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ABSTRACT: A critical part of Life-Cycle Analysis of engineering systems is the modeling of their 
deterioration over time. A system might be subject to different deterioration processes that might impair 
its ability to sustain the future levels of demand. The attainment of a given level of deterioration might 
also prompt maintenance operations that may disrupt its ability to provide a regular service. Recently 
proposed formulations model the time-varying reliability of a system by looking at the evolution of state-
variables that define the characteristics of the system. These state-dependent formulations rely heavily 
on the chosen models for the evolution of the state-variables over time. However, most models available 
in literature rely on simplifying assumptions that disregard the true nature of the processes, either by 
discretizing the time domain or by assuming independence among different processes acting on the 
system at the same time. This paper proposes to use a system of Stochastic Differential Equations to 
model the evolution of the state variables over time. The proposed formulation captures the continuous 
nature of the processes and takes into account the possible interactions among them. In addition, results 
from stochastic calculus could be used to facilitate the simulation of the processes and to obtain closed-
form solutions for the distribution of the state variables over time. Moreover, the proposed models can 
be calibrated based on periodical monitoring of the state variables, should that be performed via Non-
Destructive Evaluation or Structural Health Monitoring. A procedure for calibration is introduced and a 
brief explanatory example is provided. 

 

1. INTRODUCTION 
Engineering systems are continuously subject to 
aging and deterioration phenomena that may 
impair their ability to sustain the levels of demand 
for which they were originally designed. To 
perform a proper Life-Cycle Analysis of these 
systems, there is a need for a comprehensive 
formulation that includes the effects of these 
phenomena and translates them into time-varying 
estimates of the reliability for the systems 
(Gardoni 2019). 

Deterioration processes can in general be 
separated into two main classes (Kumar et al. 
2009); gradual deterioration processes (such as 

fatigue and corrosion) affect the performance of the 
system in a continuous fashion, while shock 
deterioration processes (such as earthquake and 
floods) affect the performance of the system at 
specific, instantaneous moments over its life-cycle. 

Recent works have started to incorporate 
both gradual and shock deterioration processes 
into the life-cycle analysis of the systems. 
However, multiple deterioration processes are 
often considered independently. For example 
Ciampoli and Ellingwood (2002) looked at the 
effects of both gradual and shock deteriorations 
for the performance of concrete structures in 
nuclear power plants, but they only considered the 
randomness coming from the shock deterioration 
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process, superimposing the effects of shocks to 
effects of a deterministic, independent gradual 
deterioration process. Kumar et al. (2009) 
developed a proper reliability analysis framework 
for reinforced concrete bridges in which both 
capacity and demand vary over time, but they also 
assumed independence between gradual and 
shock deterioration. 

However, there might be interactions among 
the different deterioration processes affecting the 
system: For example, the occurrence of an 
earthquake might increase the length of the cracks 
of the system, which might in turn increase their 
exposure to hostile environmental conditions, 
leading to faster gradual deterioration. The 
interaction between different deterioration 
processes has only recently been acknowledged in 
the literature. For example, Jia and Gardoni 
(2018a, b, c) modeled the interaction among 
different deterioration processes by formulating 
the time-varying reliability of the system in terms 
of the evolution of the state variables, i.e. the 
physical quantities that define the state of a system. 

Having physically sound models for the 
evolution of the state variables is critical to obtain 
accurate predictions of the reliability of the 
system at future moments in time. However, the 
understanding of most deterioration processes is 
limited. 

The quality of the models can be assessed 
based on data collected in the field. Structural 
Health Monitoring (SHM) or Non-Destructive 
Evaluation (NDE) procedures can be used for this 
purpose. Some recent formulations for Bayesian 
updating of deterioration models choose to 
disregard the continuous nature of the process in 
favor of approximate, more tractable discrete 
formulations (Straub 2009). Others, relying on the 
probability density evolution method (Li and 
Chen 2008, Fan et al. 2017), require assumptions 
on the form of the models which might limit their 
applications to cases in which such form is known 
a priori. 

This paper builds upon the framework 
proposed in Jia and Gardoni (2018a) by proposing 
a specific formulation for the time-varying 

reliability of the systems that is based on 
modeling the evolution of the state variables using 
Stochastic Differential Equations (SDEs). The 
proposed procedure (i) captures the continuous 
nature of the deterioration processes by not 
requiring to discretize the time domain for the 
analysis, (ii) is able to incorporate both gradual 
and shock deterioration processes into a unified 
formulation, (iii) captures the interactions among 
different deterioration processes, and (iv) allows 
to obtain closed-form solutions for the 
distributions of the state variables over time 
making use of formulations from stochastic 
calculus. The formulation uses semimartingale 
driving noises, which form the largest class of 
processes for which Itô and Stratonovich integrals 
can be defined (Grigoriu 2003), making it suitable 
for the vast majority of behaviors that could be 
observed in practice. In addition, we propose a 
method for calibrating the newly developed 
models based on information coming from 
inspections and Structural Health Monitoring. 

2. GENERAL FRAMEWORK  
Aging and deterioration processes affecting 
engineering systems are, in general, a function of 
a set of external conditions, which could be 
separated into environmental conditions (such as 
atmospheric pressure, relative humidity and 
temperatures) and consequences of shock 
occurrences (such as earthquakes and floods) (Jia 
and Gardoni 2018). Following Jia & Gardoni 
(2018a), we can define the vector of external 
conditions 𝐙(𝑡) as  

 ( ) [ ( ), ( )]t t tZ E S  (1) 

where 𝐄(𝑡)  is the vector of environmental 
conditions, and 𝐒(𝑡) is the vector of measures of 
shocks. Both vectors are time-dependent as the 
external conditions might be changing over time 
as a consequence of different phenomena (e.g. 
seasonality and climate change). Let the vector 𝐗(𝑡) = [𝑋1(𝑡), … , 𝑋𝑗, … , 𝑋𝑑(𝑡)] 𝑇 denote the state 

variables of the system at time 𝑡, i.e. a collection 
of variables on which the capacity and the demand 
of the system depend (e.g. material properties and 
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geometry). The state variables evolve over time as 
a consequence of the deterioration processes. 

In general, if we define {𝐙(𝑡)}  as the 
sequence of all of the external conditions from 
time 0 to 𝑡, and 𝐗0 as the initial state variables at 
time 𝑡 = 0 , we can write 𝐗(𝑡)  in the compact 
form  

  0( ) [ , , ( ) ; ]t t t
X

X X X Z Θ  (2) 

where 𝚯𝐗  is a vector of model parameters. 
Following Gardoni et al. (2002, 2003), we can 
model the capacity of the system 𝐶(𝑡)  and the 
demand imposed by external conditions 𝐷(𝑡) as 
functions of 𝐗(𝑡), as 

    , ( ) , ( );
C

C t t C t tX X Θ  (3) 

    , ( ) , ( ), ( );
D

D t t D t t tX X S Θ  (4) 

where 𝚯𝐶  and 𝚯𝐷  are vectors of parameters for 
the models of 𝐶(𝑡)  and 𝐷(𝑡)  respectively. It is 
possible to obtain the time-variant reliability of 
the system by defining the limit state function 
(Ditlevsen & Madsen 1996, Gardoni 2017) as 

      , ( ) , ( ) , ( ) g t t C t t D t tX X X  (5) 

and compute the probability of failure of the 
system as 

     , ( ) , ( ) 0 . 
f

P t t P g t tX X  (6) 

At time 𝑡, the rate of state change due to the 𝑗-th deterioration process �̇�𝑗(𝑡) can be modeled 

as a function of 𝐗(𝑡) (state-dependency) as 

  ( ) [ , ( ), ( ) ; ].
j j

t t t t
X

X X X Z Θ  (7) 

Then, the total rate of change �̇�(𝑡) due to 𝑝 
deterioration processes can be written as the sum 
of the rates associated to the individual processes 

  
1

( ) [ , ( ), ( ) ; ].



p

j

j

t t t t
X

X X X Z Θ  (8) 

The framework described has been summarized 
in the flow chart in  Figure 1. The rest of the 
paper will focus on a detailed formulation for the 
evolution of the state variables over time (Eq. 7). 

 

 
Figure 1: Flow chart of the proposed framework 

(adapted from Jia and Gardoni 2018a) 

3. MODELING OF THE STATE VARIABLES 
OVER TIME 

This section proposes a state-dependent 
formulation for the evolution of state variables 
using Stochastic Differential Equations (SDEs). 
The formulation follows the general form in Eq. 7 
and can be plugged into the general framework 
presented in Section 2 to obtain the time-varying 
reliability of engineering systems. A typical SDE 
for the evolution of the 𝑑 × 1 vector of the state 
variables 𝐗(𝑡|𝚯𝐗) can be written as (adapted from 
Itô 1973) 

 
 

d ( ; ) , ( ),{ ( )}; d

, ( ), ( ) ; d ( ; )

   
  

t t t t t

t t t t

X μ

σ S

X Θ μ X Z Θ

σ X Z Θ S Θ
 (9) 

where 𝛍[𝑡, 𝐗(𝑡), {𝐙(𝑡)}; 𝚯𝛍]  is a 𝑑 × 1  vector of 
drift coefficients, quantifying the deterministic 
change of  the quant i ty 𝐗(𝑡; 𝚯𝐗)  in  the 
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time interval d𝑡, 𝛔[𝑡, 𝐗(𝑡), {𝐙(𝑡)}; 𝚯𝛔] is a 𝑑 × 𝑑′ 
matrix of diffusion coefficients, quantifying the 
randomness in the change of  𝐗(𝑡; 𝚯𝐗) in the same 
time interval, 𝚯𝐗 = [𝚯𝛍, 𝚯𝛔, 𝚯𝐒]  is the vector of 

model parameters and 𝐒(𝑡)  is a 𝑑′ × 1  driving 
noise vector of the stochastic process. 

Different choices for the driving noise 
produce different results. In the most general case, 
the driving noise can be assumed to be of the 
semimartingale type. Defining the natural 
filtration (ℱ𝑡)𝑡≥0  of a stochastic process as the 
sigma-algebra generated by the collection of 
random variables up to time 𝑡, ℱ𝑡 = 𝜎{𝐗(𝑠), 𝑠 ≤𝑡} (Hajek 2015), a semimartingale noise 𝐒(𝑡) can 
be decomposed as (Grigoriu 2013) 

        ; 0 ; ;  t t t
S A M

S Θ S A Θ M Θ  (10) 

where 𝐒(0) ∈ ℱ0 , 𝐀  is an ℱ𝑡 -adapted process 
with samples of finite variation on each compact 
of [0, ∞), 𝐀(0) = 𝟎, 𝐌 is an ℱ𝑡-local martingale, 𝐌(0) = 𝟎  and 𝚯𝐒 = [𝚯𝐀, 𝚯𝐌]  is a vector of 
model parameters. The martingale component is 
in turn assumed to admit the representation 

( ; ) ( ; )d ( ) ( ; ) ( ; ) t t t t d t
M H K C

M Θ H Θ B K Θ C Θ  (11) 

where the entries of the 𝑑′ × 𝑑𝑏 matrix 𝐇 and of 
the 𝑑′ × 𝑑𝑐  matrix 𝐊  are ℱ𝑡 -adapted processes, 
the coordinates of 𝐁  and 𝐂  are independent 
Brownian motion and compensated Poisson 
processes, respectively, and 𝚯𝐌 = [𝚯𝐇, 𝚯𝐊, 𝚯𝐂] 
is a vector of model parameters. Roughly 
speaking, 𝐁  and 𝐂  constitute the main 
components of the stochastic process solution of 
the SDE in Eq. 9, where 𝐁 is responsible for the 
deterioration processes that are continuous in 
nature (gradual processes), and 𝐂 is responsible 
for the deterioration processes that are described 
by jumps over time. The evolution of the single 
component of 𝐗(𝑡; 𝚯𝐗), 𝑋𝑗(𝑡; 𝚯𝐗), is a function of 𝐗(𝑡; 𝚯𝐗)  itself, making the entire formulation 
state-dependent. Semimartingales form the largest 
class of processes for which Itô and Stratonovich 
integrals can be defined (Métivier 1982). In other 
words, the formulation in Eq. 9 is able to capture 
the largest class of behaviors for the evolution of 
the state variables over time.  

3.1. Closed-form solutions for SDEs 

In most practical applications, it can be assumed 
with minimal loss of generality that the driving 
noise component of Eq. 9 can be expressed as d𝐒(𝑡) = 𝐇(𝑡)𝑑𝐁(𝑡) + 𝐊(𝑡)d𝐂(𝑡) , that is, 𝐒  is 
given by Eq. 10 with 𝐒(0) = 0  and 𝐀 = 0  
(model parameters were dropped to avoid heavy 
notation). Define �̃� = 𝛔[𝑡, 𝐗(𝑡), {𝐙(𝑡)}; 𝚯𝛔]𝐇(𝑡) 
and �̃� = 𝛔[𝑡, 𝐗(𝑡), {𝐙(𝑡)}; 𝚯𝛔]𝐊(𝑡). We can obtain 
a closed-form solution for the characteristic 
function of 𝐗(𝑡)  over time. Recall that the 
characteristic function of a random variable 𝐗(𝑡) 
is defined as 𝜑(𝐮; 𝑡) = 𝐸[exp(𝑖𝐮𝑇𝐗(𝑡))], where 𝐮 ∈ ℝ𝑑  and 𝑖 = √−1 . With the above 
assumptions, the characteristic function of 𝐗(𝑡) 
can be obtained as the solution of the following 
differential equation 

 

1

( )

1

( )

,

( ) ( )( )

1

( ; )

( ( ), )

1
( ) ( )

2

( ; )
 








 












 
 

    

       







T

T

dc
T jj

d
i t

j i

j

d
i t T

j k
jk

j k

d
i K t C t

i t

t

t

i u E e t t

u u E e t t

E e e t

u X

u X

u X

u

X

H H

u

 (12) 

where the compound Poisson process component 
has been separated into its 𝑑𝑐 terms with rate 𝜆𝛼. 
As it will be shown in the example in Section 5, 
Eq. 12 becomes an ordinary partial differential 
equation if the drift and diffusion terms 𝛍 and 𝛔 
can be written as polynomials of 𝐗(𝑡). Under the 
restrictive assumption that the driving noise for 
the system is a Browian motion process, it is 
possible to obtain closed-form solutions for the 
probability density function (PDF) 𝑓(𝒙; 𝑡)  of 𝐗(𝑡|𝚯𝐗). The results is known in literature as the 
Fokker-Planck equation and can be expressed as  

 
1

2

, 1

( ; )
( , ) ( ; )

1
( , ) ( , ) ( ; )

2






       

      





d

j

j j

d
T

jk
j k j k

f t
t f t

t x

t t f t
x x

x
x x

σ x σ x x
 (13) 

with initial conditions 𝐗(0) = 𝟎. 
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Eqs. 12 and 13 can be used to obtain the 
distribution of the state variables over time to be 
inserted into the general framework in Section 2 
and obtain the time-varying probability of failure 
for the system of interest. 

4. CALIBRATION OF DETERIORATION 
MODELS BASED ON DATA FROM 
SHM/NDE 

In general, the model parameters 𝚯𝐗  for the 
evolution of the state variables over time are not 
known a priori and need to be calibrated based on 
experimental results. Structural Health 
Monitoring and Non-Destructive Evaluation 
procedures can provide us with more or less 
sparse measurements for the values of 𝐗(𝑡).  

Assume that information is collected at 𝑁 
different moments in time 𝑡𝑖∗, 𝑖 = 1, … , 𝑁 , 
providing 𝑁 sets of 𝑀 observations for the state 
variables at time 𝑡𝑖∗  {𝐱𝑚 ∈ ℝ𝑑: 𝑚 = 1,2, … , 𝑀} . 
The unknown probability distribution at time 𝑡𝑖∗ 
can be modeled as a mixture of 𝐾  different 
probability distributions from a parametric family 
(e.g. Gaussian)  

 * *
1:

1

( ; | , ) ( ; | )



K

i K k i k

k

f t w f tx w θ x  (14) 

where 𝑓(∙ |𝐰, 𝛉1:𝐾)  is the predicted probability 
density function, 𝐰 = (𝑤1, … , 𝑤𝐾)  is the vector 
of mixture weight such that ∑ 𝑤𝑘𝐾𝑘=1 = 1  and 𝛉1:𝐾 = (𝛉1, … , 𝛉𝐾)  is the vector of mixture 
component parameters. Both 𝐰 and 𝛉1:𝐾 need to 
be calibrated based on the collected data. This 
calibration can be achieved using Bayesian 
inference once the number 𝐾  of probability 
distributions has been fixed a priori (Box and Tiao 
2011). Tabandeh and Gardoni (2018) have 
recently proposed an alternative Dirichlet Process 
Mixture Model (DPMM) procedure that operates 
over an infinite dimensional parameter space and 
allows the number of 𝐾 mixture distributions to 
grow indefinitely. Once a probability distribution 
has been estimated at each of the times 𝑡𝑖∗ , the 
corresponding characteristic functions can be 
obtained as 

 

*

*

( )* *

( ) *
1:

( ; )

( ; | , )d .






   

 

T
i

T
i

i t

i

i t

i K

t E e

e f t

u X

u x

u

x w θ x
 (15) 

Once we have obtained a characteristic 
function based on the observational data, the best 
estimate for the unknown parameters �̂�𝐗  in the 
models for the evolution of the state variables can 
be obtained by solving the following 
minimization problem 

 
* *

1

ˆ

arg min ( ; ) ( ; , ) (d )  




 
d

N

i

i

t t
X

X

X

Θ

Θ

u u Θ u
 (16) 

where ‖∙‖is the complex norm and λ(d𝒖) is an 
appropriate measure (Grigoriu 2000). By using 
the formulation in Eq. 16, we are minimizing the 
distance between the characteristic function 
obtained using the collected data and the 
characteristic function obtained as the solution of 
Eq. 12. 

Section 5 will present a brief example of an 
application of the proposed procedure. 

5. EXAMPLE 
A stochastic deterioration process is assumed to 
be the solution of the following Stochastic 
Differential Equation 

 1 1d ( ) ( )d ( )d ( )  X t X t t X t B t  (17) 

with 𝜇1 = 2.5  and 𝜎1 = 0.4  (quantities are 
assumed to be dimensionless; in practice, units for 
the different quantities will be dependent on the 
problem being analyzed). The driving noise for 
the SDE, 𝐵(𝑡) , is assumed to be a standard 
Brownian motion.  

Figure 2 shows 50 realizations of the process 
in the time interval [0,1]. The process is known in 
literature as Geometric Brownian motion.  
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Figure 2: 50 realization of the geometric Brownian 

motion solution of Eq. 17 

 

The Fokker-Planck equation (Eq. 13) for the 
SDE can be solved to obtain a closed-form 
solution of the time-varying probability density 
function of 𝑋(𝑡) 

2
2

0 1

2
1

1
ln ln

2

2

1

1
( ; , , )

2

 

 
 

      
  



x x t

t

Xf x t e
x t

 (18) 

which corresponds to the PDF of a lognormal 
distribution with parameters 𝜆 = ln(𝑥0) + (𝜇1 −(1 2⁄ )𝜎2)𝑡 and 𝜉 = 𝜎1√𝑡, where 𝑥0 = 𝑋(0). The 
closed-form distribution of the random variable 𝑋(𝑡) can then be plugged into the capacity and 
demand models for the system being analyzed to 
obtain the time-varying reliability of the system 
following the framework described in Section 2. 

Assume now that the form and the values for 
the parameters in the model are unknown and 
need to be calibrated based on experimental 
observations. Assuming that 10 inspections are 
performed at regular intervals throughout the life-
cycle of the system. The observations obtained 
from these inspections that are used to calibrate 
the unknown parameters in the model are shown 
in Figure 2 as filled dots. The SDE is assumed to 
have the general form in Eq. 9 where the 
semimartingale driving noise is assumed to be a 
standard Brownian motion (d𝑆(𝑡; 𝚯𝑆) = d𝐵(𝑡)). 
Dropping the compound Poisson process 

component of the driving noise is a reasonable 
assumption since there appear to be no jumps in 
the process by looking at the observations. With 
minimal loss of generality, we can assume the 
drift and diffusion terms to be expressed in 
polynomial form. In particular 

2

0

, ( ),{ ( )}; ( ) 


     k

k

k

t X t t X tZ Θ  (19) 

 
1

0

, ( ),{ ( )}; ( ) 


 k

k

k

t X t t X tZ Θ  (20) 

where the unknown parameters are 𝚯𝑋 =[𝚯𝜇, 𝚯𝜎] = [𝜇1, 𝜇2, 𝜇3, 𝜎1, 𝜎2]. 
In order to perform the minimization 

problem in Eq. 16, we need to solve the 
differential equation in Eq. 12 for the 
characteristic function of 𝑋(𝑡). Using Eq. 19 and 
Eq. 20 in Eq. 12 we obtain 

2
( )

0

21
2 ( )

0

( ; , )
( , )

1
( , ) .

2

 







  
    

         





iuX t kX
k X

k

iuX t k

k X

k

u t
iuE e X t

t

u E e X t

Θ Θ

Θ

 (21) 

Eq. 21 can be simplified using the following 
property of the characteristic function (Grigoriu 
2013) 

   ( ).     

k
kk iuX

k
E X e i u

u
 (22) 

Finally, the characteristic function of the 
state variable 𝑋(𝑡) can be obtained as the solution 
of the following partial differential equation 

 

2
2 2

1 2 2

2
1 0 1

2 2
0 0

( ; , )

( ; , )1

2

( ; , )

1
( ; , ).

2
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X

X

u t

t

u t
u iu

u

u t
u iu

u

u iu u t

Θ

Θ

Θ

Θ

 (23) 

with boundary conditions coming from the 
properties of the characteristic function: 
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 ( ; , ) 1 
X

u t Θ  (24) 

 ( ; , ) 1 
X

u t Θ  (25) 

 ( ; , ) 0 u

X
u t Θ  (26) 

 ( ; , ) 0 



u

X
u t

u
Θ  (27) 

After computing the empirical characteristic 
function at the times of inspections following the 
procedure described in Section 4, we perform the 
minimization problem in Eq. 16. The 
minimization reaches convergence and the 
minimizing values for the unknown parameters 
are shown in Table 1.  

 
Table 1: Parameter values. 𝜇0 𝜇1 𝜇2 𝜎0 𝜎1 

0.073 2.313 1.000 -0.031 0.444 

 
The calibrated values for 𝚯𝑋 are then used to 

simulate new realizations for the deterioration 
process. Figure 3 shows 20 realization of the 
newly calibrated process superimposed on the 
experimental observations used for calibration. 
The calibrated model is able to capture the 
original behavior of the process, as the 
realizations approximately follow the original 
path of the stochastic process. 
 

 
Figure 3: 20 realization of the stochastic process 

generated using the calibrated values for the unknown 

parameters, superimposed on the experimental 

observations 

 
The results can be used to extrapolate the 

expected value for the state variable 𝑋(𝑡) at times 
following the latest inspection time. These values 
can then be used in conjunction with the 
framework for Life-Cycle Analysis presented in 
Section 2 to obtain the time-varying probability of 
failure for the system in the future. 

6. CONCLUSIONS 
A new formulation for the Life-Cycle Analysis of 
engineering systems was proposed. The 
formulation looks at the evolution of a set of 
variables that define the properties of the system 
(state variables) and models them using 
Stochastic Differential Equations. Efficient tools 
are available for the analysis of such stochastic 
processes, so that closed-form solutions can be 
obtained for the distribution of the state variables 
over time. Once capacity and demand are 
formulated in terms of the state variables, it is 
possible to obtain the time-varying probability of 
failure for the system. 

Using Stochastic Differential Equations for 
deterioration processes is faithful to the true 
nature of the processes (which is continuous) with 
respect to more commonly used discrete 
formulations. In addition, the proposed 
framework is able to account for the interactions 
among multiple deterioration processes affecting 
the system and for the possible presence of shock 
deterioration processes that would cause jumps in 
the evolution of the state variables. 

Finally, a procedure for the calibration of the 
processes based on a limited amount of 
experimental data was proposed. The procedure 
allows to incorporate into the framework the 
information coming from Structural Health 
Monitoring (SHM) and Non-Destructive 
Evaluation (NDE), in order to properly assess the 
reliability of the system at future times. A simple 
example was provided as an application of the 
proposed procedure for calibration. 

Future work on this topic includes the 
investigation of the correlation between different 
processes acting on the system, as well as the 
development of new calibration tools that are able 
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to provide confidence intervals for the estimated 
values for the unknown variables. One goal of this 
work is to develop a procedure that could be 
incorporated into a Bayesian framework, so that 
continuous updating of the models is possible as 
additional SHM or NDE data become available.   
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