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Abstract

For more than three decades, empirical analysis of stochastic dom-
inance was restricted to settings with mutually exclusive choice alter-
natives. In recent years, a number of methods for testing efficiency
of diversified portfolios have emerged, which can be classified into
three main categories: 1) majorization, 2) revealed preference and 3)
distribution-based approaches. Unfortunately, some of these schools of
thought are developing independently, with little interaction or cross-
referencing among them. Moreover, the methods differ in terms of
their objectives, the information content of the results and their com-
putational complexity. As a result, the relative merits of alternative
approaches are difficult to compare. This paper presents the first
systematic review of all three approaches in a unified methodological
framework. We examine the main developments in this emerging lit-
erature, critically evaluating the advantages and disadvantages of the
alternative approaches. We also point out some misleading arguments
and propose corrections and improvements to some of the methods
considered.
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1 Introduction

The relation of Stochastic Dominance, introduced in mathematics by
Mann and Whitney (1947) and Lehmann (1955), and in economics by
Quirk and Saposnik (1962), Hadar and Russell (1969), Hanoch and
Levy (1969) and Rothschild and Stiglitz (1970, 1971), is broadly ap-
plied in financial decision making under uncertainty (see, for example,
Bawa (1982) and Levy (1992, 2006) for a survey and references). For
more than three decades, empirical analysis of stochastic dominance
was restricted to settings with mutually exclusive choice alternatives,
appropriate for comparison of income distributions or crop yields in
agriculture, for example. These methods include various mean-risk
models (see e.g. Hogan and Warren (1972), Ang (1975), Shalit and
Yizhaki (1984)) and direct pairwise efficient comparison of distribu-
tion functions (Hadar and Russell (1969), Bawa et al. (1979), Aboudi
and Thon (1994), Anderson (1996), Annaert et al (2009), among many
others). However, pairwise comparison algorithms are insufficient for
identifying dominating portfolios from an infinite set of diversified
portfolios, which is a typical setting in finance. Levy (1992) empha-
sizes this problem by stating:

“Ironically, the main drawback of the SD framework is
found in the area of finance where it is most intensively
used, namely, in choosing the efficient diversification strate-
gies. This is because as yet there is no way to find the SD
efficient set of diversification strategies as prevailed by the
M-V framework. Therefore, the next important contribu-
tion in this area will probably be in this direction”.

Some authors introduced other SD-related concepts, such as con-
vex SD (Fishburn (1974)) and marginal conditional SD (Shalit and
Yitzhaki (1994)). Such methods can only provide a necessary condi-
tion for stochastic dominance efficiency when the portfolio possibilities
set has a particular structure, but not in general.

In recent years, stochastic dominance literature has developed a
number of methods for analyzing efficiency of diversified portfolios,
following the works of Kuosmanen (2001-WP, 2004), Post (2003) and
Dentcheva and Ruszczyński (2003). Although Dybvig and Ross (1982)
propose SSD efficiency criteria that can be developed into an SSD
efficiency test with diversification (such as in Lizyayev (2009)), they
only provide a useful idea, but not an explicit algorithm.
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The first authors to address stochastic dominance relative to an
infinite set of choice alternatives after Dybvig and Ross (1982) were
Ogryczak and Ruszczyński (1999, 2001, 2002) in their mean-risk mod-
els. Ogryczak and Ruszczyński (1999) proposed an optimization prob-
lem that identified mean-risk efficient frontiers of stochastically non-
dominated portfolios, and extended it to higher-order semideviations
in Ogryczak and Ruszczyński (2001). Subsequently, Ruszczyński and
Vanderbei (2003) have explicitly formulated the frontier identification
problem for portfolio weights, and suggested an efficient parametric
optimization. Although mean-risk models cannot generally solve the
problem of identifying whether a given portfolio is SD efficient (which
is the formulation usually employed in asset pricing and investment
management), they can be used as a necessary condition for SSD ef-
ficiency.

To our knowledge, Dentcheva and Ruszczyński (2003) and Kuos-
manen (2004) independently developed the first algorithms to iden-
tify a portfolio that dominates a given benchmark among an infinite
number of diversified portfolios by solving a finite dimensional op-
timization problem. A preliminary version of Kuosmanen’s test ap-
peared in Kuosmanen (2001-WP) working paper. Meanwhile, Post
(2003) developed an alternative test which is simpler and computa-
tionally less demanding, but does not generally produce a dominating
portfolio. Dentcheva and Ruszczyński (2003) introduced an optimiza-
tion model with stochastic dominance constraints and developed this
model further in Dentcheva and Ruszczyński (2006-b) and Rudolf and
Ruszczyński (2008). Although this model has an arbitrary objective
function and in this respect is more general, we will focus on its use
in the most frequently applied setting in finance, namely: identifying
the SD efficiency of a given portfolio relative to a diversified portfo-
lio possibilities set. Dentcheva and Ruszczyński (2006-a) introduced
inverse stochastic dominance constraints, which were later employed
in Kopa and Chovanec’s (2008) refined method for testing stochastic
dominance efficiency.

The literature of stochastic dominance currently spans a number
of alternative methods. To structure this literature, we propose to
classify the present approaches into three categories: 1) majorization,
2) revealed preference and 3) distribution-based approaches. These
approaches differ in their objectives, the information content of the
results, and their computational complexity. Unfortunately, some of
these schools of thought are developing independently, with little in-
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teraction or cross-reference to the other schools and as a result the
advantages and disadvantages of alternative approaches have not been
compared in a fair and systematic fashion. The proponents of each
method have a natural tendency to exaggerate the advantages of their
favorite method and overlook the advantages of their competitors’.

This paper presents the first systematic attempt to bring all three
approaches under the common umbrella of a unified methodological
framework. We will examine the main developments in this emerging
literature, critically evaluating the advantages and disadvantages of
the alternative approaches using a number of objective criteria. We
will also point out some misleading arguments in this literature and
propose corrections and improvements to some of the methods con-
sidered.

The paper is organized as follows. In Section 2 we define the basic
general concepts related to stochastic dominance efficiency and state
some common assumptions. Since most of the methods are applied
to the second order stochastic dominance (SSD), where the efficiency
test becomes a linear program1, we classify, analyze and compare the
most important SSD efficiency algorithms to date in Section 3. To
keep such comparative analysis objective, we use a unified framework
of Section 2 and adjust each of the methods considered in such a way
that they solve the same standardized problem which is commonly and
frequently used in practice. In Section 4 we consider some extensions
to the standardized framework such as first order stochastic dominance
(FSD) and unbounded short sales, and analyze the extent to which
the existing methods can tackle those modifications. Finally, Section
5 gives some concluding remarks and finalizes the paper.

1Some authors use more demanding non-linear programs (such as Linton (2005, 2010)
and the iterative quadratic program of Post and Versijp (2007) which, in addition to the
efficiency outcome, also provide statistical significance scores under some assumptions.
Since such programs do not produce a dominated portfolio and are considerably more
computationally demanding, we will omit them from our analysis. As statistical signifi-
cance scores can be more naturally obtained via non-parametric bootstrapping procedures
in the framework of this Chapter, we will focus on SSD efficiency tests which are more
practical in terms of the computational complexity and the information content of the
result.
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2 Unified framework

As a first step towards bringing alternative approaches under a com-
mon umbrella, we need a general framework into which all alternative
methods can naturally fit. It is the purpose of this section to describe
such a framework. We should note that some of the methods reviewed
in the subsequent sections do not necessarily require all of the assump-
tions imposed in this section. In the interest of clarity, however, we
will review all methods from the perspective of the unified framework,
duly noting the possible extensions as we proceed.

A canonical model of investment decision making in a static set-
ting can be described as follows. There are n marketed assets, whose
returns may vary across different states of nature. From m possible
states, one state is randomly drawn as the realized state. Returns
of assets in m alternative states of nature are described by m-by-n
matrix X. If a riskless asset is available in the market, we can include
it as one column of X (a column with equal components). Naturally,
all asset returns are assumed to be linearly independent, which im-
plies that XTX is positive definite. Note that there is no uncertainty
about the return matrix X; the investors’ risk arises from the random
realization of one out of m possible states. Without loss of generality,
we assume all states to be equally likely.2

Investors may diversify between available assets. We shall use λ ∈
Rn for a vector of portfolio weights. The portfolio possibilities set
(assuming away short sales) is

Λ =
{
λ ∈ Rn : λTe = 1, λ ≥ 0

}
3,

and the set of all available allocations is

MX = {x ∈ Rm : x = Xλ, λ ∈ Λ} .

Each investor has a von Neuman-Morgenstern utility function u ∈
U = {u : R → R} which depends on his final wealth at the end of the

2States with different probabilities can be dealt with by a linear transformation of
decision variables so that the resulting program will be equivalent to the one with equally
probable states; see Dybvig and Ross (1982) for details.

3Unless otherwise stated, we will consider the PPS with short sales restricted. Nonethe-
less some other restrictions on portfolio possibilities may apply in practice; moreover the
use of some methods can be particularly advantageous for certain classes of PPS, as will
be shown in subsequent sections.
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holding period. As shown in Pratt (1964), investors’ non-satiation and
risk attitude can be modeled via the first and second derivative of u,
respectively. The class of increasing utility functions which represents
all non-satiable investors is denoted by U1, and the class of increasing
and concave utility functions is denoted by U2 and represents all non-
satiable and risk-averse investors. Formally,

U1 ≡
{
u : R→ R s.t. u′(t) ≥ 0, ∀t

}
and

U2 ≡
{
u : R→ R s.t. u′(t) ≥ 0, and u′′(t) ≤ 0, ∀t

}
.

Due to the uncertainty about which state of the world will occur,
investors seek to maximize their expected utility. Portfolio τ ∈ Λ is
the optimal choice for an investor with utility u ∈ U if and only if

Eu(Xτ) = sup
λ∈Λ

Eu(Xλ), (1)

where E denotes the expected value operator. Since all states are
equally likely by assumption, equation (1) can be equivalently stated
as

m∑
i=1

u(xiτ) = sup
λ∈Λ

m∑
i=1

u(xiλ). (2)

Observing a given portfolio τ , our purpose is to evaluate whether τ
is the optimal choice for a group of investors. Since the investors’ util-
ity functions are unknown, we focus on broad classes of economically
meaningful utility functions, U1 and U2. To this end, the following
definitions prove useful.

Definition 1 (dominance). Portfolio λ ∈ Λ dominates portfolio τ ∈ Λ
by First Order Stochastic Dominance, further FSD (by Second Order
Stochastic Dominance, further SSD) if and only if for all utility func-
tions u ∈ U1(u ∈ U2)

m∑
i=1

u(xiλ) ≥
m∑
i=1

u(xiτ), (3)

with a strict inequality for at least one u ∈ U1(u ∈ U2).
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Definition 2 (super-dominance). Portfolio λ ∈ Λ super-dominates
portfolio τ ∈ Λ by FSD (SSD) if and only if for all strictly increasing
utility functions u ∈ U1(u ∈ U2)

m∑
i=1

u(xiλ) >

m∑
i=1

u(xiτ), (4)

Definition 1 is standard in the stochastic dominance literature.
The notion of super-dominance is a new term that we have coined
for the definition first proposed by Post (2003). Note that super-
dominance implies dominance, but the reverse is not true. For exam-
ple, if τ is a mean-preserving spread of portfolio λ, then τ dominates
λ by SSD, but it does not super-dominate it.

Definitions 1 and 2 can be stated analogously for any given class of
utility functions U . Although U1 and U2 are the most frequently used,
some authors developed tests for refined utility classes, e.g. modeling
increasing relative and decreasing absolute risk aversion,such as Vick-
son (1975, 1977) and Lizyayev (2009).

Using Definitions 1 and 2, the notions of portfolio efficiency and
optimality are defined as follows:

Definition 3 (weak efficiency). Portfolio τ ∈ Λ is weakly FSD (SSD)
efficient if and only if there does not exist another portfolio λ ∈ Λ that
super-dominates τ in the sense of Definition 2.

Definition 4 (strong efficiency). Portfolio τ ∈ Λ is strongly FSD
(SSD) efficient if and only if there does not exist another portfolio
λ ∈ Λ that dominates τ in the sense of Definition 1.

Definition 5 (optimality). Portfolio τ ∈ Λ is FSD (SSD) optimal if
and only if there exists a strictly increasing u ∈ U1(u ∈ U2) for which
τ is the optimal portfolio choice, that is,

m∑
i=1

u(xiτ) >

m∑
i=1

u(xiλ), for all λ ∈ Λ\{τ}.

There exist alternative equivalent definitions of stochastic domi-
nance which we state below.

Definition 6. Allocation x ∈ MX with cumulative distribution func-
tion (CDF) FX(z) dominates allocation y ∈ MX having CDF FY (z)
by FSD (SSD) if and only if

FX(z) ≤ FY (z)
(
F

(2)
X (z) ≤ F

(2)
Y (z)

)
, (5)
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for all z, with a strict inequality for at least one z,

where F
(2)
X (z) is defined as F

(2)
X (z) ≡

z∫
−∞

FX(t)dt = E (max{z −X, 0}) .

Due to the latter representation F
(2)
X (z) is also called the expected

shortfall ofX. Similarly, SD relation can be equivalently formulated in
terms of (integrated) inverted CDF (quantiles) as follows. Condition
(5) is equivalent to

F−1
X (q) ≥ F−1

Y (q)

F−2
X (q) ≡

q∫
0

F−1
X (v)dv ≥

q∫
0

F−1
Y (v)dv ≡ F−2

X (q)

 ,

(6)
for all q ∈ [0, 1].

SSD condition (6) can also be expressed in terms of conditional
value at risk (CVaR) which is related to F−2

X (q) (see Rockafellar and
Uryasev (2002)) as

F−2
X (q) = −qCVaR1−q(−X), q ∈ (0, 1).

Definition 7. Allocation x ∈ MX dominates allocation y ∈ MX by
FSD (SSD) if and only if

∃P ∈ Π(∃W ∈ Ξ) : x ≥ Py(x ≥Wy),

where Π is the class of permutation matrices:

Π =

[wij ]m×m : wij ∈ {0, 1},
m∑
i=1

wij =
m∑
j=1

wij = 1, i, j = 1, . . . ,m


and Ξ is the class of doubly stochastic matrices:

Ξ =

[wij ]m×m : 0 ≤ wij ≤ 1,
m∑
i=1

wij =
m∑
j=1

wij = 1, i, j = 1, . . . ,m

 .

Definitions 1, 6 and 7 are known to be equivalent. The equivalence
of definitions 1 and 6 is easy to prove by changing variables in the
integration of Definition 6. For the equivalence of Definition 7 see
Hardy et al (1934), Hadar and Russel (1969) and Marshall and Olkin
(1979).
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For the sake of brevity we will sometimes refer (with a slight abuse
of notation) to an allocation by the corresponding portfolio, for in-
stance by stating that portfolio τ ∈ Λ dominates allocation y ∈ MX

we mean that Xτ dominates y.
The difference between the FSD and SSD efficiency arises from the

assumption of risk aversion: SSD assumes risk aversion, whereas FSD
does not. In the case of SSD, the optimality and efficiency definitions
(2) and (3) are equivalent if the portfolio possibilities set Λ is con-
vex. However, FSD optimality is only a necessary condition for FSD
efficiency, even with a convex Λ.

Restrictions on the set of utility functions strongly affect the com-
putational complexity of a test, as will be demonstrated below. The
computational burden becomes particularly restrictive when it comes
to bootstrapping and statistical inference. To assess whether the out-
come of a test is statistically significant (and cannot be attributed
solely to chance), one needs to simulate a large number of new data
sets of asset returns generated by the same distribution as the original,
and further to run the same efficiency test on all those samples. With
current computing power and the usual dimensionality of the data,
only certain types of optimization programs can be tackled within a
reasonable time, such as linear or quadratic programs. Mixed inte-
ger linear programs (which FSD efficiency tests are in essence) are far
too demanding for any rigorous bootstrapping techniques. For that
reason, and because the vast majority of the tests used in practice
are focused on second order stochastic dominance efficiency, we will
analyze them in detail below.

3 Second Order (SSD) Efficiency

The extensive literature which suggests SSD efficiency algorithms can
be grouped into three main categories: 1) majorization, 2) revealed
preference, and 3) distribution-based approaches. The first category
is based on optimality conditions in the space of returns given in Defi-
nition 7; the second on Lagrangean conditions for the marginal utility
rationalizing a given portfolio in accordance with Definition 5, and
the last on various equivalent criteria of SD efficiency formulated di-
rectly on cumulative distribution functions of underlying portfolios as
in Definition 6. Although the categories above are not mutually ex-
clusive (e.g. the dual formulation to distribution-based approach has
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a revealed preference interpretation), most of the methods are most
frequently used either in their primal or dual form, which we will take
as the basis for our classification. In this paper we attempt to cover
the most efficient methods of each school of thought.

To characterize and compare all the methods in a fair and system-
atic fashion we would like to point out the criteria an SSD efficiency
test should fulfill. Clearly, the primary goal of every method should
be to identify whether a given portfolio is efficient relative to a given
convex portfolio possibilities set in the sense of Definition 4.4 The
methods therefore should provide necessary and sufficient conditions
for such efficiency. In cases when the subject portfolio is inefficient,
one would like to have a measure indicating the degree of its inef-
ficiency. A natural choice for such a measure could be the highest
possible difference in mean returns between the subject portfolio and
an efficient marketed portfolio that dominates it. If there is a dom-
inating portfolio with the same mean return as the subject portfolio
but with a tighter spread around the risk-free asset (this dominance is
self-evident and formally in accordance with Definition 4), one would
like to incorporate the maximal feasible spread into the measure of
inefficiency as well. For that reason, it is desirable that when a given
portfolio is inefficient, an efficiency test identifies a dominating portfo-
lio that is marketed and SSD efficient itself. Another advantage would
be if the method could be split into some sequential subtests that are
less computationally demanding, so that one could identify inefficiency
at an earlier stage based on some necessary conditions, in which case
running the rest of the test would be unnecessary. Finally, the ability
of SSD tests to be easily generalized to FSD efficiency testing would
also be of value.

3.1 Revealed Preference Approach

The revealed preference approach has its roots in Afriat’s (1967) cel-
ebrated theorem. Analogous to Afriat’s test of rational consumer be-
havior5, SSD efficiency can be tested based on the first order opti-
mality conditions for the utility function which, provided that such

4Although occasionally we will distinguish the weak efficiency in the sense of Definition
3, we adapt the commonly accepted SSD efficiency given by Definition 4 throughout, and
unless otherwise stated, SSD efficiency will refer to this strong definition.

5Varian (1983) has applied Afriat’s approach to testing rationality of investor behavior
in a somewhat different setting than the one considered in this paper.
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function exists, would rationalize the subject portfolio, in accordance
with Definition 5 and the fact that SSD optimality is equivalent to
SSD efficiency if the portfolio possibilities set is convex. The general
idea of the revealed preference approach is to try to find marginal
utilities β for some well-behaved von Neumann-Morgenstern utility
function for which the evaluated portfolio y ∈ MX is the optimal so-
lution maximizing its expected value. If such marginal utilities β exist,
then the evaluated portfolio is literally “revealed optimal”, at least for
some hypothetical decision maker with rational preferences. If such
marginal utilities do not exist, then the evaluated portfolio y is SSD
inefficient.

While the marginal conditional stochastic dominance introduced
in Shalit and Yitzhaki (1994) can, like some other earlier methods, for-
mally be assigned to this category, it uses different settings in which
the subject portfolio is tested relative to a set of vertices of a portfo-
lio possibilities set. This test is computationally less demanding but
can only be used as a first-stage necessary pre-processing test for our
framework, as it can not generally identify SSD efficiency in the case of
full diversification. Marginal conditional formulation also appears as
duality results in the distribution-based methods, such as Dentcheva
and Ruszczyński (2006-a, 2006-b) and Rudolf and Ruszczyński (2008).
However, the primal distribution-based method appears to be compu-
tationally competitive relative to its dual linear programming formu-
lations. Therefore we will classify these tests as distribution-based and
will cover them below in a separate sub-section.

Post (2003) formulates the following revealed preference test for
SSD efficiency of a given marketed portfolio y ∈MX :

ξ(y) = min θ

s.t.
1

m

m∑
t=1

βt(yt −Xti) + θ ≥ 0, i = 1, . . . , n

β1 ≥ β2 ≥ · · · ≥ βm = 1

λ ∈ Λ

θ free

(7)

Parameters βt can be interpreted as Afriat numbers, which rep-
resent the marginal von Neumann-Morgenstern utility of some ratio-
nal decision maker in state t. If the optimal solution to (7) satis-
fies ξ∗(y) = 0, then the evaluated portfolio is an optimal solution
that maximizes expected utility to some rational risk-averse decision
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maker. Thus ξ∗(y) = 0 is a necessary and sufficient condition for weak
SSD efficiency of y (given in Definition 3) and, as Kuosmanen (2004)
notes, only a necessary condition for the strong SSD efficiency (in the
sense of Definition 4).

Kuosmanen (2004, Sec. 4.4) derives a similar test based on the
idea of separating hyperplanes. Both methods are only capable of
determining the efficiency status of a given portfolio; they do not
generally produce a dominating portfolio. The major advantage of
the methods is their computational simplicity: (7) is a linear program
with m+ 1 variable and n+m constraints.

Post (2003) also derives a dual formulation to (7) as follows.

ψ(y) = max sm

s.t.
1

m

k∑
i=1

(
xiλ− yi

)
= sk, k = 1, . . . ,m

λ ∈ Λ

s ∈ Rm
+

(8)

If the optimal solution to (8) is ψ∗ = 0, then y is weakly SSD
efficient. Although the optimal portfolio λ∗ has an intuitive inter-
pretation as the portfolio with the largest increase in the mean re-
turn, it does not necessarily dominate y. To see this, consider (8)
for y = [1, 4], x1 = [9, 0], x2 = [0, 2], x3 = y. Running the tests yields
ξ∗(y) = ψ∗(y) = 2 which correctly identifies SSD inefficiency of y,
however Xλ∗ = x1 = [9, 0], even though x1 does not dominate y.

Post (2008) has extended the SSD test for weak efficiency to the
standard case of strong efficiency (Definition 4) by simply changing the
objective function of (8) from sm to the sum sTe, obtained sTe = 0 as
the necessary and sufficient condition for the strong SSD efficiency and
shown that the subject portfolio y is always SSD dominated by a linear
combination of Xλ∗ and y. However, a dominating portfolio obtained
thus does not necessarily have the highest mean return among all
dominating portfolios, and therefore is not suitable as a benchmark for
efficiency gauging. Further, the dominating portfolio is not necessarily
SSD efficient even in the sense of weak SSD efficiency (Definition 3).
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3.2 Majorization Approach

The majorization approach is based on Definition 7, which originates
in the mathematical literature on stochastic dominance, where the
concept appeared as stochastic ordering. The first majorization-based
test in economic literature appeared in Kuosmanen (2001-WP) and
was further developed in Kuosmanen (2004).

Kuosmanen (2004) splits SSD efficiency test into necessary and
sufficient subtests. The necessary test reads6

θN2 (y) = max
λ,W

(Xλ− y)Te

s.t. Xλ ≥Wy

W ∈ Ξ

λ ∈ Λ

(9)

Comparing (9) with Post’s (2008) dual (8) reveals that the two
problems are structurally similar, except for the doubly stochastic
matrix W included in (9). Post (2008) sorts the asset returns in
ascending order with respect to y, whereas Kuosmanen did not utilize
the prior ordering. As a result, the optimal portfolio λ∗ of (9) always
SSD dominates y when the latter is inefficient (provided W ∗ is not a
permutation matrix), contrary to (8).

Kuosmanen (2004) shows that θN2 = 0 is a necessary condition
for the strong SSD efficiency of portfolio y. Note, that θN2 /m can be
intuitively used as an inefficiency measure that indicates the differ-
ence between the mean return of the dominating portfolio λ∗ with the
highest mean return and the expected return of y. Another possibility
considered by Kuosmanen (2004) is to gauge efficiency by using the
minimum risk-free premium that needs to be added to y to make it
SSD efficient. While such a measure can be intuitive for gauging in-
efficiency loss, it cannot provide a necessary SSD efficiency condition
analogous to (9). The same is true for the more general directional
distance function formulated in Kuosmanen (2007).

Kuosmanen (2007) derives the dual formulation to (9), which can
be expressed as

6Kuosmanen (2004) formulates (9) with X augmented by y, as it can happen that
y /∈MX is SSD efficient, but is dominated by a linear combination of a marketed portfolio
and itself. We omit this augmentation here for the sake of comparability with the other
methods.
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ξD(y) = min
β,θ,a,b

θ − (aTe+ bTe)

s.t. θe ≥ XTβ

βsyt ≥ yt + at + bs, ∀s, t = 1, . . . ,m

β ≥ e

θ ∈ R, a, b, β ∈ Rm

(10)

Clearly, the dual program (10) is similar to (9) in terms of the compu-
tational complexity. However, (10) is less intuitive and its coefficients
are difficult to interpret. Moreover, it is unclear if (10) can be general-
ized to a sufficient test for SSD efficiency of y in a straightforward way.
For that reason we shall focus on the primal formulation (9) for which
Kuosmanen (2004) proposed the following sufficient test statistic.

θS2 (y) = min

m∑
i=1

m∑
j=1

(
s+ij + s−ij

)
s.t. Xλ =Wy

s+ij + s−ij = wij −
1

2
, i, j = 1, . . . ,m

s+ij + s−ij ≥ 0, i, j = 1, . . . ,m

W ∈ Ξ, λ ∈ Λ

(11)

Program (11) minimizes
∑m

i=1

∑m
j=1

∣∣wij − 1
2

∣∣. The underlying
idea lies in finding a marketed mean-preserving spread of y that is
as close to the risk free ray as possible. The non-existence of any such
Xλ∗ ̸= y would then suffice for SSD efficiency of y. Kuosmanen (2004)
proposes the theoretical maximum of the test statistic as a sufficient
condition7:

θS2 (y) =
m2

2
−

m∑
k=2

kd0k, (12)

where d0k is the number of k-way ties.

7Kuosmanen (2004) defines θS2 (y) as
m2

2 −
∑m

k=1 kd0k; however he clearly meant (12).
Moreover, the summation

∑m
k=1 kd0k equalsm, since it counts allm elements of y precisely

once.
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Although the optimal Xλ∗ from (11) always SSD dominates y
(provided the two portfolios are distinct) it may not be SSD effi-
cient. To see this, consider the following example. Suppose we test
portfolio y = [2, 0, 10] and both x1 = [6, 5, 1] and x2 = [4, 4, 4] are
marketed. If θS2 (y) = 3/2, the program (11) may have chosen x1

with W ∗
1 = 1

2

[
1 0 1
0 1 1
1 1 0

]
, however x2 may have been chosen as well with

W ∗
2 = 1

3

[
1 1 1
1 1 1
1 1 1

]
, since W ∗

1 and W ∗
2 give the same value of statistic

θS2 (y). Therefore, if (11) picks x1, it dominates y but is not SSD
efficient.

If the efficiency of the dominating portfolio is required, one can
use the following quadratic programming extension of (11).

θR2 (y) = minλTXTXλ− yTy

s.t. Xλ =Wy

W ∈ Ξ

λ ∈ Λ

(13)

Note that (13) minimizes the second moment of Xλ which is equiv-
alent to minimizing the Euclidian distance from y to the risk free asset
e · Ey. We can prove the following

Proposition 1. Suppose θN2 (y) = 0. Portfolio y is SSD efficient with
respect to Λ if and only if θR2 (y) = 0. Moreover, λ∗ from (13) is SSD
efficient and, if θR2 (y) ̸= 0, dominates y.

Proof. It follows from the majorization theory (see Marshall and Olkin,
1979) that if for some W ∈ Ξ, Wy is not a permutation of y, then
yTWTWy < yTy. Given that X = Wy, the objective λTXTXλ −
yTy = yTWTWy−yTy = yT(WTW −Im)y ≤ 0. Therefore, θR2 (y) = 0
implies W ∗y = Py, for some permutation matrix P ∈ Π, and thus y
is efficient. Similarly, if θR2 (y) < 0, then y is dominated by W ∗y, so
y is SSD inefficient. The efficiency of Xλ∗ follows from the fact that
the existence of a strictly dominating portfolio Xτ = WXλ∗ would
contradict the optimality of Xλ∗ in (13).

Summarizing, we can characterize the method as follows. The ne-
cessity test (9) is a linear program with m2 + n variables, m2 + m
inequality and 2m equality constraints. Program (11) with 3m2 + n
variables, m2 + 3m equality and 3m2 inequality constraints is a suffi-
cient test for SSD efficiency of y, but the optimal portfolio itself may
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not be SSD efficient. An alternative sufficient condition is given by
Proposition 1 that does generate an SSD efficient dominating port-
folio W ∗y as a byproduct. This test is based on quadratic program
(13) with m2+n variables (of which n enter the objective), 3m linear
equality and m2 linear inequality constraints.

Based on the general theoretical result in Strassen (1965), Luedtke
(2008) recently developed the majorization test (9) further by explic-
itly including the probabilities of the states (which are assumed equal
in (9)) and suggested a branching heuristic for solving the method.
His linear programming formulation, however, closely resembles (9),
particularly in terms of the computational complexity.

3.3 Distribution-Based Approach

This group of methods is based on Definition 6 and usually employs
equivalent definitions involving various modifications of the cumula-
tive distribution function and its inverse, such as integrated (inverted)
CDF, quantiles and conditional value at risk.

Dentcheva and Ruszczyński (2003) introduced the following linear
program with distribution-based stochastic dominance constraints.

max f(λ) = E(Xλ)

s.t.

n∑
k=1

xikλk + sij ≥ yj , i, j = 1, . . . ,m

m∑
i=1

sij ≤ mvj , j = 1, . . . ,m

sij ≥ 0, i, j = 1, . . . ,m

λ ∈ Λ

(14)

where vj ≡ E[(yj − y)+] = F 2
Y (yj) is the expected shortfall of y.

The constraints in (14) basically ensure that E[(a−Xλ)+] ≤ E[(a−
y)+],∀a, which by Definition 6 is equivalent to the SSD dominance of
Xλ over y (see Dentcheva and Ruszczyński (2003, 2006-b) for more
details).

Rudolf and Ruszczyński (2008) elaborated on this method, sug-
gesting two alternative implementations of (14): a primal cutting
plane method and a dual column generation method. However, they
concluded that the dual method proved to be practically prohibitive
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for this problem (compared to a straightforward simplex implemen-
tation of (14)). The primal method was shown to outperform the
simplex on their data set. However it is not clear if such performance
can be generalized on an arbitrary data set; the method may require
a factorial number of iterations in the worst case scenario.

Just like Kuosmanen’s (2004) test (9), program (14) always pro-
duces a weakly SSD efficient dominating portfolio λ∗ which may not
be (strongly) SSD efficient (this may happen when (14) has multiple
solutions). To overcome this, consider the following sufficiency test
statistic.

θR(y) =
m∑
i=1

(yi − E(y))2 −min
m∑
i=1

 n∑
j=1

xijλj − E(y)

2

s.t.

n∑
k=1

xikλk + sij ≥ yj , i, j = 1, . . . ,m

m∑
i=1

sij ≤ mvj , j = 1, . . . ,m

sij ≥ 0, i, j = 1, . . . ,m

λ ∈ Λ

(15)

Proposition 2. Let x∗ = Xλ∗ be a solution of (14) for a given portfo-
lio y ∈MX . Determine θR(x∗) by solving (15) and denote the optimal
solution by z∗. Portfolio y is SSD inefficient if and only if

E(x∗)− E(y) + θR(x∗) > 0 (16)

Moreover, (16) also implies that y is dominated by z∗ which is SSD
efficient.

Proof. First note, that solution z∗ to (15) is unique, due to the strict
convexity of the objective function in (15) and linear independence
of returns. Due to the dominance restrictions imposed in (15), z∗ is
SSD efficient. Since (16) holds if and only if z∗ and y are distinct, the
result follows.

Program (14) is closely related to Kuosmanen’s necessary test (9)
in terms of the information content of the result. Both methods can
identify a necessary and sufficient condition for the weak SSD effi-
ciency (Definition 3), but only a necessary condition for the standard
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SSD efficiency. The optimal reference portfolio Xλ∗ dominates y and
is itself weakly SSD efficient. If several dominating portfolios of equal
mean are available, both methods may select a dominating portfo-
lio that is not (strongly) SSD efficient. Moreover, the two meth-
ods are following the same principle: to maximize the mean return
among all available portfolios that dominate y and hence both can be
used for inefficiency gauging. The only difference is that Kuosmanen
(2004) exploits a majorization-based, and Dentcheva and Ruszczyński
distribution-based dominance criteria. Test (14) is a linear program
with m2+n variables and 2m2+m constraints which is computation-
ally heavier than Kuosmanen’s necessary test (9), but lighter than his
sufficiency test (11). Combined with (14), test (15) produces an SSD
efficient dominating portfolio when the subject portfolio is inefficient.

Another distribution-based test recently published in Kopa and
Chovanec (2008) employs the conditional value at risk defined as

CVaRα(z) = E(z|z > VaRα(z)), (17)

where VaRα(z) is the value-at-risk of z, that is F−1
Z (α).

The following equivalent SSD efficiency criterion holds due to Def-
inition 6:

CVaRα(−Y1) ≤ CVaRα(−Y2),∀α ∈ [0, 1] ⇐⇒ Y1 SSD dominates Y2.
(18)

Employing an equivalent formulation of CVaR derived in Rockafel-
lar and Uryasev (2002)

CVaRα(Y ) = min
a∈R

{
a+

1

1− α
Emax(Y − a, 0)

}
, (19)

they propose the following linear programming test8.

8The inverse SD constraints, including those based on CVaR and used in Kopa and
Chovanec (2008), were developed earlier in Dentcheva and Ruszczyński (2006-a). However,
the linear programming test (20) was suggested in Kopa and Chovanec (2008).
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D∗(y) = max

m∑
k=1

Dk (20)

s.t. CVaR k−1
m

(−y)− bk −

m∑
t=1

wt
k

m− k + 1
≥ Dk, k = 1, . . . ,m

wt
k ≥ −(Xλ)t − bk, t, k = 1, . . . ,m

wt
k ≥ 0, t, k = 1, . . . ,m

Dk ≥ 0, k = 1, . . . ,m

λ ∈ Λ

If D∗(y) > 0, then y is SSD inefficient, the optimal allocation Xλ∗

dominates y and Xλ∗ is SSD efficient. Otherwise D∗(y) = 0 and y is
SSD efficient.

Substituting the explicit expression for CVaR into (20) gives us
the following formulation (we denote y[k] the k-th largest, and y(k) the
k-th smallest element of y).

D∗(y) = max

m∑
k=1

Dk (21)

s.t.
−
∑m

i=k y
[i]

m− k + 1
− bk −

∑m
t=1w

t
k

m− k + 1
≥ Dk, k = 1, . . . ,m

wt
k ≥ −(Xλ)t − bk, t, k = 1, . . . ,m

wt
k ≥ 0, t, k = 1, . . . ,m

Dk ≥ 0, k = 1, . . . ,m

λ ∈ Λ

Therefore, the first constraint ensures that the optimal solution
x = Xλ∗ satisfies

−
∑m

i=k y
[i]

m− k + 1
+

∑m
i=k x

[i]

m− k + 1
≥ 0, k = 1, . . . ,m (22)

and therefore

m∑
i=k

x[i] ≥
m∑
i=k

y[i], hence

k∑
i=1

x(i) ≥
k∑

i=1

y(i), k = 1, . . . ,m (23)
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which guarantees dominance of x over y by Definition 7.
Program (21) comprises both necessary and sufficient condition

in one linear program. However, any necessity test can be used at
a pre-processing stage to identify inefficiency prior to using (21), for
instance Post’s (7) or (8). In addition, Kopa and Chovanec (2008)
propose another simple test formulated as follows.

d∗ = max
λ∈Λ

m−1∑
k=0

n∑
j=1

λj

(
CVaR k

m
(−y)− CVaR k

m
(−Xj)

)
(24)

s.t.

n∑
j=1

λj

(
CVaR k

m
(−y)− CVaR k

m
(−Xj)

)
≥ 0, k = 0, . . . ,m− 1

which can be rewritten as

d∗ = max
λ∈Λ

m−1∑
k=0

n∑
j=1

λjajk (25)

s.t.
n∑

j=1

λjajk ≥ 0, k = 0, . . . ,m− 1, with ajk =
k∑

i=1

x
(i)
j −

k∑
i=1

y(i)

Kopa and Chovanec prove that if d∗ > 0, then y is SSD inefficient.
Moreover, λ∗ is an SSD efficient portfolio that dominates y. Note
that all ajk can easily be computed a priori, and thus (25) is a linear
program with n variables and m constraints. In contrast to Post and
Kuosmanen test, it provides an SSD efficient dominating portfolio in
case of inefficiency of y. Unfortunately, no conclusion can be made
concerning the efficiency of y if (25) is infeasible.

In contrast to Kuosmanen (2004) and Dentcheva and Ruszczyński
(2003, 2006-b), Kopa and Chovanec use the sum of slacks of CVaRs as
the objective function which results in guaranteeing that the optimal
portfolio is always SSD efficient and dominates the subject portfolio
when the latter is inefficient, with a similar computational complexity.

In summary, (21) offers an attractive linear programming algo-
rithm which comprises the necessary and sufficient condition for SSD
efficiency of a given portfolio and provides for an SSD efficient domi-
nating portfolio. The linear program (21) has m2 + 2m+ n variables
and 2m2 + 2m inequality constraints.
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4 Extensions

Below we consider some extensions to the set of assumptions set out
in the previous chapter. We refine the class of preferences and assume
away short sales, among others.

4.1 FSD Efficiency and Optimality

Due to the important role played by the ordering of portfolio returns
in both strong and weak FSD dominance, there is no easy (poly-
nomial complexity) algorithm known to date for identifying the effi-
ciency of even a single given portfolio. Kuosmanen (2004) proposes
an MILP-based test for identifying FSD efficiency, whereas Kopa and
Post (2009) offer an LP test for the FSD optimality. However, the
input data for the latter test can only be obtained by solving an
MILP program similar to that of Kuosmanen (2004). Optimization
programs with first order stochastic dominance constraints were also
studied in Dentcheva and Ruszczyński (2004) and Noyan, Rudolf and
Ruszczyński (2006). Post (2003) suggests a seemingly easier LP test
for FSD optimality in section V, formula (19). He states that the fol-
lowing condition implies and suffices for FSD optimality of portfolio
y: θ∗(y) = 0, where

θ∗(y) = min θ

s.t.
1

m

m∑
t=1

βt(Xλ−Xti) + θ ≥ 0, i = 1, . . . , n

βi ≥ 1, i = 1, . . . ,m− 1

βm = 1, λ ∈ Λ

(26)

Although temptingly simple, this approach turns out to be erro-
neous. This can be seen on the following example. Consider 3 assets
in 2 states: A(2, 2), B(1, 3) and C(2.5, 1.75). The constraints of
program (26) for testing FSD efficiency of B become


β1(1−2)

2 + β2(3−2)
2 + θ ≥ 0

β1(1−2.5)
2 + β2(3−1.75)

2 + θ ≥ 0
β1(1−1)

2 + β2(3−3)
2 + θ ≥ 0

β1 ≥ 1, β2 = 1

⇒


θ ≥ 0.5β1 − 0.5

θ ≥ 0.75β1 − 0.625

θ ≥ 0

β1 ≥ 1

⇒ θ∗ = 0.125 > 0.
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Thus, (26) wrongly classifies B as FSD inefficient.

4.2 Unrestricted shortsales

The tests reviewed above assume a convex portfolio possibilities set
Λ. The simplest of these in terms of computational complexity, Post
(2003), explicitly assumes restricted short sales9. The other methods
can handle any polytope Λ, but are more computationally demanding.
Lizyayev (2009) suggests another method particularly efficient in the
case of unrestricted short sales, based on decomposition of the matrix
of returns and applying gradient optimality conditions similar to those
of Dybving and Ross (1980). The method seeks to find an interior
point of the set{

β ∈ Rm−n : D

[
−(XT

1 )
−1XT

2

Im−n

]
β ≤ −D

[
(XT

1 )
−1e

0m−n

]}
(27)

where β is an (m−n)-parameter vector, X1 are the first n rows of X,
X2 - the rest (m−n) rows10, D is defined via the inverse of the upper
triangular m-by-m matrix Um

d : D = − (Um
d )−1.

Program (27) can be equivalently formulated in terms of the slacks
of β as follows.

max θ

s.t. −
(
(Un

d )
−1

(
XT

1

)−1
XT

2 U
m−n
d +A

)
γ + θ ≤ −D1

(
XT

1

)−1
e,

γ ∈ Rm−n, γ ≥ 0, θ ≥ 0,

(28)

where A is the following n-by-(m− n) matrix: A =


0 · · · 0
...

...
0 · · · 0
1 · · · 1

.
Existence of such γ (or β = Um−n

d γ) is a necessary condition for
SSD efficiency of the subject portfolio. System (28) is a linear program
withm−n variables andm−n constraints (note that as in Post (2003),

9In fact (7) is only valid for Λ =
{
λ ∈ Rn : λTe = 1, λ ≥ 0

}
. If Λ is another polytope,

Xti in (7) should be substituted by the vertices of Λ.
10Assuming without loss of generality that the first n rows ofX are linearly independent.
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γ can be normalized so that γm−n = βm−n = 1). Although the method
does not find a dominating portfolio, it always identifies if the subject
portfolio is efficient and, in such cases, produces a supporting gradient
(marginal utility) as a byproduct. The computational advantage of
this method becomes particularly eminent when n approaches m.11

5 Comparison of SSD methods

In Section 3 we have analyzed the major SSD efficiency tests that
can be represented as linear programs and therefore can be applied
to relatively large real world data. We have shown that the meth-
ods differ in terms of the information content of the results and the
goal of this chapter is to analyze the computational burden associated
with the extra informational outcome of some tests. To make such
a comparison objective, we transform each program to the standard
form:

min
{
cTx : Ax ≤ b, x ≥ 0

}
. (29)

A good indicator of the computational complexity of a linear pro-
gram, at least when a simplex method is applied for solving it, is the
average number of non-zero elements in the matrix of constraints at
each simplex iteration of changing variables in the basis. This indi-
cator is however difficult to estimate on the basis of the input data.
For this reason we follow the Performance World (2009) website and
give two indicators for complexity: the size of the A matrix in (29)
and the number of non-zeros it contains. For sparse matrices (as in
our case) these indicators can be taken to represent, respectively, an
upper and a lower bound for the average number of non-zeros in A.
The table below summarizes the information content of the outcome
and the computational complexity of the methods considered in terms
of those indicators12. All the methods assume away short sales except
Lizyayev (2009), which is only applicable to unrestricted short sales.

11Note however that as n increases, the dimensionality of (28) becomes smaller, but
one needs to invert a larger X1 prior to solving (28). If X happens to be particularly
ill-conditioned, one may rewrite (28) without decomposition as: find z ∈ Rm such that
Xz = e, z ≥ 0. This is a linear program withm variables and 2m constraints, and therefore
remains the most efficient method for the case of unbounded Λ.

12The portfolio budget constraint enters every method in the same form and thus was
omitted from the complexity analysis for brevitys sake.
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As we can see from Table 1, the methods can be grouped by the in-
formation content of the results. The most informative method, Kopa
and Chovanec’s (21), is also the most computationally demanding. It
is the only method that identifies an SSD efficient dominating portfolio
with a linear program. Other methods require quadratic programming
to identify an SSD efficient dominating portfolio. The Dentcheva and
Rudzszynski (2003) and Kuosmanen (2004) necessary tests are iden-
tical in terms of the information content of the results. As for the
computational complexity, Kuosmanen (2004) is lighter in terms of
non-zeros but slightly harder regarding the size of the constraints ma-
trix. A dominating portfolio that is weakly SSD efficient is identified,
but the dominating portfolio is not always strongly SSD efficient. The
test of Post (2008) is a lot lighter than the previous tests, but it loses
in information content. The Kopa and Chovanec (2008) necessary test
(25) is slightly lighter than Post (2003) and in some cases identifies an
efficient dominating portfolio, although no conclusions can be made
concerning the efficiency of y if (25) is infeasible. Both tests are ap-
plicable when short sales are restricted. The test of Lizyayev (2009),
on the contrary, assumes unrestricted short sales and in this case is
the lightest computationally, albeit bearing the minimal information
content: just like Post (2003), it only provides a necessary condition
for efficiency of the subject portfolio and a sufficient condition for its
weak efficiency.

6 Concluding remarks

We can summarize the paper as follows. We have taken the various
methods of three different schools of thought, some of which are devel-
oping independently, without any cross-reference to or interaction with
the others, placed them under a common umbrella and analyzed them
in a unified methodological framework where both the information
content of their results and their computational complexity were com-
pared. We have given a principal classification into three categories
based on the definition of SSD efficiency employed in each particular
method, but we have also seen that methods from different categories
can be grouped according to the content of the results and their com-
putational complexity. For many large- or even medium-size data sets
some of the methods may become computationally prohibitive, par-
ticularly taking bootstrapping into account when the tests have to be
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repeated many times on similar or even larger data sets simulated from
the original distribution. We hope this paper will assist practitioners
in finding a desired tradeoff between bearable computational burden
and the information content of the results required.

The methods in each school of thought are based on Definitions 1,
6 or 7. It is remarkable that, although those definitions are proved to
be equivalent, the optimization programs corresponding to those defi-
nitions substantially differ in terms of their computational complexity,
as well as the information content of their outcome.

In addition to classifying and comparing of the methods, we have
also corrected some misleading arguments in the literature under con-
sideration and suggested refinements to some of the methods.
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