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Abstract

In this paper, a class of one-dimensional stochastic differential equa-
tions driven by fractional Brownian motion with Hurst parameter H > 1

2
is studied. The drift term of the equation is locally Lipschitz and un-
bounded in the neighborhood of the origin. The existence, uniqueness
and positivity of the solutions are proved. We estimate moments includ-
ing the negative power moments. We also develop the implicit Euler
scheme, proved that the scheme is positivity preserving and strong con-
vergent, and obtain rate of convergence. Furthermore, we show that our
results can be applied to stochastic interest rate models such as mean-
reverting stochastic volatility model and strongly nonlinear Aı̈t-Sahalia
type model by using Lamperti transformation.
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1 Introduction

In this paper, we shall consider a one-dimensional stochastic differential equa-
tion (in short SDE) driven by fractional Brownian motion:

dXt = b(t,Xt)dt+ σdBH
t , X0 ≥ 0, (1.1)

where BH
t is a fractional Brownian motion (fBM for short) with Hurst parameter

H ∈ (1/2, 1) and the drift term b(t, x) is only local Lipschitz in x ∈ (0,∞) and
unbounded in the neighborhood of 0.

There are many stochastic interest models which are characterized by stochas-
tic differential equations driven by Brownian motion. For example: the well
known Cox-Ingersoll-Ross (C-I-R for short) model [9] and Ait-Sahalia model [1].
However, in order to capture the real world more precisely, due to the memory
effects of fractional Brownian motion, it would be reasonable to replace Brow-
nian motion by fBM if there are inert investors in this market, see for instance
[24]. Additionally, motivated by studying the fractional C-I-R model, a singular
fractional SDEs has been discussed in [18] under some conditions. Recently, a
general fractional C-I-R with Hurst parameter H ∈ (0, 1) was introduced in
[21]. However, some models cannot be covered by the conditions introduced
recently in [18], see e.g. the equation (3) in [21] or Example 4.1 and Example
4.2 below. Hence one aim of the present paper is to give more general conditions
to cover more stochastic interest rate models by using the Lamperti transfor-
mation, even if their coefficients have super-linear growth, see e.g. Example 4.2
for the Ait-Sahalia-type interest rate model for details.

Numerical approximations of SDEs arising from finance are of great in-
terest. For instance, the strong approximation of C-I-R model based on the
Euler-type method was shown in [11] and optimal convergence rate was ob-
tained; the strong convergence of Euler-Maruyama (EM) type approximations
for Aı̈t-Sahalia type model was given [25]; in [19], the EM approximations for a
general mean-reverting stochastic volatility model under regime-switching was
presented. For the EM scheme of SDEs with non-Lipschitz coefficients, one can
see [11, 25, 5, 13] and references therein. However, the numerical issues for
SDEs driven by fBM have not been well studied, comparing with SDEs driven
by Brownian motion. Recently, the authors in [15] obtained optimal strong
convergence rate of backward Euler scheme for C-I-R model driven by fBM.
For more details on numerical scheme for fractional SDEs, we refer reader to
[15, 16, 17, 22] and references therein. In the present paper, after a general
discussion on (1.1), we investigate the numerical approximation of the solution
to this equation when X0 is positive. The strong convergence of the numer-
ical scheme is obtained. Based on the Lamperti transformation used as in
[11, 15, 18], our results can cover more interesting models in mathematical fi-
nance, such as mean-reverting stochastic volatility model (Example 4.1):

dZt = (a1 − a2Zt)dt+ σZγ
t dBH

t , Z0 > 0, (1.2)
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where γ ∈ [1/2, 1); and Aı̈t-Sahalia type model (Example 4.2):

dZt =
(
a−1Z

−1
t − a0 + a1Zt − a2Zr

t

)
dt+ σZρ

t dBH
t , Z0 > 0, (1.3)

where ρ > 1, r + 1 > 2ρ and r ≥ 2 ∧ ρ + 1. The stochastic integral in these
two models is in the sense of pathwise Riemann-Stieltjes integral developed by
Zähle in [27]. Replacing fBM by Brownian motion in equations (1.2) and (1.3),
the first model was studied in [19] under regime-switching, and the convergence
rate is obtained, the second model was studied in [25], where the convergence
rate is not clear. Following the study in [11, 15], the positivity preserving im-
plicit Euler-type method is adopted in our paper. Here, not only is the strong
convergence shown, but also the convergence rate is obtained. For concrete ex-
amples presented above, the convergence order of the mean-reverting stochastic
volatility model is the Hurst parameter H up to a logarithmic term, which is
an extension of [11]; while the convergence order for the Aı̈t-Sahalia type model

is (2H − 1)
(

1
ρ−1 ∧ 1

)
up to a logarithmic term.

This paper is structured as follows. In Section 2, we shall recall some basic
facts on fractional Brownian motion. Section 3 is devoted to general discus-
sions on (1.1), including existence and uniqueness of solutions to the equation;
(negative-power) moments and modular of continuity estimates. In Section 4,
we shall present our results on the numerical approximations of (1.1) and their
applications on concrete examples.

2 Preliminaries

We shall recall some basic facts about fractional Brownian motion. For more
details, we refer readers to [6, 23, 26].

Let BH = {BH
t , t ∈ [0, T ]} be a fractional Brownian motion with Hurst

parameter H ∈ (1/2, 1) defined on the probability space (Ω,F ,P), i.e. BH is a
Gaussian process which is centered with the covariance function

E
(
BH
t B

H
s

)
= RH(t, s) =

1

2

(
t2H + s2H − |t− s|2H

)
.

For each t ∈ [0, T ], let Ft be the σ-algebra generated by the random variables
{BH

s : s ∈ [0, t]} and the sets of probability zero. Furthermore, one can show
that E|BH

t − BH
s |p = C(p)|t − s|pH for all p ≥ 1. As a consequence of the

Kolmogorov continuity criterion, BH has (H−ε)-order Hölder continuous paths
for all ε > 0. Indeed, the studies on the sample path property of fractional
Brownian motion, see for instance [26], show that

|BH
t −BH

s | ≤ A|t− s|H
√

log (1 + (t− s)−1)

where A is a random variable depending on H only and there is some c > 0
such that EecA2

<∞.
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Denote by E the set of step functions on [0, T ]. Let H be the Hilbert space
defined as the closure of E with respect to the scalar product

〈I[0,t], I[0,s]〉H := αH

∫ T

0

∫ T

0

1[0,t](u)1[0,s](v)|u− v|2H−2dudv = RH(t, s),

where αH = H(2H − 1). By the bounded linear transformation theorem, the
mapping I[0,t] 7→ BH

t can be extended to an isometry between H and the Gaus-
sian space associated with BH . Denote this isometry by φ 7→ BH(φ).

On the other hand, the covariance kernel RH(t, s) can be written as

RH(t, s) =

∫ t∧s

0

KH(t, r)KH(s, r)dr,

where KH is a square integrable kernel given by

KH(t, s) =
s1/2−H

Γ(H − 1/2)

∫ t

s

rH−1/2(r − s)H−3/2dr1[0,t](s)

in which Γ(·) is the Gamma function. Using this kernel, we can define a map
from L2([0, T ]) to the reproducing kernel space H defined as follows: let

H = span{RH(t, ·) | t ∈ [0, T ]}
〈·,·〉R

,

where 〈RH(t, ·), RH(s, ·)〉R = RH(t, s), s, t ∈ [0, T ], and for any φ ∈ L2([0, T ]),
define

(KHφ)(t) =

∫ t

0

KH(t, s)φ(s)ds, t ∈ [0, T ].

It has been proved in [4, 10] that KH is an isomorphism from L2([0, T ]) to H .
Now, define the linear operator K∗H : E → L2([0, T ]) by

(K∗Hφ)(s) = KH(T, s)φ(s) +

∫ T

s

(φ(r)− φ(s))
∂KH

∂r
(r, s)dr.

By integration by parts, one can see that

(K∗Hφ)(s) =

∫ T

s

φ(r)
∂KH

∂r
(r, s)dr.

It is clear that
(
K∗H1[0,t]

)
(s) = KH(t, s)1[0,t](s). K

∗
H is the dual operator of KH

in the following sense: for any ψ ∈ E and h ∈ L2([0, T ]),∫ T

0

(K∗Hφ)(r)h(t)dr =

∫ T

0

φ(r)(KHh)(dr). (2.1)

Due to [3], for all φ, ψ ∈ E , it holds that 〈K∗Hφ,K∗Hψ〉L2([0,T ]) = 〈φ, ψ〉H and then
K∗H can be extended to an isometry betweenH and L2([0, T ]). Hence, according
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to [3] again, the process {Wt = BH((K∗H)−1I[0,t]), t ∈ [0, T ]} is a Wiener process,
and BH has the following integral representation

BH
t =

∫ T

0

(K∗H1[0,t])(s)dWs =

∫ t

0

KH(t, s)dWs.

With linear operators KH and K∗H in hand, there exists an isometry from
H to H defined by the operator KHK

∗
H . Then H can be charactered by H

with the isometry KHK
∗
H . It follows from the integral representation of fBM

that H is the fractional version of the Cameron-Martin space. This was shown
rigorously in [10]. The Malliavin derivative of the functional of fBM is defined
as an H-valued random variable. For more details on the Malliavin calculus for
fBM, one can consult [23].

In this paper, the stochastic integral of fractional Brownian motion is de-
fined by the techniques of fractional calculus developed by Zähle in [27]. We
cite the following results on the Riemann-Stieltjes integral and chain rule as a
proposition for future use.

Proposition 2.1. Let a, b ∈ R with a < b, and let F ∈ C1(R).

(1) Suppose f ∈ Cλ(a, b) and g ∈ Cµ(a, b), where Cλ(a, b) and Cµ(a, b) are
Hölder continuous functions with order λ and µ respectively. If λ+µ > 1,
then the Riemann-Stieltjes integral

∫ b
a
fdg exists.

(2) Suppose f ∈ Cλ(a, b) such that F ′ ◦ f ∈ Cµ(a, b) with λ+ µ > 1. Then

F (f(t))− F (f(s)) =

∫ t

s

F ′ ◦ f(r)df(r), s, t ∈ (a, b).

Finally, we shall recall a result on the relationship of stochastic integral and
the Skorohod integral w.r.t. fractional Brownian motion. Let

|H| =
{
ψ ∈ H

∣∣∣∣ ‖ψ‖2|H| = αH

∫ T

0

∫ T

0

|ψ(s)||ψ(t)||t− s|2H−2dsdt <∞
}

and |H| ⊗ |H| be the set of all measurable function such that

‖ψ‖2|H|⊗|H| := α2
H

∫
[0,T ]4

|ψ(u, s)||ψ(v, t)||u− v|2H−2|t− s|2H−2dudvdtds <∞.

For p > 1, we denote by D1,p
|H| all the random variables u such that u ∈ |H| a.s.,

its Malliavin derivative Du ∈ |H| ⊗ |H| a.s., and

E‖u‖p|H| + E‖Du‖p|H|⊗|H| <∞.

Then we have the following proposition on the link between stochastic integral
w.r.t. fBM and the Skorohod integral, see [23, Proposition 5.2.3 and Page 293]
and [2].
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Proposition 2.2. Let H > 1
2
, and let {ut}t∈[0,T ] be a stochastic process in D1,2

|H|
such that a.s. ∫ T

0

∫ T

0

|Dsut||t− s|2H−2dtds <∞.

Then ∫ T

0

utdB
H
t = δ(u) + αH

∫ T

0

∫ T

0

Dsut|t− s|2H−2dtds.

For p > 1
H

,

E

(
sup
t∈[0,T ]

|δ(u1[0,t])|p
)
≤ C

(
E
∫ T

0

|us|pds+ E
∫ T

0

(∫ T

0

|Drus|
1
H dr

)pH
ds

)
.

Remark 2.1. The Proposition 5.2.3 in [23] concerns Stratonovich integral
w.r.t. the fBM. For a process ut satisfying the assumption of Proposition 2.2,
the same as that of Proposition 5.2.3 in [23], the Stratonovich integral of u
w.r.t. the fBM coincides with the forward integrals, see [23, Remark 2 in Page
292]. By the definition of the forward integrals w.r.t. fBM and the link between
fractional and stochastic calculus, see [6, Subsection 5.2], the forward integral
w.r.t. fBM with H ∈ (1

2
, 1) is an extension of fractional integral introduced in

[27]. In particular, if ut is a λ-Hölder continuous paths with λ+H > 1, then the

integration
∫ T
0
utdB

H
t coincides with the pathwise Riemann-Stieltjes integral.

The second claim of this proposition is the maximal inequality for the diver-
gence integral, see (i) in Page 293 in [23] or [2, Theorem 4]. In the following
discussion, we shall make use of the notation∫ t

0

usδB
H
s = δ(u1[0,t]).

3 A study of SDEs driven by fractional Brow-

nian motion

In this section, we shall consider (1.1) following [18]. Fix T > 0. We prove the
existence and uniqueness of this equation on [0, T ] under the following assump-
tions.

(A1) The drift term b : [0, T ] × (0,∞) → R is continuous and has continuous
derivative w.r.t. the second variable. There exists K ≥ 0 such that

b′x(t, x) ≤ K, x ∈ (0,∞), t ∈ [0, T ],

where b′x is the partial derivative of b w.r.t. the second variable.
(A2) There exist x1 > 0, α > 1

H
− 1 and h1 > 0 such that

b(t, x) ≥ h1x
−α, t ∈ [0, T ], x ≤ x1.
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(A3) There are x2 > 0 and h2 > 0 such that

b(t, x) ≤ h2(x+ 1), x ≥ x2, t ≥ 0.

Remark 3.1. The Assumption (A2) is similar to (ii) in [18]. The assumptions
(A1) and (A3) are weaker than (i) and (iii) in [18]. For example, let b(t, x) =
a1x

−γ − a2x with γ ∈ (1,+∞), a1 > 0 and a2 < 0. It is clear that b satisfies
(A1) and (A3), while breaks (i) and (iii) in [18].

Under (A1)-(A3), we prove in Theorem 3.1 below that (1.1) has a positive
solution on (0, T ] a.s. [21] studies positiveness of solutions to fractional C-I-R
models with H ∈ (0, 1) under the framework of pathwise Stratonovich integral.
Our result covers [21, Theorem 2], where the authors deal with fractional C-I-R
model with H > 1

2
. However, we do not discuss positiveness of solutions to

(1.1) with H < 1
2
.

The existence and uniqueness of solutions to (1.1) follows from the existence
and uniqueness of the equation below:

dXt = b(t,Xt)dt+ dwt, X0 ≥ 0, (3.1)

where w ∈ Cβ([0, T ],R) for all T > 0 with β ∈ (1
2
, H) such that α > 1

β
− 1. We

say f is a β-Hölder continuous function on [s, t] if

‖f‖s,t,β := sup
s≤s′<t′≤t

|f(s′)− f(t′)|
(t′ − s′)β

<∞.

Sometimes, we use ‖ · ‖β for simplicity’s sake. For a continuous function f on
[s, t], we define

‖f‖s,t,∞ = sup
s≤r≤t

|fr|.

Our existence and uniqueness theorem for (3.1) reads as follows.

Theorem 3.1. Assume that (A1)-(A3) hold.

(1) For all X0 > 0, it holds that the equation (3.1) has a unique solution Xt

and X ∈ Cβ([0, T ], (0,∞))
(2) For X0 = 0, if there exists t0 > 0 such that b(t, ·) is non-increasing on

(0, x1) for all 0 ≤ t ≤ t0, then (3.1) has a unique solution Xt and Xt ∈
(0,∞) for all t ∈ [0, T ].

Proof. We first prove the uniqueness. Let X
[1]
t and X

[2]
t be two solutions of

equation (3.1) with the same initial values, then

X
[1]
t −X

[2]
t = X [1]

s −X [2]
s +

∫ t

s

(
b(r,X [1]

r )− b(r,X [2]
r )
)

dr, s ≤ t ≤ T.

Combining this with (A1), we have

d
(
X

[1]
t −X

[2]
t

)2
= 2

(
b(t,X

[1]
t )− b(t,X [2]

t )
)(

X
[1]
t −X

[2]
t

)
dt
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≤ 2K
(
X

[1]
t −X

[2]
t

)2
dt,

which yields (
X

[1]
t −X

[2]
t

)2
≤ exp (2Kt) (X

[1]
0 −X

[2]
0 )2.

Thus, it X
[1]
t −X

[2]
t = 0 for all t ∈ [0, T ].

We assume that X0 > 0. Since b : [0, T ] × (0,∞) → R is continuous and
has continuous derivative w.r.t. the second variable, it is clear that (3.1) has a
continuous local solution. Next, we shall prove thatXt ∈ (0,∞) for all t ∈ [0, T ].
Let

τ0 = inf{t ∈ [0, T ] | Xt = 0}, τn = inf{t ∈ [0, T ] | Xt ≥ n}, n ∈ N,

with the convention that inf ∅ := T+, where T+ is an artificial added element
larger than T , but smaller than any a > T . We shall prove τ0 = T+ and
lim
n→∞

τn = T+.

If τ0 ≤ T , then there is τ̂0 ∈ (0, τ0) such that Xt ≤ x1 for all t ∈ (τ̂0, τ0].
Since b(t, x) > 0 for x ∈ (0, x1), t ≥ 0 and

0 = Xτ0 = Xt +

∫ τ0

t

b(s,Xs)ds+ wτ0 − wt, (3.2)

it follows that

Xt ≤ |wτ0 − wt| ≤ ‖w‖β(τ0 − t)β, t ∈ (τ̂0, τ0). (3.3)

On the other hand, by (A2), (3.2) and (3.3), we have

‖w‖β(τ0 − t)β ≥ |wτ0 − wt| ≥
∫ τ0

t

b(s,Xs)ds

≥ h1

∫ τ0

t

X−αs ds ≥ h1
‖w‖αβ

∫ τ0

t

1

(τ0 − s)αβ
ds, t > τ̂0. (3.4)

If αβ ≥ 1, then
∫ τ0
t

1
(τ0−s)αβ ds = ∞ which leads to a contradiction. If αβ < 1,

then

‖w‖β(τ0 − t)β ≥
(τ0 − t)1−αβh1
(1− αβ)‖w‖αβ

, t > τ̂0. (3.5)

This, together with α > 1
β
− 1, implies that

0 = lim
t→τ−0

(τ0 − t)αβ+β−1 ≥
h1

‖w‖α+1
β

> 0,

which is a contradiction. Hence τ0 = T+.
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If τ∞ := lim
n→∞

τn ≤ T , then either there exists τ̂1 such that Xτ̂1 = x2 + X0

and Xt ≥ x2 + X0 for all t ∈ (τ̂1, τ∞), or for all n ∈ N with n > x2 + X0 and
ε > 0 there exits an interval (τ̂1, τ̂2) ⊂ (τ∞− ε, τ∞) such that Xτ̂1 = x2 +X0 and

x2 +X0 ≤ inf
t∈(τ̂1,τ̂2)

Xt ≤ n ≤ sup
t∈(τ̂1,τ̂2)

Xt.

In both cases,

Xt = Xτ̂1 +

∫ t

τ̂1

b(s,Xs)ds+ wt − wτ̂1

≤ x2 +X0 +

∫ t

τ̂1

h2(Xs + 1)ds+ wt − wτ̂1

≤ x2 +X0 + ‖w‖βτβ∞ + h2τ∞ + h2

∫ t

τ̂1

Xsds.

where we use (A3) in the second inequality. It follows from Grönwall’s inequal-
ity that for all t ∈ (τ̂1, τ̂2) or t ∈ (τ̂1, τ∞)

Xt ≤
(
x2 +X0 + ‖w‖βτβ∞ + h2τ∞

)
exp {(t− τ̂1)h2}

≤
(
x2 +X0 + ‖w‖βT β + h2T

)
eTh2 .

Taking supremum of the left hand side in the above inequality: for all t ∈
(τ̂1, τ∞) in the first case or for all t ∈ (τ̂1, τ̂2), ε ∈ (0, 1), and n ≥ 1 for the
second case, the left hand side is infinite but the right hand side is a finite
constant. This is a contradiction. Hence, τ∞ = T+.

Finally, we deal with the case X0 = 0. For n ∈ N, let X
[n]
t be the solution

of (3.1) with X
[n]
0 = 1/n. For n,m ∈ N, n < m, let τ = inf{t ∈ [0, T ] | X [n]

t =

X
[m]
t }. By the uniqueness, X

[n]
t = X

[m]
t for all t ≥ τ , or τ = T+. It is clear

that X
[n]
t > X

[m]
t if t < τ . Thus, the sequence {X [n]

t }n∈N is non-increasing
and nonnegative. Let n0 ∈ N be such that 1

n0
< x1, and let τn0 = inf{t ∈

[0, T ] | X [n0]
t ≥ x1}. Set Xt = lim

n→∞
X

[n]
t . Then

Xt∧τn0 ≤ X
[n]
t∧τn0 ≤ X

[n0]
t∧τn0 ≤ x1, n ≥ n0.

Set b(t, 0) = +∞ for t ∈ [0, t0]. Then

b(t,Xt) = lim
n→+∞

b(t,X
[n]
t ), t ∈ (0, t0 ∧ τn0 ]

Since for any t ∈ [0, t0], b(t, x) is non-increasing for x ∈ (0, x1), the following
equality follows from the monotone convergence theorem

lim
n→∞

∫ t∧t0∧τn0

0

b(s,X [n]
s )ds =

∫ t∧t0∧τn0

0

b(s,Xs)ds.
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Taking into account that X
[n]
t satisfies (3.1), we have

Xt∧t0∧τn0 =

∫ t∧t0∧τn0

0

b(s,Xs)ds+ wt∧t0∧τn0 − w0.

Moreover, this inequality yields that∫ t∧t0∧τn0

0

b(s,Xs)ds <∞.

Thus, b(s,Xs) < ∞ a.e. s ∈ [0, t ∧ t0 ∧ τn0 ]. By (A2), Xs > 0 a.e. s ∈
[0, t ∧ t0 ∧ τn0 ]. Starting from any Xs > 0 with s ∈ (0, t ∧ t0 ∧ τn0), there exists
unique solution to (3.1) which is positive. Thus, Xs > 0 for all s ∈ (0, t∧t0∧τn0 ].
According to the proof above, {Xt}t∈[0,t∧t0∧τn0 ] can be extended to a solution
for all t > 0 and Xt > 0 for all t ∈ (0, T ].

Remark 3.2. It is clear that X ∈ Cβ([s, T ]) for all 0 ≤ s < T only if X0 > 0
or s > 0. In [18, Remark 2.2], the authors stated that the solution of (2.1)
in [18] is in Cβ([0, T ]) even if the initial value is 0. However, we should point
out that the positiveness of the initial value is necessary. In fact, the solution
Xt with X0 = 0 is not β-Hölder continuous on the interval which contains 0.
Otherwise, there is C > 0 and t1 > 0 such that Xt ≤ Ctβ for t ∈ [0, t1]. Letting
τx1 = inf{t ≥ 0 | Xt ≥ x1}, just as (3.4), it follows from (3.1) and (A2) that
for t ≤ τx1 we have

Xt = X0 +

∫ t

0

b(s,Xs)ds+ wt − w0 ≥ h1

∫ t

0

1

Cαsβα
ds− ‖w‖βtβ. (3.6)

As in proof of τ0 = T+, (3.6) leads to a contradiction if αβ ≥ 1. For αβ < 1, it
is similar to (3.5) that (3.6) and Xt ≤ Ctβ lead to the following contradiction

C + ‖w‖β ≥ lim
t→0+

Xt + ‖w‖βtβ

tβ
≥ h1
C

lim
t→0+

t1−αβ−β =∞.

According to this theorem, the stochastic equation (1.1) has a unique path-
wise solution. Next, we shall study the Malliavin differentiablity of Xt.

Lemma 3.2. Assume (A1), (A2) and (A3) hold. Let Xt be the solution of
(1.1). Then for all t > 0, Xt ∈ D1,2

|H| with

DsXt = σ exp

{∫ t

s

b′x (r,Xr) dr

}
1[0,t](s),

and the law of Xt has density w.r.t. the Lebesgue measure on R.

The proof just follows the line of [18, Theorem 3.3.], and the outline of the
proof is presented here for the convenience of readers.
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Proof. Let ε ∈ (0, 1), h ∈ H with h0 = 0 and

Xε
t = X0 +

∫ t

0

b(r,Xε
r)dr + σBH

t + σεKHK
∗
Hh(t).

Then by (A1),

Xε
t −Xt =

∫ t

0

(b(r,Xε
r)− b(r,Xr)) dr + σεKHK

∗
Hh(t)

=

∫ t

0

b′x
(
r,Xξ

r

)
(Xε

r −Xr)dr + σεKHK
∗
Hh(t), t > 0,

where Xξ
r = Xr+ξεs(X

ε
r−Xr) and ξεs ∈ (0, 1) depends on s and ε. This equality,

along with (2.1) (see also [6, Lemma 2.1.9]), implies

Xε
t −Xt = σε

∫ t

0

exp

{∫ t

s

b′x
(
r,Xξ

r

)
dr

}
(KHK

∗
Hh)(ds)

= σε

∫ T

0

K∗H

(
exp

{∫ t

·
b′x
(
r,Xξ

r

)
dr

}
1[0,t](·)

)
(s)K∗Hh(s)ds.

Since the continuity of b′x(t, ·), (A1) and K∗Hh ∈ L2([0, T ]), it follows from the
dominated convergence theorem that the limit

lim
ε→0+

Xε
t −Xt

ε
= σ

∫ T

0

K∗H

(
exp

{∫ t

·
b′x (r,Xr) dr

}
1[0,t](·)

)
(s)K∗Hh(s)ds

= σ

〈
exp

{∫ t

·
b′x (r,Xr) dr

}
1[0,t](·), h

〉
H

holds almost sure and in L2(Ω). Consequently,

D·Xt = σ exp

{∫ t

·
b′x (r,Xr) dr

}
1[0,t](·).

It is clear that ‖DXt‖H > 0, and E‖DXt‖2H < ∞ follows from (A1). Then
the existence of density w.r.t. the Lebesgue measure follows from the classical
result of Malliavin calculus, see e.g. [23, Theorem 2.1.2 or Theorem 2.1.3].

Next, we shall study the moment estimates of solutions to (1.1). To this
end, we introduce the following assumption.

(A2’) The condition (A2) holds with α ≥ 1. There exist θ > 0 and h3 > 0
such that

b(t, x) ≤ h3(1 + x+ x−θ), t ∈ [0, T ], x > 0. (3.7)

It should be noted that θ ≥ α by (A2) and (3.7), and (A2’) implies (A3).
This assumption is used for positive moment estimate. To give the negative
moment estimate, we introduce the following

11



(A3’) there exists a q > 0 and h4 > 0 such that

(b(t, x))− ≤ h4(1 + xq), s ∈ [0, T ], x > 0 (3.8)

where (b(t, x))− denotes the negative part of b(t, x).

We first consider the negative moments for the solution to (1.1).

Lemma 3.3. Assume (A1), (A2’) and (A3’). Let Xt be a solution to (1.1)
with X0 > 0.

(1) Suppose α = 1. Then for p ≥ 1 and

h1 ≥ ((p+ 1) ∨ q)HT 2H−1eKT , (3.9)

one has
sup
s∈[0,T ]

EX−ps <∞. (3.10)

If (3.9) holds with p replaced by 2(p+ 2), then

E sup
s∈[0,T ]

X−ps <∞.

(2) Suppose α > 1. Then for all p > 0,

E sup
s∈[0,T ]

X−ps <∞.

Proof. We divide the proof into two steps
Step (i). We first prove (3.10). In fact, due to the Hölder inequality, we only

need to prove the claim for large p. Thus we assume that p+ 1 ≥ q. Since Xt is
β-Hölder continuous for β < H, applying Proposition 2.1, Proposition 2.2 and
Lemma 3.2, we obtain that

(Xt + ε)−p = (X0 + ε)−p − p
∫ t

0

b(s,Xs)

(ε+Xs)p+1
ds− σp

∫ t

0

(ε+Xs)
−(p+1)dBH

s

≤ (X0 + ε)−p − p
∫ t

0

b(s,Xs)

(ε+Xs)p+1
ds− σp

∫ t

0

(ε+Xs)
−(p+1)δBH

s

+ σp(p+ 1)αH

∫ t

0

∫ s

0

DrXs|s− r|2H−2

(ε+Xs)p+2
drds

≤ (X0 + ε)−p − p
∫ t

0

b(s,Xs)Xs − σ2(p+ 1)Hs2H−1eKs

(ε+Xs)p+2
ds

− σp
∫ t

0

(ε+Xs)
−(p+1)δBH

s .

Let

x̃1 = x1 ∧ 1 ∧
(

e−KTh1
σ2(p+ 1)HT 2H−1

) 1
α−1

1[α>1] + (x1 ∧ 1)1[α=1].

12



Then

− b(s, x)

(ε+ x)p+2
≤ −1[x≤x̃1]

h1
xα(ε+ x)p+2

+ 1[x≥x̃1]
h4(1 + xq)

(ε+ x)p+2

≤ h4

(
1

x̃p+2
1

+
1

x̃p+2−q
1

)
and

− b(s, x)x− σ2(p+ 1)Hs2H−1e
∫ s
0 K

+
u du

(ε+ x)p+2

≤ −h1x
−(α−1) − σ2(p+ 1)Hs2H−1eKs

(ε+ x)p+2
1[x≤x̃1]

+
h4(1 + xq)x+ (p+ 1)Hs2H−1eKs

(ε+ x)p+2
1[x≥x̃1]

≤ −h1x̃
−α+1
1 − σ2(p+ 1)Hs2H−1eKs

xp+2
1[x≤x̃1]

+ (p+ 1)Hs2H−1eKsx̃−p−21 + h4

(
x̃
−(p+1)
1 + x̃−p−1+q1

)
.

Since (3.9) and the definition of x̃1, there exists C > 0 depending on x̃1, p, q, σ
such that

(Xt + ε)−p ≤ (X0 + ε)−p + C

∫ t

0

(h4 + s2H−1)ds− σp
∫ t

0

(ε+Xs)
−(p+1)δBH

s .

Taking expectation and letting ε→ 0, (3.10) is proved.
Step (ii) We shall complete the rest of the proof. If α > 1 or (3.9) holds

with p replaced by 2(p+ 2), then

sup
[0,T ]

EX−2(p+2)
t <∞.

Then X−(p+1) ∈ D1,2
|H|, (see Page 2 for the definition of D1,2

|H|), due to the following
inequality∫

[0,T ]2

∫
[0,T ]2

E(DsXt)X
−(p+2)
t (DvXu)X

−(p+2)
u |u− v|2H−2|t− s|2H−2dudvdsdt

≤ σ2e2KT sup
[0,T ]

EX−2(p+2)
t

∫
[0,T ]2

∫
[0,T ]2

|u− v|2H−2|t− s|2H−2dudvdsdt

<∞.

By Proposition 2.1, Proposition 2.2 and Lemma 3.2 again, there is some C > 0
depending on x̃1, p, q, σ such that

X−pt ≤ X−p0 + C

∫ t

0

(h4 + s2H−1)ds− p
∫ t

0

X−(p+1)
s δBH

s .
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It follows from the maximal inequality of the Skorohod integral (see e.g. [23,
Page 293] or Proposition 2.2) that(

E sup
r∈[0,t]

∣∣∣∣∫ r

0

X−(p+1)
s δBH

s

∣∣∣∣2
) 1

2

≤ C

(∫ t

0

EX−2(p+1)
s ds+ E

∫ t

0

(∫ s

0

(p+ 1)
1
HX

− p+2
H

s |DrXs|
1
H dr

)2H

ds

) 1
2

≤ Cp,H(1 + tH)eKt
(∫ t

0

EX−2(p+2)
s

(
1 +X2

s

)
ds

) 1
2

.

Then

E sup
s∈[0,T ]

X−ps ≤ X−p0 + C

∫ T

0

(h4 + s2H−1)ds

+ Cp,H(1 + TH)eKT
(∫ T

0

EX−2(p+2)
s

(
1 +X2

s

)
ds

) 1
2

,

which implies the required conclusion.

If (3.7) holds with b(t, x) replaced by |b(t, x)|, then we can obtain moment
estimates of |X|0,T,∞ by applying [12, Theorem 3.1] to X1+θ

t . However, if (3.8)
holds, that is we allow that |b(t, x)| has super-linear growth near infinity, then
the following lemma can not be covered by [12]. For g ∈ C([0, T ],Rd), we denote
by Mg,T (·) the modulus of continuity of g on [0, T ], i.e.

Mg,T (h) = sup
0≤s,t≤T,|s−t|≤h

|gt − gs|.

We now give the estimates for the positive moments of the solution to (1.1).

Lemma 3.4. Assume (A1), (A2’) and (A3’). Let {Xt}t∈[0,T ] be a solution of
(1.1) with X0 > 0.

(1) If α > 1, then for any p > 0, we have

E‖X‖p0,T,∞ <∞, (3.11)

and(
EMp

X,T (h) + EMp
X−1,T (h)

) 1
p ≤ Cp,T

(
h+ hH

√
log(1 + 1/h)

)
. (3.12)

(2) If α = 1, then for p > 0, there exists T > 0 such that (3.11) and (3.12)
hold.
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Proof. Suppose α > 1. We first prove that

E
(
Xp
t +

∫ t

0

Xp
sds

)
<∞, t ≥ 0, p > 0. (3.13)

By (2) of Proposition 2.1, Lemma 3.2 and Proposition 2.2, for any n > 0

nXp
t

n+Xp
t

− nXp
0

n+Xp
0

=

∫ t

0

pn2Xp−1
s

(n+Xp
s )2

b(s,Xs)ds+

∫ t

0

σpn2Xp−1
s

(n+Xp
s )2

dBH
s

≤
∫ t

0

pn2h3X
p−1
s (1 +Xs +X−θs )

(n+Xp
s )2

ds+

∫ t

0

σpn2Xp−1
s

(n+Xp
s )2

δBH
s

+

∫ t

0

∫ s

0

αHσpn
2Xp−2

s (n(p− 1)+ − (p+ 1)Xp
s )

(n+Xp
s )3

DrXs|r − s|2H−2drds

≤
∫ t

0

(
2pnh3X

p
s

n+Xp
s

+ ph3(1 +X−θs )

)
ds+

∫ t

0

σpn2Xp−1
s

(n+Xp
s )2

δBH
s

+ CHe
Kt

∫ t

0

σ2p(p− 1)+nXp−2
s

n+Xp
s

s2H−1ds

≤ Ct,p,K,H,σ

∫ t

0

(
nXp

s

n+Xp
s

(h3 + s2H−1)

)
ds+

∫ t

0

σpn2Xp−1
s

(n+Xp
s )2

δBH
s

+ Ct,p,K,H,σ

∫ t

0

(
h3(1 +X−θs ) + (p− 1)+s2H−1X−2s

)
ds,

where Ct,p,K,H,t is locally bounded in t. Then it follows from the Grönwall lemma
and Lemma 3.3 that

E
nXp

t

n+Xp
t

≤ Xp
0 + eCt,p,K,H,σt

∫ t

0

E
(
h3(1 +X−θs ) +

(p− 1)+s2H−1

X2
s

)
ds <∞,

which implies (3.13) by letting n→∞ and using Fatou’s lemma.
Next, we shall prove that

E sup
s∈[0,t]

Xp
s <∞, t ≥ 0, p > 0. (3.14)

Indeed, by chain rule, (3.13) and Lemma 3.2, we have Xp−1
t ∈ D1,2

|H| and

Xp
t = Xp

0 +

∫ t

0

Xp−1
s b(s,Xs)ds+ σ

∫ t

0

Xp−1
s dBH

s

≤ Xp
0 +

∫ t

0

h3(X
p−1
s +Xp

s +Xp−θ−1
s )ds+ σ

∫ t

0

Xp−1
s δBH

s

+ σ(p− 1)αH

∫ t

0

∫ s

0

Xp−s
s DrXs|r − s|2H−2drds
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≤ Xp
0 + C

∫ t

0

h3(1 +Xp
s )ds+ |σ|

∣∣∣∣∫ t

0

Xp−1
s δBH

s

∣∣∣∣
+ CH,σ,pe

Kt

∫ t

0

Xp−2
s |s|2H−1ds. (3.15)

The maximal inequality of Skorohod integral yields that the following inequality
holds(

E sup
s∈[0,t]

∣∣∣∣∫ s

0

Xp−1
r δBH

r

∣∣∣∣2
) 1

2

≤ C

(∫ t

0

EX2(p−1)
r dr + E

∫ t

0

(∫ r

0

(p− 1)
1
HX

p−2
H

r |DuXr|
1
H du

)2H

dr

) 1
2

≤ CH,p(1 + tH)eKt
(∫ t

0

EX2(p−2)
r

(
1 +X2

s

)
dr

) 1
2

. (3.16)

Combining (3.15) and (3.16) with (3.13), we get (3.14).
Next, we shall give the estimates of modulus of continuity. By (A2’) and

(A3’), we have

|b(s, x)| ≤ (h4 ∨ h3)(1 + xq + x−θ) ≡ h̃(1 + xq + x−θ).

Then for any t > s ≥ 0,

|Xt −Xs| ≤
∫ t

s

|b(r,Xr)|dr + |σ(BH
t −BH

s )|

≤
∫ t

s

h̃
(
1 +Xq

r +X−θr
)

dr + |σ|MBH ,T ((t− s))

≤h̃
(
1 + ‖X‖qs,t,∞ + ‖X−1‖θs,t,∞

)
(t− s)

+ |σ|MBH ,T ((t− s)), (3.17)

which implies for any p > 0,

EMX,T (h)p ≤CT,p
(

1 + E‖X‖pq0,T,∞ + E‖X−1‖θp0,T,∞
)
hp + Cp|σ|pE(MBH ,T (h))p.

It follows from α > 1, Lemma 3.3 and the modulus of continuity of BH (see
e.g. [26, Theorem 4.2] or [20, Theorem 6.3.3]) that

EMX,T (h)p ≤ Cp,T

{
hp + hpH

(
log

(
1 +

1

h

)) p
2

}
.

By the Hölder inequality and the following inequality

sup
|t−s|≤h,s,t≤T

|X−1t −X−1s | ≤ sup
0≤s,t≤T

(
1

XtXs

)
sup

|t−s|≤h,s,t≤T
|Xt −Xs|
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≤
(

sup
0≤t≤T

X−2t

)
MX,T (h),

we get the moment estimate of the modulus of continuity of X−1.
For α = 1, one can repeat the argument for α > 1, and note that negative

power moments in (1) of Lemma 3.3 hold for small T depending on p.

4 Numerical Approximation

In this section, we shall consider the numerical approximation of the following
equation

dXt = b(Xt)dt+ σdBH
t , X0 > 0. (4.1)

The drift term b(·) satisfies (A1), (A2’) and (A3’), and all these conditions
are independent of time. To ensure the positivity of the numerical scheme, we
shall use the backward Euler method as in [15]. Moments estimates obtained
in the previous section will be used here.

Let T > 0, N ∈ N such that h := T
N
< (h3∨K)−1, tn = nh, and let ∆BH

n+1 =
BH
tn+1
− BH

tn . We introduce the backward Euler scheme. Define Y0 = X0 > 0,
and consider

Yn+1 = Yn + b(Yn+1)h+ σ∆BH
n+1, n ∈ N ∪ {0}. (4.2)

The equation (4.2) has a unique positive solution Yn+1, n ≥ 0. To prove this,
we consider the following function

U(x) = b(x)h− x, x > 0.

By (A2) and h > 0, lim
x→0+

U(x) = +∞. By (A2’) and h3h < 1,

lim
x→+∞

U(x) ≤ lim
x→+∞

((h3h− 1)x) = −∞.

Moreover, by (A1) and hK < 1, we have

U ′(x) = b′(x)h− 1 ≤ Kh− 1 < 0.

Then for any c ∈ R, there exists unique x such that U(x) = c. Hence, there
exists Yn+1 such that

U(Yn+1) = b(Yn+1)h− Yn+1 = −Yn − σ∆BH
n+1,

which is equivalent to (4.2). Let

Y h
t =

tn+1 − t
tn+1 − tn

Yn +
t− tn

tn+1 − tn
Yn+1, tn ≤ t ≤ tn+1.

For a random variable ξ, we denote ‖ξ‖p = (E|ξ|p)
1
p . In addition to (A1),

(A2’) and (A3’), we shall impose the following assumptions.
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(H1) The drift term b ∈ C2(R), and there are nonnegative constants p1, p2 and
C > 0 such that

|b′(x)|+ |b′′(x)| ≤ C(1 + xp1 + x−p2), x > 0. (4.3)

Our result on numerical approximation of (4.1) reads as follows.

Theorem 4.1. Assume (A1), (A2’), (A3’) and (H1) hold. Let h0 = (h3 ∨
K)−1 and h < h0.
(1) If α > 1, then

E sup
0≤n≤N−1

|Xtn+1 − Yn+1|p ≤ CT,X0,θ,H,p,Bh
pH , (4.4)

E sup
t∈[0,T ]

∣∣Xt − Y h
t

∣∣p ≤ CT,X0,θ,H,p,Bh
pH

(
log

(
1 +

1

h

))p/2
. (4.5)

(2) If α = 1, then for p > 0, there is T > 0 such that (4.4) and (4.5) hold.

Proof. We only prove the claim for α > 1. For α = 1, the negative power
moments estimates hold for T depending on the given p > 0 (see Lemma 3.3).
Then for T small enough, the arguments for α > 1 work well in the small
interval, and the claim then can be obtained.

(1) We first prove (4.4). It follows from the definition of Yn+1 and the mean
value theorem that that

Xtn+1 − Yn+1 = Xtn − Yn +

∫ tn+1

tn

b(Xs)ds− b(Yn+1)h

= Xtn − Yn +
(
b(Xtn+1)− b(Yn+1)

)
h

−
∫ tn+1

tn

(
b(Xtn+1)− b(Xs)

)
ds

= Xtn − Yn + b′(Yn+1 + ξn+1(Xtn+1 − Yn+1))h(Xtn+1 − Yn+1)

−
∫ tn+1

tn

(∫ tn+1

s

b′(Xr)b(Xr)dr + σ

∫ tn+1

s

b′(Xr)dB
H
r

)
ds,

(4.6)

where ξn+1 ∈ (0, 1). By (A1) and letting

∆n+1 = b′(Yn+1 + ξn+1(Xtn+1 − Yn+1)),

we have

1−∆n+1h ≥ 1−Kh > 0

holds for h < h0. On the other hand, it follows from the Fubini theorem that∫ tn+1

tn

(∫ tn+1

s

b′(Xr)b(Xr)dr + σ

∫ tn+1

s

b′(Xr)dB
H
r

)
ds
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=

∫ tn+1

tn

(r − tn) b′(Xr)b(Xr)dr + σ

∫ tn+1

tn

(r − tn)b′(Xr)dB
H
r .

Substituting this into (4.6), letting Υn+1 = Xtn+1 − Yn+1 and

Qn+1 = −
∫ tn+1

tn

(r − tn) b′(Xr)b(Xr)dr − σ
∫ tn+1

tn

(r − tn)b′(Xr)dB
H
r ,

we get that

Υn+1 = (1−∆n+1h)−1Υn + (1−∆n+1h)−1Qn+1.

Consequently,

Υn+1 =
n+1∑
i=1

Qi

n+1∏
k=i

(1−∆kh)−1 =:
n+1∑
i=1

Qiρi. (4.7)

Next, we shall estimate the right hand side of the above equality. Since

n+1∏
k=i

(1−∆kh)−1 ≤ (1−Kh)−n+i−2 ≤ e(n+1) log 1
1−Kh ≤ e

(n+1)Kh
1−Kh = e

KT
1−Kh ,

it follows from (4.7) that

E sup
1≤n≤N

|Υn|p ≤ CT,KE

(
N∑
i=1

|Qi|

)p

. (4.8)

By the definition of Qi, there are two integrals to be estimated. For the ordinary
integral, it follows from (A2’), (A3’) and (H1) that∥∥∥∥∥

N∑
i=1

∫ ti

ti−1

(ti−1 − r)b′(Xr)b(Xr)dr

∥∥∥∥∥
p

≤ CK,Th

N∑
i=1

∫ ti

ti−1

‖b′(Xr)b(Xr)‖p dr

≤ CTh

∫ T

0

‖1 +X−(θ+p1)r +Xq∨(1+p2)
r ‖pdr

≤ CT,θ,X0,p1,p2,q,Kh. (4.9)

For the stochastic integration, by Proposition 2.2 or [23, Theorem 5.2.3]

N∑
i=1

∣∣∣∣∫ ti

ti−1

(r − ti−1)b′(Xr)dB
H
r

∣∣∣∣
≤

N∑
i=1

∣∣∣∣∫ T

0

(t− ti−1)b′(Xt)1(ti−1,ti]δB
H
t

∣∣∣∣
+

N∑
i=1

∣∣∣∣∫ T

0

∫ T

0

(r − ti−1)b′′(Xr)DsXr|s− r|2H−21(ti−1,ti](r)1(0,r](s)dsdr

∣∣∣∣
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=
N∑
i=1

∣∣∣∣∫ T

0

(r − ti−1)b′(Xr)1(ti−1,ti](r)δB
H
r

∣∣∣∣
+

N∑
i=1

∫ ti

ti−1

∫ r

0

(r − ti−1) |b′′(Xr)| |DsXr||s− r|2H−2dsdr

=: I1 + I2. (4.10)

For I2, it follows from (4.3) that

‖I2‖p ≤

∥∥∥∥∥
N∑
i=1

∫ ti

ti−1

∫ r

0

(r − ti−1)|b′′(Xr)||DsXr||s− r|2H−2dsdr

∥∥∥∥∥
p

≤ Ch
N∑
i=1

∫ ti

ti−1

∫ r

0

‖X−p1r +Xp2
r ‖pe

∫ r
s Kdu|s− r|2H−2dsdr

≤ CT,K,Hh
N∑
i=1

∫ ti

ti−1

‖X−p1r +Xp2
r ‖pr2H−1dsdr

≤ CT,θ,H,X0,Kh. (4.11)

For I1, it follows from Minkowski’s inequality that

‖I1‖p =

∥∥∥∥∥
N∑
i=1

∣∣∣∣∫ T

0

(r − ti−1)b′(Xr)1(ti−1,ti]δB
H
r

∣∣∣∣
∥∥∥∥∥
p

≤
N∑
i=1

∥∥∥∥∫ T

0

(r − ti−1)b′(Xr)1(ti−1,ti]δB
H
r

∥∥∥∥
p

.

By [23, Proposition 1.5.8],

E
∣∣∣∣∫ T

0

(r − ti−1)b′(Xr)1(ti−1,ti]δB
H
r

∣∣∣∣p
≤ Cp

(∫
(ti−1,ti]2

(r − ti−1)(s− ti−1)|Eb′(Xr)||Eb′(Xs)||r − s|2H−2drds
) p

2

+ E
(∫ ti

ti−1

∫ ti

ti−1

∫ r

0

∫ s

0

(r − ti−1)(s− ti−1)|b′′(Xr)||b′′(Xs)|

× |DuXr||DvXs||u− v|2H−2|s− r|2H−2dudvdsdr
) p

2

≤ CT,p1,p2,Kh
p

(∫
(ti−1,ti]2

|r − s|2H−2drds
) p

2

+ CT,K,Hh
p
(∫

(ti−1,ti]2

∫ r

0

∫ s

0

(
E
(
1 +X−p1r +Xp2

r

) p
2
(
1 +X−p1s +Xp2

s

) p
2

) 2
p

× |u− v|2H−2|r − s|2H−2dudvdrds
) p

2
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≤ CT,X0,H,Kh
p+Hp

+ CT,X0,K,H,p1,p2,ph
p

(∫
(ti−1,ti]2

∫
(0,T ]2

|u− v|2H−2|r − s|2H−2dudvdrds

) p
2

≤ CT,X0,K,H,p1,p2,ph
p+pH .

Thus

‖I1‖p ≤ CT,X0,p,H,K

N∑
i=1

h1+H ≤ CT,X0,p,H,Kh
H . (4.12)

Substituting (4.9), (4.10), (4.11) and (4.12) into (4.8), we obtain

E sup
0≤n≤N−1

|Υn+1|p ≤ CT,X0,θ,H,p,q,K,p1,p2h
pH .

(2) For t ∈ [tn, tn+1],∣∣Xt − Y h
t

∣∣ =
∣∣∣− t− tn

h
Xtn+1 −

tn+1 − t
h

Xtn +Xt +
t− tn
h

(Xtn+1 − Yn+1)

+
tn+1 − t

h
(Xtn − Yn)

∣∣∣
≤
∣∣Xtn+1 −Xt

∣∣+ |Xtn −Xt|+ |Υn+1|+ |Υn|

≤ 2

∫ tn+1

tn

|b(Xr)|dr + |BH
tn+1
−BH

t |+ |BH
t −BH

tn |

+ |Υn+1|+ |Υn|

≤ C

∫ tn+1

tn

(
1 +Xq∨1

r +X−θr
)

dr + 2MH,T (h) + |Υn+1|+ |Υn|

≤ C

((
1 + ‖X‖q∨10,T,∞

)
h+

(∫ T

0

X
− θ

1−H
r dr

)1−H

hH

)
+ 2MBH ,T (h) + 2 sup

1≤n≤N
|Υn|

=: I1 + I2 + I3.

Since I1, I2 and I3 are independent of n and t, we have

E sup
t∈[0,T ]

∣∣Xt − Y h
t

∣∣p ≤ 3p−1 (EIp1 + EIp2 + EIp3 ) .

It follows from Lemma 3.3 and Lemma 3.4 that

EIp1 ≤ CK,q,T,X0,p,θ,Hh
pH .

The inequality (4.4) yields that

EIp3 = 2pE sup
1≤n≤N

|Υn|p ≤ CK,q,T,X0,p,θ,Hh
pH .
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The modulus of continuity of BH (see e.g. [26, Theorem 4.2] or [20, Theorem
6.3.3]) implies that there is a constant CT,p > 0 such that

EIp2 = 2pEMp
BH ,T

(h) ≤ CT,ph
pH (log(1 + 1/h))p/2 ,

Hence,

E sup
t∈[0,T ]

∣∣Xt − Y h
t

∣∣p ≤ CK,q,T,X0,p,θ,Hh
pH (log(1 + 1/h))p/2 .

The proof is therefore complete.

Before we provide examples to illustrate Theorem 4.1, we need following
corollary for future use.

Corollary 4.2. Assume the conditions of Theorem 4.1 hold.
(1) If α > 1, then for any l > 0,(

E sup
t∈[0,T ]

|X l
t − (Y h

t )l|p
) 1

p

≤ ChH(l∧1) (log(1 + 1/h))
l∧1
2 ; (4.13)

for any l ∈ (0, α],(
E sup
t∈[0,T ]

|X−lt − (Y h
t )−l|p

) 1
p

≤ Cp,Th
(2H−1)(l∧1) (log(1 + 1/h))l∧1 ; (4.14)

(2) If α = 1, then for l > 0 and p > 0, there is T > 0 such that (4.13) holds;
for l ∈ (0, 1] and p > 0, there is T > 0 such that (4.14) holds.

Proof. For l ∈ (0, 1], it follows from Lemma 4.1, the basic inequality

|al − bl| ≤ |a− b|l, a > 0, b > 0,

and Jessen’s inequality that(
E sup
t∈[0,T ]

|X l
t − (Y h

t )l|p
) 1

p

≤

(
E sup
t∈[0,T ]

|Xt − Y h
t |lp
) 1

p

≤

(
E sup
t∈[0,T ]

|Xt − Y h
t |p
) l

p

≤ ChlH
(

log(1 +
1

h
)

) l
2

.

For l > 1,(
E sup
t∈[0,T ]

|X l
t − (Y h

t )l|p
) 1

p

≤

(
E sup
t∈[0,T ]

(
X
p(l−1)
t ∨ (Y h

t )p(l−1)
)
|Xt − Y h

t |p
) 1

p
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≤

(
E sup
t∈[0,T ]

(
X

2p(l−1)
t ∨ (Y h

t )2p(l−1)
)) 1

2p
(
E sup
t∈[0,T ]

|Xt − Y h
t |2p

) 1
2p

≤ Cp,Th
H

(
log(1 +

1

h
)

) 1
2

.

Hence, we have proved our first claim.
To consider the negative power approximation, we first give an estimate of

Y −1n . By (4.2), (A2) and (A3’), there is positive constant C which is indepen-
dent of n, h such that

C
(
Y −αn+1h− (Y q

n+1 + 1)h
)
≤ b(Yn+1)h

≤ |Yn+1 −Xtn+1|+ |Xtn+1 −Xtn|+ |Yn −Xtn|+ |σ||BH
n+1|.

Then

C sup
1≤n≤N

Y −αn ≤ C sup
1≤n≤N

(Y q
n + 1) +

2

h
sup

1≤n≤N
|Yn −Xtn|

+
1

h
sup

1≤n≤N
|Xtn+1 −Xtn|+

|σ|
h
Mp

BH ,T
(h)

≤ C sup
1≤n≤N

(Y q
n + 1) +

2

h
sup

1≤n≤N
|Yn −Xtn|

+
1

h
MX,T (h) +

|σ|
h
Mp

BH ,T
(h). (4.15)

By (4.4), it is clear that for all p > 0, we have E sup1≤n≤N (Y qp
n ) < ∞. Due to

Theorem 4.1,

E sup
1≤n≤N

|Yn −Xtn|p ≤ hHp
(

log(1 +
1

h
)

) p
2

.

It follows from Lemma 3.4 that

EMp
X,T (h) ≤ hHp

(
log(1 +

1

h
)

) p
2

.

Combining these with (4.15), we obtain

E sup
1≤n≤N

Y −pαn ≤ C

(
1 + h(H−1)p

(
log(1 +

1

h
)

) p
2

)
. (4.16)

Then for l ∈ [1, α], it follows from (4.16) that(
E sup
t∈[0,T ]

|X−lt − (Y h
t )−l|p

) 1
p

=

(
E sup
t∈[0,T ]

|X l
t − (Y h

t )l|p

Xpl
t (Y h

t )pl

) 1
p

≤

(
E sup
t∈[0,T ]

X−3plt

) 1
3p
(
E sup
t∈[0,T ]

(Y h
t )−3pl

) 1
3p
(
E sup
t∈[0,T ]

|X l
t − (Y h

t )l|3p
) 1

3p
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=

(
E sup
t∈[0,T ]

X−3plt

) 1
3p (

E sup
1≤n≤N

Y −3pln

) 1
3p

(
E sup
t∈[0,T ]

|X l
t − (Y h

t )l|3p
) 1

3p

≤ Cp,T

(
1 + hH−1

(
log(1 +

1

h
)

) 1
2

)
hH
(

log(1 +
1

h
)

) 1
2

≤ Cp,Th
2H−1 log(1 +

1

h
).

For l < 1,(
E sup
t∈[0,T ]

|X−lt − (Y h
t )−l|p

) 1
p

≤

(
E sup
t∈[0,T ]

|X−1t − (Y h
t )−1|p

) l
p

≤ Cp,T,lh
(2H−1)l

(
log(1 +

1

h
)

)l
.

Combining these two cases together, we prove our second conclusion.

Remark 4.1. If φ is a continuous function on (0,∞) such that

|φ(x)− φ(y)| ≤ C|xl − yl| or |φ(x)− φ(y)| ≤ C|x−l − y−l|

for l as in Corollary 4.2 and some C > 0, then we can approximate φ(Xt) by
φ(Y h

t ).
For α = 1, the convergence of the backward Euler scheme for C-I-R model

driven by fractional Brownian motion has been obtained in [15]. Theorem 4.1
and Corollary 4.2 in our paper can also be applied to C-I-R model.

Finally, we apply our results to the two examples introduced in the intro-
duction.

Example 4.1. We consider the numerical simulation of the following equation

dZt = (a1 − a2Zt)dt+ σZγ
t dBH

t , Z0 > 0 (4.17)

with γ ∈ (1
2
, 1), a1 > 0, a2 ∈ R and σ 6= 0. To study this equation, we consider

dXt = (1− γ)
(
a1X

− γ
1−γ

t − a2Xt

)
dt+ σ(1− γ)dBH

t , X0 = Z1−γ
0 .

Setting b(x) = (1 − γ)a1x
− γ

1−γ − a2(1 − γ)x, it is clear that (A1), (A2’) and
(A3’) hold with K = a−2 , θ = α = − γ

1−γ , and q = 1[a2>0]. Then this equation
has a unique solution by applying Theorem 3.1. Moreover, it follows from the

chain rule that Zt = X
1

1−γ
t and (4.17) has a unique solution. Let Y h

t be the
numerical solution of Xt and h0 = ([(1−γ)a1]∨a−2 )−1. It follows from Corollary
4.2 that (

E sup
t∈[0,T ]

|Zt − (Y h
t )

1
1−γ |p

) 1
p

≤ ChH (log(1 + 1/h))
1
2 , h < h0.
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Example 4.2. In this example, we investigate the nonlinear Aı̈t-Sahalia-type
interest rate model:

dZt =
(
a−1Z

−1
t − a0 + a1Zt − a2Zr

t

)
dt+ σZρ

t dBH
t , Z0 > 0, (4.18)

with r+ 1 > 2ρ and r ≥ 2∧ ρ+ 1 > 2 and ai > 0, i = −1, 0, 1, 2. To investigate
the numerical solutions of (4.18), we consider

dXt = (ρ− 1)

(
a2X

− r−ρ
ρ−1

t − a1Xt + a0X
ρ
ρ−1

t − a−1X
ρ+1
ρ−1

t

)
dt

+ (1− ρ)σdBH
t , X0 = Z1−ρ

0 . (4.19)

Set

b(x) = (ρ− 1)
(
a2x

− r−ρ
ρ−1 − a1x+ a0x

ρ
ρ−1 − a−1x

ρ+1
ρ−1

)
≡ b1x

− r−ρ
ρ−1 − b2x+ b3x

ρ
ρ−1 − b4x

ρ+1
ρ−1 .

Since r−ρ
ρ−1 > 1, it is clear that (A1), (A2’) and (A3’) hold with θ = α = r−ρ

ρ−1 ,

q = ρ+1
ρ−1 and some constant K. Then this equation has a unique solution, and

so does (4.18). Moreover Zt = X
− 1
ρ−1

t . It is clear by r−ρ
ρ−1 > 1 and ρ+1

ρ−1 >
ρ
ρ−1

that for h > 0

lim
x→0+

(b(x)h− x) = +∞, lim
x→+∞

(b(x)h− x) = −∞.

On the other hand,

b′(x)h− 1 = −b1(r − ρ)h

ρ− 1
x−

r+1
ρ−1 − (b2h+ 1)

+
b3ρh

ρ− 1
x

1
ρ−1 − b4(ρ+ 1)h

ρ− 1
x

2
ρ−1 .

Then for 0 < h < 4(ρ−1)b4(ρ+1)

b23ρ
2 , we have

(b3ρ)2h2

(ρ− 1)2
− 4

(
b1(r − ρ)h

ρ− 1
x
r+1
ρ−1 + b2h+ 1

)
b4(ρ+ 1)h

ρ− 1
< 0,

which implies that b′(x)h− 1 < 0. Consequently, (H1) holds. Hence, Theorem

4.1 can be applied to (4.19) for h < 4(ρ−1)b4(ρ+1)

b23ρ
2 .

Let Y h
t be the numerical approximation of Xt, since r + 1 > 2ρ and r >

2 ∧ ρ + 1, we have 1
ρ−1 ≤

r−ρ
ρ−1 . Letting l = 1

ρ−1 in Corollary 4.2, we then have
numerical approximation of Zt such that(

E sup
t∈[0,T ]

|Zt − (Y h
t )

1
ρ−1 |p

) 1
p

≤ Cp,Th
(2H−1)( 1

ρ−1
∧1) (log(1 + 1/h))

1
ρ−1
∧1 ,

which implies that

lim
h→0+

E sup
t∈[0,T ]

|Zt − (Y h
t )

1
ρ−1 |p = 0.
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[3] E. Alòs, O. Mazet and D. Nualart, Stochastic calculus with respect to
Gaussian processes, Ann. Probab. (2001) 29, 766–801.

[4] R. J. Barton and H. V. Poor. Signal detection in fractional gaussian noise.
IEEE trans. Information Theory (1988) 34, 943–959.

[5] A. Berkaoui, M. Bossy and A. Diop. Euler scheme for SDEs with non-
Lipschitz diffusion coefficient: strong convergence. ESAIM: Proba. and
Stat., (2008) 12, 1-11.

[6] F. Biagini, Y. Hu, B. ∅ksendal, T. Zhang. Stochastic Calculus for Fractional
Brownian Motion and Applications. Springer, London, 2008.

[7] D. Brigo, F. Mercurio. Interest Rate Models–Theory and Practice: With
Smile, Inflation and Credit. (2nd ed.) Springer Verlag, (2001).

[8] K. C. Chan, G. A. Karolyi, F. Longstaff, and A. Sanders. An Empirical
Comparison of Alternative Models of the Short-Term Interest Rate. The
Journal of Finance, Vol. XLVII, No. 3 July (1992).

[9] J. C. Cox, J. E. Ingersoll Jr, and S. A. Ross, A theory of term structure of
interest rates. Econometrica (1985) 53, 385–407.
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