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Abstract

In this paper we introduce white noise, telegraph noise and time delay to the two-
dimensional foraging arena population system describing the prey and predator abun-
dance. The aim is to find out how the interactions between white noise, telegraph noise
and time delay affect the dynamics of the population system. Firstly the existence of a
global positive solution is verified. Then the long-time properties including the stochas-
tically ultimate boundedness, extinction and some other asymptotic pathwise estimation
of this population system are studied. Finally the main results are illustrated by two
examples.

Keywords: stochastic predator-prey model, Brownian motion, Markov chain, time delay, ultimate
boundedness

1 Introduction
The predator-prey models have been widely studied recently. A general system to describe the dy-
namics of prey and predator populations could be represented by

dx(t)

dt
= λ1(x(t))x(t)− λ2(x(t), y(t))y(t) (1.1a)

dy(t)

dt
= γλ2(x(t), y(t))y(t)− λ3(y(t))y(t), (1.1b)

where x(t) and y(t) refer to the population densities of prey and predator at time t, λ1(x) is the
per capita net prey growth in absence of predator, λ2(x, y) is the density-dependent uptake response
of consumers, γ is the trophic efficiency ranging from 0 to 1 and λ3(y) is the consumers death rate.
Especially, λ1(x) takes the form of λ1(x) = r (exponential growth) or λ1(x) = r(1− x

K ) (logical growth)
[1], where r is the intrinsic growth rate and K is the carrying capacity. Moreover λ2(x, y) is called
the “functional response” in the prey equations (1.1a) and the “numerical response” in the consumers
equation (1.1b) [2, 3]. It is initially assumed that λ2(x, y) = λ2(x), i.e. the response function of prey
depends on the prey density only. In this case, prey and predator individuals encounter each other
randomly in space and time. For instance, the classic Lotka-Volterra type response is a direct linear
function of prey density; Holling type II response gives λ2(x) = u1x/(u2 + x), with u1 a maximum
uptake rate by the predator and u2 a prey half-saturation coefficient and Holling type III functional
response is represented by λ2(x) = u1x

2/(u22 + x2). This is then challenged by some ecologists with
the fact that the functional response over ecological time scale depends on both the prey and predator
abundance [4]. Then the consumer-density dependence of per capita uptake rate was introdeced. The
ratio-dependent functional response is pointed out by Arditi and Ginzburg [5, 6] to represent sharing of
resources, behavioural interference between consumers to their mutual impairment, enhanced escape
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reactions by prey, sheltering in refuges with increasing predator density [7] or the foraging of predators
in a patchy prey environment [8]. However, this formulation has been criticised mainly because the
uptake rate trends to infinity as consumer abundance tends to zero [4]. Hence the concerned model
fails to satisfy the continuity condition at origin. To alleviate this property, the foraging arena model
is pointed out by [9, 10] with

λ2(x, y) = u1x/(w + u3y) = sx/(β + y),

where β = w/u3 = consumer density at half maximum per capita uptake rate and u1/w = s/β =
maximum per capita uptake rate by predator. Foraging arenas are common in aquatic systems.
They are formed by a series of mechanisms such as the restrictions of the consumer distributions in
response to the predation risk due to their own predators and the risk-sensitive foraging behaviour by
their prey [10]. Especially, the classic Lotka-Volterra model and the Holling types assume that the
individual prey and predator items are distributed in a spatially uniform way. While the foraging arena
model considers the spatial and temporal restrictions in predator and prey activities. The foraging
arena theory has been widely used in fisheries science to explain and model responses of harvested
ecosystems. This is done mainly through the application of Ecosim which is the dynamic modelling
part of an ecosystem modelling software suite called Ecopath with Ecosim (EwE). Ecosim is built
around foraging arena theory and is capable of fitting historical data on responses of multiple fish
populations to harvesting and changes in primary production regimes [9, 10]. The two-dimensional
foraging arena predator-prey model can be represented as follows:

dx̄1(t) = x̄1(t)
(

a− bx̄1(t)−
sx̄2(t)

β + x̄2(t)

)

dt,

dx̄2(t) = x̄2(t)
( hx̄1(t)

β + x̄2(t)
− c− fx̄2(t)

)

dt,

(1.2)

where x̄1(t) and x̄2(t) denote the population densities of prey and predator at time t and a, b, s, β, h, c
and f are all positive constants. More precisely, a is the intrinsic growth rate of prey, c is the density-
dependent mortality rate of consumers, h = γs, b and f are the quadratic mortality rates of prey and
predator respectively. We set x̄(t) = (x̄1(t), x̄2(t))

T as the solution to model (1.2) with the initial value
x̄0 = (x̄1(0), x̄2(0))

T . In model (1.2), there are two non-negative trivial equilibrium points Ē0 = (0, 0)
and Ē1 = (ab , 0). Also an unique interior equilibrium point Ē∗(x̄∗1, x̄

∗
2) with the nullclines

(a− bx̄∗1)(β + x̄∗2) = sx̄∗2,

(β + x̄∗2)(c+ fx̄∗2) = hx̄∗1

exists and is globally asymptotically stable provided that a > bβc
h [11].

In fact, population systems are always subject to the complex variations. A natural response is
to consider stochastic models. An extensive literature is concerned with the effects of environmental
variability on the predator-prey populations [12–28]. Mao et al. [29] pointed out an important fact
in the Lotka-Volterra models that the environmental noise can suppress a potential population explo-
sion. In [13–15], the n-dimensional delay Lotka-Volterra models with different types of environmental
noise were stuided and the unique asymptotic behaviours of these SDE models are explored. Takeuchi
et al.[30] discussed a surprising effect of a colour noise on a Lotka-Volterra model. The stochastic
predator-prey systems with Holling II response are also well studied [16–19]. According to Liu et al.
[18], the long-time behaviours were explored as well as its stationary distribution. Zhang et al. [31]
also studied the stochastic Holling type II model with Markovian switching and jumps. Moreover, the
more complicated ratio-dependent response is also explored by some authors. Ji at al.[20] established
the conditions for species in a ratio-dependent population system to be either extinct or persistent.
However, we are not aware of any literature addressing this issue for the foraging arena model. This is
the motivation for us to study the stochastic versions of the foraging arena system. Obviously the in-
trinsic prey growth rate and the consumer death rate in system (1.2) are varied by some environmental
factors such as climate fluctuations. Suppose that a and c are stochastically perturbed with

a → a+ σ1Ḃ1(t) and c → c+ σ2Ḃ2(t),
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where B1(t) and B2(t) are two independent Brownian motions with the intensities represented by two
positive constants σ1 and σ2. As a result this perturbed system is given by

dx1(t) = x1(t)
(

a− bx1(t)−
sx2(t)

β + x2(t)

)

dt+ σ1x1(t)dB1(t),

dx2(t) = x2(t)
( hx1(t)

β + x2(t)
− c− fx2(t)

)

dt+ σ2x2(t)dB2(t).

(1.3)

The analytical results on model (1.3) can be found in [25]. Additionally, some time delays are inevitable
in population interactions. For instance, gestation may result in time delays [32]. In this paper we
incorporate time delay into the predator-prey system to examine how it would affect the population
system. This leads to the following system:

dx1(t) = x1(t)
(

a− bx1(t)−
sx2(t)

β + x2(t)

)

dt+ σ1x1(t)dB1(t),

dx2(t) = x2(t)
( hx1(t− τ)

β + x2(t− τ)
− c− fx2(t)

)

dt+ σ2x2(t)dB2(t),

(1.4)

where τ is the constant delay due to gestation. We also would like to investigate the effect of telegraph
noise on the population dynamics. Telegraph noise can characterise the systems where the structures
and parameters experience abrupt changes due to environmental disturbances and changing subsystem
interconnections [22]. Recall that telegraph noise can be described as a switching between two or more
regimes of environments [33, 34]. The regime switching can be modelled by a finite-state Markov chain
[33]. We let r(t), t > 0 be a right-continuous Markov chain on the probability space taking values in
the state space S = {1, 2, , N} with the generator Γ = (γuv) given by

P{r(t+ δ) = v|r(t) = u} =

{

γuvδ + o(δ), if u 6= v,

1 + γuuδ + o(δ) if u = v,

where δ > 0. Here γuv > 0 is the transition rate from u to v if u 6= v while γuu = −∑

v 6=u γuv.
Such process is called a continuous-time finite Markov chain. We suppose that all the Markov chains
are finite and all states are stable. For such a Markov chain, almost every sample path is a right
continuous step function with a finite number of sample jumps in any finite subinterval of R+. There
is a sequence {ηn}n>0 of finite-valued Ft-stopping times such that 0 = η0 < η1 < · · · < ηn → ∞ almost
surely and

r(t) =
∞
∑

n=0

r(ηn)I[ηn,ηn+1)(t).

The switching is memoryless and the waiting time for the next switch has an exponential distribution
with parameter −γii, given that r(ηn) = i. Namely

P(ηn+1 − ηn > T |r(ηn) = i) = eγiiT , ∀T > 0.

We also assume that the Markov chain r(·) is independent of the Brownian motion B(·) and is irre-
ducible. Under this condition, the Markov chain has a unique stationary distribution π = (π1, π2, · · · , πN ) ∈
R
1×N which can be defined by solving the following linear equation

πΓ = 0

subject to
N
∑

i=1

πi = 1 and π > 0 for all i ∈ S.

Now we will introduce the Markov switching into the SDE system (1.4). Suppose the Markov chain
r(t) in the state space S = {1, 2, · · · , N} controls the switching between the environmental regimes,
the population system (1.4) then becomes

dx1(t) = x1(t)
(

a(r(t))− b(r(t))x1(t)−
s(r(t))x2(t)

β(r(t)) + x2(t)

)

dt+ σ1(r(t))x1(t)dB1(t) (1.5a)
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dx2(t) = x2(t)
( h(r(t))x1(t− τ)

β(r(t)) + x2(t− τ)
− c(r(t))− f(r(t))x2(t)

)

dt+ σ2(r(t))x2(t)dB2(t), (1.5b)

where the system parameters a(i), b(i), s(i), β(i), h(i), c(i), f(i), σ1(i) and σ2(i) are all positive con-
stants for all i ∈ S. We set x(t) = (x1(t), x2(t))

T as the solution to model (1.5) with the initial
value x0 = (x1(0), x2(0))

T . Throughout this paper, unless otherwise specified, we let (Ω, {Ft}t>0,P)
be a complete probability space with a filtration {Ft}t>0 satisfying the usual conditions. We also
define F∞ = σ(

⋃

t>0Ft), i.e. the σ-algebra generated by
⋃

t>0Ft. Let B(t) = (B1(t), B2(t)
T be a

two-dimensional Brownian motion defined on this probability space. We denote by R
2
+ the positive

cone in R
2, that is R

2
+ = {x ∈ R

2 : x1 > 0, x2 > 0}. We also set inf ∅ = ∞. If A is a vector or
matrix, its transpose is denoted by AT . If A is a matrix, its trace norm is |A| =

√

trace(ATA) whilst
its operator norm is ||A|| = sup{|Ax| : |x| = 1}. If A is a symmetric matrix, its smallest and largest
eigenvalues are denoted by λmin(A) and λmax(A).

In this paper, we first prove the existence of a global positive solution of system (1.5). Next the
asymptotic moment average of system (1.5) is explored. In section 4 and 5, we investigate the long-
time behaviours of each species. Computer simulations based on the Euler-Maruyama scheme are
performed to illustrate our theory.

2 Global Positive Solution
It is an essential property for a population system to have a unique positive solution. We found
that the coefficients of model (1.5) do not obey the linear growth condition, though they are locally
Lipschitz continuous. This suggests that the solution may exit from R

2
+ space at a finite time. The

following theorem shows the existence and uniqueness of a positive global solution to model (1.5).

Theorem 2.1. For any given initial value {x(t) : −τ 6 t 6 0} ∈ C([−τ, 0];R2
+), there is a unique

solution x(t) to equation (1.5) on t > −τ and the solution will remain in R
2
+ with probability one,

namely x(t) ∈ R
2
+ for all t > −τ almost surely.

Proof. Since the coefficients of equation (1.5) are locally Lipschitz continuous, for any given initial
value {x(t) : −τ 6 t 6 0} ∈ C([−τ, 0];R2

+), there is a unique maximal local solution x(t) on
t ∈ [−τ, τe), where τe is the explosion time (exit time) from R

2
+. To show that x(t) ∈ R

2
+ a.s. for all

t > 0, we need to verify τe = ∞ a.s. Let k0 > 0 be sufficiently large for
1

k0
< min

−τ6t60
|x(t)| 6 max

−τ6t60
|x(t)| < k0.

For each integer k > k0, define the stopping time

τk = inf{t ∈ [0, τe) : xi(t) /∈
(1

k
, k
)

for some i = 1, 2}.

Obviously, τk is increasing as k → ∞. Set τ∞ := limt→∞ τk and whence τ∞ 6 τe a.s. Hence to complete
the proof, we need to show that

τ∞ = ∞ a.s. (2.1)
Define a C2−function V : R2

+ → R+ by V (x) = x1− log x1+x2− log x2. From the Itô formula [22, 35],

dV (x(t), r(t)) = LV (x(t), x(t− τ), r(t))dt+ σ1(r(t))
(

x1(t)− 1
)

dB1(t)

+ σ2(r(t))
(

x2(t)− 1
)

dB2(t), (2.2)

where

LV (x, y, i) = −a(i) +
s(i)x2

β(i) + x2
+ c(i) +

σ2
1(i)

2
+

σ2
2(i)

2
+ (a(i) + b(i))x1 + (f(i)

− c(i))x2 − b(i)x21 − f(i)x22 +
h(i)x2y1
β(i) + y2

− h(i)y1
β(i) + y2

, (2.3)

4



with x replaced by x(t), y replaced by x(t− τ) and i replaced by r(t) in (2.2). The Young inequality
then indicates that

h(i)x2y1
β(i) + y2

6
h(i)x2y1
β(i)

=
h(i)y1

β(i)
√

f(i)

√

f(i)x2 6
h2(i)

2β2(i)f(i)
y21 +

f(i)

2
x22

It is then followed from (2.3) that

LV (x, y, i) 6 −a(i) + s(i) + c(i) +
σ2
1(i)

2
+

σ2
2(i)

2
+ (a(i) + b(i))x1 + (f(i)− c(i))x2

− b(i)x21 −
f(i)

2
x22 +

h2(i)

2β2(i)f(i)
y21

Hence there exist three positive constants K1, K2 and K3 for

LV (x, y, i) 6 K1

(

1 +
|x|
2

)

−K2|x|2 +K3y
2
1. (2.4)

Note that |x| 6 2V (x). Equation (2.2) is then followed from (2.4) that

dV (x(t), r(t)) 6 [K1(1 + V (x(t)))−K2|x(t)|2 +K3x
2
1(t− τ)]dt

+ σ1(r(t))(x1(t)− 1)dB1(t) + σ2(r(t))(x2(t)− 1)dB2(t).

For any k > k0 and t1 ∈ [0, τ ], we obtain

EV (x(t1 ∧ τk)) 6 K4 +K1E

∫ t1∧τk

0
V (x(t))dt−K2E

∫ t1∧τk

0
|x(t)|2dt, (2.5)

where
K4 = V (x(0)) +K1τ +K3

∫ τ

0
x21(t− τ)dt< ∞.

We then obtain from (2.5) that

EV (x(t1 ∧ τk)) 6 K4 +K1

∫ t1

0
EV (x(τk ∧ t))dt.

This and the Gronwall inequality [35] imply that

EV (x(t1 ∧ τk)) 6 K4e
τK1 for 0 6 t1 6 τ, k > k0. (2.6)

It then follows that
EV (x(τk ∧ τ)) 6 K4e

τK1 for k > k0.

We can hence show that τ∞ > τ a.s. [29, 35, 36]. Additionally, letting k → ∞ in (2.6) gives

EV (x(t1)) 6 K4e
τK1 for 0 6 t1 6 τ.

By setting t1 = τ in (2.5) and then letting k → ∞, we have

E

∫ τ

0
|x(t)|2dt 6 1

K2
(K4 + τK1K4e

τK1) < ∞. (2.7)

For t2 ∈ (τ, 2τ ],

EV (x(t2 ∧ τk)) 6 K5 +K1E

∫ t2∧τk

0
V (x(t))dt−K2E

∫ t2∧τk

0
|x(t)|2dt

+K3E

∫ t2∧τk−τ

0
x21(t)dt

6 K̃5 +K1E

∫ t2∧τk

0
V (x(t))dt−K2E

∫ t2∧τk

0
|x(t)|2dt, (2.8)
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where K5 = V (x(0)) + 2K1τ +K3

∫ τ
0 x21(t− τ)dt and K̃5 = K5 +

1
K2

(K4 + τK1K4e
τK1) < ∞ in view

of (2.7). Similarly we obtain that τ∞ > 2τ a.s. and

EV (x(t2)) 6 K̃5e
2τK1 .

By setting t2 = 2τ in (2.8) and then letting k → ∞ yields that

E

∫ 2τ

0
|x(t)|2dt 6 1

K2

(

K̃5 + 2τK1K̃5e
2τK1

)

< ∞.

Repeating this procedure, one can show τ∞ > mτ with probability one for any integer m > 1.
Therefore τ∞ = ∞ a.s. �

3 Stochastically Ultimate Boundedness
After analysing the global positive solution to model (1.5), we now explore the conditions for system
(1.5) to be stochastically ultimately bounded.

Theorem 3.1. If

h(i) 6 β(i)f(i) for all i ∈ S, (3.1)

then for any θ > 0, there exists a positive constant K(θ) such that for any initial value {x(t) : −τ 6

t 6 0} ∈ C([−τ, 0];R2
+),

lim sup
t→∞

E
∣

∣x(t)
∣

∣

θ
6 K(θ).

Proof. Condition (3.1) yields that there exists a constant θ̃ > 1 sufficiently large such that

eτhθ̃+1(i)

(θ̃ + 1)βθ̃+1(i)f θ̃(i)
< b̂ for all i ∈ S.

We first consider the case when θ > θ̃. It then follows that

eτhθ+1(i)

(θ + 1)βθ+1(i)fθ(i)
< b̂ for all i ∈ S. (3.2)

Applying the Itô formula to et(xθ1(t) + xθ2(t)),

d(et(xθ1(t) + xθ2(t)) = etφ(x(t), x(t− τ), r(t))dt+ θσ1(r(t))e
txθ1(t)dB1(t)

+ θσ2(r(t))e
txθ2(t)dB2(t), (3.3)

where

φ(x, y, i) =
(

a(i)θ +
1

2
θ(θ − 1)σ2

1(i) + 1
)

xθ1 +
(

− c(i)θ +
1

2
θ(θ − 1)σ2

2(i) + 1
)

xθ2

− s(i)θxθ1x2
β(i) + x2

+
h(i)θy1x

θ
2

β(i) + y2
− b(i)θxθ+1

1 − f(i)θxθ+1
2 .

Integrating on both sides of (3.3) and then taking expectation then yields that

E

[

et∧τk(xθ1(t ∧ τk) + xθ2(t ∧ τk))
]

= xθ1(0) + xθ2(0)

+

∫ t∧τk

0
euφ(x(u), x(u− τ), r(u))du.
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From the Young inequality, for all i ∈ S

h(i)y1x
θ
2

β(i) + y2
6

h(i)y1

β(i)f
θ

θ+1 (i)
· f θ

θ+1 (i)xθ2 6
hθ+1(i)

(θ + 1)βθ+1(i)fθ(i)
yθ+1
1 +

θf(i)

θ + 1
xθ+1
2 .

Hence

φ(x, y, i) 6 φ1(x, i) + φ2(y, i)− b(i)θxθ+1
1

with

φ1(x, i) =
(

a(i)θ +
1

2
θ(θ − 1)σ2

1(i) + 1
)

xθ1 +
(

− c(i)θ +
1

2
θ(θ − 1)σ2

2(i) + 1
)

xθ2

− f(i)θ

θ + 1
xθ+1
2

and

φ2(y, i) =
θhθ+1(i)

(θ + 1)βθ+1(i)fθ(i)
yθ+1
1 .

Note that
∫ t∧τk

0
euφ2(x1(u− τ), r(u))du

6
θeτ

θ + 1

∫ t∧τk

−τ

hθ+1(r(u+ τ))eu

βθ+1(r(u+ τ))fθ(r(u+ τ))
xθ+1
1 (u)du

6
θȟθ+1eτ

(θ + 1)β̂θ+1f̂θ

∫ 0

−τ
xθ+1
1 (u)du+

θeτ

θ + 1

∫ t∧τk

0

hθ+1(r(u+ τ))eu

βθ+1(r(u+ τ))fθ(r(u+ τ))
xθ+1
1 (u)du

Hence

E

[

et∧τk(xθ1(t ∧ τk) + xθ2(t ∧ τk))
]

6 xθ1(0) + xθ2(0) +

∫ t∧τk

0
eu
[

φ1(x(u), r(u)) + φ2(x(u− τ), r(u))− b(r(u))θxθ+1
1

]

du

6 xθ1(0) + xθ2(0) +
θȟθ+1eτ

(θ + 1)β̂θ+1f̂θ

∫ 0

−τ
xθ+1
1 (u)du+

∫ t∧τk

0
eu
[

φ1(x(u), r(u))

+
( eτhθ+1(r(u+ τ))

(θ + 1)βθ+1(r(u+ τ))fθ(r(u+ τ))
− b(r(u))

)

θxθ+1
1 (u)

]

du

This and (3.2) indicate that there is a positive constant K∗(θ) such that

E

[

e(t∧τk)(xθ1(t ∧ τk) + xθ2(t ∧ τk))
]

6 xθ1(0) + xθ2(0) +
θȟθ+1eτ

(θ + 1)β̂θ+1f̂θ

∫ 0

−τ
xθ+1
1 (u)du+K∗(θ)

∫ t∧τk

0
eudu.

Letting k → ∞ and then t → ∞ yields

lim sup
t→∞

E
[

xθ1(t) + xθ2(t)
]

6 K∗(θ). (3.4)

On the other hand, we have

|x|2 6 2max(x21, x
2
2), so |x|θ 6 2θ/2max

(

xθ1, x
θ
2

)

6 2θ/2(xθ1 + xθ2).

As a result,

lim sup
t→∞

E|x(t)|θ 6 2θ/2 lim sup
t→∞

E[xθ1(t) + xθ2(t)] 6 2θ/2K∗(θ) = K(θ). (3.5)
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For 0 < θ < θ̃, Hölder’s inequality yields

E|x(t)|θ 6 (E|x(t)|θ̃)
θ

θ̃ .

Hence from (3.5)
lim sup
t→∞

E|x(t)|θ 6 lim sup
t→∞

(E|x(t)|θ̃)
θ

θ̃ 6 K(θ).

�

According to Chebyshev’s inequality [35], Theorem 3.1 reveals that for any constant θ > 0, there
exists a positive constant K(θ) such that for any initial value {x(t) : −τ 6 t 6 0} ∈ C([−τ, 0];R2

+)
and constants D1, D2 > 0, we have

lim sup
t→∞

P(x1(t) > D1) = lim sup
t→∞

E[Ix1(t)>D1
] 6 lim sup

t→∞
E

[xθ1(t)

Dθ
1

Ix1(t)>D1

]

6 lim sup
t→∞

E[xθ1(t)]

Dθ
1

6
K(θ)

Dθ
1

and similarly
lim sup
t→∞

P(x2(t) > D2) 6
K(θ)

Dθ
2

under condition 3.1, where I is the indicator function. From the biological point of view, this implies
that it is unlikely for either populations to become too large ultimately.

4 Extinction
In this section, we investigate the conditions for the system to be extinct.

Theorem 4.1. For any initial value {x(t) : −τ 6 t 6 0} ∈ C([−τ, 0];R2
+), if

λ1 :=
∑

i∈S

πi

(

a(i)− σ2
1(i)

2

)

< 0, (4.1)

both x1(t) and x2(t) tend to zero exponentially as t → ∞ with probability one.

Proof. Applying the Itô formula on log x1(t), we have

d log x1(t) =

(

a(r(t))− b(r(t))x1(t)−
σ2
1(r(t))

2
− s(r(t))x2(t)

β(r(t)) + x2(t)

)

dt

+ σ1(r(t))dB1(t) (4.2)

6

(

a(r(t))− σ2
1(r(t))

2

)

dt+ σ1(r(t))dB1(t).

Integrating from 0 to t and dividing by t, we get

1

t
log x1(t) 6

1

t
log x1(0) +

1

t

∫ t

0

(

a(r(u))− σ2
1(r(u))

2

)

du+
σ̌1B1(t)

t
.

Letting t → ∞ and by the strong law of large numbers for martingales [35]

lim
t→∞

σ̌1B1(t)

t
= 0 a.s.

Thus by the ergodic property of the Markov chain,

lim sup
t→∞

1

t
log x1(t) 6 λ1 < 0 a.s.
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as required. It follows that

lim
t→∞

1

t

∫ t

0
x1(u)du = 0 a.s. (4.3)

Meanwhile

d log x2(t) =
( h(r(t))x1(t− τ)

β(r(t)) + x2(t− τ)
− c(r(t))− σ2

2(r(t))

2
− f(r(t))x2(t)

)

dt

+ σ2(r(t))dB2(t). (4.4)
It follows that

log x2(t)

t
6

1

t

(

log x2(0) +
ȟ

β̂

∫ 0

−τ
x1(u)du+

ȟ

β̂

∫ t

0
x1(u)du

)

−
(

ĉ+
σ̂2
2

2

)

+
σ̌2B2(t)

t
.

Letting t → ∞ and recalling equation (4.3),

lim sup
t→∞

log x2(t)

t
6 −

(

ĉ+
σ̂2
2

2

)

< 0 a.s.

�

5 Pathwise Estimation
In this section, we discuss the long-time properties of the solutions of system (1.5) pathwisely.
Theorem 5.1. Assume that condition (3.1) holds. Then for any initial value {x(t) : −τ 6 t 6 0} ∈
C([−τ, 0];R2

+),

lim sup
t→∞

log(x1(t) + x2(t))

log t
6 1 a.s.

Proof. From the Young inequality,
d
[

x1(t) + x2(t)
]

6

[

a(r(t))x1(t) +
h(r(t))x1(t− τ)x2(t)

β(r(t)) + x2(t− τ)

]

dt+ σ1(r(t))x1(t)dB1(t)

+ σ2(r(t))x2(t)dB2(t)

6

[

ǎx1(t) +
ȟ2

2β̂2
x21(t− τ) +

1

2
x22(t)

]

dt+ σ1(r(t))x1(t)dB1(t) + σ2(r(t))x2(t)dB2(t).

Then we have

E

[

sup
t6u6t+1

(

x1(u) + x2(u)
)]

6 E
[

x1(t) + x2(t)
]

+ ǎ

∫ t+1

t
E[x1(v)]dv

+
ȟ2

2β̂2

∫ t+1

t
E[x21(u− τ)]du+

1

2

∫ t+1

t
E[x22(u)]du

+ E

(

sup
t6u6t+1

∫ u

t
σ1(r(v))x1(v)dB1(v)

)

+ E

(

sup
t6u6t+1

∫ u

t
σ2(r(v))x2(v)dB2(v)

)

. (5.1)

By the Burkholder-Davis-Gundy inequality,

E

(

sup
t6u6t+1

∫ u

t
σ1(r(v))x1(v)dB1(v)

)

6 4
√
2E

(

∫ t+1

t
σ̌2
1x

2
1(v)dv

)
1

2

6 E

(

sup
t6u6t+1

x1(u) · 32σ̌2
1

∫ t+1

t
x1(v)dv

)
1

2

6 E

(1

2
sup

t6u6t+1
x1(u) + 16σ̌2

1

∫ t+1

t
x1(v)dv

)

=
1

2
E

(

sup
t6u6t+1

x1(u)
)

+ 16σ̌2
1

∫ t+1

t
E
[

x1(v)
]

dv.

9



Similarly, we have

E

(

sup
t6u6t+1

∫ u

t
σ2(r(s))x2(s)dB2(s)

)

6
1

2
E

(

sup
t6u6t+1

x2(u)
)

+ 16σ̌2
2

∫ t+1

t
E
[

x2(v)
]

dv.

Hence (5.1) is then followed by

E

[

sup
t6u6t+1

(

x1(u) + x2(u)
)]

6 2E
[

x1(t) + x2(t)
]

+ 2ǎ

∫ t+1

t
E[x1(v)]dv

+
ȟ2

β̂2

∫ t+1−τ

t−τ
E[x21(v)]dv +

∫ t+1

t
E[x22(v)]dv + 32

(

σ̌2
1 ∨ σ̌2

2

)

∫ t+1

t
E
[

x1(v) + x2(v)
]

dv.

Letting t → ∞ and making use of (3.4), we obtain

lim sup
t→∞

E

[

sup
t6u6t+1

(

x1(u) + x2(u)
)

]

6 2
(

1 + ǎ+ 16
(

σ̌2
1 ∨ σ̌2

2

)

)

K∗(1) +
( ȟ2

β̂2
∨ 1

)

K∗(2).

Hence there is a positive constant K̃ such that

E

[

sup
k16u6k1+1

(

x1(u) + x2(u)
)

]

6 K̃ for k1 = 1, 2, · · ·

Let ǫ > 0 be arbitrary. By the Chebychev inequality,

P

[

sup
k16u6k1+1

(

x1(u) + x2(u)
)

> k1+ǫ
1

]

6

E

[

supk16u6k1+1

(

x1(u) + x2(u)
)

]

k1+ǫ
1

6
K̃

k1+ǫ
1

for k1 = 1, 2, · · · . By the Borel-Cantelli lemma, for almost all ω ∈ Ω,

sup
k16t6k1+1

[

x1(t) + x2(t)
]

6 k1+ǫ
1 holds for all but finitely many k1.

Hence there exists a k̃(ω), if k1 > k̃ and k1 6 t 6 k1 + 1,

log
[

x1(t) + x2(t)
]

log t
6

log
[

supk16t6k1+1

(

x1(t) + x2(t)
)

]

log t
6

log k1+ǫ
1

log t
6 1 + ǫ a.s.

Consequently,

lim sup
t→∞

log
[

x1(t) + x2(t)
]

log t
6 1 + ǫ a.s.

Letting ǫ → 0, we obtain the required assertion. �

Theorem 5.1 shows that for arbitrary small ǫ > 0, there is a positive random variable t1 = t1(ω)
such that with probability one,

log[x1(t) + x2(t)]

log t
6 1 + ǫ for all t > t1.

Hence we have
x1(t) + x2(t) 6 t1+ǫ for all t > t1.

It then follows that

x1(t) + x2(t) 6 sup
06t6t1

[x1(t) + x2(t)] + t1+ǫ for all t > 0.

This means that the total amount of prey and predator species will grow at most polynomially with
order close to 1.
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Lemma 5.2. A one-dimensional Brownian motion {Wt}t>0 has the property that for almost every
ω ∈ Ω,

lim
t→∞

min06u6tW (u, ω)

t
= lim

t→∞

max06u6tW (u, ω)

t
= 0. (5.2)

Proof. According to [35, p.16], for any n > 0, there exists a positive random variable ρn such that for
almost every ω ∈ Ω,

−(1 + n)
√

2t log log t 6 W (t, ω) 6 (1 + n)
√

2t log log t for all t > ρn(ω).

It then follows that for almost every ω ∈ Ω,

min
06u6ρn(ω)

W (u, ω)− (1 + n)
√

2t log log t 6 min
06u6t

W (u, ω) 6 max
06u6t

W (u, ω)

6 max
06u6ρn(ω)

W (u, ω) + (1 + n)
√

2t log log t.

This implies
0 6 lim

t→∞

min06u6tW (u)

t
6 lim

t→∞

max06u6tW (u)

t
6 0 a.s.

This gives the required assertion (5.2) immediately. �

Based on Lemma 5.2, the following theorem shows some other asymptotic properties of the prey
and predator populations.

Theorem 5.3. For any initial value {x(t) : −τ 6 t 6 0} ∈ C([−τ, 0];R2
+), if

a(i)− σ2
1(i)

2
:= q(i) > 0 for all i ∈ S, (5.3)

then
lim sup
t→∞

1

t

∫ t

0
x1(u)du 6

λ1

b̂
a.s.

In particular, if also

(i) λ2 > 0, then lim inf
t→∞

1

t

∫ t

0
x1(u)du >

λ2

b̌
almost surely;

(ii)
ȟ

b̂β̂
λ1 − λ3 < 0, then lim inf

t→∞

1

t

∫ t

0
x1(u)du >

λ1

b̌
and x2 dies out exponentially

almost surely,

where

λ2 =
∑

i∈S

πi

(

a(i)− s(i)− σ2
1(i)

2

)

and λ3 =
∑

i∈S

πi

(

c(i) +
σ2
2(i)

2

)

.

Proof. Applying Itô’s formula on 1
x1(t)

gives

d
( 1

x1(t)

)

=
( 1

x1(t)

( s(r(t))x2(t)

β(r(t)) + x2(t)
− a(r(t)) + σ2

1(r(t))
)

+ b(r(t))
)

dt− σ1(r(t))

x1(t)
dB1(t).
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Hence by the variation-of-constants formula (see e.g. [35, p.98-99]),

1

x1(t)
= exp

(

∫ t

0

(1

2
σ2
1(r(u))− a(r(u)) +

s(r(u))x2(u)

β(r(u)) + x2(u)

)

du−
∫ t

0
σ1(r(u))dB1(u)

)

·
[ 1

x1(0)
+

∫ t

0
b(r(u)) exp

(
∫ u

0

(

a(r(v))− s(r(v))x2(v)

β(r(v)) + x2(v)
− 1

2
σ2
1(r(v))

)

dv

+

∫ u

0
σ1(r(v))dB1(v)

)

du
]

= exp
(

−
∫ t

0
σ1(r(u))dB1(u)

)

[ 1

x1(0)
exp

(

∫ t

0

(

− a(r(u)) +
1

2
σ2
1(r(u))

+
s(r(u))x2(u)

β(r(u)) + x2(u)

)

du
)

+

∫ t

0
b(r(u)) exp

(

∫ t

u

(

− a(r(v)) +
1

2
σ2
1(r(v))

+
s(r(v))x2(v)

β(r(v)) + x2(v)

)

dv +

∫ u

0
σ1(r(v))dB1(v)

)

du
]

. (5.4)

On the one hand, (5.4) leads to

1

x1(t)
6 exp

(

−
∫ t

0
σ1(r(u))dB1(u)

)

[ 1

x1(0)
exp

(

∫ t

0

(

− a(r(u)) +
1

2
σ2
1(r(u))

+
s(r(u))x2(u)

β(r(u)) + x2(u)

)

du
)

+ b̌ exp
(

σ̌1 max
06u6t

B1(u) +

∫ t

0

s(r(u))x2(u)

β(r(u)) + x2(u)
du

)

·
∫ t

0
exp(−q̂(t− u))du

]

6 exp
(

σ̌1 max
06u6t

B1(u)− σ̂1B1(t) +

∫ t

0

s(r(u))x2(u)

β(r(u)) + x2(u)
du

)[ 1

x1(0)
exp(−q̂t)

+ b̌

∫ t

0
exp(−q̂(t− u))du

]

= exp
(

σ̌1 max
06u6t

B1(u)− σ̂1B1(t) +

∫ t

0

s(r(u))x2(u)

β(r(u)) + x2(u)
du

)[ 1

x1(0)
exp(−q̂t)

+
b̌
(

1− exp(−q̂t)
)

q̂

]

,

It then follows that
log x1(t)

t
> − logN1(t)

t
− σ̌1max06u6tB1(u)− σ̂1B1(t)

t
− 1

t

∫ t

0

s(r(u))x2(u)

β(r(u)) + x2(u)
du, (5.5)

where
N1(t) =

1

x1(0)
exp(−q̂t) +

b̌(1− exp(−q̂t))

q̂

and sup06t<∞N1(t) < ∞ under condition (5.3). By (4.2) and (5.5),

1

t

∫ t

0
x1(u)du 6

1

b̂t

∫ t

0

(

a(r(u))− σ2
1(r(u))

2

)

du− log x1(t)

b̂t
+

log x1(0)

b̂t

− 1

b̂t

∫ t

0

s(r(u))x2(u)

β(r(u)) + x2(u)
du+

σ̌1

b̂t
B1(u)

6
1

b̂t

∫ t

0

(

a(r(u))− σ2
1(r(u))

2

)

du+
logN1(t)

b̂t
+

log x1(0)

b̂t
+

σ̌1

b̂t
B1(t)

+
σ̌1max06u6tB1(u)− σ̂1B1(t)

b̂t
.

As t → ∞ and from the strong law of large numbers for martingales [35] and Lemma 5.2,

lim sup
t→∞

1

t

∫ t

0
x1(u)du 6

λ1

b̂
a.s. (5.6)
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On the other hand, (5.4) yields

1

x1(t)
> exp(−σ̌1B1(t))

[ 1

x1(0)
exp

(

∫ t

0

(

− a(r(u)) +
1

2
σ2
1(r(u))

)

du
)

+ b̂ exp
(

σ̂1 min
06u6t

B1(u)
)

∫ t

0
exp

(

∫ t

u

(

− a(r(v)) +
1

2
σ2
1(r(v))

)

dv
)

du
]

> exp
(

σ̂1 min
06u6t

B1(u)− σ̌1B1(t)
)[ 1

x1(0)
exp(−q̌t) +

b̂(1− exp(−q̌t))

q̌

]

,

It follows that
log x1(t)

t
6 − σ̂1min06u6tB1(u)− σ̂1B1(t)

t
− logN2(t)

t
,

where
N2(t) =

1

x1(0)
exp(−q̌t) +

b̂(1− exp(−q̌t))

q̌

and sup06t<∞N2(t) < ∞ under condition (5.3). This leads to

lim sup
t→∞

log x1(t)

t
6 0 (5.7)

(i) Equation (4.2) and (5.7) indicate

lim inf
t→∞

1

t

∫ t

0
x1(u)du > lim

t→∞

1

b̌t

∫ t

0

(

a(r(u))− σ2
1(r(u))

2
− s(r(u))

)

du =
λ2

b̌
> 0.

This and (5.6) yield

λ2

b̌
6 lim inf

t→∞

∫ t

0
x1(u)du 6 lim sup

t→∞

∫ t

0
x1(u)du 6

λ1

b̂
a.s.

(ii) From equation (4.4),

d log x2(t) 6
(h(r(t))x1(t− τ)

β(r(t))
− c(r(t)− σ2

2(r(t))

2

)

dt+ σ2(r(t))dB2(t).

Hence

log x2(t) 6 log x2(0) +
ȟ

β̂

∫ 0

−τ
x1(u)du+

ȟ

β̂

∫ t

0
x1(u)du−

∫ t

0

(

c(r(u)) +
σ2
2(r(u)

2

)

du

+ σ̌2B2(t).

This and (5.6) yield

lim sup
t→∞

1

t
log(x2(t)) 6

ȟ

β̂
lim sup
t→∞

1

t

∫ t

0
x1(u)du− lim

t→∞

1

t

∫ t

0

(

c(r(u)) +
σ2
2(r(u))

2

)

du

6
ȟλ1

b̂β̂
− λ3 < 0.

Hence for arbitrary small ζ > 0, there exists tζ such that

P(Ωζ) > 1− ζ where Ωζ =
{

ω :
s(r(t))x2(t, ω)

b̌(β(r(t)) + x2(t, ω))
6 ζ for t > tζ

}

.

It then follows from (4.2), (5.7) and Lemma 5.2 that for any ω ∈ Ωζ ,

lim inf
t→∞

1

t

∫ t

0
x1(u)du >

λ1

b̌
− ζ.
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Letting ζ → 0 and recalling (5.6) yields

λ1

b̌
6 lim inf

t→∞

1

t

∫ t

0
x1(u)du 6 lim sup

t→∞

1

t

∫ t

0
x1(u)du 6

λ1

b̂
a.s.

�

Theorem 5.3(i) suggests that if condition (5.3) holds and λ2 > 0, then the prey population is
bounded in average ultimately. On the other hand, from Theorem 5.3(ii), suppose that condition
(5.3) is satisfied and ȟ

b̂β̂
λ1−λ3 < 0, then the prey species is persistent in average while the predator

die out ultimately.

6 Numerical Simulations
It is worth pointing out that for some j ∈ S, if the environmental noise is big enough, in the sense
that a(j)− σ2

1
(j)
2 < 0, then in the subsystem

dx1(t) = x1(t)
(

a(j)− b(j)x1(t)−
s(j)x2(t)

β(j) + x2(t)

)

dt+ σ1(j)x1(t)dB1(t)

dx2(t) = x2(t)
( h(j)x1(t− τ)

β(j) + x2(t− τ)
− c(j)− f(j)x2(t)

)

dt+ σ2(j)x2(t)dB2(t),

(6.1)

both prey and predator populations are extinct (Theorem 4.1). On the other hand, for some j ∈ S, if
a(j)− σ2

1
(j)
2 > 0 and h(j)

b(j)β(j)

(

a(j)− 1
2σ

2
1(j)

)

− c(j)− 1
2σ

2
2(j) < 0, we obtain from Theorem 5.3 (ii) that

in the subsystem (6.1), the prey species is persistent:

lim
t→∞

1

t

∫ t

0
x1(u)du =

2a(j)− σ2
1(j)

2b(j)
a.s.

while the predators die out ultimately. In addition, Theorem 4.1 yields that if in some subsystems
the preys are persistent and in some others the prey species are extinct, then due to the presence
of the Markov switching, in the overall system both populations could be extinct if λ1 is negative.
The following two examples indicate the impacts of Markov switching on the population dynamics.
The Euler-Maruyama (EM) scheme is used for the computer simulations [37]. From Mao [38], the
EM approximate solutions are convergent to the true solution of model (1.5) in probability. We shall
assume that all the parameters are given in appropriate units [37].

Example 6.1. We assume that model (1.5) switches from one to the other according to the movement
of the Markov chain r(t) in the state space S = {1, 2} with the coefficients defined in Table 1. Given

Parameters a(i) b(i) s(i) β(i) h(i) c(i) f(i) σ1(i) σ2(i)
i = 1 0.4 1 1 2.5 0.8 3 2 1.5 0.5
i = 2 1.5 1.5 0.8 2 0.64 2 0.5 0.8 1

Table 1: Parameters of SDE model (1.5).

the generator of the Markov chain r(t) as

Γ =

[

−1 1
2 −2

]

(6.2)

with the unique stationary distribution π = (π1, π2) =
(

2
3 ,

1
3

)

. Then λ1 = −0.09 < 0 a.s. Therefore by
Theorem 4.1, for any initial value {x(t) : −τ 6 t 6 0} ∈ C([−τ, 0];R2

+), both the prey and consumers
of system (1.5) will tend to zero exponentially with probability one. The computer simulation in
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Figure 1 supports this result clearly, illustrating the extinction of both species. We then compute
a(1)− 1

2σ
2
1(1) = −0.725 < 0, which shows that both species in the first subsystem die out ultimately

(Theorem 4.1). Then we compute a(2)− 1
2σ

2
1(2) = 1.18 > 0 and h(2)

b(2)β(2)

(

a(2)− 1
2σ

2
1(2)

)

−c(2)− 1
2σ

2
2(2) =

−2.248 < 0. Hence in the second subsystem the prey population is persistent:

lim
t→∞

1

t

∫ t

0
x1(u)du = 0.787 a.s.

and the consumers tend to zero exponentially almost surely (Theorem 5.3 (ii)). However due to the
presence of Markov switching, the overall behaviour of both populations remains extinctive ultimately.

Example 6.2. Assume that model (1.5) switches from one to the other according to the movement
of the Markov chain r(t) in the state space S = {1, 2} with the coefficients defined in Table 2. Let the

Parameters a(i) b(i) s(i) β(i) h(i) c(i) f(i) σ1(i) σ2(i)
i = 1 1 0.5 0.5 1 1 1.1 1.5 0.9 0.1
i = 2 1.5 1.5 0.8 2 0.64 2 0.5 0.8 1

Table 2: Parameters of SDE model (1.5).

generator of the Markov chain r(t) be

Γ =

[

−2 2
1 −1

]

(6.3)

with the unique stationary distribution π = (π1, π2) =
(

1
3 ,

2
3

)

. Then a(i)− σ2
1
(i)
2 > 0 for i ∈ {1, 2} and

ȟ
b̂β̂
λ1 − λ3 = −0.065 < 0. Hence from Theorem 5.3(ii), the solution to model (1.5) has the property

that
0.657 6 lim inf

t→∞

1

t

∫ t

0
x1(u)du 6 lim sup

t→∞

1

t

∫ t

0
x1(u)du 6 1.97

and x2(t) goes to zero almost surely. The computer simulation shown in Figure 2 supports these
results clearly.

7 Summary
In this paper, we have introduced white noise, telegraph noise and time delay to the classical foraging
arena predator-prey system (1.2). Theorem 4.1 suggested that a bigger amplitude of environmental
noise may destabilize the system. The presence of time delay makes the system become stochastically
ultimately bounded only under certain parametric restriction (Theorem 3.1). Based on this, we then
showed that the total amount of prey and predator species will grow at most polynomially with order
close to one (Theorem 5.1). The existence of Markov switching makes a difference to the population
behaviours. Especially, if the prey is persistent in some subsystems and is extinct in some other
subsystems, due to the presence of the Markov switching, both populations in the overall system
could be extinct as long as λ1 defined in (4.1) is negative. Numerical simulations were carried out to
substantiate the analytical results.
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