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Stochastic dominance and opaque sweetening

Ralf M. Bader
Merton College, University of Oxford

abstract: This paper addresses the problem of opaque sweetening
and argues that one should use stochastic dominance in comparing
lotteries even when dealing with incomplete orderings that allow for
non-comparable outcomes.

 The puzzle
Unlike other axioms of decision theory, such as the transitivity axiom, which
have a plausible claim to being consistency norms that one is rationally required
to comply with, the completeness axiom has been considered to be dubious since
the very inception of axiomatic decision theory (cf. von Neumann and Morgen-
stern: , p. ). It has been adopted primarily for reasons of convenience,
since it allows for a real-valued representation rather than requiring a more cum-
bersome representation, such as a vectorial representation (cf. von Neumann and
Morgenstern: , p. ) or a set of functions approach (cf. Aumann: ).

There are many reasons why orderings need not be complete (whether one is
concerned with an agent’s preference ordering or with an axiological betterness or-
dering). Completeness will fail whenever one is dealing with non-comparability.
Two alternatives A and B are non-comparable in terms of betterness (A ▷◁ B) iff
it is neither the case that A > B, nor A = B, nor A < B. Non-comparability can
arise either because no positive value relations obtain between A and B, e.g. due
to incommensurable values, or because of a fourth non-transitive value relation
such as parity or imprecise equality (cf. Chang: ). Non-comparability al-
lows for insensitivity to mild sweetening: if A and B are non-comparable, then a
slightly improved version A+ can likewise be non-comparable with B, such that
A ▷◁ B and A+ ▷◁ B yet A+ > A.

When comparability is understood in terms of determinate betterness, then non-
comparability can also be due to indeterminate betterness of the type discussed by Broome: .

Local forms of non-comparability (that are best thought of in terms of intersection quasi-
orderings that integrate different dimensions of evaluation) only allow for insensitivity to mild
sweetening. By contrast, global forms of non-comparability (according to which comparability
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Insensitivity to mild sweetening gives rise to a puzzle in probabilistic cases,
namely the puzzle of opaque sweetening (cf. Hare: ). Consider a lottery
L with a - chance of A and B occurring, as well as a lottery L over
A+ and B+, also with a - chance. Importantly, the two lotteries are not
independent but are defined for the same states of nature. The outcome that
results in state of nature N given L is A, whereas B+ would have eventuated in
this state under L, and similarly for the other outcomes. For instance, an agent
is presented with two boxes. Non-comparable goods A and B are distributed
according to a flip of a fair coin and  are placed in addition into the right
box. The agent does not know the outcome of the coin flip and, accordingly,
assigns equal probabilities to the two possible states N: A is in the left box and
B+ (i.e. B together with the ) is in the right box, and N: B is in the left
box and A+ (i.e. A together with the ) is in the right box. The agent has two
options. He can either opt for L: pick the left box, or L: pick the right box.
This is a case of opaque sweetening, since it involves mild sweetening combined
with opacity insofar as one is uncertain whether one ends up with A+ or B+ as a
result of taking the sweetened option.

N () N ()
L A B
L B+ A+

The puzzle is the following. L seems to be better than L and hence the only
rationally permissible option. Yet, no matter which state of nature ends up ob-
taining, the outcome that will be realised given L will not be comparable to the
alternative that would have resulted under L. For instance, if N obtains, then L
yields A+ which is not comparable to the alternative B that would have resulted
had L been chosen instead. This means that L will be better than L despite
the fact that the outcomes it yields are not better than those of L in any state of
nature. This leads to the puzzling result that we seem to have betterness at the
level of the lotteries without betterness at the level of the outcomes. Although
the outcomes are not comparable, the lotteries would appear to be comparable.
This combination of ex ante betterness together with ex post non-comparability
is rather puzzling.

 Stochastic dominance
We are pulled towards two conflicting claims about the relation between the lot-
teries. On the one hand, L appears to be better than L, yet, on the other,

is an equivalence relation) allow for stronger forms of insensitivity. The arguments in this paper
apply equally to local and global forms of non-comparability.

Examples of supposedly non-comparable goods that are often cited include different careers
as well as works of art. So one might, for instance, consider the contents of the boxes as being
two paintings: A = Monet’s ‘La Promenade’ and B = Manet’s ‘Le Printemps’.
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there is also reason to think that these lotteries are not comparable. Whereas
Hare:  ultimately opts for the betterness claim, Schoenfield:  as well
as Bales, Cohen, and Handfield:  put forward constraints that support the
non-comparability claim. This paper argues in favour of the betterness claim.

The non-comparability verdict is due to state-by-state reasoning. One com-
pares the outcome of L in state Ni with the outcome of L in that very same
state. This kind of state-by-state comparison reveals that every state is such that
the relevant outcomes are non-comparable. This is then taken to support the
claim that the lotteries are likewise non-comparable. On this approach it matters
in which particular state an outcome is realised. This means that it is not enough
to be told that there is a probability P that outcome O will be realised. Rather,
one needs to be told that O will be realised in state of nature N (with probability
P). What speaks in favour of a particular lottery is that it brings about certain
outcomes in particular states of nature, where the identity of the state of nature
is of importance. Reasons for choosing a lottery are essentially tied to particular
states, i.e. reasons are individuated in such a way that they concern outcomes
in states of nature. This means that different states imply different reasons, even
when they have the same probability of resulting in the same outcome.

This approach is unduly restrictive. If there is no evaluative interaction be-
tween outcomes and states, i.e. if the value of an outcome is not affected by the
identity of the state, then it does not matter in which particular state an outcome
occurs. The identity of the state is then evaluatively irrelevant and all that matters
is the probability of the state. Reasons for choosing a lottery should, accordingly,
be individuated in terms of prospects, i.e. in terms of outcomes with probabili-
ties. This means that sameness of outcome and probability implies sameness of
reason, even if the states differ. As a result, states having exactly the same probabil-
ity can be treated interchangeably and hence can be permuted without affecting
the evaluation of the lottery. Lotteries that are permutations of each other will
then be equally good (where L and L′ are permutations iff for every outcome X,
P(O = X|L) = P(O = X|L′), i.e. they have the same probability profile for the
same outcomes). This means that L is equally good as its permutation L′

, which
is state-by-state dominated by L.

N () N ()
L A B
L′

 B A

Given the transitivity of betterness (in particular given PI-transitivity), L > L′


together with L = L′

 implies that L > L. The betterness claim, accordingly,
is supported on the basis of a comparison of prospects that abstracts from the
identity of the states of nature and considers only their respective probabilities.
L is considered to be better than L on the grounds that for every state Ni there
is a corresponding state Nj with the same probability such that the outcome of
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L in Ni is better than the outcome of L in Nj. This kind of stochastic reasoning
is not restricted to state-by-state comparisons but allows for comparisons across
equiprobable states.

On this approach one can straightforwardly use (first-order) stochastic dom-
inance to order lotteries even when faced with non-comparable outcomes. A
lottery L stochastically dominates L′ if the former is such that for any outcome
X the probability of receiving something that is at least as good as X is at least as
great as under the latter and is strictly greater for some outcome Y.

∀X, P(O ≥ X|L) ≥ P(O ≥ X|L′) ∧ ∃Y, P(O ≥ Y|L) > P(O ≥ Y|L′)

If L stochastically dominates L′, then there is a probability-preserving permuta-
tion σ of a sufficiently fine-grained partition into states of nature, such that L
state-by-state dominates L′ relative to the permutation, i.e. L stochastically dom-
inates L′ iff for every state Ni, L(Ni) ≥ L′(σ(Ni)) and for some Nj, L(Nj) >
L′(σ(Nj)).

In the case at hand, L stochastically dominates L since both lotteries have a
probability = . of yielding something that is at least as good as A and likewise
for an outcome at least as good as B, yet L has a probability = . of something
at least as good as A+ whereas the corresponding probability for L is = , and
again likewise for an outcome at least as good as B+.

The fact that there is no dominance of outcomes under any state is unprob-
lematic. This is because taking L guarantees that one ends up in a situation that
is better than an equiprobable alternative in which one could have ended up. In
this way, one switches the focus to how things could have turned out, as opposed
to only focusing on how they would have turned out. Rather than considering
what would have occurred under the same state of nature, one is concerned with
what could just as well (i.e. with the same probability) have occurred. (This ef-
fectively amounts to decoupling the lotteries.) The outcome L(N), though not
being better than the outcome that would have resulted in the same state of nature
had one opted for L instead, i.e. L(N), is nevertheless better than a situation,
namely the outcome of L given N, that one could just as easily have ended up
in, where the qualification ‘just as easily’ indicates that the requirement that the
states are equiprobable is satisfied.

In other words, L is better not because there is some state Ni such that the
outcome of L under Ni is better than the alternative that would have resulted
under Ni given L. Instead, it is better because in each state the outcome is
better than an alternative that could just as easily have resulted, i.e. there is a
bijection between the outcomes of L and L that preserves the probabilities and
with respect to which L dominates.

It is worth noting that stochastic dominance requires the outcomes that are
comparable across the two lotteries to occur in states of nature having exactly
the same probabilities. If the probabilities only differ slightly, then stochastic
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dominance will not apply. For example, if the coin is not perfectly fair but slightly
biased so that the probability of N′ is . and that of N′ is ., then it
is no longer possible to establish the ordering L > L by means of stochastic
dominance reasoning. Although the probability of ending up with an outcome
at least as good as B/B+ is higher in the case of L, the probability of an outcome
at least as good as A is higher on L, thereby undermining stochastic dominance.

. Independent lotteries
The state-by-state approach is unduly restrictive (given that there is no evaluative
interaction between the outcome and the state of nature). This can be brought
out further by considering independent lotteries. When comparing actions that
belong to different decision problems, it is not appropriate to insist on state-by-
state reasoning. For instance, if we ask whether it is better to have the option
L which yields A and B under N and N respectively, or to have the option L′


which yields A+ and B+ under different states of nature N and N respectively,
then we are evaluating independent lotteries that are not defined for the same
states of nature.

N () N ()
L A B

N () N ()
L′

 A+ B+

L′

 is intuitively better than L. Yet, these lotteries are non-comparable according
to state-by-state reasoning, according to which one lottery cannot be better than
another unless there is some state of nature in which it results in a better outcome.
This is because the relevant outcome for comparison is not defined when requiring
the state of nature to be held fixed. For instance, L′

(N) is not defined. This
implies that there is no outcome under L′

 that is comparable to L(N). As a
result, these lotteries will be deemed to be non-comparable when, intuitively,
they can be ordered.

In order to avoid a non-comparability verdict in those cases, one will have to invoke different
resources. For instance, one can apply dominance reasoning to the probabilistically discounted
value vector.

L : ⟨. × A, . × B⟩
L : ⟨. × A+, . × B+⟩

L > L as long as the difference in value between A+ and A is sufficiently large to compensate
for the slightly lower probability of ending up with the former rather than the latter. This is the
case if . × A+ ≥ . × A. L will then be at least as good as L with respect to A and
will be strictly better with respect to B. Non-comparability then only arises in cases in which the
difference in probability is too great relative to the evaluative difference between A+ and A.
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Since what would have come about otherwise is not defined in the case of in-
dependent lotteries, one can only evaluate an outcome relative to what could have
come about (with a certain probability). In order to compare these lotteries one
needs to compare outcomes not under the same state of nature but outcomes with
the same probabilities. This means that comparability is achieved by the fact that
the respective states that can occur under L and L′

 have the same probabilities.
In response it can be objected that state-by-state reasoning is concerned with

the rational permissibility of choices and, as such, is only meant to apply to sit-
uations in which an agent is choosing amongst a range of possible alternatives.
Since decision problems do not involve independent lotteries, they are not rele-
vant when assessing principles of rational permissibility.

Whilst traditional approaches require lotteries to share the same states of na-
ture, given that they presuppose a universal state space that constitutes the domain
for all the actions that are open to the agent, as well as an act-independent proba-
bility function over this state space, they have repeatedly been criticised for doing
so and alternative models of decision-making have been proposed that do not in-
volve these commitments. Most notably, Jeffrey-Bolker decision theory eschews
these commitments. However, there are also act-dependent models that operate
within an act-state framework and that do not involve such a radical departure
from traditional decision theory.

The theory developed by Balch and Fishburn, for instance, allows for act-
dependence (cf. Balch and Fishburn: ). This theory starts with a set of
acts and associates with each act a set of mutually exclusive and exhaustive states
that are conditioned by that act. This allows us to model an agent who is faced
with a choice at time t that determines the nature of subsequent chance nodes.
In such cases it is contingent on the prior action at t which mutually exhaustive
and exclusive states will constitute the state space at t′. Whilst the state space is
act-dependent, which state eventuates is not under the control of the agent.

For example, an agent is faced with two alternative courses of actions: he can
either opt for L in which case a fair coin will be flipped and the agent will receive
A if the coin lands heads and B if it lands tails, or for L′

 in which case a fair six-
sided die will be rolled and the agent receives A+ if it lands - and B+ if it lands
-. This means that either N or N will obtain if he opts for L, whereas one
of two different states, namely N or N, will obtain if he opts for L′

. We thus
have two act-dependent state spaces: NL = {N,N} and NL′

 = {N,N}.

Whereas Jeffrey-Bolker theory is an evidential decision theory, the accounts considered below
are non-standard versions of causal decision theory.
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B+
N

A+NL ′


BN

AN

L

In this case, we do not have a universal state space, but different state spaces
associated with different actions. Since these independent lotteries do not share
states of nature but involve disjoint state spaces, it is not possible to use state-by-
state reasoning. The agent instead has to make use of stochastic reasoning, which
allows him to order these lotteries and rank L′

 above L.
Similarly, Luce and Krantz’s conditional expected utility theory treats acts

as partial functions that are only defined for sub-domains of the universal state
space. They thereby try to model situations in which “the decision maker controls
to some extent the environment in which the consequences occur as well as the
probability distribution of their occurrence” (Luce and Krantz: , p. ;
also cf. Krantz et al.: , ch. ). The consequence for a conditional action LE

is not defined for a state Ni that is not in the event E on which L is conditional.
For instance, E = {N,N} whereas F = {N,N} in the case of the coin flip
and the roll of the die, such that LE

(N) is not defined since N /∈ E.

N N N N

LE
 A B – –

L′F
 – – A+ B+

Even though there is a universal state space, one cannot make use of state-by-state
reasoning to compare actions that are defined for disjoint sub-domains. Given
that acts are only partial functions, comparisons are not defined for states that are
not shared by the events on which the acts are conditioned. Since E ∩ F = ∅,
LE

 and L′F
 are non-comparable. Moreover, the state space N = {N, . . . ,N}

violates the probabilistic independence condition that is presupposed by state-by-
state dominance reasoning (cf. section .), e.g. P(N|LE

) =  yet P(N|L′F
 ) =

. Stochastic reasoning, however, is applicable.
In response it can be argued that these decision problems can be recast in

the traditional framework in which states are act-independent. Both Balch and
Fishburn as well as Luce and Krantz accept that their conditional representations
can be transformed into unconditional representations by identifying a suitable
underlying universal state space (cf. Fishburn: , pp. - & Krantz et al.:
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, pp. -). (However, they argue that the traditional characterisation
of these kinds of decision problems is significantly less natural and often not
tractable due to involving very large numbers of states.)

In the case of the coin-die decision problem, for example, what are taken to be
states by the conditional approach can be considered to be consequences relative
to an underlying state space S = S . . . S, i.e. heads = L(S ∪ S), tails =
L(S ∪ S), die landing - = L′

(S ∪ S), and die landing - = L′

(S ∪ S).

S () S () S () S ()
L A A B B
L′

 A+ B+ A+ B+

Understood in this way, L and L′

 are defined for the same states. Whilst we
do not have state-by-state dominance as traditionally conceived, the weakened
version of dominance (advocated by Bales, Cohen and Handfield) that is speci-
fied not in terms of ‘being at least as good as’ but in terms of ‘not being worse
than’ is applicable and implies L′

 > L. This weakened dominance principle,
however, leads to troublesome intransitivities (as well as failures of expansion and
contraction consistency).

N′ N′′

LA A+ B
LB C B+

LC A C+

The only options that are comparable are A and A+, B and B+, as well as C
and C+. A pairwise comparison of the lotteries on the basis of the weakened
dominance principle leads to a cyclic ordering, i.e. LA > LC, LC > LB, LB > LA.

By contrast, stochastic dominance reasoning establishes that L′

 > L without
generating any intransitivities and without requiring any cumbersome reformula-
tion into a representation over shared states. Moreover, if one is willing to accept
the (rather controversial) claim that agents can introduce indeterminacy into the
world, i.e. that the agent’s actions can be sources of indeterminacy, then there
will not be an underlying state space. On this approach, probability is not a
purely epistemic matter reflecting uncertainty but is metaphysical. This ensures
that there is no fact of the matter as to what would have happened instead. The
fact that, say, N (= the coin comes up heads) obtains at t′ does not fix the coun-
terfactual as to what would have happened had the agent performed the other
action at t. In particular, it is then not possible to treat N as a consequence of
L together with the underlying state, namely S or S, whereby this underlying

As they point out, this is the analogue of applying the distinction between optimising and
maximising to cases of risk, where an optimising choice set Copt(X) = {x : ∀y(x ≥ y)} presup-
poses completeness whilst a maximising choice set Cmax(X) = {x : ¬∃y(y > x)} is compatible
with incompleteness (cf. Sen: ).
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state determines the relevant counterfactual as to what would have happened had
the agent opted for L′

 (namely N, i.e. the die would have landed -, in the
case of S, whereas it would have been N, i.e. die landing -, in the case of
S). Instead, the fact that N rather than N obtains will be a matter of chance.
As a result, we will only have a probability assignment to the possible counter-
factual states N and N. This means that there are only facts about what could
have come about (with a certain probability) but not facts about what would have
come about, which are required by state-by-state reasoning.

. Expected-value fetishism?
Schoenfield has put forward a constraint, called link, that rules out the claim
that L is better than L. (Bales, Cohen and Handfield have advocated a very
similar constraint: competitiveness (Bales et al.: , p. ). Hare identifies,
though ultimately does not endorse, a closely related principle: recognition
(Hare: , p. ).)

link: In cases in which considerations of value are the only ones
that are relevant, if you are rationally certain that one option, A,
will bring about greater value than the alternative option, B, you’re
required to choose A. If you are rationally certain that neither of the
two options will bring about greater value than the other, it’s not
required that you choose A, and it’s not required that you choose B.
(Schoenfield: , p. )

The thought is that since the outcomes under L are non-comparable with those
that would have resulted under L, it is certain that no matter how the world
turns out L will not bring about greater value than L, making it the case that the
former lottery is not better than the latter and that both are permissible options.

This constraint is supported on the grounds that “[i]f expected value theory
required us to make choices that we are certain would lead to no improvement in
value, then expected value theory is imposing requirements that transcend what
we actually care about: the achievement of value” (Schoenfield: , p. ).
Theories that violate this constraint are criticised as being based on an ‘expected-
value fetish’.

Contra Schoenfield, we are still concerned with value rather than expected
value when judging that L is better than L. We are comparing the values of
outcomes and are concerned with improvements in value. The difference be-
tween the state-by-state approach and the stochastic approach is not a difference
in terms of the former being concerned with value whereas the latter is concerned
with expected value. Instead, they differ in terms of how improvements are to be
understood. This is because the accounts disagree over what the relevant alterna-
tives for comparison are, in particular whether outcomes are to be evaluated only
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relative to the obtaining state of nature or also relative to alternative equiprobable
states of nature. The stochastic approach is not only concerned with how good
things are relative to what would have come about but also relative to what could
just as well have come about. As such, it is concerned with improvements in value
and there is no commitment to an ‘expected-value fetish’.

. Dominance and equiprobability
Stochastic dominance treats the comparison between L and L in the same way
as that between L and L′′

 , given that they involve the very same prospects, i.e.
the outcomes and probabilities are the same and they only differ in terms of the
assignment of outcomes to states of nature.

N () N ()
L A B
L′′

 A+ B+

Bales, Cohen, and Handfield try to disassimilate the comparison between L and
L′′

 from that between L and L, arguing that only the former but not the latter
operates by means of dominance reasoning. They argue that in the former case
“the intuition is insensitive to the credences we have in the different possibili-
ties”, but that in the latter case we can establish the ordering L > L “only where
our credences are perfectly balanced between the relevant alternatives” (Bales et al.:
, p. ).

This argument, however, is misguided. Dominance reasoning is operative
in both cases. In the one case we are using state-by-state dominance, whereas
in the other case we are using stochastic dominance which allows for permuta-
tions of equiprobable states. Even in the latter case, it does not matter what the
credences/probabilities are as long as the relevant states are equiprobable. Relative
rather than absolute probabilities matter and in this respect the dominance prin-
ciples are exactly analogous.

State-by-state dominance reasoning likewise presupposes that the probability
of the relevant state is preserved across the different possible actions. In this sense
our credences also need to be perfectly balanced. Whereas in the case of state-
by-state dominance we compare ϕ(Ni) with ψ(Ni) and here have to presuppose
that P(Ni|ϕ) = P(Ni|ψ), in the case of stochastic dominance we compare ϕ(Ni)
with ψ(Nj) and here have to presuppose that P(Ni|ϕ) = P(Nj|ψ). In each case,
credences/probabilities of the alternatives being compared need to be perfectly
balanced. The only difference is whether this comparison takes place within states
or also across states.

The satisfaction of this equiprobability condition in the case of state-by-state
comparisons is a non-trivial matter. In fact, the requirement that states have
to be probabilistically independent from actions is in place precisely in order to
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ensure that the equiprobability condition is satisfied. As Nozick showed, state-
by-state dominance reasoning breaks down if the probability of a state depends
on which action is performed (cf. Nozick: ). If it is more likely that Ni
will eventuate rather than Nj if the agent ϕ’s rather than ψ’s, then ψ-ing can have
greater expected utility than ϕ-ing even when ϕ-ing state-by-state dominates ψ-
ing, i.e. even when ϕ(Ni) > ψ(Ni) and ϕ(Nj) > ψ(Nj), as long as the outcome
that results from ψ-ing in the state that is made more likely by ψ-ing is better
than the outcome that results from ϕ-ing in the state that is made more likely by
ϕ-ing, i.e. ψ(Nj) > ϕ(Ni).

This means that outcomes under the same state will not be equiprobable when
probabilistic independence is not satisfied and hence cannot be compared by
means of dominance reasoning. Accordingly, we can see that both stochastic
and state-by-state dominance are subject to the very same equiprobability condi-
tion, namely that outcomes can be compared on the basis of dominance reasoning
only if the states in which they occur are equiprobable.

 Conclusion
We have seen that insisting on state-by-state reasoning is unduly restrictive. As
long as the identity of the state of nature is evaluatively irrelevant, equiproba-
ble states can be treated interchangeably. Accordingly, one should use stochastic
dominance in comparing lotteries even when dealing with incomplete orderings
that allow for non-comparable outcomes.

As Gibbard and Harper:  have pointed out, the probabilistic independence condition
can be interpreted in two ways, depending on whether one is using causal or evidential probabili-
ties. Whilst the causal and evidential independence conditions can come apart in Newcomb-style
cases, they coincide in the kinds of cases that are at issue in this paper.

Once it is recognised that state-by-state reasoning is not appropriate when probabilistic in-
dependence is not satisfied, we can see that sameness of state of nature by itself is not of signif-
icance. The question then arises as to what makes it the case that such reasoning is appropriate
when probabilistic independence is satisfied. Is it the fact that we are dealing with the same state
of nature together with probabilistic independence (which, as we have just seen, amounts to an
equiprobability condition), or is it rather equiprobability by itself that is doing all the work? The
considerations about independent lotteries and about the evaluative irrelevance of the identity of
states of nature adduced above suggest that it is equiprobability by itself.

For helpful discussions, I would like to thank Bassel Tarbush. I am particularly grateful to
two anonymous referees for their detailed and helpful comments, which have led to substantial
improvements.
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