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Abstract— Although there has been a significant amount of
work in the area of stochastic optimal control theory towards
the development of new algorithms, the problem of how to
control a stochastic nonlinear system remains an open research
topic. Recent iterative linear quadratic optimal control methods
iLQG [1], [2] handle control and state multiplicative noise
while they are derived based on first order approximation of
dynamics. On the other hand, methods such as Differential
Dynamic Programming expand the dynamics up to the second
order but so far they can handle nonlinear systems with additive
noise.

In this work we present a generalization of the classic
Differential Dynamic Programming algorithm. We assume the
existence of state and control multiplicative process noise, and
proceed to derive the second-order expansion of the cost-to-go.
We find the correction terms that arise from the stochastic
assumption. Despite having quartic and cubic terms in the
initial expression, we show that these vanish, leaving us with
the same quadratic structure as standard DDP.

I. INTRODUCTION

Optimal Control describes the choice of actions that min-
imize future costs under the constraint of state space dy-
namics. In the continuous nonlinear case, local methods are
one of the very few classes of algorithms which successfully
solve general, high-dimensional Optimal Control problems.
These methods are based on the observation that optimal
solutions form extremal trajectories, i.e. are solutions to a
calculus-of-variations problem.

Differential Dynamic Programming, or DDP, is a powerful
local dynamic programming algorithm, which generates both
open and closed loop control policies along a trajectory.
The DDP algorithm, introduced in [3], computes a quadratic
approximation of the cost-to-go and correspondingly, a local
linear-feedback controller. The state space dynamics are
also quadratically approximated around a trajectory. As in
the Linear-Quadratic-Gaussian case, fixed additive noise has
no effect on the controllers generated by DDP, and when
described in the literature, the dynamics are usually assumed
deterministic.

Past work on nonlinear optimal control allows the use of
DDP in problems with state and control constraints [4],[5].
In this work, state and control constraints are expanded up
to the first order and the KKT conditions are formulated
resulting in a unconstrained quadratic optimization problem.
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The application of DDP in real robotic high dimensional
control tasks created the need for extensions that relax the
condition for accurate models. In this vain, in [6] DDP is
extended for the case of min - max formulation. The goal
for this formulation is to make DDP robust against the model
uncertainties and hybrid dynamics in a biped robotic loco-
motion task. In [7] implementation improvements regarding
the evaluation of the value function allow the use of DDP in
a receding horizon mode. In all the past work related to DDP,
the optimal control problem is considered to be deterministic.

While the impartiality to noise can be considered a feature
if the noise is indeed fixed, in many cases varying noise
covariance is an important feature of the problem, as with
control-multiplicative noise which is common in biologi-
cal systems [1]. This latter case was addressed within the
iterative-LQG framework [1], in which the optimal controller
is derived based on the first order approximation of the
dynamics and the second order approximation of the cost
to go. However, for the iterative nonlinear optimal control
algorithms such as DDP in which second order expansion
of the dynamics is considered, the more general case of
state and/or control multiplicative noise appears to have never
been tackled.

In this paper, we derive the DDP algorithm for state and
control multiplicative process noise. We find that despite the
potential of cubic and quartic terms, these cancel out, allow-
ing us to maintain the quadratic form of the approximation.
Moreover we show how the new generalized formulation
of Stochastic Differential Dynamic Programming (SDDP)
recovers the standard DDP deterministic solution as well as
the special cases in which only state multiplicative or control
multiplicative noise is considered.

The remaining of this work is organized as follows: in the
next section we provide the definition of the SDDP. In section
III, the second order expansion of the cost to go is presented
and in section IV the optimal controls are derived and the
overall SDDP algorithm is presented. In addition in section
IV we show how SDDP recovers the deterministic solution
as well as the cases of only control multiplicative, only state
multiplicative and only additive noise. Finally in sections V
and VI simulation results and conclusions are discussed.

II. STOCHASTIC DIFFERENTIAL DYNAMIC
PROGRAMMING

We consider the class of nonlinear stochastic optimal
control problems with cost

vπ(x, t) = E

[
h(x(T )) +

∫ T

t0

` (τ,x(τ), π(τ,x(τ))) dτ

]
(1)
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subject to the stochastic dynamics of the form:

dx = f(x,u)dt+ F (x,u)dω (2)

where x ∈ <n×1 is the state, u ∈ <p×1 is the control
and dω ∈ <m×1 is brownian noise. The term h(x(T ))
in the cost function (1), is the terminal cost while the
` (τ,x(τ), π(τ,x(τ))) is the instantaneous cost rate which
is a function of the state x and control policy π(τ,x(τ)).
The cost-to - go vπ(x, t) is defined as the expected cost
accumulated over the time horizon (t0, ..., T ) starting from
the initial state xt to the final state x(T ).

To enhance the readability of our derivations we write the
dynamics as a function Φ ∈ <n×1 of the state, control and
instantiation of the noise:

Φ(x,u, dω) ≡ f(x,u)dt+ F (x,u)dω (3)

It will sometimes be convenient to write the matrix
F (x,u) ∈ <n×m in terms of its rows or columns:

F (x,u) =

 F 1
r (x,u)

...
Fnr (x,u)

 =
[
F 1
c (x,u), . . . , F pc (x,u)

]
Every element of the vector Φ(x,u, dω) ∈ <n×1 can now
be expressed as:

Φj(x,u, dω) = f j(x,u)δt+ F jr (x,u)dω

Given a nominal trajectory of states and controls (x̄, ū) we
expand the dynamics around this trajectory to second order:

Φ(x̄ + δx, ū + δu, dω) =
Φ(x̄, ū, dω) +∇xΦ · δx +∇uΦ · δu + O(δx, δu, dω)

where O(δx, δu, dω) ∈ <n×1 contains all the second order
terms in the deviations in states, controls and noise1. Writing
this term element-wise:

O(δx, δu, dω) =

 O(1)(δx, δu, dω)
...

O(n)(δx, δu, dω)

 ,

we can express the elements O(j)(δx, δu, dω) ∈ < as:

O(j)(δx, δu, dω) =

1
2

(
δx
δu

)T( ∇xxΦj ∇xuΦj

∇uxΦj ∇uuΦj

)(
δx
δu

)
.

We would now like to express the derivatives of Φ in terms
of the given quantities. Beginning with the first-order terms,
we find that:

∇xΦ = ∇xf(x,u)δt+∇x

(
m∑
i=1

F ic dω
(i)
t

)

∇uΦ = ∇uf(x,u)δt+∇u

(
m∑
i=1

F ic dω
(i)
t

)
1Not to be confused with “big-O”.

Next we find the second order derivatives and we have that:

∇xxΦ(j) = ∇xxf
(j)(x,u)δt+∇xx

(
F (j)
r (x,u)dωt

)
∇uuΦ(j) = ∇uuf

(j)(x,u)δt+∇uu

(
F (j)
r (x,u)dωt

)
∇uxΦ(j) = ∇uxf

(j)(x,u)δt+∇ux

(
F (j)
r (x,u)dωt

)
∇xuΦ(j) =

(
∇uxΦ(j)

)T

After expanding the dynamics up to the second order
we can transition from continuous to discrete time. More
precisely the discrete-time dynamics are formulated as:

δxt+δt =(
In×n +∇xf(x,u)δt+∇x

(
m∑
i=1

F (i)
c ξ

(i)
t

√
δt

))
δxt

+

(
∇uf(x,u)δt+∇u

(
m∑
i=1

F (i)
c ξ

(i)
t

√
δt

))
δut

+ F (x,u)
√
δtξt + Od(δx, δu, ξ, δt)

with δt = tk+1 − tk corresponding to a small discretization
interval. Note that the term Od is the equivalent of O but in
discrete time and therefore it is now a function of δt. In fact,
since Od contains all the second order expansion terms of
the dynamics it contains second order derivatives WRT state
and control expressed as follows:

∇xxΦ(j) = ∇xxf
(j)(x,u)δt+∇xx

(
F (j)
r (x,u)ξt

)√
δt

∇uuΦ(j) = ∇uuf
(j)(x,u)δt+∇uu

(
F (j)
r (x,u)ξt

)√
δt

∇uxΦ(j) = ∇uxf
(j)(x,u)δt+∇ux

(
F (j)
r (x,u)ξt

)√
δt

∇xuΦ(j) =
(
∇uxΦ(j)

)T

The random variable ξ ∈ <m×1 is zero mean and Gaussian
distributed with covariance Σ = σ2Im×m The discretized
dynamics can be written in a more compact form by grouping
the state, control and noise dependent terms, and leaving the
second order term separate:

δxt+δt =
Atδxt +Btδut + Γtξt + Od(δx, δu, ξ, δt) (4)

where the matrices At ∈ <n×n, Bt ∈ <n×p and Γt ∈ <n×m
are defined as

At = In×n +∇xf(x,u)δt
Bt = ∇uf(x,u)δt
Γt =

[
Γ(1) Γ(2) ... Γ(m)

]
with Γ(i) ∈ <n×1 defined Γ(i) = ∇uF

(i)
c δut +

∇xF
(i)
c δxt +F

(i)
c . For the derivation of the optimal control

it is useful to expresses Γt as the summation of terms that
depend on variations in state and controls and terms that are
independent of such variations. More precisely we will have
that:
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Γt = ∆t(δx, δu) + F (x,u) (5)

where each column vector of ∆t is defined as
∆(i)
t (δx, δu) = ∇uF

(i)
c δut +∇xF

(i)
c δxt.

III. VALUE FUNCTION SECOND ORDER APPROXIMATION

As in classical DDP, the derivation of stochastic DDP re-
quires the second order expansion of the cost-to-go function
around a nominal trajectory x̄:

V (x̄ + δx) =

V (x̄) + V Tx δx +
1
2
δxTVxxδx (6)

Substitution of the discretized dynamics (4) in the second
order Value function expansion (6) results in:

V (x̄t+δt + δxt+δt) = V (x̄t+δt)

+ V Tx (Atδxt +Btδut + Γtξ + Od)

+ (Atδxt +Btδut + Γtξ + Od)
T

× Vxx (Atδxt +Btδut + Γtξ + Od) (7)

Next we will compute E (V (x̄t+δt + δxt+δt)) which re-
quires the calculation of the expectation of the all the terms
that appear in the equation above. This is what the rest of
the analysis is dedicated to. More precisely in the next two
sections we will calculate the expectation of the terms:

E
(
V Tx δxt+δt

)
(8)

and

E
(
δxTt+δtVxxδxt+δt

)
(9)

where the state deviation δxt+δt at time instant t + δt is
given by the linearized dynamics:

δxt+δt = Atδxt +Btδut + Γtξ + Od (10)

The analysis that follows in section III-A consist of the
computation of the expectation of the four terms which result
from the substitution of the linearized dynamics (10) into (8).
In section III-B we compute the expectation of the 16 terms
that result from the substitution of (10) into (9).

A. Expectation of the first order term of the value function
expansion∇xV T δxt+δt.

The expectation of the first order term results in:

E
(
V Tx (Atδxt +Btδut + Γtξt + Od)

)
= (11)

V Tx (Atδxt +Btδut + E (Od))

In order to find the expectation of Od ∈ <n×1 we need
to find the expectation of each one of the elements of this
column vector. Thus we will have that:

E
(
O(j)(δx, δu, ξt, δt)

)
=

E

(
1
2

(
δx
δu

)T ( ∇xxΦ(j) ∇xuΦ(j)

∇uxΦ(j) ∇uuΦ(j)

)(
δx
δu

))
=

(12)

=
δt

2

(
δx
δu

)T (
∇xxf

(j) ∇xuf
(j)

∇uxf
(j) ∇uuf

(j)

)(
δx
δu

)
= Õj

Therefore we will have that:

E
(
V Tx δxt+δt

)
= V Tx

(
Atδxt +Btδut + Õd

)
(13)

Where the term Õd is defined as:

Õd(δx, δu, δt) =


Õ(1)(δx, δu, δt)

...

...

Õ(n)(δx, δu, δt)

 (14)

The term ∇xV
T Õd is quadratic in variations in the states

and controls δx, δu an thus there are the symmetric matrices
F ∈ <n×n , Z ∈ <m×m and L ∈ <m×n such that:

V Tx Õd =
1
2
δxTFδx +

1
2
δuTZδu + δuTLδx (15)

with

F =

 n∑
j=1

∇xxf
(j)Vxj

 (16)

Z =

 n∑
j=1

∇uuf
(j)Vxj

 (17)

L =

 n∑
j=1

∇uxf
(j)Vxj

 (18)

From the analysis above we can see that the expectation
∇xV T δxt+δt is a quadratic function with respect to vari-
ations in states and controls δx, δu. As we will prove in
the next section the expectation of δxTt+δt∇xxV

T δxt+δt is
also a quadratic function of variations in states and controls
δx, δu.

B. Expectation of the second order term of the value function
expansion δxTt+δt∇xxV T δxt+δt.

In this section we compute all the terms that appear due
to the expectation of the second approximation of the value
function E

(
δxTt+δt∇xxV δxt+δt

)
. The term δxt+δt is given

by the stochastic dynamics in (10). Substitution of (10)
results in 16 terms. To make our analysis clear we classify
these 16 terms terms above into five classes. More precisely
we will have that:

1127



E
(
δxTt+δtV

T
xxδxt+δt

)
= E1 + E2 + E3 + E4 + E5 (19)

where the terms E1,E2,E3,E4 and E5 are defined as fol-
lows:

E1 = E
(
δxTt A

T
t VxxAtδxt

)
+ E

(
δuTt B

T
t VxxBtδut

)
+E

(
δxTt A

T
t VxxBtδut

)
+ E

(
δuTt B

T
t VxxAtδxt

)
(20)

E2 = E
(
ξTt ΓTt VxxAtδx

)
+ E

(
ξTt ΓTt VxxBtδu

)
+ E

(
δxTATt VxxΓtξt

)
+ E

(
δuTBTt VxxΓtξt

)
+ E

(
ξTt ΓTt VxxΓtξt

)
(21)

E3 = E
(
OT
d VxxΓtξt

)
+ E

(
ξTt ΓTt VxxOd

)
(22)

E4 = E
(
δxTt A

T
t VxxOd

)
+ E

(
δuTt B

T
t VxxOd

)
+

E
(
OT
d VxxBtδut

)
+ E

(
OT
d VxxAtδxt

)
(23)

E5 = E
(
OT
d VxxOd

)
(24)

In the first category we have all these terms that depend
neither on ξt and nor on Od(δx, δu, ξt, δt). These are the
terms that define E1. The second category E2 includes
terms that depend on ξt but not on Od(δx, δu, ξt, δt).
In the third class E3, there are terms that depends both
on Od(δx, δu, ξt, δt) and ξt . In the fourth class E4, we
have terms that depend on Od(δx, δu, ξt, δt). Finally in
the fifth class E5, we have all these terms that depend
on Od(δx, δu, ξt, δt) quadratically. The expectation operator
will cancel all the terms that include noise up the first order.
Moreover, the mean operator for terms that depend on the
noise quadratically will result in covariance.

We compute the expectations of all the terms in the E1

class. More precisely we will have that:

E
(
δxTt A

T
t VxxAtδxt

)
= δxTt A

T
t VxxAtδxt

E
(
δuTt B

T
t VxxBtδut

)
= δuTt B

T
t VxxBtδut

E
(
δxTt A

T
t VxxBtδut

)
= δxTt A

T
t VxxBtδut

E
(
δuTt B

T
t VxxAtδxt

)
= δuTt B

T
t VxxAtδxt

(25)

We continue our analysis by calculating all the terms in
the class E2. More presicely we will have:

E
(
ξTt ΓTt VxxAtδx

)
= 0

E
(
ξTt ΓTt VxxBtδu

)
= 0

E
(
ξTt ΓTt VxxAtδx

)T
= 0

E
(
ξTt ΓTt VxxBtδu

)T
= 0

(26)

The terms above are equal to zero since the brownian
noise is zero mean. The expectation of the term that does
not depend on Od(δx, δu, ξt, δt) and it is quadratic with
respect to the noise is given as follows:

E
(
ξTt ΓTt VxxΓtξt

)
= trace

(
ΓTt VxxΓtΣω

)
(27)

Since matrix Γ depends on variations in states and controls
δx, δu we can further massage the expressions above so that
it can be expressed as quadratic functions in δx, δu .

trace
(
ΓTt VxxΓtΣω

)
= σ2

dωδt (28)

trace




Γ(1)T

...

...
Γ(m)T

Vxx

(
Γ(1) ... ... Γ(m)

)
(29)

= σ2
dωδt

m∑
i=1

Γ(i)TVxxΓ(i) (30)

The last equation is written in the form:

trace
(
ΓTt VxxΓtΣω

)
= δxT F̃δx + 2δxT L̃δu + δuT Z̃δu

+ 2δuT Ũ + 2δxT S̃ + γ (31)

Where the terms F̃ ∈ <n×m, L̃ ∈ <n×p, Z̃ ∈ <p×p, Ũ ∈
<p×1, S̃ ∈ <n×1 and γ ∈ < are defined as follows:

F̃ = σ2δt

m∑
i=1

∇xF
(i)
c

TVxx∇xF
(i)
c (32)

L̃ = σ2δt

m∑
i=1

∇xF
(i)
c

TVxx∇uF
(i)
c (33)

Z̃ = σ2δt

m∑
i=1

∇uF
(i)
c

TVxx∇uF
(i)
c (34)

Ũ = σ2δt
m∑
i=1

∇uF
(i)
c

TVxxF
(i)
c (35)

S̃ = σ2δt

m∑
i=1

∇xF
(i)
c

TVxxF
(i)
c (36)

γ = σ2δt

m∑
i=1

F (i)
c

TVxxF
(i)
c (37)

For those terms that depend both on Od(δx, δu, ξt, δt)
and on the noise class E3 we will have:

E
(
OT
d VxxΓtξt

)
= E

(
trace

(
VxxΓtξtO

T
d

))
= trace

(
VxxΓtE

(
ξtO

T
d

))
(38)

By writing the term Od(δx, δu, ξt, δt) in a matrix form
and putting the noise vector insight the this matrix we have:

E
(
OT
d VxxΓtξt

)
= (39)

trace
(
VxxΓtE

[
ξtO

(1) ... ξtO
(n)

])
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Calculation of the expectation above requires to find the
terms E

(√
δtξtO

(j)
)

more precisely we will have:

E
(√

δtξtO
(j)
)

= (40)

1
2
E
(√

δtξtδx
TΦ(i)

xxδx
)

+
1
2
E
(√

δtξtδu
TΦ(i)

uuδu
)

+

E
(√

δtξtδu
TΦ(i)

uxδx
)

We first calculate the term:

E
(√

δtξtδx
T∇xxΦ(i)δx

)
(41)

= E
(√

δtξtδx
T
(
∇xxf

(i)δt+∇xxF
(i)
r ξt
√
δt
)
δx
)

= E
(√

δtξtδx
T
(
∇xxf

(i)δt
)
δx
)

+ E
(√

δtξtδx
T
(
∇xxF

(i)
r ξt
√
δt
)
δx
)

The term E
(√

δtξtδx
T
(
∇xxf

(i)δt
)
δx
)

= 0 since it de-
pends linearly on the noise and E (ξt) = 0. The second term
E
(√

δtξtδx
T
(
∇xxF

(i)
r ξt
√
δt
)
δx
)

depends quadratically
in the noise and thus the expectation operator will result in
the variance on the noise. We follow the analysis:

E
(√

δtξtδx
T∇xxΦ(i)δx

)
= (42)

E
(√

δtξtδx
T∇xx

(
F (i)
r ξt
√
δt
)
δx
)

Since the ξt =
(
ξ(1), ..., ξ(m)

)T
and F

(i)
r =(

F (i1), ...., F (im)
)

we will have that:

E
(√

δtξtδx
T∇xxΦ(i)δx

)
= (43)

E

δtξtδxT∇xx

 m∑
j=1

F (ij)ξ(j)

 δx


E

δtξtδxT
 m∑
j=1

∇xx

(
F (ij)ξ(j)

) δx


E

δtξtδxT
 m∑
j=1

ξ(j)∇xx

(
F (ij)

) δx



By writing ξt in vector form we have that:

E
(√

δtξtδx
T∇xxΦ(i)δx

)
= (44)

E

δt


ξ(1)

...

...
ξ(m)

 δxT
 m∑
j=1

ξ(j)∇xx

(
F (ij)

) δx



The term δxT
(∑m

j=1 ξ
(j)∇xx

(
F (ij)

))
δx is scalar and

it can multiply each one of the elements of the noise vector.


δtE

(
ξ(1)δxT

(∑m
j=1 ξ

(j)∇xx

(
F (ij)

))
δx
)

...

...

δtE
(
ξ(m)δxT

(∑m
j=1 ξ

(j)∇xx

(
F (ij)

))
δx
)
 (45)

Since E
(
ξ(i)ξ(i)

)
= σ2 and E

(
ξ(i)ξ(j)

)
= 0 we can show

that:

E
(√

δtξtδx
T∇xxΦ(i)δx

)
= (46)

σ2δt


δxT∇xxF

(i1)
r δx

...

...

δxT∇xxF
(im)
r δx


In a similar way we can show that:

E
(√

δtξtδx
T∇uuΦ(i)δx

)
= (47)

σ2δt


δuT∇uuF

(i1)
r δu

...

...

δuT∇uuF
(im)
r δu


and

E
(√

δtξtδu
T∇xuΦ(i)δx

)
= (48)

σ2δt


δuT∇uxF

(i1)
r δx

...

...

δuT∇uxF
(im)
r δx


Since we have calculated all the terms of expression (41)

we can proceed with the computation of (38). According to
the analysis above the term E

(
OT
d VxxΓtξt

)
can be written

as follows:

E
(
OT
d VxxΓtξt

)
= (49)

trace (VxxΓt (M + N + G))

Where the matrices M ∈ <m×n, N ∈ <m×n and G ∈
<m×n are defined as follows:

M = (50)

σ2δt

 δxT∇xxF
(11)
r δx ... δxT∇xxF

(1n)
r δx

... ... ...

δxT∇xxF
(m1)
r δx ... δxT∇xxF

(mn)
r δx


Similarly

N = (51)

σ2δt

 δxT∇xuF
(1,1)
r δu ... δxT∇xuF

(1,n)
r δu

... ... ...

δxT∇xuF
(m,1)
r δu ... δxT∇xuF

(m,n)
r δu
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and

G = (52)

σ2δt

 δuT∇uuF
(1,1)
r δu ... δuT∇uuF

(1,n)
r δu

... ... ...

δuT∇uuF
(m,1)
r δu ... δuT∇uuF

(m,n)
r δu


Based on (5) the term Γt depends on ∆ which is a function

of the variations in states and control up to the 1th order. In
addition the matrices M, N and G are also functions of
the deviations in state and controls up to the 2th order. The
product of ∆ with each one of the matrices M, N and G
will result into 3th order terms that can be neglected. By
neglecting these terms we can show that:

E
(
OT
d VxxΓtξt

)
= (53)

= trace (Vxx(∆ + F ) (M + N + G))
= trace (VxxF (M + N + G))

Each element (i, j) of the product C = VxxF can be
expressed as C(i,j) =

∑n
r=1 V

(i,r)
xx F (r,j) where C ∈ <n×p.

Furthermore the element (µ, ν) of the product H = CM is
formulated H(µ,ν) =

∑n
k=1 C(µ,k)M(k,ν) with H ∈ <n×n

. Thus, the term trace (VxxFM) can be now expressed as:

trace (VxxFM) =
n∑
`=1

H(`,`) (54)

=
n∑
`=1

m∑
k=1

C(`,k)M(k,`)

=
n∑
`=1

m∑
k=1

(
n∑
r=1

V (k,r)
xx F (r,`)

)
M(k,`)

Since M(k,`) = δtσ2
dω1

δxT∇xxF
(k,`)δx the vectors

δtσ2
dω1

δxT and δx do not depend on k, `, r and they can
be taken outside the sum. Thus we can show that:

trace (VxxFM) (55)

=
n∑
`=1

m∑
k=1

((
n∑
r=1

V (k,r)
xx F (r,`)

)
σ2δtδxT∇xxF

(k,`)δx

)

= δxTσ2δt

n∑
`=1

m∑
k=1

((
n∑
r=1

V (k,r)
xx F (r,`)

)
∇xxF

(k,`)

)
δx

= δxTM̃δx

where M̃ is a matrix of dimensionality M̃ ∈ <n×n and it
is defined as:

M̃ = σ2δt

n∑
`=1

m∑
k=1

((
n∑
r=1

V (k,r)
xx F (r,`)

)
∇xxF

(k,`)

)
(56)

By following the same algebraic steps it can been shown
that:

trace (VxxFN ) = δxT Ñδu (57)

with Ñ matrix of dimensionality Ñ ∈ <n×p defined as:

Ñ = σ2δt

n∑
`=1

m∑
k=1

((
n∑
r=1

V (k,r)
xx F (r,`)

)
∇xuF

(k,`)

)
(58)

and

trace (VxxFG) = δuT G̃δu (59)

with G̃ matrix of dimensionality Ñ ∈ <p×p defined as:

G̃ = σ2δt

n∑
`=1

m∑
k=1

((
n∑
r=1

V (k,r)
xx F (r,`)

)
∇uuF

(k,`)

)
(60)

Thus the term E
(
OT
d VxxΓtξt

)
is formulated as:

E
(
OT
d VxxΓtξt

)
=

1
2
δxTM̃δx +

1
2
δuT G̃δu + δxT Ñδu

(61)
Similarly we can show that:

E
(
ξTt ΓTt VxxOd

)
=

1
2
δxTM̃δx +

1
2
δuT G̃δu + δxT Ñδu

(62)
Next we will find the expectation for all terms that depend

on Od(δx, δu, dω, δt) and not on the noise. Consequently,
we will have that:

E
(
δxTt A

T
t VxxOd

)
= δxTt A

T
t VxxÕd = 0

E
(
δuTt B

T
t VxxOd

)
= δuTt B

T
t VxxÕd = 0

E
(
OT
d VxxAtδxt

)
= Õd

T
VxxAtδxt = 0

E
(
OT
d VxxBtδut

)
= Õd

T
VxxBtδut = 0

(63)

where the quantity Õd has been defined in (14). All the
4 terms above are equal to zero since they have variations
in state and control of the order higher than 2 and therefore
they can be neglected.

Finally we compute the terms of the 5th class and therefore
we have the expression

E5 = E
(
OT
d VxxOd

)
(64)

= E
(
trace

(
VxxOdOT

d

))
= trace

(
VxxE

(
OdOT

d

))
= trace

VxxE


 O(1)

...
O(n)

 O(1)

...
O(n)

T



The product O(i)O(j) is a function of variation in state and
control of order 4 since each term O(i) is a function of

1130



variation in states and control of order 2. Consequently, the
term E5 = E

(
OT
d VxxOd

)
is equal to zero.

With the computation of the expectation of term that is
quadratic WRT Od we have calculated all the terms of the
second order expansion of the cost to go function. In the next
section we derive the optimal controls and we present the
SDDP algorithm. Furthermore we show how SDDP recover
the deterministic solution as well as the cases of only control
multiplicative, only state multiplicative and only additive
noise.

IV. OPTIMAL CONTROLS

In this section we provide the form of the optimal controls
and we show how previous results are special cases of our
generalized stochastic DDP formulation. Furthermore after
we computed all the terms of expansion of the cost to go
function V (xt) at statext we show that its form remains
quadratic WRT variations in state δxt under the constraint of
the nonlinear stochastic dynamics in (2). More precisely we
have that:

V (x̄t+δt + δxt+δt) = V (x̄t+δt)

+∇xV TAtδxt +∇xV TBtδut

+
1
2
δxTFδx +

1
2
δuTZδu + δuTLδx

+
1
2
δxTt A

T
t VxxAtδxt +

1
2
δuTt B

T
t VxxBtδut

+
1
2
δxTt A

T
t VxxBtδut +

1
2
δuTt B

T
t VxxAtδxt

+
1
2
δxT F̃δx + δxT L̃δu +

1
2
δuT Z̃δu

+ δuT Ũ + δxT S̃ +
1
2
γ

+
1
2
δxTM̃δx +

1
2
δuT G̃δu + δxT Ñδu

(65)

The unmaximized state, action value function is defined
as follows:

Q(xk,uk) = `(xk,uk) + V (xk+1) (66)

Given a trajectory in states and controls x̄, ū we can
approximate the state action value function as follows:

Q(x̄ + δx, ū + δu) = Q0 + δuTQu + δxTQx (67)
1
2
[
δxT δuT

] [ Qxx Qxu

Qux Quu

] [
δx
δu

]
By equating the coefficients with similar powers between

the state action value function Q(xk,uk) and the immediate
reward and cost to go `(xk,uk) and V (xk+1) respectively
we can show that:

Qx = `x +AtVx + S̃
Qu = `u +AtVx + Ũ
Qxx = `xx +ATt VxxAt + F + F̃ + M̃

Qxu = `xu +ATt VxuBt + L + L̃ + Ñ

Quu = `uu +BTt VuuBt + Z + Z̃ + G̃

(68)

TABLE I
PSEUDOCODE OF THE SDDP ALGORITHM

• Given:
– An immediate cost function `(x,u)
– A terminal cost term φtN .
– The stochastic dynamics dx = f(x,u)dt+ F (x,u)dω

• Repeat until convergence:
– Given a trajectory in states and controls x̄, ū find the quadratic

approximations of the stochastic dynamics At, Bt,Γt,Od and
the quadratic approximation of the immediate cost function
`o, `x, `xx, `uu, `ux around these trajectories.

– Compute all the terms Qx, Qu, Qxu and Quu according to
equation (68).

– Back-propagate the quadratic approximation of the value func-
tion based on the equations:

∗ V
(k+1)
0 = V

(k+1)
0 −QuQ

−1
uuQu

∗ V
(k+1)
x = Q

(k+1)
x −QuQ

−1
uuQux

∗ V
(k+1)
xx = Q

(k+1)
xx −QxuQ

−1
uuQux

– Compute δu∗ = −Q−1
uu (Qu +Quxδx)

– Update controls u∗ = u∗ + γ · δu∗
– Get the new optimal trajectory x∗ by propagating the nonlinear

dynamics dx = f(x,u∗)dt+ F (x,u∗)dω.
– Set x̄ = x∗ and ū = u∗ and repeat.

where we have assume a local quadratic approximation of
the immediate reward `(xk,uk) according to the equation:

`(x̄ + δx, ū + δu) = `0 + δuT `u + δxT `x (69)
1
2
[
δxT δuT

] [ `xx `xu

`ux `uu

] [
δx
δu

]
with `x = ∂`

∂x , `u = ∂`
∂u , `xx = ∂2`

∂x2 , `uu = ∂2`
∂u2

and `ux = ∂2`
∂u∂x . The local variations in control δu∗ that

maximize the state action value function are expressed by
the equation that follows:

δu∗ = argmax
u

Q(x̄ + δx, ū + δu) (70)

= −Q−1
uu (Qu +Quxδx)

The optimal control variations have the form δu∗ = l +
Lδx where l = −Q−1

uuQu is the open loop gain and L =
−Q−1

uuQux is the closed loop - feedback gain. The SDDP
algorithm is provided in a pseudocode form on Table I.

For the special cases where the stochastic dynamics
have only additive noise F (u,x) = F then the terms
M̃, Ñ, G̃, F̃ , L̃, Z̃, Ũ , S̃ will be zero since they are func-
tions of ∇xxF and ∇xuF and ∇uuF and it holds that
∇xxF = 0, ∇xuF = 0 and ∇uuF = 0 . In such
a type of systems the control does not depend on the
statistical characteristics of the noise. In cases of determin-
istic systems again M̃, Ñ, G̃, F̃ , L̃, Z̃, Ũ , S̃ will be zero
because these terms depend on the variance of the noise
σdωi

= 0, ∀i = 1, ...,m. Finally if the noise is only
control depended then M̃, Ñ, L̃, F̃ , S̃ will be zero since
∇xxF (u) = 0,∇xuF (u) = 0 and ∇xF

(i)
c (x) = 0 while if

it is state dependent then Ñ, G̃, Z̃, L̃, Ũ will be zero since
∇xuF (x) = 0,∇uuF (x) = 0 and ∇uF

(i)
c (x) = 0.
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Fig. 1. The left plot illustrates the state trajectory for the the system
dx = αcos(x)dt + u + x2dω. The right plot corresponds to the optimal
control.

V. SIMULATION RESULTS

In this section we are testing the SDDP on two different
one dimensional systems. Most precisely, we consider the
one-dimensional stochastic nonlinear system of the form:

dx = cos(x)dt+ udt+ x2dω (71)

The quadratic approximation is based on the matrices
At = 1 − sin(x)dt, Bt = dt and Odt = −cos(x)dt.
The system has only state depended noise and therefore
M̃ = 2σ2dtVxxx

2 , F̃ = 4σ2dtVxxx
2 , S̃ = 2x3Vxxσ

2dt
while the terms Ñ = G̃ = L̃ = Z̃ = Ũ = 0. We apply the
SDDP algorithm for the task of bringing the state from the
initial x0 = 0 to terminal x(T ) = p∗ = 4. The cost function
is expressed as vπ(x, t) = E

[
h(x(T )) +

∫ T
t0
ru2dτ

]
with

h(x(T )) = wp(x − p∗)2 where wp = 1 and r = 10−6.
In this example, there is only a terminal cost for the state
while during the time horizon the state dependent cost is
zero and thus there is only control cost. In figure 1, the
left plot illustrates the state trajectory as it approaches the
target state p∗ = 4 while the right plot illustrates the optimal
control. Since there is only a terminal cost, the control over
the time horizon is almost zero while at the very end of the
time horizon the control is activated and the state reaches
the target state.

The second system is given by the equation that follows:

dx = αx2dt+ udt+ x2dω (72)

The quadratic approximation is based on the matrices
At = 1 − 2αx(t)dt, Bt = dt and Odt = −αdt. The
parameter α controls the degree of the instability of the
system. For our simulations we used α = 0.005. The task
is to bring the state x(t) from the initial state xo = 0 to
target state x(T ) = p∗ = 2. The cost function has the
same form as in the first example but with tuning parameters
wp = 1 and r = 10−3. Furthermore, the system has only
state depended noise and therefore M̃ = 2σ2dtVxxx

2 ,
F̃ = 4σ2dtVxxx

2 , S̃ = 2x3Vxxσ
2dt while the terms

Ñ = G̃ = L̃ = Z̃ = Ũ = 0.
In figure 2, the left plot illustrates state space trajectories

for different values of the variance of the noise1 while the
1In both examples, the noise is used only during the iterative optimization

process of SDDP. When testing the optimal control, instead of running the
controlled system many times for different realizations of noise and then
calculate the mean, we just zero the noise and run the system only once.
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Fig. 2. Left plot illustrates the state space trajectories of the system dx =
αx2dt + udt + x2dω for different values of noise. The right plot shows
the stereotypical convergence behavior of SDDP.

right plot illustrates the convergence behavior of SDDP. An
important observation is that curved trajectories correspond
to cases with high variance noise. Furthermore, as the vari-
ance of the noise decreases the optimal trajectories become
more and more straight.

VI. DISCUSSION

In this paper we explicitly derived the equations describing
the second order expansion of the cost-to-go, given state
and control dependent noise. Our main result is that the
expressions remain quadratic WRT δx and δu, so the basic
structure of the algorithm, a quadratic cost-to-go approxima-
tion with a linear policy, remains unchanged. In addition we
have shown how the cases of deterministic and stochastic
DDP with additive noise are sub-cases of our generalized
formulation of Stochastic DDP.

Current and future research includes further testing and
evaluation of our generalized Stochastic DDP algorithm
on multidimensional stochastic systems which are highly
nonlinear and have noise that is control and state dependent.
Biomechanical models belong in this class due to highly
nonlinear and noisy nature of muscle dynamics. Moreover we
are aiming to incorporate a second order Extended Kalman
Filter that can handle observation as well as process noise.
The resulting optimal controller-estimator scheme will be a
version of iterative Quadratic Gaussian regulator that can
handle stochastic dynamics expanded up to the second order
with state and control dependent noise.
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