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ABSTRACT
Power delivery network (PDN) is a distributed RLC network
with its dominant resonance frequency in the low-to-middle
frequency range. Though high-performance chips’ working
frequencies are much higher than this resonance frequency
in general, chip runtime loading frequency is not. When
a chip executes a chunk of instructions repeatedly, the in-
duced current load may have harmonic components close to
this resonance frequency, causing excessive power integrity
degradation. Existing PDN design solutions are, however,
mainly targeted at reducing high-frequency noise and not ef-
fective to suppress such resonance noise. In this work, we
propose a novel approach to proactively suppress this type
of noise. A method based on a high dimension generalized
Markov process is developed to predict current load variation.
Based on such prediction, a clock frequency actuator design
is proposed to proactively select an optimal clock frequency to
suppress the resonance. To the best of our knowledge, this
is the first in-depth study on proactively reducing runtime
instruction execution induced PDN resonance noise.

1. INTRODUCTION
Two dominant types of noise are present in a power delivery net-
work (PDN): peak noise and resonance noise [1]. Peak noise
usually occurs when the instantaneous switching current load be-
comes maximum [2] for a short duration with its energy spectrum
lying in the high-frequency range [1]. Abundant research has been
done to minimize peak noise for PDN design (e.g., [3–6]).

Resonance noise is a result of the distributed RLC character-
istics of a PDN, which includes parasitic inductance of intercon-
nect and decoupling capacitance. The PDN forms a resonant tank
that produces impedance peaks at multiple resonant frequencies.
The dominant resonance frequency (fres) usually occurs at low-to-
middle frequency range (MHz to 100MHz) [7, 8]. Though high-
performance chips’ working frequencies are much higher than this
resonance frequency in general, chip runtime loading frequency
is not. When current loads exhibit a periodical rate close to
fres caused by a looping sequence of instruction execution, the
impedance would increase significantly at this resonance frequency,
causing persistent undershoots and overshoots that exceed the droop
tolerance of the PDN. Resonance noise compromises chip perfor-
mance, hold-time margins, and gate oxide integrity [7, 9]. Despite
the importance of resonance noise for reliable PDN design, res-
onance noise suppression has not gained enough attention in the
EDA community.
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Traditional static solutions, such as adding more passive capaci-
tors or more supply pins, are not effective to suppress the resonance
noise. Hence, dynamic run-time solutions are being studied re-
cently in the literature. For example, the authors of [9] proposed
to dynamically switch on-chip decoupling capacitors to suppress
resonance noise for microprocessors’ PDN designs, while the au-
thors of [7] provided an on-die resonance-suppression circuit that
uses band-limited active damping to reduce resonance noise. But
all these approaches are retroactive, i.e., they only remedy the noise
problem when the noise problem has occurred, which is often too
late as wrong values might have been latched already. Hence a bet-
ter approach should proactively suppress the resonance noise when
such issues are predicted to happen soon.

The major contribution of this paper is as follows. We model
chip dynamic current loads as a high dimension generalized Markov
process, and develop a novel stochastic method to predict the fu-
ture current load based on the knowledge of existing current pro-
file. A proactive PDN design approach is proposed to suppress
resonance noise by leveraging a frequency actuator consisting of
on-chip programmable PLLs and dynamic power supply current
sensors [10, 11]. We develop an efficient controlling algorithm to
judiciously select the run-time clock frequency so that the resonance
noise is contained below the tolerance bound with minimum im-
pact on chip performance. Compared with baseline design without
frequency actuator, experimental results show that our frequency
actuator design alone reduces maximum noise by 16% and average
noise by 30%, while our proactive frequency actuator with current
prediction reduces maximum noise by 77% and average noise by
85%. In terms of system level performance, compared with the
baseline model, our frequency actuator alone can reduce the system
latency overhead by up to 35% , and with current prediction it can
reduce the system latency overhead by up to 93%.

The remainder of the paper is organized as follows. We motivate
the study of this work in section 2, and present the problem formu-
lation and overall design methodology in section 3. We develop the
stochastic current prediction algorithm in section 4, and propose
the optimum frequency selection in section 5. The experimental
results are presented in section 6 and concluding remarks are given
in section 7.

2. MOTIVATION
Most existing work on PDN designs models the load of a port as a
single current spike I0(t) with a short duration time τ as shown in
Fig. 1, which is typically modeled as a triangular waveform within
[0, τ ]. Hence the peak noise resulting from I0(t) is essentially a
high-frequency noise with its frequency in the range of 1/τ . For 65
nm designs, the duration τ is on the order of 100 ps, which produces
peak noise at the frequency range on the order of 10 GHz.
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Figure 1: A simple PDN example.

Figure 2: Impedance of the given PDN example.

But in reality, the current load I(t) possesses a much lower
frequency component because of the periodic nature of functional
execution. Without loss of generality, we assume I(t) has I0(t)
as its only current component with a period of T >> τ as shown
in Fig. 1; while the real case can be treated as a superposition of
this simple scenario with different combinations of I0(t) and T .
By performing AC analysis on the circuit, we obtain the voltage
response at the port of interest as

Vn(jω) = H(jω)I(jω) =

√
2π

T
H(jω)

∞X

k=−∞
I0(jkω0)δ(ω − kω0),

where H(jω) and I(jω) are the impedance and current load of the
PDN at the port of interest, respectively, with ω0 = 2π/T .

Though the PDN model used in our work is a meshed RLC
network, we illustrate the concept resonance noise through a sim-
ple circuit model of the PDN as shown in Fig. 1. The dominant
resonance frequency fres of this system is approximately given by

fres =
ωres

2π
=

1

2π
p

Lp(Cc + Cd)
. (1)

where Cc is the lumped on-chip intrinsic capacitance, Cd is the
decoupling capacitance, and Lp is the lumped package inductance.
For some typical extracted values of an industrial design, Fig. 2
illustrates its impedance frequency response with the dominant res-
onance frequency around 50 MHz.

As the resonance frequency fres for a typical PDN design is on
the order of 100 MHz (equivalent to 20 cycles for a 2GHz CPU), it
is far from the frequency range of peak noise, but rather closer to
the periodic function execution frequency. When the low frequency
components of I(t) are close to ωres, i.e.,

kω0 = k2π/T ≈ ωres, (2)

the voltage fluctuation Vn(jkω0) would increase significantly to
cause chip malfunction. The voltage drop measured at this reso-
nance frequency is called resonance noise. Since the impedance
H(jω) at the port of interest is constant for a given PDN topology,
the magnitude of Vn(jω) is propotional to the magnitude of current
load I(jω). Therefore, we also call the current load measured at
this resonance frequency as resonance noise whenever there is no
ambuguity.

It is generally believed that inserting decoupling capacitance can
minimize noise of a PDN. This is valid only for high-frequency
peak noise reduction, but not for the suppression of resonance noise.
Resonance noise greatly depends on the run-time operation, as it
affects the low-frequency components of I(t). An effective way to
minimize the low-frequency resonance noise would be to change
clock period T directly so that the relation (2) does not hold.

3. PROBLEM FORMULATION
In order to control the low frequency component of the current
load to avoid the resonance frequency, we need to dynamically
adjust work load period T . There are two possible ways to apply
the adjustment: the first one is to adjust the PLL to change clock
frequency; the other one is to adjust the power supply voltage
level [12]. Either approach can effectively change the duration
of work load, thus achieving different frequency response. As
an illustration, we choose to adjust clock frequency directly by
employing a programmable PLL design similar to [13, 14] in this
paper.

We assume the PLL allows a range of clock frequencies from
fmin to fmax, where the chip is signed-off for fmax. In other
words, the chip will work for any frequency below fmax. The ac-
tual chip performance will vary for different frequencies depending
on the application. However, note that frequency adjustments are
temporary, so the impact on performance is also limited, as will be
verified by our experiments.

We employ on-chip current sensors to monitor the dynamic cur-
rent load I(t) for each clock domain of interest in the design.
Based on the history I(t) data, a control unit determines an op-
timal clock frequency to be generated by the programmable PLL.
This procedure continues such that the low-frequency components
of the current load I(t) will not be close to the resonance frequency
fres. In other words, we keep the resonance noise below a user-
specified tolerant bound. Because it takes time for the PLL to track
the adjustment, it is important to select an optimal clock frequency
so that the impact on performance degredation is minimum.

The control unit can be implemented as a frequency actuator
in hardware, and it consists of two major parts. The first is a
current load prediction module or predictor, which predicts the
incoming current load profile and its impact on frequency response
based on the history data of current loads. The second module is
an optimizer, which determines an optimal clock frequency to be
generated by the programmable PLL.

To reflect reality, the following design constraints are consid-
ered: (1) a finite m discrete number of clock frequencies for the
programmable PLL to choose from; (2) non-instantaneous PLL
tracking time, i.e., it takes certain number of clock cycles for the
programmable PLL to transit from an existing clock frequency to
the next one; (3) transition overhead, i.e., the PLL has to stay within
each chosen clock frequency for at least a certain number of clock
cycles before it can transit to the next frequency to reduce the over-
head cost for frequency switching.

In the interest of space, we focus on the CAD aspects of the
proposed methodology, i.e., how we predict the current profile based
upon the historical current sensor data, and how this profile can be
utilized to select the optimal frequency to suppress resonance noise
for a PDN design. Detailed discussion on how to design power
supply dynamic current sensors with minimum area and power
overhead is beyond the scope of this paper. Interested readers
please refer to [10, 11].



4. STOCHASTIC CURRENT PREDICTION

4.1 Current Prediction Modeling
To select an optimal frequency, we need to know how the frequency
response would change for the incoming work load variations. To
do so, we first need to predict how the current loads would change
for the next few clock cycles.

For a given clock domain of interest, there are n number of cur-
rent sensors monitoring the current load. We represent the current
waveform within one clock cycle as a triangular waveform, and each
current sensor records either a peak or average current value for this
waveform. Such a monitored value for current sensor j at cycle k is
denoted as ijk; in other words, there is a correspondence between a
monitored current value and the triangular current waveform that it
represents. We record all the currents for the same cycle as a vector
Ik, i.e.,

Ik = [i1k, i2k, . . . , ink ]T , (3)

where n is the total number of sensors.
Under different input vectors and working conditions, Ik would

be different for different cycles. Moreover, for Ik that are close in
cycles, they are highly correlated; while for Ik that are far apart
in cycles, they are less (or even not) correlated. The correlation
distance D is the number of cycles such that all Ik are uncorrelated
when they are at least D cycles apart.

Based on these observations, we model Ik as a generalized
Markov stochastic process over different clock cycles. A gen-
eralized Markov process is a stochastic process whose value at time
k depends not only on its value at time k − 1, but also on its values
at time k − 2, . . ., k − Q. These past states collectively are called
the history of length Q of the process [15].

We propose to use a linear filter as the predictor to predict the
current load Ik as

Îk =

QX

i=1

ΨiIk−i, (4)

where Ψi are n × n coefficient matrices to be determined, while
Ik−i are historical current vectors. Apparently the choice of Q,
hence Q number of Ψi, helps to balance the trade-off between our
model prediction accuracy and computation efficiency.

In this work, we set Q same as the correlation distance D, as
any current vectors that are D cycles apart have no correlation.
Moreover, instead of using all Q historical current vectors, we
sample M number of them for prediction, i.e.,

Îk =
MX

i=1

ΨiIk−i·L, (5)

where L is the sampling separation such that M · L = Q. In an-
other words, we reduce the number of unknown coefficient matrices
Ψi from Q to M . Our goal is to determine the set of M coeffi-
cient matrices Ψi such that (5) is a good predictor for Ik for any
randomly selected current vectors in Q consecutive clock cycles.
Mathematically, this problem can be stated as follows.

Formulation 1. Given any randomly selected current vec-
tors in M ·L consecutive clock cycles with sampling spacing
as L: Ik−L, Ik−2·L,. . ., Ik−M·L, find a set of matrices Ψ1,
Ψ2,. . .,ΨM such that the expectation of the prediction error
for Ik is minimized, i.e.

min
Ψ1,...,ΨM

E||Ik − Îk||22 (6)

We propose to solve (6) in two approaches with each providing
different trade-offs between prediction accuracy and computation
complexity (hardware area cost). Obviously, the prediction accu-
racy depends on both M and L, and we will report this in the
experimental section.

4.2 LMS Adaptive Filter
The first approach is based on the framework of a least-mean-square
(LMS) adaptive filter as illustrated in Fig. 3, where matrices Ψi are
time-varying matrices and are dynamically adjusted at every clock
cycle during runtime. We denote Ψi,k as the value of Ψi at clock
cycle k, and δΨi,k as the adjustment for Ψi,k. Then we have

Îk =
MX

i=1

Ψi,k−1Ik−i·L, (7)

δΨi,k = μ · Ik−i·L · eT
k , (8)

Ψi,k = Ψi,k−1 + δΨi,k, (9)

where μ is the step size determined by experiments and ek = Ik−Îk

is the prediction error.
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Figure 3: Framework of an LMS adaptive filter.

In general, the LMS adaptive filter approach is accurate as a
predictor, because it can automatically adjust itself to follow large
changes in statistical behavior of the sequence of current vectors,
and is thus suitable for systems with diverse operations. But hard-
ware implementation cost of this type is relatively high; and it
cannot always guarantee the convergence of the coefficients Ψk

i in
all situations [16]. Therefore, we propose a second approach called
predetermined linear filter as an alternative solution.

4.3 Predetermined Linear Filter
The idea of a predetermined linear filter is based upon the off-line
simulation and uses the simulation results as training data to find an
optimal set of constant matrices Ψi to the problem of (6). Similar
to the vectorless P/G analysis in [17], we assume that each clock
domain under study is partitioned into blocks such that different
blocks are relatively independent. For each block, there are multi-
ple ports connected to the power network, and each port is modeled
as a time-varying current load for the power network. We apply
extensive simulation to each block independently to get the cur-
rent signatures for all ports, which are then aggregated to obtain the
current signature for the n current senors for this clock domain. Af-
ter extensive simulation, we have current vectors at many different
clock cycles. We then need to determine a set of Ψi to (6) based on
these simulation data. To do so, we present the following theorem
with the detailed proof omitted because of limited space.

Theorem 1. If we define a set of matrices ri,j = E(IiI
T
j ),



then the optimal Ψi (1 ≤ i ≤ M) of (6) are

Ψi = S × R−1 × ei, (10)

where S ∈ Rn×M·L, R ∈ RM·L×M·L, and ei ∈ RM·L×n,
and are given by

S =
ˆ

rk,k−L rk,k−2L . . . rk,k−M·L
˜

, (11)

R =

2
6664

rk−L,k−L rk−L,k−2L . . . rk−L,k−M·L
rk−2L,k−L rk−2L,k−L . . . rk−M·L,k−L

.

.

.
.
.
.

. . .
.
.
.

rk−M·L,k−L rk−M·L,k−2L . . . rk−M·L,k−M·L

3
7775 , (12)

ei =
ˆ

0 0 . . . I 0 . . .
˜T , (13)

with I being an n×n identity matrix at the ith block matrix
of ei.

Without going into too much details, we note that R is closely
related to two types of correlation for current vectors. Specifically,
(1) logic-induced correlation, i.e., current loads at different lo-
cation are correlated and cannot reach the maximum at the same
time due to the inherent logic dependency for a given design; and
(2) temporal correlation, i.e., for current loads at the same port,
they cannot attain the maximum value at all time, and depending
on the functionality being performed, the current variations for dif-
ferent clock cycles are correlated. The element at mth row and nth

column of the block matrix ri,j actually reflects the logic-induced
correlation between location m and n and the temporal correlation
between clock cycle i and j. Therefore, the matrix R actually char-
acterizes both the logic-induced correlation over all n locations and
the temporal correlation over all clock cycles.

Once we obtain Ψi according to (10), at any clock cycle k, we
can predict future L cycles’ current vectors Îk, Îk+1, . . ., Îk+L−1

by using the M ·L history current loads Ik−1,Ik−2, . . .,Ik−M·L as

Îk+l =

MX
i=1

ΨiIk+l−i·L, 0 ≤ l ≤ L − 1 (14)

As there exists correspondence between a triangular waveform
model and a recorded (or predicted) current value, we can recon-
struct future K cycles’ current waveform u(t) for all K ≤ L as

u(t) =
KX

i=1

Îk+iuΔ(t − (i − 1) × T )

=
KX

i=1

ui(t − (i − 1) × T ), (15)

where T is the clock period, uΔ(t) is a triangular waveform whose
starting time is at the beginning of each clock cycle k with a unit peak
current value; and ui(t) = Îk+iuΔ(t) is the triangular waveform
with the predicted peak current value of Îk+i.

5. OPTIMUM FREQUENCY SELECTION
The Fourier transformation of current load (15) can be written as

H(jω) =

KX
i=0

Hi(jω)e−jiωT , (16)

where Hi(jω) (i > 0) is the Fourier transformation of ui(t), and
H0(jω) is the Fourier transformation of u(t) for t ≤ 0. According
to the discussion as shown in section 2, our goal is to minimize
the resonance noise, i.e., the magnitude of the frequency domain
response of current load H(jω), at ω = ω0, i.e.,

min
T

˛̨
˛̨
˛

KX
i=0

Hi(jω0)e−jiω0T

˛̨
˛̨
˛ + λ(T − Tmin), (17)

where Tmin is the clock period corresponding to the maximum
clock frequency. The reason for us to add a weighted penalty func-
tion λ(T −Tmin) to the objective function is to consider the impact
of performance loss resulting from changing clock frequency. The
positive number λ reflects aggressiveness of our frequency actuator
design.

It is clear that (17) is an unconstrained nonlinear optimization
problem and any general optimization techniques such as Newton’s
method can be applied to solve it efficiently.

In practice, by knowing the fact that only a finite number of
discrete clock frequencies are available for any digital-based pro-
grammable PLL design, we develop a more efficient way of solving
the problem. We denote the finite set of available programmable
frequencies as {1/T1, . . . , 1/Tq , . . . , 1/Tm}, then we can easily
find the optimal frequency by evaluating (17) over different Tq and
select the optimal one that minimizes the objective function, i.e.,
(17) can be rewritten as

min
Tq

˛̨
˛̨
˛H0(jω0) +

KX
i=1

Îk+iHΔ(jω0)e−jiω0Tq

˛̨
˛̨
˛ + λ(Tq − Tmin), (18)

where HΔ(jω) is the Fourier transformation of the unit triangular
waveform uΔ(t). This is exactly the optimization problem we need
to solve at clock cycle k. To further improve efficiency in evaluating
(18), we can pre-calculate and store

Ai,q = HΔ(jω0)e−jiω0Tq (19)

in a look-up table, as Ai,q is a floating number for 1 ≤ i ≤ L and
1 ≤ q ≤ m.

6. EXPERIMENTAL RESULTS

6.1 Current Prediction Verification
We first verify the accuracy and efficiency of our prediction algo-
rithm with current data measured on a mobile chip from industrial
design. We apply both the predetermined linear filter and the LMS
adaptive filter designs to our frequency actuator, and the prediction
results based on simulation are illustrated in Fig. 4 (a) and (b),
respectively. Both methods use 32 points (M = 32) in history
with spacing L = 400, and predict the currents in the incoming
400 clock cycles. From the figure we can quantitatively see that
the adaptive filter can provide a better prediction result (closer to
the actual current) than the predetermined linear filter. Experi-
mental results show that adaptive filter has an average prediction
error of 1.51%, whereas that of the predetermined linear filter is
13.4%. On the other hand, we observe that the maximum predic-
tion error for adaptive filter can be as large as 311% in time period
5650− 5700ns, indicating the failure of convergence, whereas the
predetermined linear filter has an error of 11.6% in those clock cy-
cles. Fortunately, such error does not affect the proposed resonance
reduction as explained below.

Fig. 5 illustrates the predicted current spectrum from predeter-
mined filter (a) and adaptive filter (b) compared with the actual
current spectrum. From the figure we can see that both methods are
accurate when the responses are sharp. The main prediction error
only happens at frequencies where the frequency domain response
is small, and thus does not affect our selection of correct clock
frequency.

Fig. 6 (a) shows the relationship between the average prediction
error and the number of history data points M for fixed spacing
L = 400. We can see that the prediction accuracy improves with
the increase of M . For the region of M < 30, increasing M can
result in a big decrease in the average error, while for the region of
M > 30, changing M has little impact on the error. Fig. 6 (b) shows
the relationship between the average prediction error and the spacing



5600 5650 5700 5750 5800 5850 5900 5950 6000
7

8

9

10

11

12

13

14

Time (ns)

Cu
rre

nt (
uA

)

(a) Predetermined linear prediction

Real Data
Predicted Data

5600 5650 5700 5750 5800 5850 5900 5950 6000
7

8

9

10

11

12

13

14

Time (ns)

Cu
rre

nt (
uA

)

(b) LMS adaptive prediction

Real Data
Predicted Data

Figure 4: The current prediction results.

Table 1: Noise comparison between three models.
design max noise (V) average noise (V)

Baseline Retroactive Proactive Baseline Retroactive Proactive
Predetermined Active Predetermined Active

mobile 0.33 0.29 (-12%) 0.14 (-58%) 0.07 (-79%) 0.14 0.11 (-21%) 0.08 (-43%) 0.03 (-79%)
μP 0.36 0.31 (-14%) 0.14 (-61%) 0.08 (-78%) 0.15 0.10 (-33%) 0.05 (-67%) 0.02 (-87%)
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Figure 5: Comparison of spectrum results.

Table 2: Normalized system latency overhead com-
parison between three models.

Design Normalized system latency overhead
Baseline Retroactive Proactive

Predetermined Active
mobile 0.27 0.21 (-22%) 0.07 (-74%) 0.02 (-93%)

uP 0.31 0.20 (-35%) 0.11 (-65%) 0.05 (-84%)

L for fixed number of history data points M = 32. From the figure,
we see that there is an optimal L that corresponds to the smallest
error for both methods, and such an optimal value is roughly the
same (L = 400) for both methods. Another interesting observation
is that the adaptive filter is less sensitive to parameter changes than
the predetermined filter. This is expected as the adaptive property
enables it to adjust itself with the change of parameters.

6.2 Resonance Noise Reduction
We first study how the number of current sensors affects noise
reduction on the same mobile chip. As shown in Fig. 7, the noise
reduction is almost the same when the number of current sensors is
greater than 5% of the total number of system ports, which translates
to 10 − 100 current sensors for a leading chip. This suggests
that there is no need to place many sensors for the measurement.
Next we conduct experiments for the same mobile chip and one

Table 3: Normalized gate count comparison between
three models from Cadence Encounter RTL com-
plier.

Design Normalized gate count
Baseline Proactive

Predetermined Active
mobile 1 1.0005 1.002

uP 1 1.0002 1.004

additional high performance micro-processor to illustrate the impact
on resonance noise reduction. We assume that the current profile
obtained from measurement scales with the clock cycle. For these
two designs, the tracking time for PLL is 75 clock cycles. The
choice of clock frequencies ranges from 1.5 GHz to 0.8 GHz with
an interval of 0.1 GHz. The retroactive model incrementally reduces
the clock frequency by 0.1 GHz until the noise is below the tolerance
bound. Then it tries to incrementally increase the clock frequency
with 0.1 GHz step until the maximum frequency is reached or
when noise violation occurs. The proactive model select optimal
frequency based on predicted currents. We apply simulation with
the current profile and the distributed PDN to get the maximum and
average voltage droop. The comparison results are shown in Table
1. Compared with the baseline model without frequency actuator,
the retroactive approach can only reduce the max noise by up to
14% and reduce the mean noise by up to 33%. On the other hand,
our proactive approach with predetermined linear filter can reduce
the max noise by up to 61% and the mean noise by up to 67%, while
the proactive approach with the LMS adaptive filter can reduce the
max noise by up to 79% and the mean noise by up to 87%.

6.3 Performance and Area Impact
For both the microprocessor and mobile examples, we simulate the
system latency for one time resonance noise violation such that one
time reboot is required in the baseline case. From the design, it
takes 1μs to do a full save and 1μs to do a restore of the whole
architecture state. The ideal latencies for the retroactive and proac-
tive approaches are, respectively, 8M and 20M cycles. The latency
overhead includes time of potential reboot, time of clock frequency
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sity.

switches to avoid resonance noise and to increase clock frequency
when the resonance is gone, and time loss due to slowing down the
clock. In Table 2, we report normalized latency overhead with re-
spect to the ideal latencies for the baseline, retroactive and proactive
cases. For proactive case, we have tested both the predetermined
linear filter and the LMS adaptive filter. From the table, we see
that compared with the baseline model, the retroactive method can
reduce the system latency overhead by up to 35%, the proactive
model with the predetermined linear filter can reduce that by up
to 74%, and the proactive model with the LMS adaptive filter can
reduce that by up to 93%. This further illustrates the importance of
the proactive frequency actuator for high performance systems.

We also compare the gate count for the LMS adaptive filter and
the predetermined linear filter based designs obtained from Cadence
Encounter RTL Compiler, and the results are reported in Table 3.
From the table, we see that the predetermined linear filter based
actuator can cause the gate count to be increased only by 0.02% for
the microprocessor design, while the design of the LMS adaptive
filter causes the gate count to increase by 0.4%.

7. CONCLUSIONS
Because of the distributed RLC characteristics of a power deliv-
ery network (PDN), runtime resonance noise at the low-to-middle
frequency range may significantly affect the reliability of a PDN

and chip performance. In contrast to existing retroactive solu-
tion that only remedies the noise problem when the noise problem
has occurred already, we have proposed a novel design approach
to proactively suppress resonance noise. We have developed an
efficient stochastic current load prediction method based on a gen-
eralized Markov process modeling. We have presented a frequency
actuator that utilizes both on-chip dynamic current sensors and a
programmable PLL for frequency adjustment. A novel optimal
frequency selection algorithm has also been developed. Compared
with baseline design without frequency actuator, experimental re-
sults show that our frequency actuator design alone reduces maxi-
mum noise by 16% and average noise by 30%, while our proactive
frequency actuator with current prediction reduces maximum noise
by 77% and average noise by 85%. In terms of system level perfor-
mance, compared with the baseline model, our frequency actuator
alone can reduce the system latency overhead by up to 35% , and
with current prediction it can reduce that by up to 93%.
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