equality by arbitrariness of ε > 0.
Let us now prove the second equality. Let r1

n ∈ Q ∩ (t, T ], r1
n ↓ t . By the first

part of the proof, we have

Ŷr1
n
= ess supP

P′∈P0(r
1
n ,P,F)

EP′[
YP′

r1
n
(T , ξ)|Fr1

n

]
, P-a.s.

Since for every n ∈ N, P0(r
1
n,P,F) ⊂ P0(t,P,F+), we deduce as above that for

any P′ ∈ P0(t,P,F+) and for n large enough

Ŷr1
n
≥ EP′[

YP′

r1
n
(T , ξ)|Fr1

n

]
, P-a.s.

Arguing exactly as in the proof of Lemma 3.3, we can let n go to +∞ to obtain

Ŷ+
t ≥ YP′

t (T , ξ), P-a.s.,

which implies by arbitrariness of P′

Ŷ+
t ≥ ess supP

P′∈P0(t,P,F+)

YP′

t (T , ξ), P-a.s.

We claim next that for any n ∈ N, the following family is upward directed:
{
EP′[

YP′

r1
n

(
T ,YP′

T

)
|Fr1

n

]
,P′ ∈ P0

(
r1
n,P,F

)}
.

Indeed, this can be proved exactly as in Step 2 of the proof of Theorem 4.2.
According to [67], we then know that there exists some sequence (Pm

n )m≥0 ⊂
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P0(r
1
n,P,F) such that

Ŷr1
n
= lim

m→+∞
↑ EPm

n
[
Y
Pm

n

r1
n

(T , ξ)|Fr1
n

]
, P-a.s.

By dominated convergence (recall that the YP are in D
p
0 (FP+,P), with a norm in-

dependent of P, by Lemma A.1), the above convergence also holds for the L
p̃
0 (P)-

norm, for any 1 < p̃ < p. By the stability result of Lemma A.1 (together with
Lemma 2.2) and the monotone convergence theorem, we deduce that

YP
t

(
r1
n, Ŷr1

n

)
= YP

t

(
r1
n, lim

m→+∞
↑ EPm

n
[
Y
Pm

n

r1
n

(T , ξ)|Fr1
n

])
, P-a.s.

= lim
m→+∞

YP
t

(
r1
n,EPm

n
[
Y
Pm

n

r1
n

(T , ξ)|Fr1
n

])
, P-a.s.

= lim
m→+∞

Y
Pm

n
t

(
r1
n,EPm

n
[
Y
Pm

n

r1
n

(T , ξ)|Fr1
n

])
, P-a.s.

= lim
m→+∞

Y
Pm

n
t

(
r1
n,Y

Pm
n

r1
n

(T , ξ)
)
, P-a.s.

= lim
m→+∞

Y
Pm

n
t (T , ξ), P-a.s.

≤ ess supP
P′∈P0(t,P,F+)

YP′

t (T , ξ), P-a.s.,

where we have used in the third equality the fact that Pm
n coincides with P on Fr1

n

and that YP
t is F+

t -measurable, Lemma 2.7 in the fourth equality and the dynamic
programming principle for BSDEs in the fifth equality.

Finally, it remains to let n go to +∞ and to use Lemma A.2 (together with
Lemma 2.2) to obtain the desired equality, from which we deduce exactly as in the
proof of Theorem 4.4 that Ŷ+ ∈D

p
0 (FP0+). �

The next result shows that Ŷ+ is actually a semimartingale under any P ∈ P0,
and gives its decomposition.

LEMMA 3.6. Let Assumptions 2.1 and 3.1 hold. For any P ∈ P0, there is
(ZP,MP,KP) ∈ H

p
0 (FP+,P) ×M

p
0 (FP+,P) × I

p
0 (FP+,P) such that

Ŷ+
t = ξ −

∫ T

t
f̂ P

s

(
Ŷ+

s ,
(
â1/2
s

)⊤
ZP

s

)
ds −

∫ T

t
ZP

s · dXc,P
s

−

∫ T

t
dMP

s +

∫ T

t
dKP

s , t ∈ [0, T ],P-a.s.

Moreover, there is some FP0 -predictable process Z which aggregates the family
(ZP)P∈P0 .
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PROOF. Fix some P ∈ P0. Consider the following reflected BSDE on the
enlarged space. For 0 ≤ t ≤ T , P⊗ P0-a.s.,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ȳP
t = ξ −

∫ T

t
f̂ P

s

(
ȳP
s ,
(
â1/2
s

)⊤
z̄Ps
)
ds −

∫ T

t
z̄Ps · â1/2

s dWP
s

−

∫ T

t
dm̄P

s + k̄PT − k̄Pt ,

ȳP
t ≥ Ŷ+

t ,
∫ T

0

(
ȳP
t− − Ŷ+

t−

)
dk̄Pt = 0.

By Theorem 3.1 in [13], this reflected BSDE is well-posed and ȳP is càdlàg. By
abuse of notation, we denote Ŷ+(ω̄) := Ŷ+(π(ω̄)). We claim that ȳP = Ŷ+, P ⊗

P0-a.s. Indeed, we argue by contradiction, and assume without loss of generality
that ȳP

0 > Ŷ
+
0 . For each ε > 0, denote τε := inf{t : ȳP

t ≤ Ŷ
+
t + ǫ}. Then τε is an

F+−stopping time and ȳP
t− ≥ Ŷ

+
t− + ǫ > Ŷ

+
t− for all t ≤ τε . Thus k̄Pt = 0, P ⊗

P0-a.s., for 0 ≤ t ≤ τε , and thus

ȳP
t = ȳP

τε
−

∫ τε

t
f̂ P

s

(
ȳP
s ,
(
â1/2
s

)⊤
z̄Ps
)
ds

−

∫ τε

t
z̄Ps · â1/2

s dWP
s −

∫ τε

t
dm̄P

s , P⊗ P0-a.s.

The same linearization argument that we used in the proof of Lemma A.1 implies
that

ȳP
0 ≤ Y

P⊗P0
0

(
τε, Ŷ

+
τε

)
+ CEP⊗P0

[
ȳP
τε

− Ŷ+
τε

]
≤ Y

P⊗P0
0

(
τε, Ŷ

+
τε

)
+ Cε,

for some C > 0. However, by Lemma 3.4, we know that YP⊗P0
0 (τε, Ŷ

+
τε

) ≤ Ŷ
+
0 ,

which contradicts the fact that yP
0 > Ŷ

+
0 .

Then, by exactly the same arguments as in Lemma 2.2, we can go from
the enlarged space to 	 and obtain for some (ZP)P∈P0 ⊂ H

p
0 (FP

+,P), and
(MP,KP)P∈P0 ⊂ M

p
0 (FP+,P) × I

p
0 (FP+,P)

Ŷ+
t = ξ −

∫ T

t
f̂ P

s

(
Ŷ+

s ,
(
â1/2
s

)⊤
ZP

s

)
ds −

∫ T

t
ZP

s · dXc,P
s

−

∫ T

t
dMP

s +

∫ T

t
dKP

s , t ∈ [0, T ],P-a.s.

Then, by Karandikar [51], since Ŷ+ is a càdlàg semimartingale, we can define
a universal process denoted by 〈Ŷ+,X〉 which coincides with the quadratic co-
variation of Ŷ+ and X under each probability P ∈ P0. In particular, the process
〈Ŷ+,X〉 is P0-quasi-surely continuous, and hence is FP0+-predictable (or equiva-
lently FP0-predictable). Similar to the proof of Theorem 2.4 of [69], we can then
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define a universal FP0-predictable process Z by

Zt := â⊕
t

d〈Ŷ+,X〉t

dt
,

where we recall that â⊕
t represents the Moore–Penrose pseudo-inverse of ât . In

particular, Z aggregates the family {ZP,P ∈ P0}. �

We end this section with a remark, which explains that in some cases, the path
regularization that we used is actually unnecessary, and we can obtain a semi-
martingale decomposition for Ŷ directly.

REMARK 3.1. Assume that for any (t,ω) ∈ [0, T ] × 	, all the probability
measures in P(t,ω) satisfy the Blumenthal 0–1 law. This would be the case for
instance if we where working with the set PS defined and used in [84]. Then, for
any P ∈ P(t,ω), the filtration FP is right–continuous and, therefore, satisfies the
usual conditions. Assume that the process Ŷ is FP-optional, then it is also làdlàg,
and by Lemma 3.5, it verifies

sup
P∈P0

EP
[
essupP
t∈[0,T ]

|Ŷt |
p]< +∞.

Moreover, by the Blumenthal 0–1 law, (3.1) and (3.2) rewrite

Ŷσ(ω)(ω) = sup
P∈P(σ (ω),ω)

YP
σ(ω)(τ, Ŷτ ) = sup

P∈P(σ (ω),ω)

Ỹ
P⊗P0
σ(ω) (τ, Ŷτ ).

Hence, Ŷ is a E f̂ P

-supermartingale in the terminology of [12]. We can then ap-
ply Theorem 3.1 of [12] to obtain directly the semimartingale decomposition of
Lemma 3.6. The aggregation of the family (ZP)P∈P0 can still be done, but requires
to use Karandikar’s approach [51], combined with the Itô formula for làdlàg pro-
cesses of [58], page 538. Then one can also generalize the results on 2BSDEs of
the section below. This however requires that in the definition of a 2BSDE (see
Definition 4.1), the processes Y and K are only làdlàg, instead of càdlàg. With this
change, all our results still go through.

4. Application to 2BSDEs.

4.1. Definition. We shall consider the following 2BSDE, which verifies
P0-q.s.:

(4.1)
Yt = ξ −

∫ T

t
f̂ P

s

(
Ys,
(
â1/2
s

)⊤
Zs

)
ds −

(∫ T

t
Zs · dXc,P

s

)P

−

∫ T

t
dMP

s + KP
T − KP

t , 0 ≤ t ≤ T .
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DEFINITION 4.1. We will say that the quadruple (Y,Z, (MP)P∈P0,

(KP)P∈P0) ∈ D
p
0 (FP0+) × H

p
0 (FP0) × M

p
0 ((FP+)P∈P0) × I

p
0 ((FP

+)P∈P0) is a so-
lution to the 2BSDE (4.1) if (4.1) holds P0-q.s. and if the family {KP,P ∈ P0}

satisfies the minimality condition

(4.2) KP
t = ess infP

P′∈P0(t,P,F+)
EP′[

KP′

T |FP+
t

]
, 0 ≤ t ≤ T ,P-a.s.,∀P ∈ P0.

REMARK 4.1. If we assume that bP = 0, P-a.s. for any P ∈ P0, then we have
that Xc,P = X, P-a.s. for any P ∈ P0. Then we can use the general result given by
Nutz [68]7 to obtain the existence of a P0-q.s. càdlàg FP0+-progressively measur-
able process, which we denote by

∫ ·
0 Zs · dXs , such that

∫ ·

0
Zs · dXs =

(∫ ·

0
Zs · dXs

)P
, P-a.s.

Hence, we can then also find an FP0+-progressively measurable process N

which aggregates the process MP − KP, and which is therefore a (FP
+,P)-

supermartingale for any P ∈ P0. However, the Doob–Meyer decomposition of N

into a sum of a martingale and a nondecreasing process generally depends on P.
If furthermore the set P0 only contains elements satisfying the predictable martin-
gale representation property, for instance the set PS used in [84], then we have that
MP = 0, P-a.s., for any P ∈ P0, so that the above reasoning allows to aggregate
the nondecreasing processes KP.

We first state the main result of this part.

THEOREM 4.1. Let ξ ∈ L
p,κ
0 . Under Assumptions 2.1 and 3.1, there exists a

unique solution (Y,Z, (MP)P∈P0, (K
P)P∈P0) to the 2BSDE (4.1).

4.2. Uniqueness, stochastic control representation and comparison. We start
by proving a representation of a solution to 2BSDEs, which provides incidentally
its uniqueness.

7Notice that this result only holds under some particular set-theoretic axioms. For instance, one
can assume the usual Zermelo–Fraenkel set theory, plus the axiom of choice (ZFC for short), and
either add the continuum hypothesis or Martin’s axiom (which is compatible with the negation of
the continuum hypothesis). Actually, the required axioms must imply the existence of the so-called
medial limits in the sense of Mokobodzki. As far as we know, the weakest set of axioms known to
be sufficient for the existence of medial limits (see [45], 538S and [57]) is ZFC plus the statement
that the reals are not a union of fewer than continuum many meager sets. Moreover, ZFC alone is
not sufficient, in the sense that by Corollary 3.3 of [57], If ZFC is consistent, then so is ZFC + “there
exist no medial limits”.
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THEOREM 4.2. Let Assumptions 2.1 and 3.1 hold, and let ξ ∈ L
p,κ
0 . Consider

a solution (Y,Z, (MP)P∈P0, (K
P)P∈P0) to the 2BSDE (4.1). For any P ∈ P0, let

(YP,ZP,MP) ∈ D
p
0 (FP

+,P) × H
p
0 (FP

+,P) × M
p
0 (FP

+,P) be the solutions of the
corresponding BSDEs (2.7). Then, for any P ∈ P0 and 0 ≤ t1 ≤ t2 ≤ T ,

(4.3) Yt1 = ess supP
P′∈P0(t1,P,F+)

YP′

t1
(t2, Yt2), P-a.s.

Thus, the 2BSDE (4.1) has at most one solution in D
p
0 (FP0+) × H

p
0 (FP0) ×

M
p
0 ((FP

+)P∈P0) × I
p
0 ((FP

+)P∈P0).

PROOF. We start by proving the representation (4.3) in three steps.
(i) Fix some P ∈P0 and then some P′ ∈ P0(t1,P,FP

+). Since (4.1) holds P′-a.s.,
we can see Y as a super-solution of the BSDE on [t1, t2], under P′, with gener-
ator f̂ P′

and terminal condition Yt2 . By the comparison principle of Lemma A.3
(together with Lemma 2.2), we deduce immediately that Yt1 ≥ YP′

t1
(t2, Yt2), P

′-a.s.

Then, since YP′

t1
(t2, Yt2) (or a P′-version of it) is F

+
t1

-measurable and since Yt1 is

F
P0+
t1

-measurable, we deduce that the inequality also holds P-a.s., by definition
of P0(t1,P,F+) and the fact that measures extend uniquely to the completed σ -
algebras. We deduce that

Yt1 ≥ ess supP
P′∈P0(t1,P,F+)

YP′

t1
(t2, Yt2), P-a.s.,

by arbitrariness of P′.
(ii) We now show that

CP
t1

:= ess supP
P′∈P0(t1,P,F+)

EP′[(
KP′

t2
− KP′

t1

)p
|F+

t1

]
< +∞, P-a.s.

First of all, we have by definition

(
KP′

t2
− KP′

t1

)p
≤ C

(
sup

t1≤t≤t2

|Yt |
p +

(∫ t2

t1

∣∣f̂ P
′
,0∣∣ds

)p
+

(∫ t2

t1

∥∥(â1/2
s

)⊤
Zs

∥∥ds

)p)

+ C

(∣∣∣∣
∫ t2

t1

Zs · dXc,P
′

s

∣∣∣∣
p

+

∣∣∣∣
∫ t2

t1

dMP
′

s

∣∣∣∣
p)

,

for some constant C > 0, so that we obtain by BDG inequalities

(4.4) EP′[(
KP′

t2
− KP′

t1

)p]
≤ C
(
φ

p,κ
f + ‖Y‖

p

D
p
0

+ ‖Z‖
p

H
p
0

+ sup
P∈P0

EP
[[

MP
]p

2
T

])
,

for some other constant C > 0 and hence CP
t1

< +∞, P-a.s. Next, we claim that
the family

{
EP′[(

KP′

t2
− KP′

t1

)p
|F+

t1

]
,P′ ∈ P0(t1,P,F+)

}
,
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is upward directed. Indeed, let us consider (P1,P2) ∈ P0(t1,P,F+) × P0(t1,P,

F+), and let us define the following subsets of 	:

A1 :=
{
ω ∈ 	 : EP1[(

KP1

t2
− KP1

t1

)p
|F+

t1

]
(ω) > EP2[(

KP2

t2
− KP2

t1

)p
|F+

t1

]
(ω)
}
,

A2 := 	 \ A1.

Then A1,A2 ∈ F
P+
t1

, and we can define the following probability measure on
(	,FT ):

P1,2(B) := P1(A1 ∩ B) + P2(A2 ∩ B), for any B ∈ FT .

By Assumption 2.1(v), we know that P1,2 ∈ P0, and by definition, we further have
P1,2 ∈ P0(t1,P,F+) as well as, P-a.s.,

EP1,2[(
KP1,2

t2
−KP1,2

t1

)p
|F+

t1

]
= EP1[(

KP1

t2
−KP1

t1

)p
|F+

t1

]
∨EP2[(

KP2

t2
−KP2

t1

)p
|F+

t1

]
,

which proves the claim.
Therefore, by classical results for the essential supremum (see, e.g., Neveu

[67]), there exists a sequence (Pn)n≥0 ⊂ P0(t1,P,F+) such that

ess supP
P′∈P0(t1,P,F+)

EP′[(
KP′

t2
− KP′

t1

)p
|F+

t1

]
= lim

n→∞
↑ EPn
[(

K
Pn
t2

− K
Pn
t1

)p
|F+

t1

]
.

Then using (4.4) and the monotone convergence theorem under P, we deduce that

EP
[
CP

t1

]
≤ lim

n→∞
↑ EP
[
EPn
[(

K
Pn
t2

− K
Pn
t1

)p
|F+

t1

]]

≤ C
(
φ

p,κ
f + ‖Y‖

p

D
p
0

+ ‖Z‖
p

H
p
0

+ sup
P∈P0

EP[[MP]p2
T

])
< +∞,

which provides the desired result.
(iii) We now prove the reverse inequality. Since we will use a linearization ar-

gument, we work on the enlarged space, remembering that this is without loss of
generality by Lemma 2.2. Fix P ∈ P0. For every P′ ∈ P′ ∈P0(t1,P,F+), we extend
the definition of (Y,Z, (MP)P∈P0, (K

P)P∈P0) on 	 as in (2.1), and denote

δY := Y − ỸP′⊗P0, δZ := Z − Z̃P′⊗P0 and δMP′

:= MP′

− M̃P′⊗P0 .

By Assumption 2.1(i), there exist two bounded processes λP
′

and ηP
′

such that for
all t1 ≤ t ≤ t2, P′ ⊗ P0-a.s.,

δYt =

∫ t2

t

(
λP

′

s δYs + ηP
′

s ·
(
â1/2
s

)⊤
δZs

)
ds −

∫ t2

t
δZs · â1/2

s dWP′

s

−

∫ t2

t
d
(
δMP′

s − KP′

s

)
.

Define for t1 ≤ t ≤ t2 the following continuous process:

(4.5) �P′

t := exp
(∫ t

t1

(
λP

′

s −
1

2

∥∥ηP
′

s

∥∥2
)

ds −

∫ t

t1

ηP
′

s · dWP′

s

)
, P′ ⊗ P0-a.s.
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Note that since λP
′

and ηP
′

are bounded, we have for all p ≥ 1, for some constant
Cp > 0, independent of P′.

(4.6) EP′⊗P0
[

sup
t1≤t≤t2

(
�P′

t

)p
+ sup

t1≤t≤t2

(
�P′

t

)−p∣∣F+

t1

]
≤ Cp, P′ ⊗ P0-a.s.

Then, by Itô’s formula, we obtain

(4.7) δYt1 = EP′⊗P0

[∫ t2

t1

�P′

t dKP′

t

∣∣∣F+

t1

]
,

because the martingale terms vanish when taking conditional expectation. We
therefore deduce

δYt1 ≤
(
EP′⊗P0

[
sup

t1≤t≤t2

∣∣�P
′

t

∣∣p+1
p−1 |F

+

t1

])p−1
p+1 (

EP′⊗P0
[(

KP′

t2
− KP′

t1

)p+1
2 |F

+

t1

]) 2
p+1

≤ C
(
CP′

t1

) 1
p+1
(
EP′⊗P0

[
KP′

t2
− KP′

t1
|F

+

t1

]) 1
p+1 .

Remember Y and KP′
are extended on 	 as in (2.1), then it only depends on X

and not on B . Going back now to the canonical space 	, it follows by Lemma 2.2
that

δY ′
t1

:= Yt1 − ỸP′

t1
≤ C
(
CP′

t1

) 1
p+1
(
EP′[

KP′

t2
− KP′

t1
|F+

t1

]) 1
p+1 .

By arbitrariness of P′ we deduce, thanks to (4.2), that

Yt1 − ess supP
P′∈P0(t1,P,F+)

YP′

t1
(t2, Yt2) ≤ 0, P-a.s.

Finally, the uniqueness of Y is immediate by the representation (4.3). Then, since

〈Y,X〉t =

∫ t

0
âsZs ds, P-a.s.,

Z is also uniquely defined, ât dt ⊗P0-q.s. We therefore deduce that the processes
MP − KP are also uniquely defined for any P ∈ P0. But, since they are (FP

+,P)-
supermartingales, such that in addition (KP

t ,MP
t ) ∈ L

p
0 (FP

+,P) × L
p
0 (FP

+,P) for
any t ∈ [0, T ], and since KP is FP

+-predictable, the uniqueness of MP and KP is a
simple consequence of the uniqueness in the Doob–Meyer decomposition of these
supermartingales. �

With the previous theorem in hand, the following comparison result is an im-
mediate consequence of the corresponding one for BSDEs (see, for instance,
Lemma A.3 in the Appendix)

THEOREM 4.3. For i = 1,2, let f i and ξ i be respectively a generator map
and a terminal condition satisfying the required properties in Assumptions 2.1
and 3.1. Let also Y i be the first component of the solution to the 2BSDE with
generator f i and terminal condition ξ i . Suppose in addition that for any P ∈ P0
we have:



STOCHASTIC CONTROL FOR NONLINEAR KERNELS 587

(i) ξ1 ≤ ξ2, P-a.s.
(ii) f̂ 1,P

s (y1
s , (â

1/2
s )⊤z1

s ) ≥ f̂ 2,P
s (y2

s , (â
1/2
s )⊤z2

s ), ds × dP-a.e., on [0, T ] × 	,
where for i = 1,2, (yi, zi) are the first two components of the solution of the BSDE
under P with generator f̂ i,P and terminal condition ξ i .

Then we have Y 1
t ≤ Y 2

t , t ∈ [0, T ], P0-q.s.

4.3. A priori estimates and stability. In this section, we give a priori estimates
for 2BSDEs, which, as in the case of the classical BSDEs, play a very important
role in the study of associated numerical schemes for instance. The proofs are
actually based on the general results given very recently in [13].

THEOREM 4.4. Let Assumptions 2.1 and 3.1 hold, and let ξ ∈ L
p,κ
0 . Consider

a solution (Y,Z, (MP)P∈P0, (K
P)P∈P0) to the 2BSDE (4.1). Then there exists a

constant Cκ depending only on p, κ , T and the Lipschitz constant of f such that

‖Y‖
p

D
p
0

+ ‖Z‖
p

H
p
0

+ sup
P∈P0

EP
[(

KP
T

)p]
+ sup

P∈P0

EP
[[

MP
]p

2
T

]
≤ Cκ

(
‖ξ‖

p

L
p,κ
0

+ φ
p,κ
f

)
,

PROOF. First, by Lemma 3.5, we have for any P ∈ P0:

Yt = ess supP
P′∈P0(t,P,F+)

YP′

t (T , ξ), P-a.s.

Furthermore, by Lemma A.1 (together with Lemma 2.2), we know that there exists
a constant C (which may change from line to line) depending only on κ , T and the
Lipschitz constant of f̂ , such that for all P,

(4.8)
∣∣YP

t (T , ξ)
∣∣≤ C

(
EP

[
|ξ |κ +

∫ T

t

∣∣f̂ P,0
s

∣∣κ ds
∣∣∣F+

t

]) 1
κ

, P-a.s.

Hence, we deduce immediately

‖Y‖
p

D
p
0

≤ C
(
‖ξ‖

p

L
p,κ
0

+ φ
p,κ
f

)
.

Now, by extending the definition of (Y,Z, (MP)P∈P0, (K
P)P∈P0) on the enlarged

space 	 (see (2.1)), one has, for every P ∈ P0,

Yt = ξ −

∫ T

t
f̂ P

s

(
Ys,
(
â1/2
s

)⊤
Zs

)
ds −

∫ T

t
Zs · â1/2

s dWP
s

−

∫ T

t
dMP

s +

∫ T

t
dKP

s , P⊗ P0-a.s.

Then for every P ∈P0, (Y,Z,MP,KP) can be interpreted as a super-solution of a
BSDE in the enlarged space 	. We can therefore use Theorem 2.1 of [13] (notice
that the constants appearing there do not depend on the underlying probability
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measure) to obtain the required estimates. Noticing once again that the norms of
Z, KP and MP are the same on the enlarged space 	 or on 	, it follows then

‖Z‖
p

H
p
0

+ sup
P∈P0

EP[(KP
T

)p]
+ sup

P∈P0

EP[[MP]p2
T

]

≤ C

(
‖ξ‖

p

L
p,κ
0

+ φ
p,κ
f + ‖ξ‖

p

L
p
0

+ sup
P∈P0

EP

[∫ T

0

∣∣f̂ P,0
s

∣∣p ds

])

≤ C
(
‖ξ‖

p

L
p,κ
0

+ φ
p,κ
f

)
,

for some constant C > 0, where we used the fact that by definition

‖ξ‖
p

L
p
0

≤ ‖ξ‖
p

L
p,κ
0

and sup
P∈P0

EP

[∫ T

0

∣∣f̂ P,0
s

∣∣p ds

]
≤ φ

p,κ
f .

�

Next, we also have the following estimates for the difference of two solutions
of 2BSDEs, which plays a fundamental role for stability properties.

THEOREM 4.5. Let Assumptions 2.1 and 3.1 hold, and let us be given two
generators f 1 and f 2 such that Assumption 3.1 holds. Assume that ξ i ∈ L

p,κ
0 and

(Y i,Zi, (M i,P)P∈P0, (K
i,P)P∈P0) is a solution to the 2BSDE with generator f i

and terminal condition ξ i , for i = 1,2. Define

φ
p,κ

f 1,f 2 := sup
P∈P0

EP

[
ess supP

0≤t≤T

EP

[(∫ T

0

∣∣f̂ 1,P
s − f̂ 2,P

s

∣∣κ

×
(
y1,P
s ,
(
â1/2
s

)⊤
z1,P
s

)
ds

)p
κ
∣∣∣F+

t

]]

ψ
p

f 1,f 2 := sup
P∈P0

EP

[∫ T

0

∣∣f̂ 1,P
s − f̂ 2,P

s

∣∣p(Y 1
s ,
(
â1/2
s

)⊤
Z1

s

)
ds

]
.

Then there exists a constant Cκ depending only on κ , T and the Lipschitz constant
of f 1 and f 2 such that

∥∥Y 1 − Y 2∥∥p
D

p
0

≤ Cκ

(∥∥ξ1 − ξ2∥∥p
L

p,κ
0

+ φ
p,κ

f 1,f 2

)
,

∥∥Z1 − Z2∥∥p
H

p
0

+ sup
P∈P0

EP[[N1,P − N2,P]p2
T

]

≤ Cκ

(∥∥ξ1 − ξ2∥∥p
L

p,κ
0

+ φ
p,κ

f 1,f 2 +
∥∥ξ1 − ξ2∥∥

p
2 ∧(p−1)

L
p,κ
0

+ ψ
p

f 1,f 2 +
(
φ

p,κ

f 1,f 2

)p
2 ∧(p−1))

,

where we have once more defined N i,P := M i,P − K i,P for any P ∈ P0, i = 1,2.
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PROOF. First of all, by Lemma A.1 (together with Lemma 2.2), we know that
there exists a constant C depending only on κ , T and the Lipschitz constant of f̂ ,
such that for all P ∈ P0, we have P-a.s.

(4.9)

∣∣y1,P
t − y

2,P
t

∣∣≤ C

(
EP

[∣∣ξ1 − ξ2∣∣κ

+

∫ T

t

∣∣f̂ 1,P
s − f̂ 2,P

s

∣∣κ(y1,P
s ,
(
â1/2
s

)⊤
z1,P
s

)
ds
∣∣∣F+

t

]) 1
κ

.

This immediately provides the estimate for Y 1 − Y 2 by the representation formula
(4.3) and the definition of the norms and of φ

p,κ

f 1,f 2 . Next, we argue exactly as
in the proof of Theorem 4.4 by working on the enlarged space 	 and using now
Theorem 2.2 of [13] to obtain the required estimates. �

4.4. Existence through dynamic programming. In this section, we will show
that Ŷ+ defined in Section 2 is indeed a solution to the 2BSDE (4.1), thus com-
pleting the proof of Theorem 4.1.

Recall that Ŷ+ is defined by (3.5), and one has processes (Z, (MP)P∈P0,

(KP)P∈P0) ∈ H
p
0 (FP0) ×M

p
0 ((FP+)P∈P0) × I

p
0 ((FP+)P∈P0) given by Lemma 3.6,

so that the only thing left for us is to show that the family (KP)P∈P0 satisfies the
minimality condition (4.2).

Next we again extend the definition of (Y,Z, (MP)P∈P0, (K
P)P∈P0) and Ŷ+,

YP′
(T , ξ) on 	 as in (2.1) (recall also Lemma 2.2). Then by (4.7), denoting

δŶ+ := Ŷ+ − YP′
(T , ξ), we have for any t ∈ [0, T ], for any P ∈ P0 and any

P′ ∈P0(t,P,F+)

δŶ+
t = EP′⊗P0

[∫ T

t
�P′

s dKP′

s

∣∣∣F+

t

]

≥ EP′⊗P0
[

inf
t≤s≤T

�P′

s

(
KP′

T − KP′

t

)∣∣F+

t

]
, P-a.s.,

where �P′
is defined in (4.5). We therefore have

EP′⊗P0
[
KP′

T − KP′

t |F
+

t

]

≤
(
EP′⊗P0

[
inf

t≤s≤T
�P′

s

(
KP′

T − KP′

t

)∣∣F+

t

]) 1
2

×
(
EP′⊗P0

[(
KP′

T − KP′

t

)p
|F

+

t

]) 1
2p

(
EP′⊗P0

[(
inf

t≤s≤T
�P′

s

)−q ∣∣F+

t

]) 1
2q

≤ C
(
CP′

t

) 1
2p
(
δŶ+

t

) 1
2 ,

with q > 1 such that 1
p

+ 1
q

= 1.
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Notice that by definition KP′
(defined on 	) only depends on X and not on B ,

so that we can go back to 	 and obtain

EP′[
KP′

T − KP′

t |F+
t

]
≤ C
(
CP′

t

) 1
2p
(
δŶ+

t

) 1
2 .

Then the result follows immediately thanks to Lemma 3.5.

REMARK 4.2. For other classes of 2BSDEs with possibly a non-Lipschitz
generator, such as 2BSDEs under a monotonicity condition [77], quadratic 2BS-
DEs [79] or second-order reflected BSDEs [63], if a Doob–Meyer decomposition
for the corresponding nonlinear supermartingales is available under any probabil-
ity measure in the set P0, then together with Proposition 2.1, we can generalize the
well-posedness result in Theorem 4.1 to these classes of 2BSDEs when there is no
regularity condition on the terminal condition and the generator. In particular, all
probability measures in the nondominated set considered in the articles above do
satisfy this property, which means that our result extends directly to their context.

5. Nonlinear optional decomposition and super-hedging duality. In this
section, we show that under an additional assumption on the sets P0, basically
stating that it is rich enough, we can give a different definition of second-order
BSDEs, which is akin to a nonlinear optional decomposition theorem, as initiated
by [39, 43, 56] in a dominated model framework, and more recently by [69] for
nondominated models.

5.1. Saturated 2BSDEs. We introduce the following definition.

DEFINITION 5.1. The set P0 is said to be saturated if, when P ∈ P0, we have
Q ∈ P0 for every probability measure Q on (	,F) which is equivalent to P and
under which X is local martingale.

We give now an alternative definition for 2BSDEs of the form

(5.1)
Yt = ξ −

∫ T

t
f̂ P

s

(
Ys,
(
â1/2
s

)⊤
Zs

)
ds −

(∫ T

t
Zs · dXc,P

s

)P

+ KP
T − KP

t , 0 ≤ t ≤ T .

DEFINITION 5.2. (Y,Z, (KP)P∈P0) ∈ Dp(FU+,P0) × Hp(FU,P0) ×

Io,p((FP
+)P∈P0) is a satu-rated solution to 2BSDE (5.1) if (5.1) holds P0-q.s. and

if the family {KP,P ∈P0} satisfies the minimality condition (4.2).

REMARK 5.1. In the above definition, two changes have occurred. First, the
orthogonal martingales MP have disappeared, and the nondecreasing processes
KP are assumed to be FP

+-optional instead of predictable.
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We then have the following result.

THEOREM 5.1. Let Assumptions 2.1, 3.1 hold and assume in addition that the
set P0 is saturated. Then there is a unique saturated solution of the 2BSDE (5.1).

PROOF. By Theorem 4.1, we know that the following 2BSDE is well-posed:

Yt = ξ −

∫ T

t
f̂ P

s

(
Ys,
(
â1/2
s

)⊤
Zs

)
ds −

(∫ T

t
Zs · dXc,P

s

)P
−

∫ T

t
dMP

s

+ KP
T − KP

t , 0 ≤ t ≤ T ,P0-q.s.

In particular, this means that the process

Y· −

∫ ·

0
f̂ P

s

(
Ys,
(
â1/2
s

)⊤
Zs

)
ds,

is a (FP
+,P)-supermartingale in D

p
0 (FP

+,P) for every P ∈ P0. Since P0 is saturated,
it follows by Theorem 1 of [43] (see also Theorem 3.1 of [44]), that there exists a
F-predictable process Z̃P such that

Y· −

∫ ·

0
f̂ P

s

(
Ys,
(
â1/2
s

)⊤
Zs

)
ds −

∫ ·

0
Z̃P

s · dXc,P
s is nonincreasing,

P-a.s., for every P ∈P0.

Hence, we can write

Yt = ξ −

∫ T

t
f̂ P

s

(
Ys,
(
â1/2
s

)⊤
Zs

)
ds −

(∫ T

t
Z̃P

s · dXc,P
s

)P

+ K̃P
T − K̃P

t , 0 ≤ t ≤ T ,P0-q.s.,

where for any P ∈P0, K̃P is càdlàg, nondecreasing P-a.s. and FP
+-optional. More-

over, by identification of the martingale parts, we deduce that we necessarily have
Z̃P = Z, ât dt × P0-q.s. Finally, following the same arguments as in the proof of
Theorem 4.4, we deduce that (K̃P)P∈P0 ∈ Io,p((FP

+)P∈P0), which completes the
proof. �

5.2. A super-hedging duality in uncertain, incomplete and nonlinear markets.
The result of the previous section finds an immediate application to the so-called
problem of robust super-hedging. Before discussing the related results in the liter-
ature, let us explain exactly what the problem is.

We consider a standard financial market (possibly incomplete) consisting of
a nonrisky asset and n risky assets whose dynamics are uncertain. Concretely,
let U be some (nonempty) Polish space, U denote the collection of all U -valued
F-progressively measurable processes, (μ,σ ) : [0, T ] × 	 × U −→ Rd × Sd be
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the drift and volatility coefficient function which are assumed to be bounded (for
simplicity) and such that for some constant L > 0,
∥∥(μ,σ )(t,ω,u) − (μ,σ )

(
t ′,ω′, u

)∥∥≤ L
(√∣∣t − t ′

∣∣+
∥∥ωt∧· − ω′

t ′∧·

∥∥).
Recall that the canonical process X on the canonical space 	 is a standard Brow-
nian motion under the Wiener measure P0. Then the dynamics of risky assets are
given by St,ω,ν , which is the unique solution to the SDE

St,ω,ν
s = ωt +

∫ s

t
μ
(
r, St,ω,ν, νr

)
dr

+

∫ s

t
σ
(
r, St,ω,ν, νr

)
dXr , s ∈ [t, T ],P0-a.s.,

with initial condition St,ω,ν
s = ωs for s ∈ [0, t] and ν ∈ U .

Then we define for every (t,ω) ∈ [0, T ] × 	:

PU (t,ω) :=
{
P0 ◦
(
St,ω,ν)−1

, ν ∈ U
}
.

It is known (see Theorem 3.5 and Lemma 3.6 in [41] or Theorem 2.4 and Proposi-
tion 2.2 in [65] in a simpler context) that these sets do satisfy Assumption 2.1. We
assume in addition that PU

0 is saturated.
A portfolio strategy is then defined as a Rn-valued and FPU

0 -predictable process
(Zt )t∈[0,T ], such that Zi

t describes the number of units of asset i in the portfolio
of the investor at time t . It is well known that under some constrained cases, the
wealth Y y0,Z associated to the strategy Z and initial capital y0 ∈ R can be written,
for every P ∈PU

0 , as

Y
y0,Z
t := y0 +

∫ t

0
f̂ P

s

(
Y y0,Z

s ,
(
â1/2
s

)⊤
Zs

)
ds +

∫ t

0
Zs · dXc,P

s , t ∈ [0, T ],P-a.s.

For instance, the classical case corresponds to

(5.2) f̂ P
s (y, z) = rsy + z · θPs ,

where rs is the risk-free rate of the market and θP is the risk premium vector
under P, defined by θPs := (â

1/2
s )⊕(bPs − rs1n), where (â

1/2
s )⊕ denotes the Moore–

Penrose pseudo-inverse of â
1/2
s .

The simplest example of a nonlinear f̂ P corresponds to the case where there are
different lending and borrowing rates r t ≤ r t , in which (see Example 1.1 in [37])

f̂ P
s (y, z) = rsy + z · θPs − (rs − rs)(y − z · 1n)

−.

We will always assume that f̂ P satisfies our standing hypotheses in Assumptions
2.1 and 3.1.

Let us now be given some Borel random variable ξ ∈ Lp(FU,PU
0 ). The problem

of super-hedging ξ corresponds to finding its super-replication price, defined as

Psup(ξ) := inf
{
y0 ∈ R : ∃Z ∈H, Y

y0,Z
T ≥ ξ,PU

0 -q.s.
}
,
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where the set of admissible trading strategies H is defined as the set of FU,PU0 -
predictable processes Z such that in addition, (Y

y0,Z
t )t∈[0,T ] is an E f̂ P

-supermar-
tingale under P for any P ∈ PU

0 , that is, for any 0 ≤ s ≤ t ≤ T

Y y0,Z
s ≥ YP

s

(
t, Y

y0,Z
t

)
, P-a.s.

In the case where f̂ P corresponds to our first example (5.2) with r = 0, and where
the set of measures considered satisfy the predictable martingale representation
property (i.e., the financial market is complete under any of the measures consid-
ered) this super-hedging price has been thoroughly studied in the recent literature;
see among others [2, 7, 26, 27, 65, 70, 72, 76, 78, 83, 85, 86]. The extension to
possibly incomplete markets has been carried out notably by [10] in discrete-time
and more recently by [69] in continuous time for models possibly incorporating
jumps. Our result below extends all the results for continuous processes to markets
with nonlinear portfolio dynamics. Of course, the same proof would go through
for the more general jump case, provided that a 2BSDE theory, extending that of
[52, 53], is obtained in such a setting.

THEOREM 5.2. Let (Y,Z) be the first two components of the saturated solu-
tion of the 2BSDE with generator f̂ P and terminal condition ξ . Then

Psup(ξ) = sup
P∈PU

0

EP[Y0],

and Z ∈H is a super-hedging strategy for ξ .

PROOF. First of all, assume that we have some Z ∈ H such that Y
y0,Z
T ≥ ξ ,

PU
0 -q.s. Then, since Y

y0,Z
T is an E f̂ P

-supermartingale under P for any P ∈ PU
0 , we

have

y0 ≥ YP
0
(
T ,Y

y0,Z
T

)
, PU

0 -q.s.

However, by the comparison result of Lemma A.3 (together with Lemma 2.2), we
also have YP

0 (T ,Y
y0,Z
T ) ≥ YP

0 (T , ξ), from which we deduce

y0 ≥ YP
0 (T , ξ), P-a.s.

In particular, for any P ∈ PU
0 , we deduce that

y0 ≥ ess supP

P′∈PU
0 (0,P,F+)

YP
0 (T , ξ) = Y0, P-a.s.,

where we have used Lemma 3.5. It therefore directly implies, since y0 is determin-
istic, that

y0 ≥ sup
P∈PU

0

EP[Y0].
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For the reverse inequality, let (Y,Z, (KP)
P∈PU

0
) ∈ Dp(FU+,PU

0 ) × Hp(FU,PU
0 ) ×

Io,p((FP
+)

P∈PU
0

) be the unique saturated solution to the 2BSDE with generator f̂ P

and terminal condition ξ . Then we have for any P ∈ PU
0

Y0 +

∫ T

0
f̂ P

s

(
Ys,
(
â1/2
s

)⊤
Zs

)
ds +

∫ T

0
Zs · dXc,P

s = ξ + KP
T − KP

t ≥ ξ, P-a.s.

However, since Y0 is only F
PU

0 +

0 -measurable, it is not, in general, deterministic,
so that we cannot conclude directly. Let us nonetheless consider, for any P ∈ PU

0 ,
yP

0 the smallest constant which dominates Y0, P-a.s. We therefore want to show
that for any P ∈ PU

0 :

yP
0 ≤ sup

P∈PU
0

EP[Y0],

which can be done by following exactly the same arguments as in the proof of
Theorem 3.2 in [69]. Finally, we do have Z ∈ H, since by Lemma 3.4, Y is auto-
matically an E f̂ P

-supermartingale for every P ∈ PU
0 . �

6. Path-dependent PDEs. In the context of stochastic control theory, using
the dynamic programming principle, we can characterize the value function as a
viscosity solution of PPDE. Recall that μ, σ , U as well as U are the same given in
Section 5.2, we introduce a path-dependent PDE

(6.1) ∂tv(t,ω) + G
(
t,ω, v(t,ω), ∂ωv, ∂2

ω,ωv
)
= 0,

where

G(t,ω, y, z, γ ) := sup
u∈U

{
f
(
t,ω, y, σ (·)z,μ, a

)
(t,ω,u))

+ μ(t,ω,u) · z +
1

2
a(t,ω,u) : γ

}
.

As in the survey of Ren, Touzi and Zhang [81] (see also [80]), one may define
viscosity solutions of path dependent PDEs by using jets. For α ∈ R, β ∈ Rd ,
γ ∈ Sd , denote

φα,β,γ (t, x) := αt + β · x +
1

2
γ :
(
xxT ) for all (t, x) ∈R+ ×Rd ,

where A1 : A2 := Tr[A1A2]. Let BUC([0, T ] × 	) denote the set of all bounded
functions in 	 which are in addition uniformly continuous w.r.t. the metric d de-
fined by

d
(
(t,ω),

(
t ′,ω′)) :=

√∣∣t − t ′
∣∣+
∥∥ωt∧· − ω′

t ′∧·

∥∥
∞.
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Then define the semi-jets of a function u ∈ BUC([0, T ] × 	) at the point (t,ω) ∈

[0, T ) × 	 by

J u(t,ω) :=
{
(α,β, γ ) : u(t,ω) = max

τ∈THδ

E t,ω

[
uτ − φα,β,γ,t,ω

τ

]
, for some δ > 0

}
,

J u(t,ω) :=
{
(α,β, γ ) : u(t,ω) = min

τ∈THδ

E t,ω

[
uτ − φα,β,γ,t,ω

τ

]
, for some δ > 0

}
,

where

E t,ω[ξ ] := sup
P∈PU

t,ω

EP[ξ ], E t,ω[ξ ] := inf
P∈PU

t,ω

EP[ξ ]

and Hδ(ω
′) := δ ∧ inf{s ≥ 0 : |ω′

s | ≥ δ} and THδ denotes the collection of all F-

stopping times larger than Hδ , and φ
α,β,γ,t,ω
s := φα,β,γ (s − t,Xs − ωt ).

DEFINITION 6.1. Let u ∈ BUC([0, T ] × 	).

(i) u is a PU -viscosity subsolution (resp., super-solution) of the path dependent
PDE (6.1), if at any point (t,ω) ∈ [0, T ) × 	 it holds for all (α,β, γ ) ∈ J u(t,ω)

(resp. J u(t,ω)) that

−α − G
(
t,ω,u(t,ω),β, γ

)
≤ (resp. ≥)0.

(ii) u is a PU -viscosity solution of PPDE (6.1), if u is both a PU -viscosity
subsolution and a PU -viscosity super-solution of (6.1).

Using the dynamic programming principle, and by exactly the same arguments
as in [31], Section 4.3, we can characterize the value Y as viscosity solution of the
above PPDE.

THEOREM 6.1. Let Assumptions 2.1 and 3.1 hold. Suppose in addition that
ω 
−→ ξ(ω) and ω 
−→ f (t,ω, y, z, b, a) are uniformly continuous with respect
to ‖ · ‖∞. Then the value function v(t,ω) := Yt (ω) ∈ BUC([0, T ] × 	) and v is a
viscosity solution of PPDE (6.1).

Of course, in order to have a complete characterization of the solution to a
2BSDE as viscosity solution of the corresponding PPDE, the above result has to
be complemented with a comparison theorem. In the case of a fully nonlinear
PPDE, such a result has been recently achieved by Ren, Touzi and Zhang [82].
However, their main result, Theorem 4.2, needs to consider viscosity subsolutions
and super-solutions in a smaller set than BUC([0, T ] × 	). Namely, define for
any ℓ > 0 the set BUCℓ([0, T ] × 	) of all bounded functions in 	 which are in
addition uniformly continuous w.r.t. the metric dℓ defined by

dℓ((t,ω),
(
t ′,ω′)) :=

√∣∣t − t ′
∣∣+
∥∥ω·∧t − ω′

·∧t

∥∥
ℓ,
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where for any ω ∈ 	

‖ω‖ℓ :=

(∫ T +1

0
‖ωs‖

ℓ ds

) 1
ℓ

.

We then have the following result.

THEOREM 6.2. Let Assumptions 2.1, 3.1 hold and let G satisfy Assump-
tion 4.1 of [82]. Suppose in addition that ω 
−→ ξ(ω) and ω 
−→ f (t,ω, y, z, b, a)

are uniformly continuous with respect to ‖·‖ℓ for some ℓ ≤ p. Then the value func-
tion Yt (ω) is the unique viscosity solution of PPDE (6.1) in BUCℓ([0, T ] × 	).

PROOF. The only thing to prove here is that Y does belong to BUCℓ([0, T ] ×

	), since we can then apply immediately Theorem 4.2 of [82]. However, this regu-
larity can be obtained from classical a priori estimates for BSDEs, and arguments
similar to the ones used in Example 7.1 of [82]. �

APPENDIX

In this appendix, we collect several results related to BSDE theory, which are
used throughout the paper. We fix r ∈ [0, T ] and some P ∈ P(r,ω). A generator
will here be a map g : [r, T ] × 	 × R × Rd −→ R, which is F+-progressively
measurable and uniformly Lipschitz in (y, z), satisfying

EP

[∫ T

r

∣∣gs(0,0)
∣∣p ds

]
< +∞.

Similarly, a terminal condition will be a FT -measurable random variable in
L

p
r (F+,P). To state our results, we will actually need to work on the enlarged

canonical space 	, but we remind the reader that by Lemma 2.2, it is purely a

technical tool. Let P := P ⊗ P0. We will then say that (y, z,m) ∈ D
p
r (F

P+
,P) ×

H
p
r (F

P
,P)×M

p
r (F

P+
,P) is a solution to the BSDE with generator g and terminal

condition ξ if

(A.1)
yt = ξ(X·) −

∫ T

t
gs

(
ys,
(
â1/2
s

)⊤
zs

)
ds

−

∫ T

t
zs · â1/2

s dWP
s −

∫ T

t
dms, t ∈ [r, T ],P-a.s.

Similarly, if we are given a process k ∈ I
p
r (F

P+
,P), we call (y, z,m, k) a super-

solution of the BSDE with generator g and terminal condition ξ if

(A.2)
yt = ξ −

∫ T

t
gs

(
ys,
(
â1/2
s

)⊤
zs

)
ds −

∫ T

t
zs · â1/2

s dWP
s

−

∫ T

t
dms +

∫ T

t
dks, t ∈ [r, T ],P-a.s.
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A.1. Technical results for BSDEs.

LEMMA A.1 (Estimates and stability). Let Assumption 2.1 hold. Then, for
i = 1,2, let us denote by (yi, zi,mi) the solution of the BSDE (A.1) with generator
gi and terminal condition ξ i . Then, for any κ ∈ (1,p], there exists some constant
C > 0 such that

∣∣yi
t

∣∣≤ C

(
EP

[∣∣ξ i
∣∣κ +

∫ T

r

∣∣gi
s(0,0)

∣∣κ ds
∣∣∣F+

t

]) 1
κ

, t ∈ [r, T ],P-a.s.,

and
∥∥zi
∥∥p
H

p
r (P)

+
∥∥mi
∥∥p
M

p
r (P)

≤ C

(∥∥ξ i
∥∥p
L

p
r (P)

+EP

[∫ T

r

∣∣gi
s(0,0)

∣∣p ds

])
.

Denoting δξ := ξ1 − ξ2, δy := y1 − y2, δz := z1 − z2, δm := m1 − m2, δg :=

(g1 − g2)(·, y1, z1), we also have

|δyt | ≤ C

(
EP

[
|δξ |κ +

∫ T

r
|δgs |

κ ds
∣∣∣F+

t

]) 1
κ

, t ∈ [r, T ],P-a.s.,

and

‖δz‖
p

H
p
r (P)

+ ‖δm‖
p

M
p
r (P)

≤ C

(
‖δξ‖

p

L
p
r (P)

+EP

[∫ T

r
|δgs |

p ds

])
.

PROOF. See Section 4 of [13]. �

LEMMA A.2. For any F-stopping times 0 ≤ r ≤ ρ ≤ τ ≤ T , any decreas-
ing sequence of F-stopping times (τn)n≥1 converging P-a.s. to τ , and any F+-
progressively measurable and right-continuous process V ∈ D

p
r (FP

+,P), if y(·,V·)

denotes the first component of the solution to the BSDE (A.1) on [r, ·] with terminal
condition V· and some generator g, we have

EP
[∣∣yρ(τ,Vτ ) − yρ(τn,Vτn)

∣∣] −→
n→+∞

0.

PROOF. First of all, by Lemma (2.7), we have

yρ(τ,Vτ ) − yρ(τn,Vτn) = yρ(τ,Vτ ) − yρ

(
τ, yτ (τn,Vτn)

)
.

By Lemma A.1, we therefore have for any κ ∈ (1,p]:

EP
[∣∣yρ(τ,Vτ ) − yρ

(
τ, yτ (τn,Vτn)

)∣∣]≤ CEP
[∣∣Vτ − yτ (τn,Vτn)

∣∣κ].
Next, again by a linearization argument, we can find bounded processes λ and η,
which are F-progressively measurable such that

yτ (τn,Vτn) = EP⊗P0

[
E

(∫ τn

τ
ηs · dWP

s

)

×

(
e
∫ τn
τ λs dsVτn −

∫ τn

τ
e
∫ s
τ λu dugs(0,0) ds

)∣∣∣F+

τ

]
.
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Hence, choosing κ < p̃ < p,

EP⊗P0
[∣∣yρ(τ,Vτ ) − yρ

(
τ, yτ (τn,Vτn)

)∣∣]

≤ CEP⊗P0

[
E

(∫ τn

τ
ηs · dWP

s

)κ
eκ
∫ τn
τ λs ds |Vτn − Vτ |

κ

]

+ CEP⊗P0

[∣∣∣∣1 − E

(∫ τn

τ
ηs · dWP

s

)
e
∫ τn
τ λsds

∣∣∣∣
κ

|Vτ |
κ

]

+ CEP⊗P0

[
E

(∫ τn

τ
ηs · dWP

s

)κ ∫ τn

τ
eκ
∫ τn
τ λs ds

∣∣gs(0,0)
∣∣κ ds

]

≤ C
(
EP⊗P0

[
|Vτn − Vτ |

p̃]) κp̃

+ C

(
EP⊗P0

[∣∣∣∣1 − E

(∫ τn

τ
ηs · dWP

s

)
e
∫ τn
τ λsds

∣∣∣∣
p

p−κ
])p−κ

p

+ CEP⊗P0

[∫ τn

τ
ep̃
∫ τn
τ λs ds

∣∣gs(0,0)
∣∣p̃ ds

]
,

where we have used Hölder inequality, that λ is bounded and the fact that since η is
also bounded, the Doléans–Dade exponential appearing above has finite moments
of any order. Now the terms inside the expectations on the right-hand side all
converge in probability to 0 and are clearly uniformly integrable by de la Vallée–
Poussin criterion since V ∈ D

p
r (FP

+,P) and p̃ < p. We can therefore conclude by
dominated convergence. �

LEMMA A.3 (Comparison). Let Assumption 2.1 hold. Then, for i = 1,2, let
us denote by (yi, zi,mi, ki) the super-solution of the BSDE (A.2) with generator
gi and terminal condition ξ i . If it holds P-a.s. that

ξ1 ≥ ξ2, k1 − k2 is nondecreasing and g1(s, y1
s , z1

s

)
≥ g2(s, y1

s , z1
s

)
,

then we have for all t ∈ [0, T ]

y1
t ≥ y2

t , P-a.s.

PROOF. We remind the reader that since WP and mi , i = 1,2 are orthogonal
and since WP is actually continuous, we not only have [WP,mi] = 0, P-a.s., but
also

〈
WP,mi 〉=

〈
WP,mi,c,P〉=

〈
WP,mi,d,P〉= 0, P-a.s.,

where mi,c,P (resp., mi,d,P) is the continuous (resp., purely discontinuous) martin-
gale part of mi , under the measure P.

Then, since the gi are uniformly Lipschitz, there exist two processes λ and η

which are bounded, P-a.s., and which are respectively F
P

+-progressively measur-

able and F
P

-predictable, such that

g2(s, y1
s , z1

s

)
− g2(s, y2

s , z2
s

)
= λt

(
y1
s − y2

s

)
+ ηs

(
z1
s − z2

s

)
, ds × dP-a.e.
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For any 0 ≤ t ≤ s ≤ T , let us define the following continuous, positive and F
P

+-
progressively measurable process

At,s := exp
(∫ s

t
λu du −

∫ s

t
ηu · dWP

u −
1

2

∫ s

t
‖ηu‖

2 du

)
.

By Itô’s formula, we deduce classically that

y1
t −y2

t = EP

[
At,T

(
ξ1−ξ2)+

∫ T

t
At,s

[(
g1−g2)(s, y1

s , z1
s

)
ds+d
(
k1
s −k2

s

)]∣∣∣F t+

]
,

from which we deduce immediately that y1
t ≥ y2

t , P-a.s. �
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