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Abstract We continue here the work initiated in [13], and analyse an SIR
epidemic model for the spread of an epidemic among the members of a small
population of N individuals, defined in terms of a continuous-time Markov
chain X . We propose a structure by levels and sub-levels of the state space of
the process X , and present two different orders, Orders A and B, for states
within each sub-level, which are related to a matrix and a scalar formalism,
respectively, when developing our analysis. Stochastic descriptors regarding
the length and size of an outbreak, the maximum number of individuals si-
multaneously infected during an outbreak, the fate of a particular individual
within the population, and the number of secondary cases caused by a certain
individual until he recovers, are deeply analysed. Our approach is illustrated
by carrying out a set of numerical results regarding the spread of the nosoco-
mial pathogen Methicillin-resistant Staphylococcus Aureus among the patients
within an intensive care unit. In this application, our interest is in analysing
the effectiveness of control strategies (the isolation of the patient initiating the
outbreak and the proper room configuration of the intensive care unit) that
intrinsically introduce heterogeneities among the members of the population.
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1 Introduction

The SIR (susceptible-infected-recovered) epidemic model is a well-known sim-
ple mathematical model, originally developed by Kermack and McKendrick
[22] and widely analysed in the literature both from a deterministic [33] and a
stochastic [2] perspective, which represents the spread of a disease throughout
a population of individuals. These individuals can be, at any time instant,
in three different states regarding the disease: susceptible (S), infected (I) or
recovered (R). The process is then described, in the stochastic setting, as a
continuous-time Markov chain (CTMC) {X(t) = (I(t), R(t)) : t ≥ 0}, where
I(t) and R(t) amount to the total number of infected and recovered individ-
uals, respectively, at time t. By considering a closed homogeneous population
of N individuals, the total number of susceptible individuals at time t is given
by S(t) = N − I(t) − R(t), and the infinitesimal transition probabilities are
described as

P (X(t+∆t) = (i′, r′)|X(t) = (i, r)) =























β
N
i(N − i− r)∆t+ o(∆t),

if (i′, r′) = (i+ 1, r),
γi∆t+ o(∆t),

if (i′, r′) = (i− 1, r + 1),
0, otherwise.

This expression amounts to the consideration of a Poisson process with rate
β for the infectious contacts made by a typical infected individual, and the
assumption that any infected individual recovers after an exponentially dis-
tributed random time with mean 1/γ, remaining then in state R indefinitely.
During the last decades, different variants of this model have been considered
addressing different applications in reality, for example: the SIRS (susceptible-
infected-recovered-susceptible) epidemic model considers that recovered indi-
viduals become susceptible again after an exponentially distributed time pe-
riod, which may represent a temporary immunity that fades away; the con-
sideration of latency periods where individuals are infected but not infectious
yields the SEIR (susceptible-exposed-infected-recovered) model; and SI1I2R-
type models analyse epidemic processes where individuals can be in different
infectious states, these states representing either two competing epidemics
propagating within the same population [36] or different severity stages of the
same infection [8]. We refer the reader to [10] for a detailed survey on stochastic
epidemic models.

Increasingly research efforts within this topic are addressed to analyse how
different external factors, such as vaccination strategies [12,19] or human be-
haviour [15] through information transmission [18,23], affect the propagation
dynamics of the epidemic. On the other hand, different attempts have been
also made to relax the homogeneous assumption for individuals within the
population. Without any aim of an exhaustive enumeration, it is worth men-
tioning the work by Ball [6] where the author considers populations structured
in households or groups of individuals, by Ball et al. [7] where there exist differ-
ent types of individuals within the population, or cellular automata approaches
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such as the work in [44], developed in order to deal with spatial, demographic
or geographical patterns, as well as references therein. However, the considera-
tion of a high degree of heterogeneity within the population has usually yielded
the construction of appropriate networks or graphs in order to represent the
contact structure of the individuals within the population when analysing the
disease spread dynamics [30, Chapter 17]. In particular, the consideration of
the stochastic SIR epidemic model within a graph where individuals are rep-
resented by nodes, and potential infectious contacts by edges theoretically
yields a CTMC with 3N states, which makes unfeasible any analytical or com-
putational treatment [37] even for moderate values of N . Different approaches
have been followed in the literature, and they take some advantage of the
particular network structures arising in several applications in reality, such as
scale-free networks [32] in problems related to social networks and the Inter-
net, or small-world networks, introduced by Watts and Strogatz [43], which
can be considered as a half-way point between lattices and random graphs.
In general, analysing the dynamics of the spread of an epidemic within a net-
work is a difficult problem from the analytical point of view, so that it is
usual to follow Monte Carlo simulating approaches, or other approximating
techniques such as the mean-field approximation [31,35], where individuals
are classified and analysed in terms of their degree distribution, or the re-
cently proposed N-intertwined approximation [42], originally developed for a
SIS (susceptible-infected-susceptible) epidemic model and recently adapted
for its SIR counterpart [46]; see [25] for a detailed comparison between these
methods.

Our interest in this paper is in analysing the dynamics of the spread of the
disease in a SIR epidemic model for an heterogeneous population, through
the analysis of its corresponding exact 3N -state CTMC. Moreover, we consider
the case in which individuals can be infected due to external sources, which
is an addition to the classic SIR setting. We provide here efficient procedures
to analyse conveniently defined stochastic descriptors for the epidemic spread,
being applicable in the relevant situation where N is small, which is the case in
problems such as the epidemic spread throughout the members of a family [9,
17] or among the patients within an intensive care unit [4,11,14,28]. Although
results developed in this paper are, theoretically, valid regardless the value of
N , the computational nature of our procedures makes unfeasible their appli-
cation once N exceeds small values (see Section 5 and Appendix C), and their
interest beyond these values should be considered strictly mathematical. Thus,
we alert the reader that our approach focuses on small populations or groups
of individuals where the proper consideration of every heterogeneity within
the population is more crucial than the introduction of additional individuals
in the model which do not necessarily play a significant role. Moreover, while
quantities exactly computed here may be efficiently approximated by means
of stochastic simulations, our analysis contributes to shed some light on the
space of states and the infinitesimal generator of networked Markovian epi-
demic processes, and on how these affect the study of different characteristics
of interest from an analytical and computational perspective.
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We point out here that the approach followed in this paper complements the
work initiated in [13], where the application of a matrix formalism together
with the usage of Laplace-Stieltjes transforms, probability generating func-
tions, phase-type distributions [24, Chapter 2], level-dependent quasi-birth-
and-death processes [24, Chapter 12] and auxiliary absorbing Markov chains
are used when analysing a SIS epidemic model. Moreover, the particular ap-
plication of this approach to the spread of the syndrome Acute coryza among
the members of a family is studied in [13] by using empirical data of [9]. The
matrix formalism followed in [13] is possible by means of considering a proper
order of states within the space of states of the corresponding CTMC, which
is similar to the order proposed in [39]. An alternative order when analysing
the dynamics of the SIS epidemic model is the one considered in [42], which
yields a particular fractal structure for the infinitesimal generator of the CTMC
(see [42, Figures 2 and 3]), for which computational exploitation is an open
question [42]. It is also worth mentioning the work in [35], where an exact ex-
pression for the infinitesimal generator is obtained for a general class of models
representing spreading processes in multilayer complex networks.

In order to analyse the dynamics of the disease spread in the SIR epidemic
model, we propose here both a scalar and a matrix formalism, implemented by
means of two different orders for the state space of the CTMC under consid-
eration. Under both formalisms, we define several stochastic descriptors when
analysing the propagation dynamics during an outbreak. The interpretation of
these descriptors, which are partially inspired in their applicability for the par-
ticular case of the spread of nosocomial infections within an intensive care unit,
is illustrated here by carrying out a series of numerical results for analysing
the spread of Methicillin-resistant Staphylococcus Aureus throughout the pa-
tients within an intensive care unit. Finally, we discuss about the convenience
of using each formalism by taking into account not only their computational
performance, but also their adaptability when variants of the SIR epidemic
model are considered.

The paper is organised as follows. In Section 2, the Markovian process
modeling the epidemic spread throughout the population is defined, and two
different orders, termed Orders A and B, for states within the state space of
this Markov chain are proposed. In Section 3, we define different stochastic
descriptors of interest in our process for analysing the dynamics of the propa-
gation of the infection within the population during an outbreak, and iterative
schemes for computing related quantities are given in Appendix C. In Section
4, we illustrate our approach with an application to the spread of an epidemic
among the patients within an intensive care unit, under the assumption that
no discharge of patients occurs during the outbreak. Finally, some discussion
is given in Section 5, where the impact of this assumption is also analysed.
Standard notation used throughout the paper is presented in Appendix A,
while an iterative procedure for computing the infinitesimal generator of the
Markov chain under study is given in Appendix B.
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2 Mathematical model

We consider throughout this paper a SIR epidemic model for the spread of
an infection throughout the members of a small heterogeneous population of
individuals. Let us consider a graph G = (N ,L) where N = {1, . . . , N} is the
set of vertices or nodes, representing N > 0 individuals within a population,
and L ⊆ N ×N is the set of edges or links in the graph. In a general setting,
we analyse the directed case, so that it is possible to have (i, j) ∈ L and
(j, i) /∈ L. The link (i, j) represents some kind of interaction from individual i
towards individual j, so that if individual i is infected at certain time instant,
he can eventually infect j due to contact. Each edge (i, j) has a corresponding
weight βij ≥ 0 which represents the amount of interaction from i towards j,
so that βij = 0 is equivalent to (i, j) /∈ L. These weights are stored in the
adjacency matrix B = [βij ]i,j∈N , so that our assumption regarding a directed
graph means here that B is not necessarily symmetric.

At time t, each individual (node) of the population can be in three possible
states: susceptible (S), infected (I) or recovered (R). A susceptible node i ∈ N
can eventually become infected due to:

1. An external source of infection (which amounts to, for example, individuals
which have not been explicitly considered in the network). This occurs after
an exponentially distributed random time with rate λi ≥ 0.

2. An infectious contact with an infected individual within the network, j ∈
N , which occurs after an exponentially distributed random time with rate
βji ≥ 0.

An infected node i ∈ N recovers after an exponentially distributed random
time with rate γi ≥ 0, acquiring immunity and remaining in this state indef-
initely. Previous assumptions yield a CTMC X = {X(t) = (X1(t), X2(t), . . . ,
XN (t)) : t ≥ 0}, where each random variable Xi(t) represents the state of the
individual i at time t, so that it can take values S, I or R. The space of states
of X is then given by S = {S, I, R}N .

A detailed analysis of X requires to order states within S. In this paper we
propose two different orders for states within S, Orders A and B, which per-
mit the definition and subsequent analysis of stochastic descriptors of interest
in Section 3, and the development of efficient matrix and scalar algorithms,
respectively, for computing related quantities.

2.1 The state space: orders

For any state x ∈ S, we define sets of nodes S(x) = {i ∈ N : xi = S},
I(x) = {i ∈ N : xi = I} and R(x) = {i ∈ N : xi = R}, and the states Sj(x),
Ij(x) and Rj(x) obtained from x by replacing xj by S, I and R, respectively,
for any j ∈ {1, . . . , N}. Then, it is clear that Sj(x) = x if and only if j ∈ S(x),
and similarly for Ij(x) and Rj(x). This notation permits to describe in a
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precise and simple manner the non-null infinitesimal transition rates of X as

qx,y =











λj +
∑

i∈I(x)

βij , if xj = S and y = Ij(x),

γj , if xj = I and y = Rj(x),
0, otherwise,

(1)

for any node i ∈ {1, . . . , N}. Eq. (1) follows from the fact that in the Markovian
process X , susceptible individuals are infected one at a time (which is related
to y = Ij(x) in Eq. (1), representing the infection of individual j), and infected
individuals are recovered one at a time (which is related to y = Rj(x) in Eq.
(1), representing the recovery of individual j). For convenience, we from now
on assume that every individual is able to recover from the disease, γi > 0
for all i ∈ {1, . . . , N}. Since we are interested in the dynamics of the epidemic
until no infected individual remains in the population (see Section 3), these
are the cases in which our analysis is consistent; we refer the reader to Section
5 for some discussion regarding different situations.

In order to analyse X , it is necessary to give some structure to S. It has
been recently shown the convenience of grouping states x ∈ S in terms of
the number of infected, susceptible or recovered individuals within x [13,39].
In particular, the labelling of states in [13], which focuses on the number of
infected individuals for the SIS epidemic model, yields an elegant and efficient
structure of the infinitesimal generator of X (see [13, Equation (2)] and [39,
Section 2.1]). Thus, we suggest to structure the space of states as

S =
N
⋃

r=0

L(r), L(r) =
N−r
⋃

i=0

L(r; i), (2)

where L(r) = {x ∈ S : #R(x) = r}, L(r; i) = {x ∈ S : #R(x) = r,#I(x) =
i}, and where #A represents the cardinality of set A. Then,

J(r; i) = #L(r; i) =

(

N

r|i

)

, and J(r) = #L(r) =

N−r
∑

i=0

J(r; i) =

(

N

r

)

,

for any 0 ≤ r ≤ N , 0 ≤ i ≤ N − r, where we make use of the notation

(

N

r|i

)

=

(

N

r

)(

N − r

i

)

=
N !

r!i!(N − r − i)!
, and

(

N

r

)

=
N !

r!(N − r)!
.

Since the space of states depends on the population size N , we propose for the
rest of this section to use the notation S(N), L(N)(r), L(N)(r; i), J (N)(r) and
J (N)(r; i). The organisation by levels and sub-levels of S(N) proposed in (2) and
the infinitesimal transition rates given in (1) yield the infinitesimal generator
Q(N) of X . In particular, Q(N) depends on the particular population size N ,
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has dimensions 3N × 3N , and is given by


















Q0,0(N) Q0,1(N) 0J(N)(0)×J(N)(2) . . . 0J(N)(0)×J(N)(N)

0J(N)(1)×J(N)(0) Q1,1(N) Q1,2(N) . . . 0J(N)(1)×J(N)(N)

0J(N)(2)×J(N)(0) 0J(N)(2)×J(N)(1) Q2,2(N) . . . 0J(N)(2)×J(N)(N)

...
...

...
. . .

...
0J(N)(N−1)×J(N)(0) 0J(N)(N−1)×J(N)(1) 0J(N)(N−1)×J(N)(2) . . . QN−1,N (N)
0J(N)(N)×J(N)(0) 0J(N)(N)×J(N)(1) 0J(N)(N)×J(N)(2) . . . QN,N (N)



















.

(3)
We point out here that L(N)(N) = {(R, . . . , R)} so that QN,N (N) = 0 and
J (N)(N) = 1. The bidiagonal-by-blocks structure of Q(N) becomes clear by
noting that, from a state x ∈ L(N)(r) ⊂ S(N), the possible transitions are
towards either states in L(N)(r) (if an infection occurs) or states in L(N)(r+1)
(if a recovery occurs). Then, each block Qr,r′(N) for r′ ∈ {r, r + 1} contains,
in an ordered manner, the infinitesimal transition rates for transitions from
states in L(N)(r) to states in L(N)(r′). Moreover, from a state x ∈ L(N)(r; i) ⊂
L(N)(r), possible transitions are towards states in L(N)(r; i+1) or in L(N)(r+
1; i− 1), so that sub-blocks Qr,r(N) and Qr,r+1(N) are given by

Qr,r(N) =



















Q0,0
r,r (N) Q0,1

r,r (N) 0 . . . 0
0 Q1,1

r,r (N) Q1,2
r,r (N) . . . 0

0 0 Q2,2
r,r (N) . . . 0

...
...

...
. . .

...
0 0 0 . . . QN−r−1,N−r

r,r (N)
0 0 0 . . . QN−r,N−r

r,r (N)



















, 0 ≤ r ≤ N,

Qr,r+1(N) =



















0 0 . . . 0

Q1,0
r,r+1(N) 0 . . . 0

0 Q2,1
r,r+1(N) . . . 0

...
...

. . .
...

0 0 . . . 0

0 0 . . . QN−r,N−r−1
r,r+1 (N)



















, 0 ≤ r ≤ N − 1,

where dimensions of null sub-blocks 0 are omitted. Each sub-block Qi,i′

r,r′(N)
contains, in an ordered manner, the infinitesimal transition rates for transitions
from states in L(N)(r; i) to states in L(N)(r′; i′), for (r′, i′) ∈ {(r, i), (r, i +
1), (r + 1, i− 1)}.

Once the general structure of Q(N) is in hand, obtaining explicit expres-

sions for sub-blocks Qi,i′

r,r′(N) requires to define a particular order for the states

inside each sub-level L(N)(r; i), for 0 ≤ r ≤ N , 0 ≤ i ≤ N − r. Regardless of
the order considered, sub-blocks Qi,i

r,r(N) are diagonal matrices with elements
−qx = qx,x = −(

∑

j∈S(x)(λj +
∑

i∈I(x) βij) +
∑

i∈I(x) γi) within the diagonal,

so that Q(N) is conservative.
In Subsection 2.1.1 we propose the reverse lexicographic order (Order A)

for states inside each sub-level L(N)(r; i). This order, inspired in the order



8 M. López-Garćıa

proposed in [13] for the SIS epidemic model, permits an elegant iterative con-
struction of the infinitesimal generator Q(N). By giving a pivotal role to the
last individual N , this order has the advantage of allowing us the construction
of efficient matrix iterative procedures when studying stochastic descriptors
defined in Section 3. Moreover, the matrix approach implemented in Section
3 and Appendix C by means of Order A, allows one to adapt arguments pre-
sented in this paper to different epidemic models (e.g., the SIS epidemic model
[13], or an especial version of the SIRS epidemic model in our discussion in
Section 5).

On the other hand, in order to work with a scalar formalism when analysing
stochastic descriptors in Section 3, one may need to be able to localise each
state x within its sub-level L(N)(r; i). Although this might be possible to be
done by using Order A, we propose here to follow, to this end, the more
natural lexicographic order (Order B) for states within each sub-level, so that
Eq. (4) is obtained in Subsection 2.1.2. See Section 5 and Appendix C for some
discussion about the convenience of following each approach.

2.1.1 Reverse lexicographic order: Order A

In this subsection, Order A gives a crucial role to the last individual (the Nth
node) in the population. In particular, Order A consists of ordering states
x ∈ L(N)(r; i), for 0 ≤ r ≤ N and 0 ≤ i ≤ N − r, following steps (i)-(iv):

(i) To translate states of S(N) = {S, I, R}N into states of {0, 1, 2}N with
S ≡ 0, I ≡ 1 and R ≡ 2.

(ii) To order states within L(N)(r; i) in a lexicographical manner.
(iii) To turn over states (x1, . . . , xN ) ∈ L(N)(r; i) → (xN , . . . , x1) ∈ L(N)(r; i).
(iv) To translate again states of {0, 1, 2}N into states of S(N) = {S, I, R}N .

For example, order of states inside level L(4)(2; 1) is given in Figure 1. Order
A defined by steps (i)-(iv) for states within each sub-level L(N)(r; i) yields
an iterative construction of Q(N). This procedure (Appendix B) starts with
the trivial matrix Q(1) and computes Q(M) from Q(M − 1) until reaching
the desired value M = N . This iterative scheme can be constructed thanks
of Order A properly reflecting the relationship between levels L(N)(r) and
sub-levels L(N)(r; i) and levels L(N−1)(r′) and sub-levels L(N−1)(r′; i′).

2.1.2 Lexicographic order: Order B

In Order B, we order states in L(N)(r; i) lexicographically, with the identi-
fication S ≡ 0, I ≡ 1 and R ≡ 2. That is, sub-level L(N)(r; i) is ordered
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Fig. 1 Order of states within sub-level L(4)(2; 1)

as

Position State x
in L(N)(r; i) x1 . . . xN−r−i xN−r−i+1 . . . xN−r−1 xN−r xN−r+1 xN−r+2 . . . xN−1 xN

0 0 . . . 0 1 . . . 1 1 2 2 . . . 2 2
1 0 . . . 0 1 . . . 1 2 1 2 . . . 2 2
2 0 . . . 0 1 . . . 1 2 2 1 . . . 2 2
...

...
...

...
...

...
...

...
...

...
...

...
...

r 0 . . . 0 1 . . . 1 2 2 2 . . . 2 1
r + 1 0 . . . 0 1 . . . 2 1 1 2 . . . 2 2
r + 2 0 . . . 0 1 . . . 2 1 2 1 . . . 2 2
...

...
...

...
...

...
...

...
...

...
...

...
...

The localisation of a particular state x inside L(N)(r; i) is possible when
following Order B. In particular, for any state x ∈ L(N)(r; i) we may define
Posir(x) as its position within L(N)(r; i). Then, since sub-level L(N)(r; i) con-
sists of J (N)(r; i) =

(

N
r|i

)

states lexicographically ordered, state (0, . . . , 0, 1, . . . ,

1, 2, . . . , 2) is in position 0 within L(N)(r; i) while state (2, . . . , 2, 1, . . . ,
1, 0, . . . , 0) is in position J (N)(r; i) − 1. For obtaining Posir(x) for any state
x ∈ L(N)(r; i), we note that this state can be reexpressed as a two-arrays set
containing the positions of digits 1 and 2 as

x ≡ {(a1, . . . , ai), (b1, . . . , br)}.

That is, values in (a1, . . . , ai) represent those individuals who are infected
according to state x, while values in (b1, . . . , br) represent those individuals
who are recovered according to state x. Arrays (a1, . . . , ai) and (b1, . . . , br)
are always considered ordered, and states with no infected individuals or no
recovered individuals are represented by {(), (b1, . . . , br)} and {(a1, . . . , ai), ()},
respectively. Then, given a sub-level L(N)(r; i), state {(N−r−i+1, N−r−i+
2, . . . , N − r), (N − r+1, . . . , N)} is in position 0, while state {(r+1, . . . , r+
i), (1, . . . , r)} is in the last position J (N)(r; i) − 1. Given an arbitrary state
x = {(a1, . . . , ai), (b1, . . . , br)} ∈ L(N)(r; i), we define its associated list of
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indices (j1, . . . , jr) such that ajk−1 < bk < ajk , jk ∈ {1, . . . , i + 1} for all
k ∈ {1, . . . , r} (with special cases jk = 1 if bk < a1 and jk = i+ 1 if bk > ai).
Then, the position Posir(x) of x within L(N)(r; i) is given by

Posir(x) =

r
∑

k=0





jk+1−1
∑

l=jk

(

N − al
r − k|i− l + 1

)



+

r
∑

k=1

((

N − bk
r − k + 1|i− (jk − 1)

)

+

(

N − bk
r − k + 1|i− jk

))

, (4)

where empty summations
∑b

a with a > b and binomial coefficients
(

a
b|c

)

with

b + c > a are considered null, and where j0 = 1 and jr+1 = i + 1 are
implicitly defined for convenience. The proof of Eq. (4), which is omitted
here, is based in combinatorial arguments for computing the number of states
y = {(ã1, . . . , ãi), (b̃1, . . . , b̃r)} preceding x within L(N)(r; i).

For example, state x = (0, 1, 1, 2, 0, 1, 1, 2, 2, 1) ∈ L(10)(3; 5) can be reex-
pressed as x = {(2, 3, 6, 7, 10), (4, 8, 9)}, with associated list of indices (j1, j2, j3)
= (3, 5, 5) since a2 < b1 < a3, a4 < b2 < a5 and a4 < b3 < a5. Then, L

(10)(3; 5)
contains J (10)(3; 5) = 2520 states, state (0, 0, 1, 1, 1, 1, 1, 2, 2, 2) is in position 0
in L(10)(3; 5) and state (2, 2, 2, 1, 1, 1, 1, 1, 0, 0) is in position J (10)(3; 5) − 1 =
2519. Finally, following the Order B, state x = (0, 1, 1, 2, 0, 1, 1, 2, 2, 1) is in
position Posir(x) = 173 within L(10)(3; 5) computed from Eq. (4).

3 Stochastic descriptors

In this section, we focus on four particular stochastic descriptors that provide
information about the propagation dynamics of the epidemic throughout the
network, and they are related to an outbreak. An outbreak of the epidemic
is defined as the time interval since a particular individual is infected (and
then, propagation of the disease begins from a state x ∈ L(N)(0; 1)) until no
infected individuals remain in the population (arrival to a state y ∈ L(N)(r; 0)
for some r ∈ {1, . . . , N}). For a particular outbreak starting in x ∈ L(N)(0; 1),
we define the following descriptors:

– Population descriptors:
1. Length and size of the outbreak: if every individual is infected during the

outbreak, the state at the end of the outbreak is trivially (R, . . . , R).
If only a sub-set of individuals is infected during the outbreak, then
the state at the end of the outbreak is y ∈ L(N)(r; 0) for some value
1 ≤ r ≤ N − 1. Our interest is in the total duration of the outbreak
and the number of recovered individuals when it ends.

2. Maximum number of individuals simultaneously infected during the out-

break: this descriptor permits to measure the amount of resources needed
when dealing with the epidemic.

– Individual descriptors:
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3. Probability of a particular node suffering the disease during the out-

break, type of infection suffered and time until this occurs: these descrip-
tors permit to analyse individual fate (whether a particular individual
is infected or not during the outbreak, as well as whether this infec-
tion is directly caused by an external source or by a contact within the
network). They allow us to understand the susceptibility of each indi-
vidual within the network to the network itself and to external sources
of infection, so that quantitatively-based decisions could be made under
individual basis regarding vaccination and/or isolation strategies.

4. Exact reproduction number of each node: this measures the number of
secondary infections caused by a particular individual until he recovers
[3,34]. This descriptor provides information on the infectiousness of
each particular individual within the population.

We point out here that an outbreak finishes when X arrives to a state
y ∈ L(N)(r; 0) for some r ∈ {1, . . . , N}, which may or may not be an absorbing
state in X (depending on the particular values of parameters βij , λi and γi).
Descriptors 1-4 may be analysed in an alternative manner if they were defined
for the total time period until the process reaches any absorbing state y ∈
L(N)(r; 0) for some r ∈ {1, . . . , N}. In this situation, arguments in Section 3
may be adapted, which is out of the scope of this paper.

3.1 Length and final size of an outbreak

Since the population size N is fixed, the superscript N is removed from nota-
tion from now on. We are interested in the dynamics of the process until no
infected individuals remain in the population, hence the state space is split in

S = C ∪ C0,

where C = {x ∈ S : #I(x) ≥ 1} = ∪N
r=0 ∪N−r

i=1 L(r; i) and C0 = {x ∈ S :
#I(x) = 0} = ∪N

r=0L(r; 0). We define the random variable

Tx = “Time until the process reaches, for the first time, the subset C0,

given that the current state of X is x ∈ C”,

which amounts to the length of the outbreak when x is the current state. The
size of the outbreak can be analysed in terms of the random variable

Rx = “Number of recovered individuals at the end of the outbreak, given that

the current state of X is x ∈ C”,

taking values among {#I(x) + #R(x), . . . , N}.
In order to study these random variables, we analyse the auxiliary process

X̃ defined over S̃ = C ∪{1}∪{2}∪ · · · ∪ {N}, where states R̄ ∈ {1, . . . , N} are
absorbing macro-states in the CTMC X̃ , and they are constructed from S by
lumping all the states within L(1; 0), L(2; 0), . . . , and L(N ; 0), respectively.
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That is, the absorption of the process X̃ into a macro-state R̄ ∈ {1, . . . , N}
represents the finalisation of the outbreak in the original process, with R̄ final
recovered individuals. Transitions between states in C for the process X̃ are
maintained from those ones in X . Transitions from states in C towards states
in L(r; 0) ⊂ C0 in the original process are translated into transitions from
states in C towards the macro-state R̄ = r for process X̃ .

From the previous construction we note that the time Tx until the end of
the outbreak in the original process, given an initial state x ∈ C, corresponds
to the time until absorption in {1} ∪ · · · ∪ {N} in the auxiliary process. This
absorption time is well-known to follow a continuous phase-type (PHc) distri-
bution; see e.g. [24, Chapter 2]. Then, its probability density function can be
obtained in terms of the matrix exponential of a particular sub-matrix of the
infinitesimal generator of X̃ that, at the same time, can be obtained from the
infinitesimal generator of X iteratively computed in Appendix B. However, the
computation of a matrix exponential is not possible in general in an exact way,
and its numerical approximation is computationally expensive [29]. Thus, we
propose here to analyse the Laplace-Stieltjes transforms of Tx by making use
of the particular structure by levels and sub-levels of C, permitting to study
in a joint manner the random variables of interest Tx and Rx.

We note that, for any R̄ ∈ {1, . . . , N}, the absorption probability P(Rx =
R̄) equals the probability P(Tx(R̄) < ∞) where Tx(R̄) is defined as

Tx(R̄) = “Time until absorption of process X̃ into the macro-state R̄, given

that the current state of X̃ is x ∈ C”.

Since absorption of X̃ may occur into any of the absorbing states R̄ ∈ {1, . . . , N},
the random variable Tx(R̄) is infinite with positive probability, and Tx(R̄) < ∞
is equivalent to the absorption exactly occurring into R̄. Thus, we consider the
Laplace-Stieltjes transforms

φx(R̄; z) = E
[

e−zTx(R̄)1{Tx(R̄)<∞}

]

, ℜ(z) ≥ 0,

for any x ∈ C, R̄ ∈ {1, . . . , N}, where 1{Tx(R̄)<∞} is a random variable taking

the value 1 if Tx(R̄) < ∞ and 0 otherwise, so that the previous Laplace-
Stieltjes transforms are restricted to the sample paths verifying Tx(R̄) < ∞.

The moments of Tx(R̄), m
(l)
x (R̄) = E[(Tx(R̄))l1{Tx(R̄)<∞}], are obtained as

m(l)
x (R̄) =

dl

dzl
φx(R̄; z)

∣

∣

∣

∣

z=0

, l ≥ 1, x ∈ C.

The random variables Tx and Rx, can be then analysed in terms of

P(Rx = R̄) = P(Tx(R̄) < ∞) = φx(R̄; 0), x ∈ C, R̄ ∈ {1, . . . , N},

φx(z) = E
[

e−zTx

]

=
N
∑

R̄=1

φx(R̄; z), ℜ(z) ≥ 0, x ∈ C, (5)

m(l)
x = E

[

(Tx)
l
]

=

N
∑

R̄=1

m(l)
x (R̄), l ≥ 1,
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and the computation of the probability density function of Tx could be ob-
tained by numerical inversion of the transform φx(z); see e.g. [1]. We point out
that this is well-known to be computationally expensive as well, since it is com-
parable to the computation of the matrix exponential of a sub-matrix of the
infinitesimal generator, which on the other hand could be achieved by efficient

methods [21,38]. We pursue here to compute the different moments m
(l)
x (R̄)

and probabilities P(Rx = R̄), by analysing first the transforms φx(R̄; z), and
refer the reader to [24, Section 2.8] and references therein for a discussion
on the different methods for computing the probability density function of a
phase-type distribution, where the uniformization method is presented as a
particularly suitable solution.

The computation of restricted transforms φx(R̄; z), for a fixed value R̄ ∈
{1, . . . , N}, can be accomplished by following the first-step argument

φx(R̄; z) =
∑

j∈S(x)

λj +
∑

k∈I(x)

βkj

z + qx
φIj(x)(R̄; z) +

∑

k∈I(x)

γk
z + qx

φRk(x)(R̄; z),

(6)

for any x ∈ C, where Rk(x) ≡ R̄′ if x ∈ L(R̄′ − 1; 1) and xk = 1, for any
R̄′ ∈ {1, . . . , N}. Eq. (6), for a given fixed value R̄ ∈ {1, . . . , N}, yields a
finite system of equations that relates the restricted transforms φx(R̄; z) for
states in C, with the boundary conditions φR̄′(R̄; z) = 0 for R̄′ 6= R̄ with
R̄′ ∈ {1, . . . , N}, φR̄(R̄; z) = 1, and φx(R̄; z) = 0, for any x ∈ C with #I(x) +
#R(x) > R̄. This system of equations can be written in matrix form as

g(R̄; z) = A(R̄; z)g(R̄; z) + a(R̄; z), (7)

where restricted transforms are stored in the column vector g(R̄; z), which is
structured as

g(R̄; z) =











g0(R̄; z)
g1(R̄; z)

...
gR̄−1(R̄; z)











, gr(R̄; z) =











g1
r(R̄; z)

g2
r(R̄; z)

...

gR̄−r
r (R̄; z)











, 0 ≤ r ≤ R̄− 1.(8)

Matrix A(R̄; z) has the same bidiagonal-by-blocks structure than Q(N)
in (3), where quantities J (N)(r) are replaced by J̄(r) = #L̄(r) = #{x ∈ C :

#I(x) + #R(x) ≤ R̄} =
∑R̄−r

i=1

(

N
r|i

)

, and sub-matrices Qr,r′(N) are replaced

by sub-matrices

Ar,r(R̄; z) =



















0 A1,2
r,r (z) 0 . . . 0 0

0 0 A2,3
r,r (z) . . . 0 0

0 0 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 AR̄−r−1,R̄−r
r,r (z)

0 0 0 . . . 0 0



















, 0 ≤ r ≤ R̄− 1,
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Ar,r+1(R̄; z) =





















0 0 . . . 0 0

A2,1
r,r+1(z) 0 . . . 0 0

0 A3,2
r,r+1(z) . . . 0 0

...
...

. . .
...

...

0 0 . . . AR̄−r−1,R̄−r−2
r,r+1 (z) 0

0 0 . . . 0 AR̄−r,R̄−r−1
r,r+1 (z)





















,

for 0 ≤ r ≤ R̄ − 2. Sub-matrices Ai,i′

r,r′(z) are obtained by dividing each xth

row of sub-matrices Qi,i′

r,r′(N) of the infinitesimal generator by z+ qx. Finally,

a(R̄; z) =
(

0T , . . . ,0T , (A1,0
R̄−1,R̄

(z)eJ(R̄;0))
T
)T

.

The particular structure ofA(R̄; z) can be used for solving (7) by backward
substitution, so that Algorithm 1M (Part 1) is obtained and described in
Appendix C. Since P(Rx = R̄) = φx(R̄; 0) from (5), the probability mass
function of Rx is stored in the xth row of vector gi

r(R̄; z), where x ∈ L(r; i)
and we vary R̄ ∈ {1, . . . , N}. In particular, transforms corresponding to initial
states representing the beginning of an outbreak are stored within g1

0(R̄; z).

Every lth order restricted moment of Tx(R̄) can be obtained by successive
differentiation of Eq. (6). In particular, this yields

m(l)
x (R̄) =

∑

j∈S(x)

λj +
∑

k∈I(x)

βkj

qx
m

(l)
Ij(x)

(R̄) +
∑

k∈I(x)

γk
qx

m
(l)
Rk(x)

(R̄) (9)

+
l

qx
m(l−1)

x (R̄), l ≥ 1,

withm
(0)
x (R̄) = φx(R̄; 0). These moments can be stored inm(l)(R̄) = (m

(l)
0 (R̄)T ,

. . . ,m
(l)

R̄−1
(R̄)T )T , with sub-vectorsm

(l)
r (R̄) = (m

1,(l)
r (R̄)T , . . . ,m

R̄−r,(l)
r (R̄)T )T ,

for 0 ≤ r ≤ R̄ − 1. Then, Eq. (9) yields a system similar to (7), and similar
arguments than those ones in Algorithm 1M (Part 1) apply for obtaining Al-
gorithm 1M (Part 2) for computing m(l)(R̄). This procedure works efficiently
by computing moments of order p from previously computed moments of order
(p − 1), with m(0)(R̄) = g(R̄; 0) obtained from Algorithm 1M (Part 1), until

desired value p = l is reached. Once moments m
(l)
x (R̄) are in hand, the desired

lth order moment m
(l)
x of the length of the outbreak is given by Eq. (5).

By applying Order A, Algorithm 1M can be implemented once the in-
finitesimal generator Q(N) has been iteratively constructed (Appendix B).
However, the computational performance of this scheme can be improved by
working in a scalar manner with Order B instead. In particular, given a state
x = {(a1, . . . , ai), (b1, . . . , br)} ∈ L(r; i), its corresponding Laplace-Stieltjes
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transform can be written as φx(R̄; z) = φ
(a1,...,ai)
(b1,...,br)

(R̄; z). Then, Eq. (6) is

φ
(a1,...,ai)
(b1,...,br)

(R̄; z) =
∑

j ∈ {1, . . . , N}
j /∈ {a1, . . . , ai}
j /∈ {b1, . . . , br}

λj +
i
∑

i′=1

βai′ j

z + q
(a1,...,ai)
(b1,...,br)

φ
(a1,...,j,...,ai)
(b1,...,br)

(R̄; z) (10)

+

i
∑

i′=1

γai′

z + q
(a1,...,ai)
(b1,...,br)

φ
(a1,...,ai′−1,ai′+1,...,ai)

(b1,...,ai′ ,...,br)
(R̄; z).

Eq. (10) permits to obtain transforms corresponding to initial states x =
{(a1, . . . , ai), (b1, . . . , br)} ∈ L(r; i), which can be stored in vectors gi

r(R̄; z) in a
similar way to (8), from transforms corresponding to initial states y ∈ L(r; i+

1) and z ∈ L(r+1; i−1). Then, by considering known values φ
()
(b1,...,bR̄)(R̄; z) =

1 for any (b1, . . . , bR̄), φ
()
(b1,...,bR̄′ )

(R̄; z) = 0 for any (b1, . . . , bR̄′) and R̄′ 6= R̄,

and φ
(a1,...,ai)
(b1,...,br)

(R̄; z) = 0 for any {(a1, . . . , ai), (b1, . . . , br)} with i + r > R̄,

Eq. (10) is directly implemented in Algorithm 1S (Part 1), given in Appendix
C, for obtaining the desired Laplace-Stieltjes transforms. We point out that
Algorithm 1S (Part 1) works in a scalar way by directly applying Eq. (10), and
its practical implementation is possible by making use of Eq. (4) for localising
the transform within gi

r(R̄; z) corresponding to each state x ∈ L(r; i). Finally,

by differentiating Eq. (10) we have that m
(l)
x (R̄) = m

(a1,...,ai),(l)
(b1,...,br)

(R̄) equals

m(l)
x (R̄) =

∑

j ∈ {1, . . . , N}
j /∈ {a1, . . . , ai}
j /∈ {b1, . . . , br}

λj +
i
∑

i′=1

βai′ j

q
(a1,...,ai)
(b1,...,br)

m
(a1,...,j,...,ai),(l)
(b1,...,br)

(R̄) +

i
∑

i′=1

γai′

q
(a1,...,ai)
(b1,...,br)

×m
(a1,...,ai′−1,ai′+1,...,ai),(l)

(b1,...,ai′ ,...,br)
(R̄) +

l

q
(a1,...,ai)
(b1,...,br)

m
(a1,...,ai),(l−1)
(b1,...,br)

(R̄),(11)

so that Algorithm 1S (Part 2) is constructed for the computation of the re-
stricted moments in a scalar way; see Section 5 and Appendix C for a discussion
about the convenience of using Algorithm 1M or 1S.

Finally, we point out here that if P(Rx = R̄) = 0, our algorithms in Ap-

pendix C report φx(R̄; z) = m
(l)
x (R̄) = 0, since P(Tx(R̄) < ∞) = 0. This is

related to the fact that, for certain values of parameters λi, γi and βij , some
individuals may not be reached by the epidemic for certain initial states of the
outbreak. In the particular case λi > 0 for all i ∈ {1, . . . , N}, P(Rx = R̄) > 0
for all R̄ ∈ {1, . . . , N}.
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3.2 Maximum number of individuals simultaneously infected during an
outbreak

We focus in this section on the analysis of random variables

Imax
x = “Maximum number of individuals simultaneously infected during

the outbreak, given that the current state of X is x”,

for states x ∈ C. In order to study these random variables we define the
auxiliary ones

T I
x = “Time to reach, for the first time, exactly I number of individuals

simultaneously infected during the outbreak, given that the current state

of X is x”,

for states x ∈ C and any given value I ≥ #I(x), with T I
x trivially 0 if #I(x) =

I. These random variables are defective, since the outbreak can finalise without
ever reaching I individuals simultaneously infected, so that T I

x = ∞. If we work
similarly to Subsection 3.1 with Laplace-Stieltjes transforms

ϕx(I; z) = E
[

e−zT I
x 1{T I

x
<∞}

]

, ℜ(z) ≥ 0,

the probability mass function of the peak of infection, Imax
x , can be computed in

terms of P(Imax
x ≥ I) = ϕx(I; 0). Moreover, the restricted lth order moments

n(l)
x (I) = E

[

(

T I
x

)l
1{T I

x
<∞}

]

=
dl

dzl
ϕx(I; z)

∣

∣

∣

∣

z=0

, l ≥ 1, x ∈ C,

allow us to analyse the speed at which this peak of infection is reached. Re-
stricted Laplace-Stieltjes transforms and moments of T I

x can be analysed by
studying the auxiliary Markovian process X I defined over SI = CI ∪ {Î} ∪
{R̂} ∪ C0, with

CI = {x ∈ C : 1 ≤ #I(x) < I, #R(x) ≤ N − I} =

N−I
⋃

r=0

LI(r),

LI(r) =

I−1
⋃

i=1

L(r; i), 0 ≤ r ≤ N − I.

The absorbing macro-state Î represents the existence of, at least, I individuals
simultaneously infected in the original process, and it is formed by lumping
every original state x ∈ L(r; i) with 0 ≤ r ≤ N − I, i ≥ I. The absorb-
ing macro-state R̂ represents the existence of, at least, N − I + 1 recovered
individuals in process X , and implies that the number I of simultaneously
infected individuals can not be reached. The class C0 = ∪N

r=0L(r; 0) represents
the end of the outbreak without entering neither into absorbing states Î or
R̂. Transitions among states within CI are maintained from the process X ,
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transitions from states in CI towards {x ∈ S : #I(x) ≥ I} in process X
are towards macro-state Î in process X I , and transitions from states in CI

towards {x ∈ S : #R(x) ≥ N − I + 1, #I(x) ≥ 1} in process X are towards
macro-state R̂ in process X I .

Similarly to Subsection 3.1, the restricted Laplace-Stieltjes transforms and
moments of T I

x are derived by a first-step argument. In particular, we have

ϕx(I; z) =
∑

j∈S(x)

λj +
∑

k∈I(x)

βkj

z + qx
ϕIj(x)(I; z) +

∑

k∈I(x)

γk
z + qx

ϕRk(x)(I; z),

(12)

for x ∈ CI , where Ij(x) = Î if x ∈ L(r; I − 1) and j ∈ S(x). In a similar

way, Rj(x) = R̂ if x ∈ LI(N − I) and j ∈ I(x). Boundary conditions for Eq.
(12) are given by ϕÎ(I; z) = 1, ϕR̂(I; z) = 0, and ϕx(I; z) = 0, x ∈ C0. Eq.

(12) can be written in matrix form similarly to (7), where matrices Ai,i′

r,r′(z)
defined in Subsection 3.1 are involved again. Then, Algorithm 2M (Appendix
C) can be constructed in a similar manner than Algorithm 1M, so that recur-
sive schemes for obtaining the restricted Laplace-Stieltjes transforms ϕx(I; z)

(stored in a macro-vector h(I; z)) and lth order moments n
(l)
x (I) (by conve-

nient differentiation of Eq. (12). Stored in a macro-vector n(l)(I)) of T I
x are

obtained. Finally, a scalar version of Algorithm 2M, Algorithm 2S (Appendix
C), can be constructed by means of application of Order B in a similar man-
ner than in Subsection 3.1. Similarly to last comments in Subsection 3.2, our

algorithms report ϕx(I; z) = n
(l)
x (I) = 0 if P(Imax

x ≥ I) = P(T I
x < ∞) = 0;

in the particular case λi > 0 for all i ∈ {1, . . . , N}, P(Imax
x ≥ I) > 0 for all

I ∈ {#I(x), . . . , N}.

3.3 Individual fate during an outbreak

In this section, we focus on a particular marked individual (without any loss
of generality, the Nth individual) within the population. Our interest is in
analysing the fate of this individual regarding the spread of the epidemic during
the outbreak. In particular, it is clear that individual N may:

Fate A not suffer the infection during the outbreak;
Fate B suffer the infection during the outbreak, due to an external infection;
Fate C suffer the infection during the outbreak, due to an infectious contact

with an infected individual within the network.

Our aim is to analyse the probability of each of these events, as well as the
times until their occurrences. To that end, we define the random variables

TB
x = “Time until individual N is infected by an external source during the

outbreak, given that the current state of X is x”,

TC
x = “Time until individual N is infected due to an infectious within-network

contact during the outbreak, given that the current state of X is x”,
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for any state x ∈ C, with N ∈ S(x). We note here that events A, B and C are
disjoint, and that random variables TB

x and TC
x are defective so that

TB
x < ∞ ⇔ B, TC

x < ∞ ⇔ C,
(

TB
x = ∞∧ TC

x = ∞
)

⇔ A.

If we define the restricted Laplace-Stieltjes transforms

ξWx (z) = E
[

e−zTW
x 1{TW

x
<∞}

]

, W ∈ {B,C},

for ℜ(z) ≥ 0, we have that ξWx (0) = P(W ) for W ∈ {B,C}, while P(A) =
1 − P(B) − P(C). Fate A can also be analysed in terms of the time until B
or C occurs (time until infection of individual N , regardless of the infection’s
cause), TB∨C

x = min{TB
x , TC

x }, where

ξB∨C
x (z) = E

[

e−zTB∨C
x 1{TB∨C

x
<∞}

]

= ξBx (z) + ξCx (z),

so that P(N suffering an infection during the outbreak) = ξB∨C
x (0), and P(A) =

1− ξB∨C
x (0). The analysis of ξB∨C

x (z) permits to compute statistical measures
of the time until the infection of individual N :

mB∨C,(l)
x = E

[

(

TB∨C
x

)l
1{TB∨C

x
<∞}

]

=
dl

dzl
ξB∨C
x (z)

∣

∣

∣

∣

z=0

, l ≥ 1.

Laplace-Stieltjes transforms ξBx (z) and ξCx (z) can be computed by means of

ξWx (z) =
∑

j∈S(x), j 6=N

λj +
∑

k∈I(x)

βkj

z + qx
ξWIj(x)(z) + δW,C

∑

k∈I(x)

βkN

z + qx
(13)

+δW,B

λN

z + qx
+

∑

k∈I(x)

γk
z + qx

ξWRk(x)
(z),

for W ∈ {B,C} and for states x ∈ Ĉ, with

Ĉ = {x ∈ S : 1 ≤ #I(x) ≤ N − 1, N ∈ S(x)} =
N−2
⋃

r=0

L̂(N)(r).

We reintroduce here the superscript N in the notation so that

L̂(N)(r) = {x ∈ Ĉ : #R(x) = r} =
N−r−1
⋃

i=1

L̂(N)(r; i), 0 ≤ r ≤ N − 2,

L̂(N)(r; i) = {x ∈ L̂(N)(r) : #I(x) = i}, 1 ≤ i ≤ N − r − 1.

Then, L̂(N)(r; i) can be reexpressed in terms of the original sub-level for a
population with N − 1 individuals, L(N−1)(r; i), as

L̂(N)(r; i) = L(N−1)(r; i)× {S}, 0 ≤ r ≤ N − 2, 1 ≤ i ≤ N − r − 1.(14)
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Expression (14) follows from the fact that individual N is known to be sus-
ceptible in any state x ∈ Ĉ, so that the possible different configurations of x
consist of the possible states of individuals {1, . . . , N − 1}.

If we store restricted transforms ξWx (z) in a macro-vector fW (z), for W ∈
{B,C}, structured as fW (z) = (fW0 (z)T , fW1 (z)T , . . . , fWN−2(z)

T )T , with fWr (z) =
(f1,Wr (z)T , f2,Wr (z)T , . . . , fN−r−1,W

r (z)T )T , for 0 ≤ r ≤ N − 2, then we can ex-
press (13) in matrix form as

fW (z) = Â(z)fW (z) + cW (z),

where matrix Â(z) has the same bidiagonal-by-blocks structure than matrix

A(N−1; z) in (7) but with sub-matrices Ai,i′

r,r′(z) replaced by Âi,i′

r,r′(z). Accord-

ing to Eqs. (13)-(14), each sub-matrix Âi,i′

r,r′(z) is obtained by dividing each

xth row of matrix Qi,i′

r,r′(N−1) by z+qx, and vector cW (z) is given as cW (z) =

(cW0 (z)T , cW1 (z)T , . . . , cWN−2(z)
T )T , with cWr (z) = (c1,Wr (z)T , c2,Wr (z)T , . . . ,

cN−r−1,W
r (z)T )T , for 0 ≤ r ≤ N−2 andW ∈ {B,C}. Finally, ci,Wr (z) forW =

B and W = C is obtained by dividing each xth row of Ui
r(N − 1)eJ(N−1)(r;i)

and λNeJ(N−1)(r;i), respectively, by z + qx, where Ui
r(N − 1) is a particu-

lar sub-matrix obtained during the iterative computation of the infinitesimal
generator Q(N) in Appendix B.

The structure of Â(z) means that a particular adaptation of Algorithm
1M (not reported here) permits to compute, in an iterative manner, restricted
transforms ξWx (z) for W ∈ {B,C}. In the same manner, successive differentia-
tion in (13) yields the analogous of Algorithm 1M (Part 2), for computing the

lth order restricted moments m
W,(l)
x = E

[

(

TW
x

)l
1{TW

x
<∞}

]

, for W ∈ {B,C}.

Finally, the lth order restricted moment of the time until infection of indi-

vidual N is m
B∨C,(l)
x = m

B,(l)
x + m

C,(l)
x . We note here that an analogous al-

gorithm than Algorithm 1S for obtaining previous quantities in a scalar way
following Order B can be obtained, in a similar manner than in Subsections
3.1 and 3.2. We point out that our procedures in Appendix C report val-

ues ξB∨C
x (z) = m

B∨C,(l)
x = 0 if P(B ∨ C) = P(TB∨C < ∞) = 0, and that

P(B ∨ C) > 0 if λi > 0 for all i ∈ {1, . . . , N}.

3.4 Exact reproduction number of a given individual

The basic reproduction number, R0, is the most widely used measure of disease
spread in epidemiological models both from the stochastic and deterministic
point of view. It is defined, for well-mixed homogeneous populations, as the
mean number of infections directly caused by a typical individual during his
infectious period in a completely susceptible population. This permits to inter-
pret R0 in many models in terms of threshold values for analysing the epidemic
prevalence in the long-term. In the stochastic framework, it has been recently
shown in [3,34] the convenience of replacing this descriptor by its exact coun-
terpart when dealing with finite populations. The exact reproduction number,
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Rexact
x , is defined in [3] as the random variable denoting the number of in-

dividuals directly infected by a given one during his infectious period given
the current state of the process x. This random variable, for x representing an
individual starting the infection within a fully susceptible population, was pre-
viously introduced and analysed in [34], for the SIS and SIR epidemic models
in finite homogeneous populations, and for recovery times distributed as expo-
nential, two-phase gamma and constant distributions. Then, the infectiousness
of a particular individual can be measured in terms of a random variable in-
stead of an average quantity, allowing us to consider different possible initial
states x. Rexact

x can be seen as an extension of the basic reproduction number,
since E[Rexact

x ] = R0 when the considered initial state x represents that the
analysed infected individual initiates the epidemic throughout a completely
susceptible population.

It is not immediate how to define Rexact
x for the case of an heterogeneous

population, where the selected particular individual directly affects the exact
reproduction number under study. In [13], an individual-based version of the
exact reproduction number for heterogeneous populations is proposed, and
this version is the one that we analyse here. In particular, we define the exact
reproduction number of each individual i ∈ {1, . . . , N} as the random variable

Rexact
x (i) = “Number of infections directly caused by the individual i during

his infectious period, given that the current state of X is x ∈ C”,

for i ∈ I(x), so that Rexact
x (i) is an individual measure of infectiousness, and

has support {0, . . . ,#S(x)}.
From now on, we focus on individual N without any loss of generality,

and denote Rexact
x (N) = Rexact

x . The analysis of Rexact
x for the state x =

(S, . . . , S, I) is of particular interest since it represents the number of infections
caused by individualN during his infectious period when the rest of individuals
are initially susceptible.

We analyse the probability mass function of Rexact
x by means of its prob-

ability generating function µx(s) = E[sR
exact
x ], with |s| ≤ 1, which verifies the

equation

µx(s) =
∑

j∈S(x)

λj + sβNj +
∑

k∈I(x),k 6=N

βkj

qx
µIj(x)(s) (15)

+
∑

k∈I(x),k 6=N

γk
qx

µRk(x)(s) +
γN
qx

, |s| ≤ 1,

with boundary conditions µx(s) = 1 if #I(x)+#R(x) = N ,N ∈ I(x). In a ma-
trix form, we consider Order A and store the quantities µx(s) in vectors µ(s) =
(µ0(s)

T ,µ1(s)
T , . . . ,µN−1(s)

T )T , with µr(s) = (µ1
r(s)

T ,µ2
r(s)

T , . . . ,µN−r
r (s)T )T ,

0 ≤ r ≤ N − 1, where sub-vector µi
r(s) contains quantities µx(s) for states

x ∈ L̄(N)(r; i) = {x ∈ C : #I(x) = i, #R(x) = r, N ∈ I(x)} = L(N−1)(r; i−
1)×{I}, so that #L̄(N)(r; i) = J (N−1)(r; i−1). Boundary conditions mean that
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µN−r
r (s) = eJ(N−1)(r;N−r−1) for all 0 ≤ r ≤ N − 1, and permit to recursively

solve the system in (15). This can be written as











µ0(s)
µ1(s)

...
µN−2(s)
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,

(16)

where matrices Ār,r′ are given as

Ār,r =



























0 Ā1,2
r,r . . . 0

+sQ0,1,λ
r,r (N − 1,βT

N ·
)

0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . ĀN−r−1,N−r

r,r

+sQN−r−2,N−r−1,λ
r,r (N − 1,βT

N ·
)

0 0 . . . 0



























,

for 0 ≤ r ≤ N − 2, and

Ār,r+1 =





















0 0 0 . . . 0 0

Ā2,1
r,r+1 0 0 . . . 0 0

0 Ā3,2
r,r+1 0 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . ĀN−r−1,N−r−2
r,r+1 0

0 0 0 . . . 0 ĀN−r,N−r−1
r,r+1





















,

for 0 ≤ r ≤ N−2, and where sub-matrices Āi,i′

r,r′ are obtained by dividing each

xth row of matrices Qi−1,i′−1
r,r′ (N − 1) by qx. Matrices Qi,i+1,λ

r,r (N − 1,βT

N ·
)

are defined in the iterative construction of the infinitesimal generator Q(N) in
Appendix B. Finally, we have c̄r = ((c̄1r)

T , (c̄2r)
T , . . . , (c̄N−r−1

r )T , (c̄N−r
r )T )T ,

with (c̄ir)x = γN

qx
, for 1 ≤ i ≤ N − r, 0 ≤ r ≤ N − 2. Algorithm 3M (Part 1)

iteratively solves (16) (Appendix C).
Once the probability generating functions are in hand, the lth order facto-

rial moment of Rexact
x and its probability mass function are computed as

E
[

Rexact
x (Rexact

x − 1) . . . (Rexact
x − l + 1)

]

=
dl

dsl
µx(s)

∣

∣

∣

∣

s=1

, l ≥ 1,

P(Rexact
x = k) =

1

k!

dk

dsk
µx(s)

∣

∣

∣

∣

s=0

, 0 ≤ k ≤ #S(x),
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computations that can be carried out in an algorithmic manner (see Algorithm
3M (Part 2) in Appendix C for the algorithmic computation of factorial mo-
ments). Moreover, a scalar analogous version of Algorithm 3M, Algorithm 3S
which is omitted here, can be constructed by means of usage of Order B, and
by similar arguments than those ones followed in previous subsections.

4 Numerical Results

For purely illustrative purposes, we analyse here a simple model for the spread
of Methicillin-resistant Staphylococcus Aureus (MRSA) among the patients
within an intensive care unit (ICU). MRSA is a particular group of S. aureus
strains which are resistant to beta-lactam antibiotics, and represent a major
challenge especially in particular small populations settings such as ICUs [4]
and prisons [20]. Different attempts have been made during the last years for
analysing epidemiological data [11,14] and developing mathematical models
[4,5] regarding this disease, in order to understand its spread dynamics and
to quantitatively analyse the implementation of control strategies.

In [4], a Markovian approach is followed for studying the spread of MRSA
within an ICU, and stochastic descriptors, such as the exact reproduction
number, are analysed. Main assumptions in [4] amount to the consideration of
two well-mixed homogeneous populations within the ICU, patients and health-
care workers (HCWs), and the assumption that once a particular patient is
recovered he is immediately replaced by a new one. However, the considera-
tion of well-mixed populations does not permit to study the implementation
of control strategies, such as isolation measures or room management, that in-
trinsically introduce heterogeneities among the individuals of the population.
We propose to analyse these strategies following our approach, but by consid-
ering HCWs as vectors for MRSA, so that they are only implicitly considered
in our model by means of the infection rates βij [11]. Our main simplifying
assumption here is that no discharge of patients is considered during the out-
break, which in our numerical results lasts for ∼ 11− 16 days. This restrictive
assumption allows us to directly illustrate the analysis developed in Sections
2-3, and to evaluate the impact that the dynamical discharge and admission
of patients may have in our descriptors. This impact is addressed, by means
of stochastic simulations and for a particular descriptor (individual fate), in
Section 5, where discharge and admission of patients is incorporated.

We consider an ICU with 9 patients, which is the mean occupancy of beds
within the ICU considered in a similar process in [14]. We point out here that,
as reported in [41], an ICU should accommodate between 8 and 12 beds. From
[11, Table 2], where authors apply structured and standard hidden Markov
models for estimating the transmission rate of MRSA among patients within
a hospital, we consider a general transmission rate for a well-mixed popula-
tion of patients equal to β̂ = 0.329 days−1. Since we are applying mass-action
kinetics in Eq. (1), β = β̂/9 represents in our model the rate at which each
susceptible patient is infected by each infected patient under homogeneous
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mixing assumptions. We introduce heterogeneity in our model in order to
analyse two different control strategies commonly implemented to avoid out-
breaks of MRSA: (i) a proper organisation of rooms, trying to configure the
ICU in an uncrowded fashion when possible [41], and (ii) the isolation of the
individual which is found to start an outbreak within the ICU [14]. Thus,
when patient 1 initiates the outbreak (initial state x = (I, S, . . . , S)), we con-
sider six possible scenarios depending on the implementation of the strategies
previously mentioned. This yields scenarios IS.U, IS.C and IS.O (patient 1 is
isolated, and the ICU is configured in an uncrowded, crowded or overcrowded
fashion, respectively) and scenarios NIS.U, NIS.C and NIS.O (patient 1 is not
isolated); see Figure 2. Rates in Eq. (1) are set as follows:

Fig. 2 ICU configuration when patient 1 is isolated (top) or is not isolated (bottom), under
(from left to right) uncrowded, crowded or ovecrowded room configurations. Patient 1 (red
circle) initiates the outbreak

(a) For individuals within the same room i, j ∈ N , we consider βij = βji = β.
(b) For patient 1 isolated in scenarios IS.U, IS.C and IS.O, we consider β1j =

0.3β for all j ∈ N , to represent a 70% decrease in its infectiousness due
to isolation, which has been estimated in [14]. As stated in [14], isolation
conditions do not only consist of placing patient 1 in a different room,
but this room being specially equipped for avoiding infection transmission
(handwashing policy posted at the entrance of the room, sink with gloves,
soap antibacterial scrub solution and skin moisturiser available).

(c) For patients i, j ∈ N in different non-isolated rooms (e.g. patients 2 and 4
in scenario IS.U), and due to the lack of proper data, we consider for illus-
trative purposes βij = βji = 0.65β. This represents a medium effectiveness
of room separation between cases (a) (patients within the same room) and
(b) (infected patient in the isolation room).
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(d) Patients suffering MRSA can have very different behaviours against the
disease, so that their recovery can long from some days up to several weeks
[26]. However, the majority of patients require a treatment of around 5−10
days when dealing with MRSA presented in terms of skin and soft-tissue
infections or regarding nasal decolonization [26, Sections I-II]. Thus, we
consider a mean recovery period here of 1/γ = 1 week.

(e) The main external source for introducing MRSA within the ICU is the
admission of new patients which can carry the disease, this admission not
being considered here when studying a particular outbreak. We point out
that time t = 0 in our process may be considered as the admission time of
patient 1, which was carrying MRSA. To represent other external sources
of infection (such as contaminated equipment, hospital staff infected by
individuals outside the ICU) we set λi = 0.1β for all i ∈ N .

In Figure 3 we display the probability mass function of the size Rx of the
outbreak and the mean length of the outbreak, under each scenario, obtained
from Algorithms 1S-1M. When patient 1 is isolated, it is clear that P(Rx = 1)
represents the probability of the patient 1 recovering before any other infection
occurs, which does not depend on the room configuration. However, this prob-
ability of the infection not occurring in any other patient during the outbreak
clearly depends on the isolation state of patient 1 (e.g. P(Rx = 1) = 0.5498 in
scenario IS.U against P(Rx = 1) = 0.3684 in scenario NIS.U). When patient
1 is isolated, room configuration becomes important once the infection has
escaped isolation room. Results in Figure 3 suggest that room configuration
plays a more important role under non-isolation of patient 1. At the same
time, the mean length of the outbreak takes values between 11 and 16 days,
so that the different preventive measures considered here not only reduce the
probability of avoiding the infection of any other patient (reduction up to
35%), but also the expected length of the outbreak (reduction up to 28%).
Bimodal shape of the probability mass function of Rx represents a two-output
situation: if the disease does not escape patient 1, then Rx = 1. If it escapes
patient 1, the potential of this epidemic within the ICU leads to a total size of
the outbreak that is directly related to the second mode of this distribution.

Exact values computed here by means of our approach could be efficiently
approximated instead by means of Gillespie simulations [16]. For example, 104

stochastic simulations of our process yield values of E[Tx] equal to 11.6729,
11.9862 and 12.1660 days for the mean length of the outbreak in scenarios IS.U,
IS.C and IS.O, respectively. These values are in good correspondence with
values computed in Figure 3, where slight deviations are directly related to the
standard deviation of Tx under these scenarios. In particular, Algorithm 1S in
Appendix C allows us to compute the standard deviation of Tx, SD[Tx], which
equals 12.8063, 13.0002 and 13.2812 days under these scenarios. These yield
variation coefficients, CV [Tx] = SD[Tx]/E[Tx], equal to 1.0957, 1.0918 and
1.0808 for isolation scenarios, which means that variable Tx can be classified
as high-variance by direct comparison with the exponential distribution.
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Fig. 3 Probability mass function of the size Rx of the outbreak and mean length E[Tx]
(in days) of the outbreak for isolation (top) and non-isolation (bottom) scenarios. Patient 1
initiates the outbreak, x = (I, S, . . . , S)

In Figure 4 the probability mass function of the maximum number Imax
x

of simultaneously infected individuals as well as its average are computed by
means of Algorithms 2S-2M, where it is worth noting that P(Imax

x = 1) =
P(Rx = 1). In most of the cases, the bimodal distribution shown in Figure
4 represents a two-output situation related to results in Figure 3: either the
peak of infection will be equal to 1 if patient 1 recovers soon enough, or it
will be at some point in {2, . . . , 9} represented by the second mode if infection
escapes from patient 1 to other patients within the ICU. Again, the most
effective strategy is the isolation of patient 1, yielding smaller values of E[Imax

x ]
regardless of room configuration. If patient 1 is not isolated, room configuration
becomes significantly more important for the peak of infection. In general,
control measures can reduce the mean peak of infection E[Imax

x ] up to a 37%.

Main insights previously obtained stress the importance of isolation of pa-
tient 1 initiating the outbreak, which is directly related to the importance of
implementing proper screening policies so that this isolation can take place as
soon as patient 1 is infected [40]. Room configuration then must be seen as a
more general preventive strategy so that, if infection of patient 1 goes unno-
ticed (or if the ICU does not contain an available isolation room), uncrowded
ICUs would lead to better epidemic scenarios.
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Fig. 4 Probability mass function of the maximum number Imax
x

of patients simultaneously
infected during the outbreak and its mean E[Imax

x
] for isolation (top) and non-isolation

(bottom) scenarios. Patient 1 initiates the outbreak, x = (I, S, . . . , S)

Figure 5 permits to clarify the speed of the spread of the epidemic among
patients within the ICU, by displaying the conditioned mean times E[T I

x |T
I
x <

∞] to reach each possible peak I ∈ {1, . . . , 9}. These times take values from
0 (for the trivial case I = 1) up to 10 days (12 days) under isolation (non-
isolation) of patient 1. Results in Figure 5 show a stabilisation of E[T I

x |T
I
x <

∞] for values greater than I = 5, where even a slight decrease can be ob-
served for large enough values of I (these values being reached with very low
probability; see Figure 4). This represents the fact that, if a large number I
of infected individuals is obtained during the outbreak, infections should have
occurred quick enough so that recoveries did not lead to the end of the out-
break before this value I of simultaneously infected individuals is reached. For
example, if we carry out 106 stochastic simulations of our process for scenario
IS.C, mean time E[T 6

x |T
6
x < ∞] to reach 6 infected individuals (conditioning

on this event occurring) is 11.146773 days (event that occurred in 5.45% of
our simulations); on the other hand, the mean time E[T 9

x |T
9
x < ∞] to reach

9 infected individuals (conditioning on this event occurring) is 10.33141 days,
but this event only occurred in 0.046% of our simulations.

Individual fate is analysed in Table 1, so that the probability of infection
of each particular patient (and the expected time until this occurring) is com-
puted for an outbreak initiated by patient 1. We point out that, under each
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Fig. 5 Conditioned mean time E[T I
x
|T I

x
< ∞] (in days) until reaching I individuals si-

multaneously infected during the outbreak versus I for isolation (top) and non-isolation
(bottom) scenarios. Uncrowded (dotted), crowded (dashed) and overcrowded (solid) room
configurations considered. Patient 1 initiates the outbreak, x = (I, S, . . . , S)

scenario, several patients behave equally with respect the epidemic started by
patient 1, so that their individual fate probabilities are equal (e.g. patients
{2, . . . , 9} in scenario IS.O). Thus, in Table 1 those individuals with identical
individual behaviour against the disease are grouped together. Under any sce-
nario, probability P(B) of any individual becoming infected by exterior sources
of infection is always smaller than the probability P(C) of becoming infected
due to an infectious contact, which is directly related with the considered val-
ues of λi, i ∈ {2, . . . , 9}. Preventive strategies can increase the probability of a
particular individual within the ICU avoiding the infection up to a 50% (e.g.
patient 2: P(A) = 0.5132 in scenario NIS.O against P(A) = 0.7734 in scenario
IS.U). At the same time, the conditioned expected time E[TB∨C

x |TB∨C
x < ∞]

until infection of a particular individual can also be increased from 7.32 days

up to 10.10 days by implementing control measures. In scenarios NIS.U and
NIS.C we have to make the distinction between the individual fate of a patient
who is sharing or not his room with patient 1. It is worth noting that, for a
particular individual, his condition of sharing the room with initial infected
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patient 1 only produces a total increase of 0.0316 in his probability of suffering
the infection (patients 2 and 6 in scenario NIS.U, similarly in scenario NIS.C),
while this probability P(A) increases significantly more by implementing pre-
ventive measures (e.g. from 0.6110 to 0.7734 by isolating patient 1). This sug-
gests that, even from an individual perspective, it is noticeably more efficient
for an arbitrary individual the complete isolation of the patient initiating the
outbreak than the simple avoidance of sharing the room with him.

Table 1 Analysis of individual fate for different patients within the ICU, and under different
scenarios. Patient 1 initiates the outbreak, x = (I, S, . . . , S). Fates of individual i: A: no
infection; B: external infection; C: within-network contact infection; B ∨ C: infection.

Isolated IS.U IS.C IS.O

Fate of Patient i i ∈ N i ∈ N i ∈ N
Probability of event A 0.7734 0.7573 0.7270
Probability of event B 0.0282 0.0277 0.0265
Probability of event C 0.1984 0.2151 0.2464

Mean restricted time to B 0.2285 0.2182 0.1970

E[TB
x
1{TB

x
<∞}]

Mean restricted time to C 2.0602 2.2205 2.4832

E[TC
x
1{TC

x
<∞}]

Mean restricted time to B ∨ C 2.2887 2.4387 2.6802

E[TB∨C
x

1{TB∨C
x

<∞}]

Mean conditioned time to B ∨ C 10.1005 10.0467 9.8192

E[TB∨C
x

|{TB∨C
x

< ∞}]

Non-isolated NIS.U NIS.C NIS.O

Fate of Patient i i ∈ {2, 3} i ∈ {4, . . . , 9} i ∈ {2, . . . , 5} i ∈ {6, . . . , 9} i ∈ N
Probability of event A 0.6110 0.6426 0.5774 0.6074 0.5132
Probability of event B 0.0265 0.0287 0.0261 0.0284 0.0251
Probability of event C 0.3625 0.3286 0.3965 0.3643 0.4617

Mean restricted time to B 0.2062 0.2355 0.1977 0.2264 0.1777

E[TB
x
1{TB

x
<∞}]

Mean restricted time to C 2.8283 2.8899 3.0782 3.1733 3.4914

E[TC
x
1{TC

x
<∞}]

Mean restricted time to B ∨ C 3.0345 3.1254 3.2759 3.3997 3.6692

E[TB∨C
x

1{TB∨C
x

<∞}]

Mean conditioned time to B ∨ C 7.8008 8.7452 7.7510 8.6586 7.5368

E[TB∨C
x

|{TB∨C
x

< ∞}]

Finally, we can analyse the particular infectiousness of patient 1 in each
scenario by analysing his exact reproduction number, Rexact

x (1). The proba-
bility mass function of this random variable, together with its mean, is plotted
in Figure 6. When patient 1 is isolated, he will directly infect an average num-
ber of around 0.51 patients under any room configuration. The slight decrease
of E[Rexact

x (1)] when room configuration changes from uncrowded to over-
crowded settings represents that, under more crowded configurations, patient
1 plays a bit less important role in the spread of the epidemic. However, room
configuration plays again a significant role when patient 1 is not isolated, so
that E[Rexact

x (1)] varies between 1.1266 and 1.3718 depending on room con-
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figuration. These results suggest that the isolation of patient 1 can reduce his
infectiousness, measured in terms of E[Rexact

x (1)], up to more than a 50%.

Fig. 6 Probability mass function of the exact reproduction number Rexact
x

(1) for patient 1,
and its mean, E[Rexact

x
(1)], for isolation (top) and non-isolation (bottom) scenarios. Patient

1 initiates the outbreak, x = (I, S, . . . , S)

5 Discussion

In this paper, an SIR epidemic model for small heterogeneous populations
has been analytically studied. In particular, the convenient definition of sev-
eral stochastic descriptors, the application of first-step arguments, the con-
struction of auxiliary absorbing Markov processes and the consideration of
Laplace-Stieltjes transforms and probability generating functions, permit in
Section 3 to study the dynamics of the spread of the epidemic among the
individuals within the population in a similar manner than in [13] for the
SIS epidemic model. However, in the SIR epidemic model both a scalar and
a matrix-oriented approaches are feasible when analysing these descriptors.
These approaches have been implemented here by means of two different la-
belling of states, Orders A and B, which permit to make use in different man-
ners of the particular states transition structure of the process under study.
In particular, by means of Order A which gives a pivotal role to individual N ,
we have developed an iterative scheme for the construction of the infinitesimal
generator Q(N), which at the same time permits to obtain different matrices
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involved in the solution of systems of equations for computing quantities of
interest. Under this order, Algorithms 1M-3M following a matrix formalism
can be obtained for the analysis of the stochastic descriptors in Section 3. On
the other hand, we have followed for the scalar approach Order B, which is
related to the lexicographic order for states within each sub-level. This order
allows us to localise each state within its sub-level (Eq. (4)), yielding the scalar
counterpart algorithms for computing the same quantities.

We illustrate in Section 4 our analysis by studying the spread of MRSA
among the patients within an ICU. When a patient enters into the ICU carry-
ing the infection, the spread of the disease within the ICU directly depends on
several factors, such as the isolation of the patient and the room configuration
of the ICU. We analyse this by considering six scenarios regarding those fac-
tors, and by analysing the stochastic descriptors described in Section 3. Main
conclusions from Section 4 are:

– The isolation of the patient initiating the outbreak is the most effective
measure for avoiding the spread of the epidemic, suggesting the impor-
tance of implementing appropriate screening policies for detecting infected
individuals [40].

– Room configuration plays a more significant role when this isolation does
not take place. This is a more general preventive measure that does not
depend on the detection of the epidemic by screening policies. Room config-
uration then would be especially important in ICUs with limited resources
(e.g., no isolation room) or when screening fails.

– Importance of isolation of patient 1 is also reflected when analysing the
process from an individual perspective for the rest of the susceptible pa-
tients in the ICU, where sharing or not the room with patient 1 is pushed
into the background.

Main simplifying assumption in Section 4 is that no discharge of patients is
considered during the outbreak, which in our scenarios lasts for ∼ 11−16 days.
We may discuss here on the impact that this assumption has in our results.
To this end, we consider now that susceptible and recovered individuals are
discharged with rate µ = 0.1 (average length of stay (LOS) equal to 10 days),
and that they are immediately replaced by new patients, in the spirit of [4] and
[11, Section 3]. From [4] we assume here that new admitted patients can carry
MRSA with probability σ = 0.01, so that an especial variant of the classic

SIRS epidemic model is constructed (new events in our process are S
σµ
→ I,

R
(1−σ)µ
→ S and R

σµ
→ I).

We focus here on the fate of a particular patient initially susceptible within
the ICU, and carry out in Table 2 (by means of 104 stochastic simulations)
the analogous analysis than in Table 1 when discharge and immediate admis-
sion of patients is considered. A direct comparison between results in Tables
1-2 show differences in the absolute values but yielding qualitatively similar
relative behaviours and conclusions. Probability of a patient i not suffering
the infection, P(A), increases in 0.1 − 0.25 in any scenario in Table 2 with
respect Table 1, which is directly related with the fact that patient i may be
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discharged before becoming infected. Again, the network represents the most
dangerous factor for the infection of any individual i, where the probability
of a within-network infectious contact with patient i, P(C), slightly increases
in more crowded situations. Similarly than in Table 1, isolation of patient 1
seems to be the most effective strategy for avoiding infection from an individ-
ual perspective: while P(A) = 0.7879 for a patient sharing room with patient 1
in scenario NIS.U, this probability slightly increases up to 0.8130 for a patient
not sharing room with patient 1, but it increases up to 0.8833 if patient 1 is
isolated. On the other hand, mean restricted and conditioned times to infec-
tion of patient i (E[TB∨C

x 1{TB∨C
x

<∞}] and E[TB∨C
x |TB∨C

x < ∞]) significantly
decrease in Table 2 with respect the corresponding values in Table 1. This is
directly related with the fact that the infection of patient i needs to occur
soon enough before his potential discharge (which occurs, in average, after 10
days).

Table 2 Similar analysis than in Table 1, when discharge of patients is considered. Patient
1 initiates the outbreak, x = (I, S, . . . , S). Fates of individual i: A: no infection; B: external
infection; C: within-network contact infection; B ∨ C: infection.

Isolated IS.U IS.C IS.O

Fate of Patient i i ∈ N i ∈ N i ∈ N
Probability of event A 0.8833 0.8792 0.8667
Probability of event B 0.0182 0.0132 0.0159
Probability of event C 0.0985 0.1076 0.1174

Mean restricted time to B 0.0764 0.0638 0.0661

E[TB
x
1{TB

x
<∞}]

Mean restricted time to C 0.6302 0.6966 0.7440

E[TC
x
1{TC

x
<∞}]

Mean restricted time to B ∨ C 0.7066 0.7604 0.8101

E[TB∨C
x

1{TB∨C
x

<∞}]

Mean conditioned time to B ∨ C 6.0551 6.2949 6.0770

E[TB∨C
x

|TB∨C
x

< ∞]

Non-isolated NIS.U NIS.C NIS.O

Fate of Patient i i ∈ {2, 3} i ∈ {4, . . . , 9} i ∈ {2, . . . , 5} i ∈ {6, . . . , 9} i ∈ N
Probability of event A 0.7879 0.8130 0.7564 0.7991 0.7301
Probability of event B 0.0138 0.0160 0.0128 0.0150 0.0130
Probability of event C 0.1983 0.1710 0.2308 0.1859 0.2569

Mean restricted time to B 0.0582 0.0624 0.0565 0.0709 0.0524

E[TB
x
1{TB

x
<∞}]

Mean restricted time to C 1.0091 0.9072 1.1451 1.0470 1.2759

E[TC
x
1{TC

x
<∞}]

Mean restricted time to B ∨ C 1.0673 0.9696 1.2016 1.1179 1.3282

E[TB∨C
x

1{TB∨C
x

<∞}]

Mean conditioned time to B ∨ C 5.0319 5.1849 4.9326 5.5646 4.9212

E[TB∨C
x

|TB∨C
x

< ∞]

For analysing our process in this especial variant of the classic SIRS epi-
demic model, we have made use of 104 Gillespie simulations. We note that,
when considering the potential adaptation of our arguments in this paper to
the SIRS case considered in this section, the matrix approach seems to be the
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only feasible one. The scalar approach followed for the SIR epidemic model
needs to be seen as a tailor-made one, which is only possible thanks of the
forward-oriented transition structure S → I → R for events occurring to each

individual in the population. Consideration of new backward events R
(1−σ)µ
→ S

and R
σµ
→ I would lead to new sub-blocks in the infinitesimal generator Q(N),

and algorithms in Appendix C should be adapted.

We point out here that, as shown within this section, the use of stochas-
tic simulations is an efficient way of approximating exact values computed in
this paper, while our approach for computing these exact values entails high
computational costs and is restricted to particular scenarios involving small
population sizes. However, the analytical approach in this paper helps to un-
derstand the intrinsic differences between the SIR and other epidemic models,
and to shed some light on the infinitesimal generators and the state spaces
of the Markov chains corresponding to these models. In the particular case
of the SIR epidemic model, a very particular quasi-birth-and-death process is
obtained, and different population and individual descriptors can be proposed
and analysed. The structure by levels and sub-levels allows one to analyse
these descriptors by solving systems of linear equations, which has been done
by means of a scalar and a matrix formulation and by using two labelling of
the states, Order A and B. While alternative orders may be proposed, it is
necessary that these orders allow the practical implementation of the systems
of equations arising in Section 3, the construction of the infinitesimal genera-
tor if necessary, as well as the proper localisation of, at least, the initial state
of interest within S. The scalar and matrix approaches shown in this paper,
implemented by means of Orders A and B, seem to be appropriate options
fulfilling these conditions.

We have focused in Section 3 on analysing stochastic descriptors in the
particular situation where γi > 0 for all i ∈ N . However, other situations
could be analysed with our approach while this is out of the scope of this
paper. For example, the particular case in which a specific individual i ∈
N does not recover from the disease, so that γi = 0, can be analysed in a
similar way by noting that some states x ∈ L(N)(r; 1), with xi = I, become
absorbing. Then, descriptors could be analysed, for example, until the end
of the outbreak or the arrival to these absorbing states. On the other hand,
the definition of an outbreak, in Section 3, as the time until arriving to any
state y ∈ L(N)(r; 0) for any r ∈ {1, . . . , N}, which may not be absorbing,
instead of for example considering the total time period until the process
reaches an absorbing state, is clearly inspired in some applications such as
the analysis of nosocomial infections in ICUs. In these kind of processes, it is
usual that a particular outbreak, which lasts from some days to several weeks,
will be followed by other ones during the following months and years in which
probably different patients will be involved. Then, the interest is in analysing
existing control measures during the particular time interval corresponding to
an outbreak (that is, until the epidemic disappears from the ICU, regardless
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of the potential future introduction of the epidemic again in the ICU by those
remaining susceptible individuals, due to external sources).
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Appendix A. Notation

We introduce here some notation used throughout the paper. Regarding matrix notation,
matrices and vectors are represented by bold letters, and given a matrix A, AT amounts to
its transpose. 0a×b represents a matrix of zeros with dimensions a× b, while ea represents
a column vector of ones with dimension a. Moreover, diag(a1, . . . , ai) represents a diagonal
matrix with elements a1, . . . , ai within its diagonal. Finally, given a set S, #S represents
its cardinality, and δi,j is Kronecker’s delta so that

δi,j =

{

0, if i 6= j,
1, if i = j.

Appendix B. Iterative construction of Q(N) with Order A

The iterative procedure in this appendix is similar to the procedure for the construction
of the infinitesimal generator in the SIS epidemic model [13]. In order to iteratively obtain
the infinitesimal generator Q(N) corresponding to a population with N individuals, and
following Order A for states within each sub-level, we first decompose Q(N) as a summation

of three contributions regarding rates λi, γi and βij . In particular, each sub-matrix Q
i,i′

r,r′
(N)

for (r′, i′) ∈ {(r, i+ 1), (r + 1, i− 1)} is split in

Q
i,i′

r,r′
(N) = Q

i,i′,λ

r,r′
(N) +Q

i,i′,β

r,r′
(N) +Q

i,i′,γ

r,r′
(N),

so that Q
i,i′,λ

r,r′
(N) only contains the contribution of rates λk in matrix Q

i,i′

r,r′
(N), and

Q
i,i′,β

r,r′
(N) and Q

i,i′,γ

r,r′
(N) are related to the contribution of rates βij and γi, respectively.

Then, they can be rewritten as Q
i,i′,λ

r,r′
(N,λ(N)), Q

i,i′,β

r,r′
(N,B(N)) and Q

i,i′,γ

r,r′
(N,γ(N))
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where

λ(N) =















λ1

λ2

.

..
λN−1

λN















=

(

λ(N−1)

λN

)

, γ(N) =















γ1
γ2
.
..

γN−1

γN















=

(

γ(N−1)

γN

)

, (B.1)

B(N) =















0 β12 β13 . . . β1N

β21 0 β23 . . . β2N

β31 β32 0 . . . β3N

.

.

.
.
.
.

.

.

.
. . .

.

.

.
βN1 βN2 βN3 . . . 0















=

(

B(N−1) β
·N

β
N·

0

)

,

with β
·N

=
(

β1N , β2N , . . . , βN−1,N

)T
, β

N·
=
(

βN1, βN2, . . . , βN,N−1

)

.

The following iterative procedure permits the construction of matrices Q
i,i′

r,r′
(N) by

starting with matrices Q
i,i′

r,r′
(M) corresponding to a population of M = 1 individual and

increasing the value of M until the desired size M = N .

(a) For M = 1, λ(M) = (λ1), γ(M) = (γ1), and B(M) = (0). Then,

Q
0,1,λ
0,0 (M,λ(M)) = λ(M),

Q
0,1,β
0,0 (M,B(M)) = B(M),

Q
0,1,γ
0,0 (M,γ(M)) = (0) ,











⇒
Q

0,1
0,0(M) = Q

0,1,λ
0,0 (M,λ(M)) +Q

0,1,β
0,0 (M,B(M))

+Q
0,1,γ
0,0 (M,γ(M)) = (λ1) ,

Q
1,0,λ
0,1 (M,λ(M)) = (0) ,

Q
1,0,β
0,1 (M,B(M)) = (0) ,

Q
1,0,γ
0,1 (M, γ(M)) = γ(M),











⇒
Q

1,0
0,1(M) = Q

1,0,λ
0,1 (M,λ(M)) +Q

1,0,β
0,1 (M,B(M))

+Q
1,0,γ
0,1 (M,γ(M)) = (γ1) .

(b) For M = 2, . . . , N , λ(M), γ(M) and B(M) are obtained from the previously computed

λ(M−1), γ(M−1) and B(M−1) from (B.1), and matrices Q
i,i′

r,r′
(M) are computed as

Q
i,i′

r,r′
(M) = Q

i,i′,λ

r,r′
(M,λ(M)) +Q

i,i′,β

r,r′
(M,B(M)) +Q

i,i′,γ

r,r′
(M, γ(M)),

where
– For (r′, i′) = (r, i+1), 0 ≤ r ≤ M − 1 and 0 ≤ i ≤ M − r− 1, Qi,i+1,γ

r,r (M, γ(M)) =

0
J(M)(r;i)×J(M)(r;i+1), while Q

i,i+1,λ
r,r (M,λ(M)) is given by







Qi,i+1,λ
r,r (M − 1,λ(M−1)) λM I

J(M−1)(r;i)
0

0 Qi−1,i,λ
r,r (M − 1,λ(M−1)) 0

0 0 Q
i,i+1,λ
r−1,r−1(M − 1,λ(M−1))






(B.2)

and Q
i,i+1,β
r,r (M,B(M)) has the form









Qi,i+1,β
r,r (M − 1,B(M−1))

0

0

Ui
r(M − 1)

Qi−1,i,β
r,r (M − 1,B(M−1))

+Qi−1,i,λ
r,r (M − 1,βT

M·
)

0

0

0

Q
i,i+1,β
r−1,r−1(M − 1,B(M−1))









. (B.3)

We refer the reader to Remarks 1 and 2 for the details about matrices Qi−1,i,λ
r,r (M−

1,βT

M·
) and Ui

r(M − 1), respectively.



On an SIR Epidemic Model for Heterogeneous Individuals in Small Networks 35

– For (r′, i′) = (r+1, i− 1), 0 ≤ r ≤ M − 1 and 1 ≤ i ≤ M − r, Qi,i−1,λ
r,r+1 (M,λ(M)) =

Q
i,i−1,β
r,r+1 (M,B(M)) = 0

J(M)(r;i)×J(M)(r+1;i−1), while Q
i,i−1,γ
r,r+1 (M,γ(M)) is given

by





Q
i,i−1,γ
r,r+1 (M − 1,γ(M−1))

0

0

0

Q
i−1,i−2,γ
r,r+1 (M − 1,γ(M−1))

0

0

γM I
J(M−1)(r;i−1)

Q
i,i−1,γ
r−1,r (M − 1,γ(M−1))






. (B.4)

Expressions (B.2)-(B.4) are based on the nested level-structure of S in Order A. In
particular, for a population of size N and any sub-level L(N)(r; i), it is verified that

L(N)(r; i) =
(

L(N−1)(r; i)× {S}
)

∪
(

L(N−1)(r; i− 1)× {I}
)

∪
(

L(N−1)(r − 1; i)× {R}
)

, (B.5)

that is, possible states of a population with size N with i individuals infected and r indi-
viduals recovered can be explained in terms of the state of individuals {1, . . . , N − 1} and
individual N . Particular cases of expression (B.5) appear for different combinations (r, i)
regarding the values r = 0, r = N , i = 0 or i = N − r. Specifically,

– For r = N : L(N)(N ; 0) = L(N−1)(N − 1; 0)× {R}.
– For r = 0: L(N)(0; 0) = L(N−1)(0; 0)× {S}, L(N)(0;N) = L(N−1)(0;N − 1)× {I} and

L(N)(0; i) =
(

L(N−1)(0; i)× {S}
)

∪
(

L(N−1)(0; i− 1)× {I}
)

, for 1 ≤ i ≤ N − 1,.

– For 1 ≤ r ≤ N − 1: L(N)(r; 0) =
(

L(N−1)(r; 0)× {S}
)

∪
(

L(N−1)(r − 1; 0)× {R}
)

,

L(N)(r;N − r) =
(

L(N−1)(r;N − r − 1)× {I}
)

∪
(

L(N−1)(r − 1;N − r)× {R}
)

,

so that expressions in our iterative procedure for computing matrices Q
i,i′

r,r′
(M) have to be

carefully implemented in these special cases, where some blocks of rows and/or columns
should be removed.

Remark 1: Central sub-block Q
i−1,i,β
r,r (M − 1,B(M−1)) +Q

i−1,i,λ
r,r (M − 1,βT

M·
) in (B.3)

for the computation of matrix Q
i,i+1,β
r,r (M,B(M)) stores infinitesimal transition rates cor-

responding to transitions from states in sub-level L(M−1)(r; i − 1) × {I} towards states
in sub-level L(M−1)(r; i) × {I}. In particular, it only stores the contributions of rates
in B(M), that is, transitions representing an infection caused by an infectious contact
within the network. Moreover, since we are considering here transitions from sub-level
L(M−1)(r; i − 1) × {I} towards sub-level L(M−1)(r; i) × {I}, this infection is suffered by
an individual in {1, . . . ,M − 1}. This infection can be caused by another individual within

{1, . . . ,M−1}, which yields the contribution Q
i−1,i,β
r,r (M−1,B(M−1)), or it can be directly

caused by individual M , so that it can be considered as an artificial external infection for

the population {1, . . . ,M − 1}, yielding contribution Q
i−1,i,λ
r,r (M − 1,βT

M·
).

Remark 2: When computing the matrix Q
i,i+1,β
r,r (M,B(M)), matrix Ui

r(M − 1) stores

infinitesimal transition rates corresponding to transitions from states of L(M−1)(r; i)×{S}
towards states of L(M−1)(r; i) × {I}, that is, transitions representing the infection of indi-
vidual M due to an infectious contact with an individual within {1, . . . ,M − 1}. We may
construct this in terms of the auxiliary matrices Iir(M − 1) from

Ui
r(M − 1) = diag

(

Iir(M − 1)β
·M

)

,

where matrices Iir(M − 1) are recursively obtained as

I00(1) = I01(1) = (0) , I10(1) = (1) ,

Iir(k) =







Iir(k − 1) 0
J(k−1)(r;i)

Ii−1
r (k − 1) e

J(k−1)(r;i−1)

Iir−1(k − 1) 0
J(k−1)(r−1;i)






, 0 ≤ r ≤ k, 0 ≤ i ≤ k − r,

by properly removing the corresponding blocks of rows for boundary cases associated with
r = 0, r = N , i = 0 or i = N − r.
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Appendix C. Algorithms

Algorithm 1M (Restricted Laplace-Stieltjes transforms and moments of Tx(R̄), R̄ ∈
{1, . . . , N}. Order A)

For R̄ = 1, . . . , N :
PART 1

g1
R̄−1

(R̄; z) = A
1,0

R̄−1,R̄
(z)eJ(R̄;0); m

1,(0)

R̄−1
(R̄) = g1

R̄−1
(R̄; 0);

For r = R̄− 2, . . . , 0:

gR̄−r
r (R̄; z) = A

R̄−r,R̄−r−1
r,r+1 (z)gR̄−r−1

r+1 (R̄; z); m
R̄−r,(0)
r (R̄) = gR̄−r

r (R̄; 0);

For i = R̄− r − 1, . . . , 2:

gi
r(R̄; z) = A

i,i+1
r,r (z)gi+1

r (R̄; z)+A
i,i−1
r,r+1(z)g

i−1
r+1(R̄; z); m

i,(0)
r (R̄) = gi

r(R̄; 0);

g1
r(R̄; z) = A

1,2
r,r (z)g

2
r(R̄; z); m

1,(0)
r (R̄) = g1

r(R̄; 0);
PART 2

For p = 1, . . . , l:

m
1,(p)

R̄−1
(R̄) = pm̃

1,(p−1)

R̄−1
(R̄);

For r = R̄− 2, . . . , 0:

m
R̄−r,(p)
r (R̄) = A

R̄−r,R̄−r−1
r,r+1 (0)m

R̄−r−1,(p)
r+1 (R̄) + pm̃

R̄−r,(p−1)
r (R̄);

For i = R̄− r − 1, . . . , 2:

m
i,(p)
r (R̄) = A

i,i+1
r,r (0)m

i+1,(p)
r (R̄)+A

i,i−1
r,r+1(0)m

i−1,(p)
r+1 (R̄)+pm̃

i,(p−1)
r (R̄);

m
1,(p)
r (R̄) = A

1,2
r,r (0)m

2,(p)
r (R̄) + pm̃

1,(p−1)
r (R̄);

Vectors m̃
i,(p)
r (R̄) in Algorithm 1M (Part 2) are obtained by dividing each xth row of

m
i,(p)
r (R̄) by qx.

Algorithm 1S (Laplace-Stieltjes transforms and moments of Tx(R̄), R̄ ∈ {1, . . . , N}. Order
B)

For R̄ = 1, . . . , N :
PART 1

For r = R̄− 1, . . . , 0:
For i = R̄− r, . . . , 1:

For any x = {(a1, . . . , ai), (b1, . . . , br)}:

Compute φ
(a1,...,ai)
(b1,...,br)

(R̄; z) from Eq. (10) and store it in position Posir(x)

(from (4)) of vector gi
r(R̄; z);

m
i,(0)
r (R̄) = gi

r(R̄; 0);
PART 2

For p = 1, . . . , l:
For r = R̄− 1, . . . , 0:

For i = R̄− r, . . . , 1:
For any x = {(a1, . . . , ai), (b1, . . . , br)}:

Compute m
(a1,...,ai),(p)
(b1,...,br)

(R̄) from Eq. (11) and store it in position

Posir(x) (from (4)) of vector m
i,(p)
r (R̄);

Algorithm 2M (Laplace-Stieltjes transforms and moments of T I
x
, I ≥ #I(x). Order A)

For I = 2, . . . , N :
PART 1

hI−1
N−I

(I; z) = A
I−1,I
N−I,N−I

(z)eJ(N−I;I); n
I−1,(0)
N−I

(I) = hI−1
N−I

(I; 0);
For i = I − 2, . . . , 1:

hi
N−I(I; z) = A

i,i+1
N−I,N−I

(z)hi+1
N−I

(I; z); n
i,(0)
N−I

(I) = hi
N−I(I; 0);

For r = N − I − 1, . . . , 0:

hI−1
r (I; z) = A

I−1,I−2
r,r+1 (z)hI−2

r+1(I; z)+A
I−1,I
r,r (z)eJ(r;I); n

I−1,(0)
r (I) = hI−1

r (I; 0);
For i = I − 2, . . . , 2:

hi
r(I; z) = A

i,i−1
r,r+1(z)h

i−1
r+1(I; z) +A

i,i+1
r,r (z)hi+1

r (I; z); n
i,(0)
r (I) = hi

r(I; 0);

h1
r(I; z) = A

1,2
r,r (z)h

2
r(I; z); n

1,(0)
r (I) = h1

r(I; 0);
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PART 2

For p = 1, . . . , l:

n
I−1,(p)
N−I

(I) = pñ
I−1,(p−1)
N−I

(I);
For i = I − 2, . . . , 1:

n
i,(p)
N−I

(I) = A
i,i+1
N−I,N−I

(0)n
i+1,(p)
N−I

(I) + pñ
i,(p−1)
N−I

(I);
For r = N − I − 1, . . . , 0:

n
I−1,(p)
r (I) = A

I−1,I−2
r,r+1 (0)n

I−2,(p)
r+1 (I) + pñ

I−1,(p−1)
r (I);

For i = I − 2, . . . , 2:

n
i,(p)
r (I) = A

i,i−1
r,r+1(0)n

i−1,(p)
r+1 (I) +A

i,i+1
r,r (0)n

i+1,(p)
r (I) + pñ

i,(p−1)
r (I);

n
1,(p)
r (I) = A

1,2
r,r (0)n

2,(p)
r (I) + pñ

1,(p−1)
r (I);

Vectors ñ
i,(p)
r (I) in Algorithm 2M (Part 2) are obtained by dividing each xth row of n

i,(p)
r (I)

by qx.

Algorithm 2S (Laplace-Stieltjes transforms and moments of T I
x
, I ≥ #I(x). Order B)

For I = 2, . . . , N :
PART 1

For r = N − I, . . . , 0:
For i = I − 1, . . . , 1:

For any x = {(a1, . . . , ai), (b1, . . . , br)}:

Compute ϕ
(a1,...,ai)
(b1,...,br)

(I; z) from scalar version of Eq. (12) and store it in

position Posir(x) (from (4)) of vector hi
r(I; z);

n
i,(0)
r (I) = hi

r(I; 0);
PART 2

For p = 1, . . . , l:
For r = N − I, . . . , 0:

For i = I − 1, . . . , 1:
For any x = {(a1, . . . , ai), (b1, . . . , br)}:

Compute n
(a1,...,ai),(p)
(b1,...,br)

(I) by differentiating scalar version of Eq. (12)

and store it in position Posir(x) (from (4)) of vector n
i,(p)
r (I);

Algorithm 3M (Probability generating functions and factorial moments of Rexact
x

. Order
A)

PART 1

µ2
N−2(s) = e

J(N−1)(N−2;1); v̄
2,(0)
N−2 = µ2

N−2(1);

µ1
N−2(s) =

(

Ā
1,2
N−2,N−2 + sQ

0,1,λ
N−2,N−2(N − 1,βT

N·
)
)

µ2
N−2(s)+c̄1N−2; v̄

1,(0)
N−2 = µ1

N−2(1);

For r = N − 3, . . . , 0:

µr
N−r(s) = e

J(N−1)(r;N−r−1); v̄
r,(0)
N−r

= µr
N−r(1);

For i = N − r − 1, . . . , 2:

µi
r(s) =

(

Ā
i,i+1
r,r + sQ

i−1,i,λ
r,r (N − 1,βT

N·
)
)

µi+1
r (s) + Ā

i,i−1
r,r+1µ

i−1
r+1(s) + c̄ir;

v̄
i,(0)
r = µi

r(1);

µ1
r(s) =

(

Ā
1,2
r,r + sQ

0,1,λ
r,r (N − 1,βT

N·
)
)

µ2
r(s) + c̄1r; v̄

1,(0)
r = µ1

r(1);

PART 2

For p = 1, . . . , l:

v̄
1,(p)
N−2 = pQ

0,1,λ
N−2,N−2(N − 1,βT

N·
)v̄

2,(p−1)
N−2 ;

For r = N − 3, . . . , 0:

v̄
r,(p)
N−r

= 0
J(N−1)(r;N−r−1);

For i = N − r − 1, . . . , 2:

v̄
i,(p)
r =

(

Ā
i,i+1
r,r +Q

i−1,i,λ
r,r (N − 1,βT

N·
)
)

v̄
i+1,(p)
r + Ā

i,i−1
r,r+1v̄

i−1,(p)
r+1

+Q
i−1,i,λ
r,r (N − 1,βT

N,·
)pv̄

i+1,(p−1)
r ;

v̄
1,(p)
r =

(

Ā
1,2
r,r +Q

0,1,λ
r,r (N − 1,βT

N·
)
)

v̄
2,(p)
r +Q

0,1,λ
r,r (N − 1,βT

N·
)pv̄

2,(p−1)
r ;
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Algorithms in this appendix allow one to compute the measures analysed in Section 3,
regarding population and individual stochastic descriptors for the epidemic process within
the network. These algorithms have been developed here with the scalar (Algorithms 1S
and 2S) and matrix (Algorithms 1M, 2M and 3M) approach, and their implementation in
Python is available in [27].

We present in Table C.1 a detailed description of the computations carried out within
each algorithm in this appendix, in order to discuss on the convenience of implementing
the scalar or the matrix-oriented algorithms, and to understand the complexity of analysing
each stochastic descriptor in this paper. At first glance, Table C.1 allows one to notice that
population descriptors analysed in Algorithms 1S-1M and 2S-2M amount, in general, to
higher computational efforts than, for example, analysing the individual descriptor Rexact

x

in Algorithm 3M. This is due to the fact that random variables Tx(R̄) and T I
x

need to be
studied for the different values of R̄ and I. When comparing between the computational
demand of scalar-oriented algorithms versus their matrix counterparts, description in Table
C.1 suggests that these are qualitatively similar. For example, while each iteration in Al-
gorithm 1S amounts to the implementation of the scalar Eq. (10) (or (11)), and needs to

be done
(

N
r|i

)

times corresponding to the possible states in L(N)(r; i), this is substituted in

Algorithm 1M by a single iteration amounting to the implementation of the matrix equa-
tion corresponding to Eq. (7) (or its derivatives) for sub-level L(N)(r; i), which involves the

product of matrices and vectors with dimensions
(

N
r|i

)

.

It is worth to point out that, however, and especially for higher values of N , a poorer
computational performance of Algorithms 1M and 2M versus their scalar counterparts 1S
and 2S, respectively, is expected. This is because the following main reasons: (i) matrix-
oriented algorithms in this section require the prior construction of infinitesimal generator
Q(N) (Appendix B) and related matrices; (ii) implementation of, for example, the matrix
equation arising from Eq. (7) involves the multiplication of large sparse matrices an vectors
where many unnecessary computations are carried out (this could be improved by means of
specialised methods for dealing with this kind of matrices [45]); and (iii) in terms of memory
requirements, the storage of infinitesimal generator Q(N) (square matrix with dimensions
3N × 3N ) and related matrices is clearly inefficient in comparison with scalar approaches.

In Table C.2, we present a computational comparison between Algorithms 2S and 2M
when implemented for an homogeneous population of size N , which has been carried out
with Python programming language and in a high performance computing facility -quad-core
AMD 8384 (2.7 Ghz) processor with 32GB of DDR2 memory- of the University of Leeds.
It can be observed that Algorithm 2M computes the desired quantity in less time and using
less memory than Algorithm 2S for small values of N . However, for increasing values of N
the performance of Algorithm 2S improves, permitting to compute the desired quantities for
larger values of N , in less time and demanding considerably less memory than Algorithm
2M. For the sake of completeness, we incorporate in Table C.2 a third alternative: to solve
matrix equations arising from Section 3 by standard procedures, which would be the way
to proceed if the structure of the coefficient matrix were not to be exploited. In particular,
computational performance of this alternative is presented in Table C.2 when the standard
numpy.linalg.solve solver from Python is used (which, at the same time, makes use of the
gesv LAPACK routine). Computational performance differences in Table C.2 are only quan-
titative, where the scalar approach seems to be the best option. However, we point out that
this scalar approach is a tailor-made one directly based in the forward-oriented transition
structure of the SIR epidemic model, S → I → R, which seems not to be generalisable to
other more complex epidemic models, where matrix-oriented approaches should prevail [13,
39]. We point out here that additional efforts may be made when implementing algorithms
in this appendix [27], which is out of the scope of this paper. However, at the light of the
results in Table C.2, and regardless of the labelling of states and the particular approach
followed, our method should be considered as purely theoretical for values of N far beyond
15, which amount to CTMCs with more than 4× 107 states.
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Table C.1 Computational complexity summary of Algorithms 1S, 1M, 2S, 2M, 3M and
the construction of Q(N) from Appendix B.

Algorithm 1S Algorithm 1M

• Computes Laplace-Stieltjes transform
and moments of Tx(R̄), from Eqs. (10)-(11).

• Computes Laplace-Stieltjes transform
and moments of Tx(R̄), from Eq. (7)
and its derivatives.

• It consists of 5 nested loops, yielding
a total number of

(l + 1)
N
∑

R̄=1

R̄−1
∑

r=0

R̄−r
∑

i=1

(N

r|i

)

iterations.

• It consists of 4 nested loops, yielding
a total number of

(l + 1)
N
∑

R̄=1

R̄−1
∑

r=0

R̄−r
∑

i=1

1

iterations.

• Each iteration involves implementing
a scalar equation (Eq. (10) or (11)).

• Each iteration involves implementing
a matrix equation (Eq. (7) or its

derivatives), for sub-level L(N)(r; i),
involving multiplication of matrices and

vectors of dimension
(N
r|i

)

.

Algorithm 2S Algorithm 2M

• Computes Laplace-Stieltjes transform
and moments of T I

x
, from the scalar

version of Eq. (12), and its derivatives.

• Computes Laplace-Stieltjes transform
and moments of T I

x
, from Eq. (12)

and its derivatives.

• It consists of 5 nested loops, yielding
a total number of

(l + 1)

N
∑

I=1

N−I
∑

r=0

I−1
∑

i=1

(N

r|i

)

iterations.

• It consists of 4 nested loops, yielding
a total number of

(l + 1)

N
∑

I=1

N−I
∑

r=0

I−1
∑

i=1

1

iterations.

• Each iteration involves implementing
a scalar equation (scalar version of Eq.
(12), or its derivatives for moments).

• Each iteration involves implementing
a matrix equation (Eq. (12) or its

derivatives), for sub-level L(N)(r; i),
involving multiplication of matrices and

vectors of dimension
(N
r|i

)

.

Construction of Q(N) Algorithm 3M

• Computes the infinitesimal generator
Q(N) from procedure in Appendix B.

• Computes the probability generating
function and factorial moments of Rexact

x
,

from Eq. (15) and its derivatives.

• It consists of a loop for M = 1, . . . , N , where
at each iteration we do:

• Create λ(M), γ(M) and B(M) from (B.1),
with dimensions M × 1, M × 1 and M × M .

• Create matrices Qi,i+1,λ
r,r (M,λ(M)),

Qi,i+1,β
r,r (M,B(M)), and Q

i,i−1,γ
r,r+1 (M,γ(M))

from (B.2) − (B.4). This involves filling

matrices with dimensions
(M
r|i

)

×
( M
r|i+1

)

,

×
( M
r|i+1

)

, and ×
( M
r+1|i−1

)

, respectively.

• Create matrices Ii
r(M), 0 ≤ r ≤ M ,

0 ≤ i ≤ M − r, recursively from Appendix B.
This involves filling matrices (by-blocks)

with dimensions
(M
r|i

)

× M . From each

Ii
r(M), we create matrix Ui

r(M) from

Appendix B, with dimensions
(M
r|i

)

×
(M
r|i

)

.

• It consists of 3 nested loops, yielding
a total number of

(l + 1)

N−2
∑

r=0

N−r
∑

i=1

1

iterations.

• Each iteration involves implementing
a matrix equation (Eq. (15) or its

derivatives), for sub-level L(N)(r; i),
involving multiplication of matrices and

vectors of dimension
(N−1
r|i−1

)

.
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Table C.2 Computational comparison (time, in seconds, and memory usage, inmegabytes)
between Algorithm 2S, 2M and the solution given by a standard solver. Homogeneous pop-
ulation with N individuals. λi = 1, γi = 3 for all i ∈ N , βij = 2 for all (i, j) ∈ L

N 4 5 6 7 8

E
[

Imax
(I,S,S,...,S)

]

2.5090 3.1029 3.7490 4.4414 5.1729

Time Alg. 2S 0.08 0.44 2.41 11.64 52.49
Alg. 2M 0.01 0.1 0.71 5.66 49.06

Standard Solver 0.01 0.12 1.06 9.72 109.48

Memory Alg. 2S < 15 18.29 18.36 18.59 19.20
Usage Alg. 2M < 15 < 15 19.01 28.48 107.04

Standard Solver < 15 < 15 19.01 39.03 442.35

N 9 10 11 12 13

E
[

Imax
(I,S,S,...,S)

]

5.9368 6.7272 7.5393 8.3695 9.2146

Time Alg. 2S 201.78 834.78 3647.25 13102.28 49655.32
Alg. 2M 330.39 2783.13 − − −

Standard Solver 1088.14 − − − −

Memory Alg. 2S 21.02 25.33 38.23 77.23 200.29
Usage Alg. 2M 701.48 5653.00 > 32GB > 32GB > 32GB

Standard Solver 5493.76 > 32GB > 32GB > 32GB > 32GB
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