
 Open access  Book Chapter  DOI:10.1007/3-540-45177-3_10

Stochastic dependability analysis of system architecture based on UML models
— Source link 

István Majzik, András Pataricza, Andrea Bondavalli

Institutions: Budapest University of Technology and Economics, University of Florence

Published on: 01 Jan 2003 - Lecture Notes in Computer Science (Springer-Verlag)

Topics: Dependability, Applications of UML, Model transformation, Systems design and Unified Modeling Language

Related papers:

 Basic concepts and taxonomy of dependable and secure computing

 Architecting Dependable Systems

 A dependability profile within MARTE

 Dependability analysis in the early phases of UML-based system design

 Automatic synthesis of dynamic fault trees from UML system models

Share this paper:    

View more about this paper here: https://typeset.io/papers/stochastic-dependability-analysis-of-system-architecture-
3ub266h479

https://typeset.io/
https://www.doi.org/10.1007/3-540-45177-3_10
https://typeset.io/papers/stochastic-dependability-analysis-of-system-architecture-3ub266h479
https://typeset.io/authors/istvan-majzik-4qzhu0qxhy
https://typeset.io/authors/andras-pataricza-3kth43ud9u
https://typeset.io/authors/andrea-bondavalli-2ygpbt4s4h
https://typeset.io/institutions/budapest-university-of-technology-and-economics-3fsazo4y
https://typeset.io/institutions/university-of-florence-2thhh0bg
https://typeset.io/journals/lecture-notes-in-computer-science-toobp8l4
https://typeset.io/topics/dependability-23csuu5f
https://typeset.io/topics/applications-of-uml-3mbnqd2b
https://typeset.io/topics/model-transformation-14pedqsf
https://typeset.io/topics/systems-design-229cayj3
https://typeset.io/topics/unified-modeling-language-41ja0t4j
https://typeset.io/papers/basic-concepts-and-taxonomy-of-dependable-and-secure-4u8aflogtd
https://typeset.io/papers/architecting-dependable-systems-1335iwduh0
https://typeset.io/papers/a-dependability-profile-within-marte-2go1tso1ll
https://typeset.io/papers/dependability-analysis-in-the-early-phases-of-uml-based-54757lbjyb
https://typeset.io/papers/automatic-synthesis-of-dynamic-fault-trees-from-uml-system-kvom9yh344
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/stochastic-dependability-analysis-of-system-architecture-3ub266h479
https://twitter.com/intent/tweet?text=Stochastic%20dependability%20analysis%20of%20system%20architecture%20based%20on%20UML%20models&url=https://typeset.io/papers/stochastic-dependability-analysis-of-system-architecture-3ub266h479
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/stochastic-dependability-analysis-of-system-architecture-3ub266h479
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/stochastic-dependability-analysis-of-system-architecture-3ub266h479
https://typeset.io/papers/stochastic-dependability-analysis-of-system-architecture-3ub266h479


Stochastic Dependability Analysis of System

Architecture Based on UML Models

István Majzik
1
, András Pataricza

1
 and Andrea Bondavalli

2

1 DMIE, Budapest University of Technology and Economics,

Magyar Tudósok krt. 2, H-1117 Budapest, Hungary
2DSI, University of Firenze, Via Lombroso 6/17, I-50134 Firenze, Italy

{majzik,pataric}@mit.bme.hu, a.bondavalli@dsi.unifi.it

Abstract. The work in this paper1 is devoted to the definition of a dependability

modeling and model based evaluation approach based on UML models. It is to

be used in the early phases of the system design to capture system dependability

attributes like reliability and availability, thus providing guidelines for the

choice among different architectural and design solutions. We show how

structural UML diagrams can be processed to filter out the dependability related

information and how a system-wide dependability model is constructed. Due to

the modular construction, this model can be refined later as more detailed in-

formation becomes available. We discuss the model refinement based on the

General Resource Model, an extension of UML. We show that the dependabil-

ity model can be constructed automatically by using graph transformation tech-

niques.

1 Introduction

Standardized design methods and tools are available for the designers of complex

computer systems in order to increase the effectiveness of the design. UML (Unified

Modeling Language [26]), UML based methods and CASE (Computer-Aided Soft-

ware Engineering) tools are widely used for the design of various systems from small
embedded controllers to large information infrastructures.

An effective design process should include an early validation of the architectural

choices and concepts underlying the design. The more earlier the bottlenecks and in-

sufficiencies are highlighted, the less is the loss due to the necessary corrections and

re-design. Dependability is among the properties to be validated during the system
design, especially in the case of critical systems.

Our earlier ESPRIT project HIDE2 aimed at the creation of an integrated design

environment that augmented UML based design tools with mathematical analysis

techniques [7]. Model based dependability evaluation was supported by elaboration of

                                                          
1 This work was supported partially by ESPRIT Open LTR 27439 'HIDE', the Italian-

Hungarian Bilateral Cooperation project I-37/2000, Hungarian NSF T-038027 and the Hun-

garian Ministry of Education under contract FKFP 0103/2001.
2 HIDE - High-level Integrated Design Environment for Dependability was carried out by FAU

Erlangen, PDCC Pisa, TU Budapest, Intecs Sistemi Pisa and MID GmbH Nuremberg.



an automatic transformation from UML diagrams to Timed Petri Nets (TPN) that

could be solved by off-the-shelf analysis tools to get reliability and availability attrib-

utes of the system under design. This transformation, together with its extensions and

implementation techniques elaborated since that time are the subjects of our paper.
The idea of translating design models into reliability models can be found in sev-

eral papers.  [13] converts UML models to dynamic fault trees. However, in this work

the basis of the translation is not the functional design since UML is used mainly as a

language to describe error propagation and module substitution. Here also a translator

is reported that converts UML descriptions into reliability block diagrams. Similarly,

OpenSESAME [34] uses high-level (graphical) diagrams to express dependencies,

error propagation and redundancy structure. In this case analysis of availability is per-

formed by a transformation to Generalized Stochastic Petri Nets. In [18], Markov
chains are used to derive reliability of middleware architectures described in extended

UML.

In our transformation we applied a modular and hierarchical approach. In the early

architectural design phase the relevant information is captured from UML structural

views and a system-wide dependability model is constructed. Here we use UML as a

standard architecture description language (note that our method can be adapted to
other architectural languages as well). The critical parts of the model (as shown by the

analysis) are extended as the design gets refined and relevant information becomes

available. These ideas are also widely accepted in the related literature. It is agreed

that architecture evaluation based on analytical dependability modeling deserves at-

tention in the early design phase [14], the modeling approach should be modular [22]
and the model should be refined hierarchically as the design includes more and more

information [4]. It is observed that the separation of architectural and service concerns

allows the dependability analysis from the perspective of different users [29].

The paper is organized as follows. Sect. 2 motivates the model based dependability

analysis. Sect. 3 introduces the design conventions and the extensions necessary to
include local dependability related parameters in the early phases of the design. Sect.

4 describes the model transformation from the structural view of UML to the TPN

dependability model. Sect. 5 discusses the ways of model refinement concentrating

especially on the modeling of resources and faults related to the resources. Sect. 6

presents how the model transformation is implemented while Sect. 7 provides assess-
ment of the approach. Sect. 8 concludes the paper.

2 Dependability Modeling and Analysis

This section motivates the need for model-based dependability evaluation, gives the

rationale of dependability modeling and introduces a hierarchical and modular mod-
eling approach.

2.1 Purpose of the Model Based Dependability Analysis

Evaluation of availability and reliability (two attributes of system dependability as

defined in [19]) is necessary to assess whether the system being developed satisfies its



targets. Analytical modeling has proven to be useful and versatile to evaluate these

attributes in the design phase. Dependability models allow comparing different archi-

tectural solutions and design choices and to run sensitivity analysis identifying both

dependability bottlenecks and critical parameters to which the system is sensitive.
In our approach, dependability modeling is to be performed in addition to the ar-

chitectural design based on the extensions of the architectural model of the target sys-

tem by the parameters needed for the analysis. This approach avoids to build a de-

pendability model from scratch, thus the consistency between the designers' model and

the dependability model is guaranteed by the process.

2.2 Components of a Dependability Model

The abstraction of a dependability model consists of the following general parts:

− Fault activation processes, which model the fault occurrences in basic system

components (especially physical resources).

− Propagation processes, which model the consequences of fault occurrences and

result in derived failure events. E.g. a failure of a network card results in the failure

of an information retrieval service.

− Repair processes, which model how basic or derived events are removed from the
system. Repair can be implemented by fault treatment and/or error recovery de-

pending on the type of the component.

− Mapping from architectural level to service level, which gives how the failures of
software and/or hardware components and subsystems result in the failure of a sys-

tem service (as observable by the user). Different mappings can be used to take into

account different service needs (ways of usage).

The fault activation processes are determined by environmental conditions, and

physical or computational properties of the elements of the system. The propagation
processes are influenced by the structure of the system (e.g. interactions, redundancy,

and fault tolerance schemes). The repair processes are determined by the (physical or)

computational policy implemented in the system.

2.3 Formalisms and Tools for Dependability Analysis

Among the various formalisms and tools developed for dependability modeling and

analysis, Petri nets have been widely accepted because of their expressiveness and

powerful solution techniques. Timed and stochastic extensions of Petri nets encom-

pass the class of Generalised Stochastic Petri Nets  (GSPN) [2], Deterministic and

Stochastic Petri Nets (DSPN) [1] and Markov Regenerative Stochastic Petri Nets
(MRSPN) [9]. Many automated tools based on Petri nets are available, e.g. UltraSAN

[30], PANDA [3], GreatSPN [8], SPNP [10], SURF2 [31]. In certain cases (e.g. ex-

ponential transition firing times) analytic solution is possible, otherwise simulation has

to be performed.



2.4 Mastering Complexity

Dependability modeling and analysis of complex systems pose serious problems due

to the complexity of the dependability model, which may be out of the range existing

tools can deal with. This complexity is due to the large number of components as well

as the complex interactions among (redundant) hardware and software entities.
Small systems can be analyzed by modeling the behavior at a fine granularity, e.g.

at UML statechart level. However, as the complexity of the system increases, another

approach has to be followed. Modular modeling and hierarchic refinement of a rough

(structural) dependability model are typical ways of mastering complexity. First only

the relevant aspects of the system are modeled and analyzed, which enables the com-

putation of numerical results and at the same time allows the estimation of the sensi-

tivity of system-level attributes to the parameters of specific components. In this way

those components and design decisions can be identified that need a refined analysis.
Modular modeling allows replacing components of a rough dependability model with

more detailed ones.

In our approach, first we build a quite abstract model, which concentrates on the

structure of the system and, accordingly, takes information from the structural UML

diagrams. It has the following advantages:

− It results in a system-wide (but less detailed) representation of the dependability

characteristics of the system in its entirety.

− The size of the model and thus the time and resource needs of the analysis can be
controlled.

− Preliminary evaluations of the system dependability during the early phases of the

design can be provided. Usually, the structural UML models, that is the class, ob-

ject, and deployment diagrams, are available before the detailed low level ones, and
the analysis on models derived from the structural view provides indications about

the critical parts of the system that require a more detailed representation.

By using appropriate interfaces, the structural dependability models can be aug-

mented by inserting more detailed information coming from refined UML models of

the identified critical parts of the system. This way we can deal with various levels of
details ranging from very preliminary abstract UML descriptions up to the refined

specifications of the last design phases.

Accordingly, dependability modeling and analysis can be performed in several

steps. The first step has the fundamental task of extracting the relevant dependability

information from the mass of information available in the UML description. In this
step, the structural dependability model is built, in which we can fix the fault activa-

tion, error propagation and repair processes as well as the mapping to the service

level. The dependability model is formalized by a Timed Petri Net (TPN) that can be

translated to the input format of the specific Petri net tool selected for performing the

analysis.
The subsequent steps can refine the structural model by replacing modules of the

structural dependability model (i.e. the corresponding TPN) with sub-models con-

structed on the basis of the refined UML models (e.g. also behavioral diagrams like

statecharts and message sequence charts that describe the interaction of components

more precisely. For the purpose of this sub-model construction, other methods of
processing UML diagrams are provided (Section 5).



In this paper we will show the construction of the structural dependability model,

identify the interfaces to extend this model and make reference to approaches avail-

able to construct the refined sub-models.

2.5 Model Parameters and Validation of the Dependability Model

Dependability modeling - especially in the case of rough structural models constructed

in the early design phases - should be based on a number of assumptions and simplifi-

cations. Since the assumptions and simplifying hypotheses may lead to wrong ap-

proximation of the system behavior, the resulting error should always be estimated

either through sensitivity analysis or by comparing the results obtained by the model
containing the assumption and by a model where it has been released.

Another problem is that models need many (aggregate) parameters whose meaning

is not always intuitive for the designers. Obviously, values for such parameters may be

difficult to provide in early phases of design. The ideal source would be to provide

them through experimental tests on prototypes (unlikely to be available). Alternatives

are data from similar systems (modules) or data derived from designers' experience.

Experimental results have to be provided at later stages to validate the numerical
results gained by the solution of the dependability model. It has however to be empha-

sized that instead of the concrete numerical dependability measures, the outcomes of

the sensitivity analysis and the comparison of design choices are the most beneficial

results of a model based dependability evaluation.

3 System Modeling in the Early Phases of Design

In the early phases of the design we assume that an architectural description of the

system is available. The software architecture is specified by class, object and collabo-

ration diagrams. The allocation of the software elements to hardware units and re-

sources is described by static deployment diagrams, no dynamic resource utilization is
specified. The dependability-related attributes of components are aggregate ones that

combine performance-related and dependability-related attributes (like component

activation probability and error detection coverage are aggregated to error propagation

probability).

In the subsequent design steps the model of the system is to be refined. From the
point of view of the dependability modeling, the management of redundancy and the

specification of dynamic resource usage play a crucial role. Accordingly, more refined

UML models are assumed that separate usage (conformant with the corresponding

UML resource modeling profile [25]) and fault activation/error propagation. The as-

pects of this kind of model refinement are detailed in Sect. 5.

3.1 Attributes of the System and its Components

The system-level dependability attributes, i.e. availability and reliability are computed

by the solution of the dependability model based on the local dependability attributes



of the various components of the system. In the abstract structural model, the local

(aggregate) attributes of basic components are values characterizing fault activation,

error propagation and repair processes (Sect. 2.2) as follows:

− Fault activation is characterized by the fault occurrence (random variable repre-

senting the time needed for the activation of a fault), the error latency (random

variable representing the time needed to bring the component to a failure after the

fault generates an erroneous internal state) and the ratio of permanent and transient

faults. Naturally, in stateless (purely functional) components there is no error la-

tency, while in software components only permanent (design) faults occur.

− Error propagation is characterized by the error propagation probability which is

assigned to a pair of interconnected components whenever the failure of a server-

like component results in the failure of the another, client-like component. Two

components can be connected in terms of failure propagation bi-directionally if any

one of them may influence the failure of the other component. In this case error

propagation probability is assigned in both directions.

− Repair is characterized by the repair delay (random variable representing the time

needed to perform the repair). Note that error propagation prescribes a constraint

for the repair of a component: the repair of a component can not be completed until

all the used components are fully operational.

− Mapping from architecture to service levels is characterized typically by Boolean

logic expressions describing what combinations of component failures can consti-

tute the failure of the service. These combinations are visualized by a fault tree.
The structure of this dependability model is inspired by the approach presented in

[20]. We have slightly modified that model: we use a more reduced hierarchy and, for

the sake of convenience, we distinguish between stateless and stateful components.

The distinction between them is important from the point of view of the potential er-

roneous state, error latency and propagation. Similarly, the distinction of hardware

components is necessary from the point of view of the transient faults.
As it partially turns out from the above set of relevant attributes, we have intro-

duced a set of general assumptions for the dependability model:

− Solid software failures are not taken into account (assuming that they were removed
before execution by a thorough debugging and fault removal).

− There are no failures that compensate the effects of other ones.

− “Repair” is implicit if the fault disappears after activation (transient hardware faults
and all software faults). Repair of a derived failure is implicit if it disappears as

soon as the underlying faults and failures have been repaired.

− Explicit repair refers to the actions that are planned and scheduled by the designer.

Explicit repair may remove (permanent) faults from the system or restore the serv-
ice of system components.

In the following we detail the restrictions to be imposed on the UML designer to

allow translating the specification into a dependability model. These restrictions are

mainly related to the introduction of redundancy into the system, for which particular

structures are to be utilized to permit the identification of the crucial points. Since the
information on dependability aspects is typically not included into a UML design, we

prescribe a set of extensions of the standard UML in order to create controlled inter-

face towards the designer for the input of parameters, the selection of desired meas-

ures, and the choice of the fault-tolerance structures to be included into the system.



3.2 Redundancy Structures

One fundamental choice has been made in defining the way redundancy has to be ex-

pressed in the UML design. We opted for the so called “class based“ redundancy

which prescribes that elements of a redundancy structure must be defined as instances

of specific classes (based on templates and stereotypes) [35]. It is important to notice
that this choice supports the use of design patterns collected in a fault-tolerance li-

brary. Moreover, the construction of such library can be integrated with the depend-

ability modeling in the sense that it will be possible to associate to the elements of the

library their dependability sub-models which will be derived only once, thus building

at the same time a library of dependability sub-models.

In general, a system component is redundant if its service can be delivered by an-

other component in a coordinated way, without the interaction of the client(s). Ac-

cordingly, operation of redundant components presumes the existence of a coordinator
(called here redundancy manager) and some type of adjudicator. A given service is

provided by a set of redundant components called here variants, which are coordi-

nated by the redundancy manager: the service is available through the redundancy

manager and the redundant components can not be used separately. A component may

be a participant in a single redundancy structure only. Other, non-redundant compo-

nents can not be included in a redundancy structure (but the variants may use the
service of another components).

Accordingly, redundancy structures must be composed of objects instantiated from

the following types of classes: redundancy manager, variant, and adjudicator (which

can be further refined by various subtypes e.g. tester, voter or comparator).

The specific conditions of the failure of the redundancy structure (which can be
quite complex) are either available in the library of dependability-related design pat-

terns or they have to be derived by analyzing the UML diagrams describing the be-

havior of the redundancy structure.

It has to be emphasized that the construction of the structural dependability model

relies on behavioral diagrams only in the case of redundancy managers. Otherwise,
behavioral diagrams are used only in the subsequent phases to refine the structural

dependability model (Sect. 5).

3.3 Specifying Dependability Related Properties and Requirements

Basic UML focuses on capturing the complex functionality of the system but neglects

non-functional aspects such as quality of service (QoS). To allow dependability analy-

sis of designs, UML has to be extended with a notation for describing the quantitative

properties of model elements and the required properties of the system to be analyzed.

There are some ongoing activities to extend UML for dealing with such kind of
data. The OMG proposal [25] describes a general approach to classify model elements

by stereotypes and bind performance characteristics to them by using tagged values.

We followed this approach, because this annotation does not change the UML meta-

model and thus it is conformant with existing CASE tools. However, it may be incon-

venient for working with a large number of elements (some of them having identical
attributes). Because of its generality and object-oriented nature, the QoS specification



language QML [12] is a potential extension. It was adapted to quantitative model

analysis with respect to the OMG proposal in [17].

Accordingly, in our approach standard extensions of UML, i.e. stereotypes and

tagged values are used to identify the elements of redundancy structures and to assign
dependability attributes (Sect. 3.1) to components and relations.

The classes in redundancy structures, namely the redundancy manager, variant and

adjudicator are stereotyped as <<redundancy manager>>, <<variant>> and

<<adjudicator>>, respectively.

Stateless or stateful software and hardware components are stereotyped accord-

ingly. The local dependability attributes are described by tagged values as follows:

− Fault occurrence: FO=x

− Error latency: EL=y

− Ratio of permanent faults: PP=v

− Repair delay: RD=z

The designer can assign a single value (here x, y, z, v are used to instantiate the pa-

rameter), two values (range for a sensitivity analysis), or no values (the parameter

should be derived based on the parameters of underlying elements in the hierarchy).

Different sets of tagged values are assigned to different types of components accord-

ing to Table 1.

Table 1. Stereotypes and tagged values

Component type Dependability attributes Stereotypes Tagged values

Stateless hard-

ware

Fault occurrence, ratio of

permanent faults, repair

delay

<<stateless>>,

<<hardware>>

FO, PP, RD

Stateful hard-

ware

Fault occurrence, error

latency, ratio of perma-
nent faults, repair delay

<<stateful>>,

<<hardware>>

FO, EL, PP,

RD

Stateless soft-

ware

Fault occurrence <<stateless>>,

<<software>>

FO

Stateful soft-

ware

Fault occurrence, error

latency, repair delay

<<stateless>>,

<<software>>

FO, EL, RD

These stereotypes and corresponding tagged values can be applied to UML objects,

classes (in this case all objects instantiated from the class should be assigned the same
set of parameters), nodes and components.

Stereotype <<propagation>> indicates an error propagation path, with the

tagged value PP=x to assign propagation probability. This stereotype can be applied

to links between objects, associations between classes or nodes, deployment relations,

dependencies, and generalization relationships.

In order to derive the non-trivial relations in redundancy structures automatically,
further extensions are required. In statechart diagrams of the redundancy managers,

failure states are distinguished by stereotypes. Similarly, stereotypes identify the spe-

cific types of adjudicators (e.g. testers and comparators). Tagged values are used to

assign common mode fault occurrences to components. The detailed description of

these extensions can be found in [5].



4 Construction of the Dependability Model

The structural dependability model is constructed first in the form of an intermediate

model (IM)  which is a hypergraph representing the components and their relations

relevant from the point of view of the dependability analysis. In this way some peculi-

arities of UML (e.g. package hierarchy, composite objects and nodes, different types

of dependencies) can be resolved which results in a simple and flat model with a lim-
ited set of elements and relations.

4.1 The Intermediate Model (IM)

The IM is a hypergraph G=(N,A), where each node in N represents an entity, and each

hyperarc in A represents a relation between these entities. Both the nodes and the hy-

perarcs are labeled, that is they have attached a set of attributes completing their de-
scription. A generic node of the IM is described by a triple consisting of the fields

<name>, <type> and <attributes>. We now give the semantic of the interme-

diate model by describing the sets N and A and what they represent.

Nodes represent the stateful or stateless hardware/software components described
in the set of UML structural diagrams. Four types of nodes are used: SFE-SW (stateful

software), SLE-SW (stateless software), SFE-HW (stateful hardware) and SLE-HW

(stateless hardware). Attributes of the nodes characterize the fault activation and the

repair processes according to Table 1.

The fault tolerance (redundancy) structures are represented by composite nodes
FTS. The system service is represented by another specific node SYS to which the

system-level attributes (measures of interest) are assigned. It has to be emphasized that

these nodes represent the composite structures and not individual components.

SFE_HW

FO : Double

EL : Double

PP : Double

RD : Double

SFE_SW

FO : Double

EL : Double

RD : Double

SLE_HW

FO : Double

PP : Double

RD : Double

FTSSYS

measure : String

SLE_SW

FO : Double

IM

Arc

0..*
+arcs

0..*

U_arc

PP : Double

Node

name : String

1..*

+nodes

1..*

1
+from

1

1
+to

1

C_arc

fault_tree : FTREE

1..*
+to

1..*

SimpleNodeCompositeNode

Fig. 1. Metamodel of the IM



Hyperarcs among the nodes represent two kinds of relations. "Uses-the-service-of"

(U) type of hyperarc indicates an error propagation path between a server-like compo-

nent (typically a resource) and a client-like component. A U hyperarch is a one-to-one

relation directed from a node representing the client to the node representing the
server. Error propagation may occur in the opposite direction, i.e. from the server to

the client. The assigned attribute is the error propagation probability.

Another type of hyperarc represents the "is-composed-of" (C) relation in the case

of fault tolerance (redundancy) structures, i.e. FTS nodes, and system services, i.e.

SYS nodes. This type of hyperarc is a one-to-many relation directed from the FTS or

SYS node to the nodes representing the constituent parts. The hyperarc is assigned a

fault tree describing the conditions of error propagation from the parts to the compos-

ite structure.
The metamodel of the IM (in the form of class diagrams) is shown in Fig. 1.

4.2 Dependability Related Information in UML Diagrams

The dependability model is built by projecting the UML model elements into nodes,

and the UML structural relations to hyperarcs of the IM. The types of nodes are de-
termined by UML stereotypes, while the attributes are projected from tagged values of

the corresponding UML model elements (Table 1). The types of hyperarcs are deter-

mined by the stereotypes assigned to the key elements of the composite structures (i.e.

the redundancy managers).

According to the high-level approach, not only the “natural” software elements as
objects, tasks, processes etc. can be identified but also higher-level, compound ele-

ments as use cases or packages. As the UML design is hierarchical, intermediate lev-

els of the hierarchy can be represented by SYS nodes. The representation of a com-

pound UML element (like a package) depends on the level of detail described or se-

lected by the designer. If a compound UML element is not refined, or its refinement is
not relevant for the dependability analysis (as selected by the designer) then it is rep-

resented by a simple software or hardware node in the IM. If it is refined and its re-

finement is relevant then its subcomponents are represented as simple nodes and the

compound as a whole is represented by a SYS node. In the case of hyperarcs, all po-

tential propagation paths are taken into account thus the structure of the model repre-
sents worst-case error propagation. The fine-tuning is left to the actual parameter as-

signment.

Now we summarize the role UML diagrams and elements considered in our model

derivation. As already stated, we focus on the structural UML diagrams to construct

the dependability model. Nevertheless, it may be necessary to use also behavioral dia-
grams for a more detailed modeling of redundancy structures.

− Use case diagrams identify actors and top-level services of the system (this way

also identify the system level failure).

− Class diagrams are used to identify relations (associations) that are traced to ob-

jects. By default, each class is instantiated by a single object.

− Object, collaboration and sequence diagrams are used to identify objects (as basic

components) and their relations. Messages identify the direction of the relations.



− Component diagrams are used to identify the relations among components, and in

this way among objects realized by the components. Note that the components are

instantiated on the deployment diagrams.

− Deployment diagrams are used to identify hardware elements and deployed-on (a

specific case of "uses-the-service-of") relations among software and hardware ele-

ments. Relations among hardware elements (e.g. communication) are also de-

scribed here.

− Statechart diagrams are used basically only in the case of redundancy structures, to

derive the non-trivial relations among participants of the structure.

In the following we sketch the projection in the case of object and class diagrams.

Other projections are described in [5].

4.3 Projection of the Model Elements of Object and Class Diagrams

Object diagrams (and also collaboration diagrams) include instances that are repre-

sented by nodes in the IM. Simple objects are projected into simple nodes of the IM.

Composite objects are projected into a set of nodes, with unidirectional error propa-

gation paths from the sub-objects to the composite one.

Since each object is a particular instance of a class, the relations of objects and
their type information can be deduced by the analysis of the class diagrams. Model

elements of class diagrams are utilized as follows.

Inheritance hierarchy of classes is utilized to identify the relationships: if an object

is instantiated from a given class then the relationships of this class and also of its an-

cestors have to be taken into account.
Associations are binary or n-ary relations among classes. In general, associations

mean that the objects instantiated from the corresponding classes know (i.e. can name)

each other. Associations may be instantiated by links on object and collaboration dia-

grams, and communication among objects is possible along these links. Accordingly,

an association indicates a potential bi-directional error propagation path among these
objects thus it is projected into the IM. The following additional features might be

taken into account.

FeedBeltHW

FeedBeltC

controls

RotaryTableHW

RotaryTableC

controls

RobotHW

RobotC

controls

Redundancy
Manager

PressC

controls

comm.comm.

Press2HWPress1HW

comm.

Worker

puts gets

loads gets takes

Fig. 2. Object diagram of a production cell



Produce
Plate

Feed
BeltHW

Rotary
TableHW

Robot
HW

Press
Subsystem

C C

U

Feed
BeltC

Rotary
TableC

RobotC PressC
U

U

U U

U U

U U U

U U U

Press2HWPress1HW Redundancy
Manager

C C C

FTS

SYS

Fig. 3. Projection of the UML  object diagram in Fig. 2. into the IM

− Navigability of an association end denotes whether the instance can be directly
reached. However, it does not give precise information about the direction of the

potential error propagation, since through return values also a unidirectional navi-

gation may result in bi-directional error propagation. Accordingly, each association

is projected by default to bi-directional error propagation.

− Or-associations (indicating a situation when only one of several possible associa-
tions may be valid) are all projected into the IM, in this way a worst case depend-

ability model is constructed.

− Multiplicity of association ends are taken into account only when the classes are
not instantiated on object diagrams. Indeed, in the early phases of the design the in-

stantiation of the model may not be available. It might be useful for the designer to

have a default instantiation in order to compute rough dependability measures. Ac-

cordingly, if a class has multiplicity specification then the value or the lower bound

of its range can be taken into account. If it is missing or equal to zero then by de-
fault a single instance is taken into account. Metaclasses, type classes and param-

eterized classes (i.e. templates) are not instantiated.

− Aggregation (composition) is projected into a unidirectional error propagation

path: the aggregate (composite, respectively) uses the service of the aggregated
elements.

− Unary associations (both ends attached to the same class) denote associations

among objects of the same class. According to the structural (worst case) approach,

they are projected into the IM denoting error propagation paths from each object to
each other. Reflexive paths are not considered. N-ary associations are projected

into the IM as a set of binary associations, where each possible pair of classes in-

cluded in the n-ary form is taken into account.

− Association classes are handled as separate classes having associations with the
classes at the endpoints of the association.

Generalization is the relationship between a more general element (class) and a

more specific one. Generalization does not indicate an error propagation path, thus it

is not projected into the IM (but the inheritance of relations defined by generalizations

is taken into account).
Dependency means a semantic relationship between classes. From the point of view

of dependability modeling, those dependencies are relevant which relate also the in-

stances (not only the classes themselves, like <<refine>> or <<trace>> relation-

ships). This way in the set of the predefined types of dependencies, only the



<<uses>> dependency (meaning that an element requires the presence of another

element for its correct functioning) indicates an error propagation path, thus it is pro-

jected into the IM.

An example of an object diagram of a production cell (described in [6]) and the

corresponding IM are shown in Fig. 2 and Fig. 3. Note that the objects Press1HW,

Press2HW and RedundancyManager form a redundancy structure (Sect. 4.5). The

external actor in Fig. 2 identifies the top level components providing the system serv-

ice (Sect. 4.6).

4.4 Projection of Resource Usage

UML deployment diagrams show instances of hardware components (nodes) and the

configuration of run-time components on them.

− Nodes are run-time physical objects, usually hardware resources. They are pro-

jected into hardware nodes in the IM.

− Objects realized by components are projected into software nodes of the IM.

− UML components represent pieces of run-time software. If a component is refined,

i.e. the set of objects realized by the component is given then the component is not

projected into a separate software node of the IM. If a component is not refined

then it is projected into a single software node of the IM.

− Deployment relations among nodes and components and realization relations

among components and objects (both shown by graphical nesting or composition

associations) indicate potential error propagation paths with direction from the

nodes to the objects. They are projected into the IM.

Note that the conventions introduced in the General Resource Model (GRM [25])
enable a more refined modeling of resource usage than in the case of deployment dia-

grams (see Sect. 5).

4.5 Projection of Redundancy

A redundancy structure (identified by the redundancy manager, Fig. 4) is projected
into an FTS node of the IM connected, by using a C hyperarc, to the elements repre-

senting the redundancy manager, the adjudicators, and the variants.

RBcontrol

Solve2

Acc Test

int state[]

int var2

<<redundancy_manager>>

<<variant>>

<<adjudicator>>

RS1

RB control

Solve1

Solve2

Acc Test

C

FTS

SFE-SW

SFE-SW

SFE-SW

SFE-SW

UML

Solve1

int var1

<<variant>>
Solve2

int var1

IM

Fig. 4. Projection of a simple redundancy structure



In simple cases the error propagation is described by a fault tree. The construction

of a fault tree corresponding to a redundancy structure (not included in the library of

schemes) requires the analysis of the behavior, i.e. the statechart diagram, of the re-

dundancy manager. This kind of analysis is supported by the designer, as he/she iden-
tifies (by stereotyping) the failure states and events in the statechart. The fault tree is

constructed by a reachability analysis enumerating the paths in the statechart that can

lead to failure states (i.e. failure of the redundancy structure) [5]. The incoming events

on these paths identify the failures of variants and/or adjudicators that are considered

as basic events in the fault tree. Repair is taken into account in a default way by using

the dual counterpart of the fault tree.

In the case of sophisticated recovery and repair policies, the statechart of the re-

dundancy manager is transformed directly to a TPN subnet (Sect. 5.1). This approach
results in a more complex model but allows the analysis of non-trivial scenarios and

temporal dependencies.

4.6 Mapping from Architectural to Service Level

In UML, the services of the system are identified on use case diagrams. Model ele-
ments of these diagrams include actors, use cases, communication associations among

actors and use cases, and generalizations among use cases.

− A use case represents a coherent functionality of the system. Usually, each use case

is refined by interactions of objects. However, it may happen that in the early
phases of the design only some (important or critical) use cases are refined, the oth-

ers are not. Accordingly, if a use case is not refined or the refinement is not rele-

vant then it is projected into a simple IM node, otherwise it is projected into a SYS

node of the IM, which relates the nodes resulting from the projection of the other

UML diagrams belonging to this use case.

− Actors represent (roles of) users or entities that interact directly with the system.

Being external entities from the point of view of a given service, actors are not

projected into the IM.

− Communication associations among actors and use cases identify the services of

the system. If a use case is connected directly to external actor(s) then it is pro-

jected into a top-level SYS node of the IM. Usually, a real system is composed of

several use cases, more of them being connected directly to actors. Dependability

measures of such use cases can be computed separately, by a set of dependability
models assigned to each use case. However, all services of the system can also be

composed in a single dependability model, computing the measures corresponding

to multiple SYS nodes.

− Relationships among use cases are represented in UML by generalizations with
stereotype <<extend>> and <<include>>.  Extend relationships mean that a

use case augments the behavior implemented by another one. It indicates an error

propagation path in the direction of the relationship, thus it is projected into the IM.
Include relationships mean a containment relation thus they will be projected (in

the reverse direction) similarly into error propagation paths.



4.7 Construction of the Analysis Model

On the basis of the IM a second step of the transformation builds a TPN dependability

model, by generating a subnet for each model element of the IM [5].

A TPN model is composed of a set of elements as listed in Table 2. Places, transi-

tions and subnets all have a name, which is local to the subnet where they are defined.
Transitions are described by a random variable (specifying the distribution of the de-

lay necessary to perform the associated activity) and a memory policy field (a rule for

the sampling of the successive random delays from the distribution). A transition has a

guard, that is a Boolean function of the net marking, and a priority used to solve the

conflict. The weights on input and output arcs may be dependent from the marking of

the net. Subnets are a convenient modeling notation to encapsulate portion of the

whole net, thus allowing for a modular and hierarchical definition of the model.

Table 2. Elements of the TPN model

Element Description

Place <name> <initial tokens>
Transition <name> <random variable> <memory policy> <guard>

<priority>

Input arc <from place> <to transition> <weight>
Output arc <from transition> <to place> <weight>

Subnet Nested TPN sub-model

Notice that the class of TPNs defined here is quite general. If the TPN model con-

tains only instantaneous and exponential transitions, then it is a GSPN that can be eas-

ily translated into the specific notation of the automated tools able to solve it [8,10]. If

deterministic transitions are included as well, then the model is a DSPN, which under

certain conditions can be analytically solved with specific tools like UltraSAN, and
TimeNET. If other kinds of distributions of the transition firing times are included,

then simulation can be used to solve the TPN model.

We take advantage from the modularity of the TPN models defined above, to build

the whole model as a collection of subnets, linked by input and output arcs over inter-

face places. For each node of the hypergraph, one or two subnets are generated, de-
pending from node type. The basic subnets represent the internal state of each element

appearing in the IM, and model the failure and repair processes.

Fault Activation Subnets. The fault activation subnets (called basic subnets
hereafter) include a set of places and transitions that are also interfaces towards other

subnets of the model. Places called H and F model the healthy and failed state of the

component represented by the IM node (Fig. 5). Fault activation subnets of stateful

elements also include place E to represent the erroneous state of the component. For a

stateless node, transition fault models the occurrence of a fault and the consequent

failure of the node. For a stateful node, the occurrence of a fault generates first a

corrupted internal state (error), modeled by the introduction of a token in E. After a

latency period, modeled by transition latency, this error brings to the failure.



H F

fault

STATELESSSubnet <node_name>_fail

E

latency

STATEFUL

[m(E)=1]
H F

fault

Subnet <node_name>_fail

Fig. 5. Fault activation subnets for stateless and stateful nodes

For each FTS and SYS node, a basic failure subnet containing only two interface

places, namely H and F, is generated in the TPN model. Indeed, FTS and SYS nodes
represent composite elements, and their internal evolution is modeled through the

subnets of their composing elements.

Propagation Subnets. By examining the U hyperarcs of the IM, the transformation

generates a set of propagation subnets, which link the basic subnets. For instance,

suppose node A is linked by a U hyperarc to node B in the IM. In this case, we want to
model the fact that a failure occurred in the server B may propagate to the client A,

corrupting its internal state. The propagation subnet B->A shown in Fig. 6 models this

phenomenon (immediate transitions are depicted by thin bars).

Subnet

B_fail

F

E

H

F

H

E
p

1-p

Subnet B->A

prop

no_prop
New

Used

restart

Choice

t1

Subnet

A_fail
m(B.H)=1

Fig. 6. Error propagation from node B to node A

The propagation subnet becomes enabled only after element B has failed. At that

time, a token is put into place B.F, and the propagation subnet is activated. The subnet
moves with probability p the token being in place A.H to place A.E. This models the

introduction of an error in element A. A single token circulates among the two places

New and Used, to allow the propagation subnet to be activated only once for each

failure of B (t1 cannot fire until a token is moved from place Used to New).

Consider now a type C hyperarc, linking a FTS node P with its composing nodes.
The fault-tree associated with the arc expresses the logic with which the failures of the

composing elements propagate towards the failure of P. Also, the dual of the fault-tree

(obtained by exchanging each AND gate with an OR gate and vice versa) represents

the way the composed element P gets repaired when the composing element are re-

covered. Thus, the fault-tree is translated into a failure propagation subnet, and its
dual counterpart is translated into a "repair propagation" subnet. These two subnets

are linked to the basic subnets of all the elements connected by the C hyperarc. Note

that the Boolean conditions of the fault trees can be represented in Petri nets either by

enabling conditions of transitions or by explicit subnets corresponding to AND or OR

gates [5].

Repair Subnets. The repair subnet of a node is activated by the failure occurred in the

fault activation subnet of the same node. For instance, Fig. 7 shows the repair subnets



for stateless and stateful hardware nodes. The two transitions implicit and

explicit represent the two different kinds of repair which are needed as a

consequence of a transient and permanent hardware fault, respectively. If the node is

stateless then the final effect of the repair is the insertion of a token in place H. If it is

stateful then the repair also removes a token from place E, modeling the error
recovery activity.

Notice that all the parameters needed to define the subnets are found in the IM in

the obvious fields.

H F

STATELESS

P1

P2

P3

t0t1

perm

transimplicit

explicit

Subnet <node_name>_rep

Subnet <node_name>_fail

m(P1)=0m(P1)=1

E

STATEFUL

H F

P1

P2

P3

t0t1

perm

transimplicit

explicit

Subnet <node_name>_rep

Subnet <node_name>_fail

m(P1)=0m(P1)=1

Fig. 7.  Repair subnets of hardware nodes

Subnets for Mapping from Architecture to Service Level. C hyperarcs linking SYS

nodes are handled in the same way like C hyperarcs linking FTS nodes. When a SYS

node does not have an associated fault tree, then we implicitly associate to it a simple
fault tree representing the OR relation of all the composing elements.

The markings of places H and F for the SYS node at the top level of the IM define

a partition between proper and improper service: whenever a token reaches place F,

the service (the object of the dependability evaluation) is considered as failed. Ac-

cordingly, the solution of the dependability model should provide the average number
of tokens in H to get asymptotic availability figures and the time of the first occur-

rence of a token in F to get reliability figures.

5 Refinement of the Dependability Model

We identified and elaborated the following options to perform refinement in the
structural dependability model as the UML model becomes more detailed:

− Mapping the behavioral diagrams describing redundancy management directly to

TPN subnets.

− Constructing subnets on the basis of the refined modeling of usage and fault activa-

tion in the used resources.

These options will be described in the following sections.



5.1 Refined Modeling of Redundancy Management

The behavioral diagrams describing redundancy and resource management are natural

candidates to be used during refinement since they describe the core logic of the de-

pendability model. In Sect. 4, fault trees were constructed on the basis of the statechart

diagram of the redundancy manager in a class based redundancy scheme. The fault
tree representing logic conditions (as a static snapshot) can be integrated with the fault

activation and repair subnets by using the Petri net places E, F and H representing the

state of the components. However, in this way sophisticated repair/recovery scenarios

and temporal dependencies could not be taken into account.

In the refinement step, also the dynamics of replica management (sequence of fail-

ure events and repair actions) can be considered. Statecharts of selected objects are

mapped directly to Petri nets by a model transformation that preserves the dynamic

semantics of the statechart [15]. This way the designer is allowed to use the full power
of statecharts (state hierarchy, concurrency etc.) to describe application-dependent

replication and recovery strategies. It has to be emphasized that only the statecharts of

the objects responsible for replica management and recovery are considered in this

refinement step. They are interfaced with the other parts of the system by events de-

scribing failure occurrences (error reports), and actions initiating repairs. Accordingly,

instead of using the places corresponding to the states of the components (as in the
case of fault trees), the integration of the resulting subnets requires additional TPN

places representing the changes in the system as follows:

− Input places of the refined subnets represent events. By default, the basic subnet

responsible for fault activation puts a token into the place representing the corre-
sponding failure event when it occurs (i.e. state changes from H to F). In a further

refinement step, more precise error detection and coverage can also be modeled

(similarly by statecharts).

− Output places of the refined subnets represent actions. The subnet belonging to the

statechart puts a token into a place representing a repair action when it is generated.

By default, this action triggers a TPN transition corresponding to the explicit repair

in the component (i.e. target of the action) affected by the repair. Again, based on

this interface the repair actions can be refined in subsequent steps.
This approach was introduced first in [16] and adapted to the fault tolerance infra-

structure defined by FT-CORBA [23] in [21]. In this adaptation, first a high-level de-

pendability model is constructed that allows the analysis of the fault tolerance strate-

gies and properties directly supported by the standard infrastructure. In the refinement

step, the detailed behavioral model, i.e. the UML statechart of the Replication Man-
ager is transformed to a TPN. This subnet forms the core of the dependability model

by replacing the original, generic subnet. In this way the analysis of application-

dependent, specific replication strategies and recovery policies can be supported.

5.2 Rationale of the Refined Fault Modeling

The modeling and analysis methodology described in Sect. 4 is able to deliver a first,

system-level estimate of the dependability attributes based on aggregate measures, like

fault occurrence and error propagation rates. However, as error propagation depends

both on the attributes of the corresponding components and on the workload distribu-



tion in the system, a more refined model in the later phases of the design process

should reflect these factors separately.

Frequently, a timeliness and/or performance analysis is performed on the system

prior to dependability evaluation, especially if the system has to satisfy severe tempo-
ral constraints. We sketch here a dependability modeling style which can reuse the

models constructed for performance analysis.

The main scope of the refined methodology is the modeling of the effects of per-

manent and transient operational faults in resources, dominantly implemented in

hardware, and the propagation of errors via hardware, software components, and mes-

sages, respectively. A crucial problem results from structure altering faults and error

propagation effects not included in a functional model of the system. For instance, two

functionally independent threads sharing a resource may interact through a parasitic
coupling if a fault affects this resource. (The theoretical background would even allow

for modeling faults in the very computer core, like the CPU-memory setup. However,

such a fine granular modeling is practically infeasible due to the complexity of the

model.) Fortunately, each critical application has some well-defined damage confine-

ment regions designed to limit the propagation of errors within them. Accordingly, an

appropriate modeling style assures a proper handling of structure altering faults. The
main rule is to describe explicitly all the resource sharing within of a damage con-

finement region. Direct computational faults are restricted in our model to transient

faults local to components, and redundancy-based solutions are modeled explicitly.

5.3 The General Resource Model (GRM)

OMG did elaborate the General Resource Model (GRM [25]), providing a standard-
ized notation to describe resource types, their static or dynamic interaction with the

system, together with their management. The services required from and delivered by

the resources are characterized by means of QoS parameters defined according to the

actual analysis objective. GRM is a (sub)profile defined for transformation based
analysis. The standard profile offers several notations to describe schedulability, per-

formance, and time. GRM can be extended for several analysis objectives, including

dependability assessment.

For the sake of completeness, we shortly summarize  the main concepts of GRM

(Fig. 8).
In case of static resource usage modeling the dynamics of the client-server interac-

tion is neglected, and only a comparison of the QoS values required by the client and

offered by the resource instance is performed. A typical system level static quantita-

tive QoS analysis task is a worst case assessment of the sufficiency of the total capac-

ity offered by the resources matched against the total of the requests.
Dynamic usage modeling explicitly describes the order and timing of the client-

resource interaction steps. A resource instance may offer multiple different kinds of

services. Each kind of a service use is represented by a scenario, a temporally ordered

series of action executions, as steps using specific service(s) offered by a resource.

QoS values are assigned to the service invocations (required QoS value), and to the
resource service instances (offered QoS).



ResourceUsage

StaticUsage DynamicUsage

Client

QoSValue

+RequiredQoS

1..*

0..*

ResourceInstance
1..*

+usedResources

1..*

+OfferedQoS

0..*

0..*

QoScharacteristic

+instance0..*

+type

*

Scenario

ResourceInstance

1..*

+usedResources1..*

ResourceServiceInstance

1

1..*

+OfferedQoS

0..*

0..*

QoSValue

ActionExecution

1

+step (ordered)1..*

+RequiredQoS

1..*

0..*

1..*

+usedServices

1..*

+instance0..*

+type

*

+successor

0..*

+predecessor

0..*

Fig. 8.  The OMG General Resource Model

Resources can be classified according to the protection kind used either as unpro-

tected or protected. The latter offers services to be used simultaneously only by a sin-
gle client under an access control policy administered by a resource broker. A re-

source manager supervises the creation and administration of (typically software)

resources according to a resource control policy. GRM introduces further technical

classifications on resources, like by purpose (processor, communication resource, or

device), or by activeness (whether they require a trigger or not).

5.4 Modeling of Fault Occurrences

A GRM-based model, as a starting point describes the logic of interactions between

the application and the underlying platform. The initial structure of this model is fre-
quently the byproduct of the previous performance analysis. However, dependability

analysis necessitates the simultaneous tracing of the information flow in the fault-free

and in a faulty case (or all candidate faulty cases) of the system in order to estimate

the probabilities of the observable difference in their behavior.

This way the interaction model has to be extended in order to cover all the antici-
pated faulty cases. This is done by qualitative fault modeling. This uninterpreted type

of modeling uses a small set of qualitative values from an enumerated type, like

{good, faulty, illegal} to construct an abstract model reflecting the state of the re-

sources and the potential propagation of errors through the system via invocations and

messages. The value of illegal serves here to model the fault effects resulting in a
violation of functional constraints. For instance, a data may not conform to a type re-



lated restriction due to a memory fault forcing it out of the legal range or catastrophic

distortions of the control flow may cause a crash. The designer can select the set of

qualitative values arbitrarily, according to the aim of the analysis. For instance values

of early and late can extend the domain of qualitative values for timeliness analysis in
the potentially faulty case.

Stateful components in the system, like resources can take their actual state from

this domain of qualitative values. They change the state upon internal fault activation,

repair and error propagation.

− Temporal and permanent operational faults in the resources originate in external

effects occurring independently from the processes internal to the system.  The ap-
pearance of the selected fault or fault mode (in case if a resource can be affected by

different kinds of faults) at the fault site is triggered by a separate fault activation

process independently of the internal functioning of the system (Fig. 9). The fault

activation process has a direct access to the resources in order to activate the se-

lected fault(s) by forcing a transition of the state of the component to faulty. Fre-

quently, fault activation is restricted, for instance by a single fault assumption. All

these restrictions can be included into the fault activation process.

− External repair actions can be included into the model as independent processes,

as well. Built-in automated recovery actions can be modeled as special service in-

vocations forcing the state of the resource to good.

Rates can be associated to steps of fault activation and repair processes as QoS val-
ues. Their rule is identical to that in the corresponding TPN subnets described in Sect.

4. The changes of fault states in resources are reflected in the activation of different

scenarios for service invocations.

5.5 Modeling of Propagation

The propagation of faulty and illegal values in the scenarios of dynamic usage models

(i.e. in message sequence charts or statecharts) represents error propagation during an

interaction between a component and resource.

Usage scenarios have to be extended by including fault states as branch conditions

if the interaction potentially exposes different behaviors on good and faulty data or
resource states. Usually this extension transforms the scenarios to non-deterministic

ones, for instance to express probabilistic error manifestation. The arrival of a faulty

input data to a stateful resource or component may trigger a good to faulty transition.

Similarly, the invocation of a faulty component may result in a faulty output delivered

by the service.
Quantitative measures can be associated to the different scenarios, including the in-

put request arrival frequencies (rates) of the different kinds of data, probabilities as-

signed to the non-deterministic branches.

Please note, that the main benefit of using this detailed model is that the quantita-

tive dependability model is cleanly decomposed into the workload model (rate of
service invocation), activation and repair (separate processes), and error manifestation

(interaction scenarios).



Class 1

attr1::qualitative:Class1=good

op1()::qualitative()

Class 2

attr2::qualitative: int=good

op2()::qualitative()

Resource1

Resource

Manager

Resource Instance

(state good/faulty)

ctrl

reacts

*

*

<<uses>>

Resource2

<<uses>>

fault selection and activation
Fault injector

Resources (GRM)

Architecture design

Fig. 9.  The fault modeling architecture according to the GRM

The model transformation technology that maps fault activation and usage scenar-

ios to dependability sub-models is the message sequence chart and statechart to TPN
transformation introduced in Sect. 5.1 [15].

6 Implementation of the Model Transformation

In HIDE the enriched UML model of the target design was transformed to the mathe-

matical model (TPN for dependability evaluation) by a custom-built model transfor-
mation. Later, to avoid the impreciseness of an ad-hoc implementation, the mathe-

matically precise paradigm of graph transformations was selected as the foundation of

the definition and implementation of the model transformation. A general framework

called VIATRA (Visual Automated model TRAnsformations [11]) was worked out

that is also flexible enough to cover the changing UML standard.
In VIATRA, both the UML dialect (standard base UML and its profiles, on one

hand restricted by modeling conventions and on the other hand enriched by depend-

ability requirements and local dependability attributes) and the target mathematical

notation are specified in the form of UML class diagrams [32] following the concepts

of MOF metamodeling [24]. Metamodels are interpreted as type graphs (typed, attrib-
uted and directed graphs) and models are valid instances of their type graphs [33]. The

transformation steps are specified by graph transformation rules in the form of a 3-

tuple (LHS, N, RHS) where LHS is the left-hand side graph, RHS is the right-hand

side graph and N is an optional negative application condition. The application of the

rule rewrites the initial model by replacing the pattern defined by LHS with the pattern
of the RHS. Fig. 10 shows, for example, how an UML object of a class stereotyped as

"stateful hardware" becomes an IM node of type SFE_HW with the same name (the



source and target objects are linked together by a reference node in the figure). The

operational semantics of the transformation (i.e. the sequence of rules to be applied) is

given by a control flow graph. As both LHS and RHS can be specified visually (in the

form of UML class diagrams), we have an expressive and easy-to-understand notation
for the transformation designer.

In the case of dependability modeling, VIATRA is applied to the UML dialect de-

scribed in Sect. 3 in order to generate first the IM model according to the metamodel

given in Fig. 1 then (in a second step) the TPN model itself. The generic TPN de-

scription is then tailored to the input language of the selected tool by a minor post-

processing step. The first step of the model transformation from the point of view of

the transformation designer is depicted in Fig. 11.

S2

model : classdg = classdg_model

name : String = 'stateful hardware'

<<Stereotype>>

T1

model : IM = IM_model

name : String = N

numofInst : String = 1

<<SFE_HW>>

S1

model : classdg = classdg_model

name : String = N

<<Class>>

E1 <<stereotype>>

R1

model

<<RefNode>>

C2

<<trgNode>>

C1

<<srcClass>>

LHS RHS

Fig. 10.  Definition of a simple transformation rule

The modeler does not have to deal with these internal representations, since the ex-

ecutable program generated from the rules will perform the transformation automati-
cally [32]. The general technological concept of VIATRA is the use of the XMI stan-

dard (for arbitrary MOF-based metamodel). Accordingly, the UML CASE tool is in-

terfaced with the transformator by utilizing its XMI export facility. The output of the

transformation is again in XMI format, thus the final syntax tailoring steps can be per-

formed by XSLT or dedicated programs.
The first step of our model transformation (from UML structural diagrams to the

IM) was defined by only slightly more than 50 rules (e.g. the processing of class dia-

grams required 28 rules). The subsequent step of constructing the various modules of

the TPN can be performed either by similar graph transformation rules or by a Java

program  [28].
VIATRA is used to construct the fault trees from the statechart diagrams of the re-

dundancy managers as well. Moreover, the generic transformation from UML state-

charts to TPN was also developed in this framework.



UML
profile

Standard
UML

Transformation
rules

VIATRA
code generator

Transformation
program

VIATRA
transformation

core

Metamodel
of the IM

IM
in XMI format

successive
transformation

steps

Fig. 11.  Application of VIATRA in the first transformation step

7 Assessment of the Approach

The input of the dependability analysis is the set of UML structural diagrams. These

diagrams were enriched to allow the designer to identify redundancy structures and
provide the parameters needed for the definition of the dependability model. The ex-

tensions adhere to standard UML and to the OMG GRM profile. The restrictions im-

posed on the designer concern only the modeling of redundancy structures. The class

based redundancy approach correlates with the usual architecture of distributed fault

tolerant object-oriented systems (e.g. Fault Tolerant CORBA [23]).

The semantic correctness of the dependability model relies on the abstraction rep-
resented by the IM. In the IM, each element is assigned an internal fault activation and

repair process, while relations specify the way for the propagation of failure and repair

events. These local effects are represented in the TPN by separate subnets that can be

checked formally (contrary to the above UML diagrams, TPN has formal semantics).
The number of model elements in the transformation is in the same order of mag-

nitude as the number of model elements in the UML design. This statement derives

from the projection defined when the IM is constructed, since the TPN subnets be-

longing to IM elements have a fixed number of model elements. A hand-made model

could save on the number of modeling elements at the expenses of the modularity.

8 Conclusion

In this paper we described a transformation from structural UML diagrams to TPN

models for the quantitative evaluation of availability and reliability. Our transforma-

tion is an attempt to build first a quite abstract system-level dependability model with
tractable dimensions that can be subsequently enriched and refined by substituting

coarse representation of some elements with a more detailed one.

We identified two points in the model where the refined sub-models can be ac-

quired: both the behavioral diagrams describing redundancy and the resource usage

(based on the GRM) are candidates of model transformations that result in refined
sub-models to be included in the dependability model.



Besides the structural dependability modeling of the production cell benchmark [6],

we successfully applied the model refinement approach in the case of FT-CORBA

architectures [21].

In addition, further work is ongoing to refine the methodologies described here and
to collect evidence on the feasibility and usefulness of the approach. This work is per-

formed in the frame of the PRIDE project, supported by the Italian Space Agency,

where the transformation described in this paper  is being implemented as a part of the

'HRT UML Nice' toolset specifically tailored for the design and validation of real-time

dependable systems.

References

1. Ajmone Marsan, M., and G. Chiola: On Petri nets with deterministic and exponentially

distributed firing times. Lecture Notes in Computer Science, Vol. 226, pp. 132-145, 1987.

2. Ajmone Marsan, M., G. Balbo and G. Conte: A Class of Generalized Stochastic Petri Nets

for the Performance Analysis of Multiprocessor Systems. ACM TOCS, pp. 93-122, 1984.

3. Allmaier, S., and S. Dalibor: PANDA - Petri net analysis and design assistant. In Proc.

Performance TOOLS'97, Saint Malo, France, 1997.

4. Betous-Almeida, C., and K. Kanoun: Dependability Evaluation - From Functional to

Structural Modeling. In Proc. SAFECOMP 2001, pp 239-249, Springer Verlag, 2001.

5. Bondavalli, A., I. Majzik and I. Mura: From structural UML diagrams to Timed Petri Nets.

European ESPRIT Project 27439 HIDE, Del. 2, Sect. 4, http://www.inf.mit.bme.hu/, 1998.

6. Bondavalli, A., I. Majzik, I. Mura: Automatic Dependability Analysis for Supporting

Design Decisions in UML. Proc. Fourth IEEE Int. Symposium on High-Assurance Systems

Engineering (HASE'99), November 17-19, 1999, Washington DC, 1999, pages 64-71.

7. Bondavalli, A., M. Dal Cin, D. Latella, I. Majzik, A. Pataricza and G. Savoia: Dependabil-

ity Analysis in the Early Phases of UML Based System Design. International Journal of

Computer Systems - Science & Engineering, Vol. 16 (5), Sep 2001, pp. 265-275.

8. Chiola, G.: GreatSPN 1.5 software architecture. In Proc. Fifth International Conference on

Modelling Techniques and Tools for Computer Performance Evaluation, Torino, Italy,

1991, pp. 117-132.

9. Choi, H., V. G. Kulkarni and K. S. Trivedi: Markov regenerative stochastic Petri nets.

Performance Evaluation, Vol. 20, pp. 337-357, 1994.

10. Ciardo, G., J. Muppala and K. S. Trivedi: SPNP: stochastic Petri net package. In Proc.

International Conference on Petri Nets and Performance Models, Kyoto, Japan, 1989.

11. Csertán, Gy., G. Huszerl, I. Majzik, Zs. Pap, A. Pataricza, and D. Varró: VIATRA - Visual

Automated Transformations for Formal Verification and Validation of UML Models. In

Proc. 17th Int. Conference on Automated Software Engineering (ASE 2002), Edinburgh,

Scotland, 23-27 September 2002, IEEE CS Press, 2002.

12. Frolund, S., J. Koistinen: Quality of Service Specificaton in Distributed Object Systems

Design. In Proc. of the 5th USENIX Conf. on Object-Oriented Technology and Systems

(COOTS), May 3-7, San Diego, California, USA, 1999, pp 69-89.

13. Ganesh, J. P. , and J. B. Dugan: Automatic Synthesis of Dynamic Fault Trees from UML

System Models. Proc. of the IEEE Int. Symp. on Software Reliability Engineering,  2002

14. Goseva-Popstojanova, K., and K. S. Trivedi: Architecture Based Software Reliability. In

Proc. of the Int. Conf on Appplied Stochastic System Modeling (ASSM 2000), Kyoto, Ja-

pan, March 2000.

15. Huszerl, G., and I. Majzik, A. Pataricza, K. Kosmidis, M. Dal Cin: Quantitative Analysis of

UML Statechart Models of Dependable Systems. The Computer Journal, Vol 45(3), May

2002, pp. 260-277



16. Huszerl, G., and I. Majzik: Modelling and Analysis of Redundancy Management in Dis-

tributed Object-Oriented Systems by Using UML Statecharts. In: Proc. of the 27th Euromi-

cro Conference, pp. 200-207., Warsaw, Poland, 4-6. September 2001.

17. Huszerl, G., K. Kosmidis: Object Oriented Notation for Modelling Quantitative Aspects. In

Proc. Workshop of the International Conference on Architecture of Computing Systems

(ARCS 2002), Karlsruhe, Germany, 2002, VDE Verlag Berlin, pp. 91-100.

18. Issarny, V., C. Kloukinas, and A. Zarras: Systematic Aid for Developing Middleware Ar-

chitectures. In Communications of the ACM, Issue on Adaptive Middleware, Vol 45(6), pp

53-58, June 2002.

19. Laprie, J.-C. (editor): Dependability: Basic Concepts and Terminology. Series Dependable

Computing and Fault Tolerant Systems, volume 5, Springer Verlag, 1992

20. Laprie, J.-C. and K. Kanoun: Software Reliability and System Reliability. In M. R. Lyu

(editor), Handbook of Software Reliability Engineering, pp 27-69, McGraw Hill, New

York, 1995

21. Majzik, I., and G. Huszerl: Towards Dependability Modeling of FT-CORBA Architectures.

In A. Bondavalli, P. Thevenod-Fosse (eds.): Dependable Computing EDCC4. Proc. 4th

European Dependable Computing Conference, Toulouse, France, 23-25 October 2002,

LNCS 2485, Springer Verlag, Berlin Heidelberg, pp. 121-139, 2002.

22. Nelli, M., A. Bondavalli, and L. Simoncini: Dependability Modelling and Analysis of

Complex Control Systems: An Application to Railway Interlocking. In Proc. 2nd European

Dependable Computing Conference (EDCC-2), pp. 93-110,  Springer Verlag, 1996.

23. Object Management Group: Fault Tolerant CORBA. CORBA 2.6, Chapter 25, formal/01-

12-63, OMG Technical Committee, http://www.omg.org/, 2001.

24. Object Management Group: Meta Object Facility Version 1.3, http://www.omg.org/, Sep-

tember 1999.

25. Object Management Group: UML Profile for Schedulability, Performance, and Time. Final

adopted specification. http://www.omg.org/, 2001.

26. Object Management Group: Unified Modeling Language. Specification v1.4,

http://www.uml.org/, 2000.

27. Pataricza, A.: From the General Resource Model to a General Fault Modeling Paradigm?

Workshop on Crititcal Systems Development with UML at UML 2002, Dresden, Germany.

28. Poli, S.: Dal Linguaggio di Specifica UML ai modelli a rete di Petri stocastiche: generazi-

one per la valutazione di Dependability. Master thesis (in Italian), University of Pisa, 2000.

29. Rabah, M., and K. Kanoun: Dependability Evaluation of a Distributed Shared Memory

Multiprocessor System. In Proc. 3rd European Dependable Computing Conference (EDCC-

3), pp. 42-59, Springer Verlag, 1999.

30. Sanders, W. H., W. D. Obal II, M. A. Qureshi and F. K. Widjanarko: The UltraSAN mod-

eling environment. Performance Evaluation, Vol. 21, pp. 1995.

31. SURF-2 User guide. LAAS-CNRS, 1994.

32. Varró, D., and A. Pataricza: Metamodeling Mathematics: A Precise and Visual Framework

for Describing Semantic Domains of UML Models. In Proc. UML 2002, International

Conference on UML, Dresden, Germany, pp. 18-33, LNCS-2460, Springer Verlag, 2002.

33. Varró, D., G. Varró, and A. Pataricza: Designing the Automatic Transformation of Visual

Languages. Science of Computer Programming, 44(2002):205-227, 2002.

34. Walter, M., C. Trinitis, and W. Karl: OpenSESAME: An Intuitive Dependability Modeling

Environment Supporting Inter-Component Dependencies. In Proc. of the 2001 Pacific Rim

Int. Symposium on Dependable Computing, pp 76-84, IEEE Computer Society, 2001.

35. Xu, J., B. Randell, C.M.F. Rubira-Calsavara and R. J. Stroud: Toward an Object-Oriented

Approach to Software Fault Tolerance. In D.K. Pradhan and D.R. Avresky (eds.): Fault-

Tolerant Parallel and Distributed Systems. IEEE CS Press, pp.226-233, 1994.




