
19. KEY WOROS (Continue on reverse side if neceseary and Identify by block number)
Risky decision making
Stochastic dominance
Intransitive preferences
20. ABStinct (Continue on reverse side if neceseary and identify by block number)
Traditional definitions of stochastic dominance for decision analysis assume that the decision agent's preference-or-indifference relation on outcomes of risky decisions is transitive. This report proposes a stochastic dominance relation for the comparison of risky decisions that is applicable to any complete and reflexive preference-or-indifference relation, or to any asymmetric preference relation. The new dominance relation possesses a number of intuitively desirable properties and is equivalent to the usual stochastic dominance relation when preferences are transitive.

TECHNICAL REPORT NO. 24

STOCHASTIC DOMINANCE WITHOUT
TRANSITIVE PREFERENCES

Peter C. Fishburn College of Business Administration The Pennsylvania State University University Park, Pennsylvania 16802

This research was sponsored by the Office of Naval Research, ONR Contract Number N00014-75-C-0857, ONR Contract Authority identification number NR047-112/11-24-76.

Reproduction in whole or in part is permitted for any purpose of the United States Government.

1. Introduction

Abstract

Stochastic dominance has traditionally been associated with the comparison of probability measures p, q, \ldots defined on the real line when it is presumed that the decision agent likes outcome x as much as outcome y whenever $x \geq y$. In the non-strict first-degree version, p stochastically dominates q just when the graph of the cumulative distribution for p never rises above the graph of the cumulative distribution for q, and this occurs if and only if the expected utility of p is as great as the expected utility of q for every nondecreasing utility function on the line $[2,6,7,8,11,14]$. Less restrictive stochastic dominance concepts have been developed for other classes of utility functions. These include the class of risk averse utility functions $[2,7,8,11,14]$, the class of risk averse utility functions that exhibit decreasing absolute risk aversion $[16,17]$, and several other classes [5, 20]. Most of these developments along with various applications of stochastic dominance to investment decisions and other risky choice problems are discussed in [20].

As shown in $[2,4,6]$, stochastic dominance concepts also apply to risky decision situations with arbitrary outcomes--qualitative, multiattribute, or whatever--when the decision agent's preference-or-indifference relation R on the outcome set X is a weak order (transitive, reflexive and complete). In this case R replaces the natural order on the real line in defining first-degree stochastic dominance. In other words, if p and q are simple probability measures on X, so that $p(A)=q(B)=1$ for finite $A, B \subseteq X$, and if we let $S D(R)$ denote the non-strict first-degree stochastic dominance relation based on R, then

$$
p S D(R) q \text { if and only if } p(\{x: y R x\}) \leq q(\{x: y R x\}) \text { for all } y \in X .
$$

It follows that $p S D(R) q$ if, and only if, $\Sigma p(x) u(x) \geq \sum q(x) u(x)$ for every real valued function u on $A \cup B$ that preserves R in the sense that, for all $x, y \in A \cup B, u(x) \geq u(y)$ if and only if $x R y$.

My aim here is to propose and analyze a generalization of $S D(R)$ that applies to every reflexive and complete preference-or-indifference relation R on X, whether or not it is transitive. This aim is motivated by discussions of intransitive indifference [3, 9, 12] and intransitive preference $[1,10,13$, 15, 18] which suggest that these phenomena can arise very naturally from factors such as sensory thresholds, discriminatory vagueness, and multiattribute outcomes. The problem that these phenomena pose for the stochastic dominance approach to the analysis of risky decisions can be put in the form of a question: Is there any reasonable or defensible notion of stochastic dominance for situations in which the decision agent's binary preferences on outcomes are not transitive? The answer given in this paper is a qualified "yes".

The basic proposal for stochastic dominance with "unordered" preferences is presented in the next section along with an interpretation of its content. The third section then shows that the new stochastic dominance relation satisfies a number of conditions that seem like reasonable requirements for a dominance relation in the unordered context. The paper concludes with a brief summary.

2. Definitions

Throughout the paper, X is the outcome set, Π is the set of all simple probability measures on X, and R is the set of reflexive and complete binary relations on X. The indifference relation I and strict preference relation P that are induced by $R \in R$ are defined by $x I y$ iff (if and only if) $x R y$ and $y R x$, and $x P y$
iff $x R y$ and not (yRx). We shall let $P x=\{y \in X: y P x\}$ and $x P=\{y \in X: x P y\}$. Hence $P x$ is the set of outcomes preferred to x, and $x P$ is the set of outcomes that x is preferred to. In like manner, $R x=\{y \in X: y R x\}, x R=\{y \in X: x R y\}$, and $x I=\{y \in X: x I y\}$. Thus $p(R x)$ is the probability that a risky decision whose outcome probabilities are given by p will yield an outcome that is preferred or indifferent to \mathbf{x}.

Our primary stochastic dominance relation $D(R)$ on Π is based on two other relations on Π for each $R \in R$. These are defined as follows for all $p, q \in \Pi$:

$$
\begin{aligned}
& p D_{1}(R) q \text { iff } p\{x: q(x P) \leq \lambda\} \leq q\{x: p(x P) \leq \lambda\} \text { for all } \lambda \in[0,1] \\
& p D_{2}(R) q \text { iff } p\{x: q(P x) \geq \lambda\} \leq q\{x: p(P x) \geq \lambda\} \text { for all } \lambda \in[0,1] \text {, }
\end{aligned}
$$

where $p\{x: \ldots\}$ is short for $p(\{x: \ldots\}$. These definitions can also be used for nonsimple probability measures when the probabilities are well defined. Since $\mathrm{q}(\mathrm{xP})+\mathrm{q}(\mathrm{Rx})=1, \mathrm{p}\{\mathrm{x}: \mathrm{q}(\mathrm{xP}) \leq \lambda\}+\mathrm{p}\{\mathrm{x}: \mathrm{q}(\mathrm{xP})>\lambda\}=1$, and so forth, it follows easily that for all $p, q \in \Pi$,

$$
\begin{aligned}
& P D_{1}(R) q \text { iff } p\{x: q(R x) \geq \lambda\} \leq q\{x: p(R x) \geq \lambda\} \text { for all } \lambda \in[0,1] \\
& \text { iff } p\{x: q(x P) \geq \lambda\} \geq q\{x: p(x P) \geq \lambda\} \text { for all } \lambda \in[0,1]
\end{aligned}
$$

and

$$
\begin{aligned}
& p D_{2}(R) q \text { iff } p\{x: q(x R) \leq \lambda\} \leq q\{x: p(x R) \leq \lambda\} \text { for all } \lambda \in[0,1] \\
& \text { iff } p\{x: q(P x) \leq \lambda\} \geq q\{x: p(P x) \leq \lambda\} \text { for all } \lambda \in[0,1] .
\end{aligned}
$$

It will be shown in the next section that each of D_{1} and D_{2} has a number of properties that we would desire for a stochastic dominance relation, including
the fact that $D_{1}(R)=D_{2}(R)=S D(R)$ when R is a weak order. However, since-as will be shown shortly--D (R) and $D_{2}(R)$ are not generally equal, and since both seem consistent with the general theme of stochastic dominance, I shall propose the intersection of the two as the primary dominance relation for "unordered" preferences:

$$
p D(R) q \text { iff } p D_{1}(R) q \text { and } p D_{2}(R) q .
$$

One could also consider the union of $D_{1}(R)$ and $D_{2}(R)$ as a viable candidate for stochastic dominance in the present context although I find this less intuitively appealing than the intersection proposal. Since $D_{1}(R) \operatorname{liD}_{2}(R) \leqslant$ $D_{i}(R) \subseteq D_{1}(R) U D_{2}(R)$ for $i=1,2, D(R)$ is the most demanding relation in this little hierarchy.

To appreciate the spirit of $D(R)$ it is necessary to interpret $D_{1}(R)$ and $D_{2}(R)$. We examine $D_{1}(R)$ first. From its definition and equivalent characterizations, it is clear that $D_{1}(R)$ depends on interrelationships between p and q in a way that is not evident from the definition of $S D(R)$ for ordered outcomes. Consider the third characterization of $D_{1}(R)$, where we have

$$
\mathrm{p}\{\mathrm{x}: \mathrm{q}(\mathrm{xP}) \geq \lambda\} \text { and } \mathrm{q}\{\mathrm{x}: \mathrm{p}(\mathrm{xP}) \geq \lambda\},
$$

and let A and B be respectively the minimal supports of p and q so that $p(A)=q(B)=1$ with $p(a)>0$ for $a l l a \in A$ and $q(b)>0$ for all $b \in B$. Then

$$
\begin{aligned}
& \mathrm{p}\{\mathrm{x}: \mathrm{q}(\mathrm{xP}) \geq \lambda\}=\mathrm{p}\{\mathrm{a} \in \mathrm{~A}: \mathrm{q}(\mathrm{aP}) \geq \lambda\} \\
& \mathrm{q}\{\mathrm{x}: \mathrm{p}(\mathrm{xP}) \geq \lambda\}=\mathrm{q}\{\mathrm{~b} \in \mathrm{~B}: \mathrm{p}(\mathrm{bP}) \geq \lambda\}
\end{aligned}
$$

Since these equal 1 when $\lambda=0$, consider a fixed positive λ. Then $q(a P) \geq \lambda$ means that q has a probability of at least λ of yielding an outcome that is
worse than $a \in A$; hence the higher the value of $p\{a \in A: q(a P) \geq \lambda\}$ the more attractive is p relative to q at level λ. But this is only half of the picture. In the other half, $p(b P) \geq \lambda$ means that p has a probability of at least λ of yielding an outcome that is worse than $b \in B$, so that the higher the value of $q\{b \in B: p(b P) \geq \lambda\}$ the more attractive is q relative to p at level λ. If the difference $p\{a \in A: q(a P) \geq \lambda\}-q\{b \in B: p(b P) \geq \lambda\}$ is nonnegative, then we might say that p is at least as attractive as q at level λ, and this is precisely what is required for every $\lambda \in[0,1]$ to have $p_{D_{1}}(R) q$.

In the third characterization of $D_{2}(R)$ with A and B as in the preceding paragraph we have

$$
\begin{aligned}
& \mathrm{p}\{\mathrm{x}: \mathrm{q}(\mathrm{Px}) \leq \lambda\}=\mathrm{p}\{\mathrm{a} \in \mathrm{~A}: \mathrm{q}(\mathrm{~Pa}) \leq \lambda\} \\
& \mathrm{q}\{\mathrm{x}: \mathrm{p}(\mathrm{Px}) \leq \lambda\}=\mathrm{q}\{\mathrm{~b} \in \mathrm{~B}: \mathrm{p}(\mathrm{~Pb}) \leq \lambda\}
\end{aligned}
$$

Here $\mathrm{q}(\mathrm{Pa}) \leq \lambda$ means that q has a probability of no more than λ of yielding an outcome that is preferred to $a \in A$, and $p\{a \in A: q(P a) \leq \lambda\}$ is the probability that p will produce such an outcome. Similarly, $p(P b) \leq \lambda$ means that p has a probability of no more than λ of yielding an outcome that is preferred to $b \in B$, and $\mathrm{q}\{\mathrm{b} \in \mathrm{B}: \mathrm{p}(\mathrm{Pb}) \leq \lambda\}$ is the probability that q will produce such an outcome. As before, $\mathrm{p}\{\mathrm{a} \in \mathrm{A}: \mathrm{q}(\mathrm{Pa}) \leq \lambda\}-\mathrm{q}\{\mathrm{b} \in \mathrm{B}: \mathrm{p}(\mathrm{Pb}) \leq \lambda\}$ is a measure of the attractiveness of p relative to q at level λ, and this must be nonnegative for all $\lambda \in[0,1]$ to have $p D_{2}(R) q$.

Given $p(A)=q(B)=1$, the preceding discussion shows that it is only necessary to examine the λ values where $q(a P)=\lambda$ or $p(b P)=\lambda$ in order to check $D_{1}(R)$ for p versus q. In like manner, $D_{2}(R)$ for p versus q is completely determined by what happens at the λ values for which $\mathrm{q}(\mathrm{Pa})=\lambda$ or $\mathrm{p}(\mathrm{Pb})=\lambda$. This will be illustrated in the proof of the following lemma.

Lemma 1. If P is not transitive then $D_{1}(R) \neq D_{2}(R)$.

Proof. Suppose P is not transitive on X. Then there must be distinct $x_{1}, x_{2}, x_{3} \in X$ such that either $x_{1} P x_{2} P x_{3} P x_{1}$ (a cycle) or $x_{1} P x_{2} P x_{3} I x_{1}$. With $p_{i}=p\left(x_{i}\right)$ and $q_{i}=q\left(x_{i}\right)$, let $p=\left(p_{1}, p_{2}, p_{3}\right)=(.3, .5, .2)$ and $q=\left(q_{1}, q_{2}, q_{3}\right)=$ $(.1, .6, .3)$, and suppose that $x_{1} P x_{2} P x_{3} I x_{1}$. Then, to examine $D_{1}(R)$, we need to look at $\mathrm{p}\{\mathrm{x}: \mathrm{q}(\mathrm{xP}) \leq \lambda\}$ and $\mathrm{q}\{\mathrm{x}: \mathrm{p}(\mathrm{xP}) \leq \lambda\}$ at the $\lambda \in\left\{\mathrm{p}\left(\mathrm{x}_{\mathrm{i}} \mathrm{P}\right), \mathrm{q}\left(\mathrm{x}_{\mathrm{i}} \mathrm{P}\right)\right\}$ for $i=1,2,3$. These λ values are $0=p\left(x_{3} P\right)=q\left(x_{3} P\right), .2=p\left(x_{2} P\right), .3=q\left(x_{2} P\right)$, $.5=p\left(x_{1} p\right)$, and $\cdot 6=q\left(x_{1} p\right)$. The values of $p\{x: q(x P) \leq \lambda\}$ and $q\{x: p(x P) \leq \lambda\}$ for each critical λ value are as follows:

critical λ value:	0	.2	.3	.5	.6
$\mathrm{p}\{\mathrm{x}: \mathrm{q}(\mathrm{xP}) \leq \lambda\}:$.2	.2	.7	.7	1.0
$\mathrm{q}\{\mathrm{x}: \mathrm{p}(\mathrm{xP}) \leq \lambda\}:$.3	.9	.9	1.0	1.0.

Since $p\{x: q(x P) \leq \lambda\} \leq q\{x: p(x P) \leq \lambda\}$ for each critical λ, we get $p D_{1}(R) q$. To examine $D_{2}(R)$ we look at the values of λ for which $\lambda \in\left\{p\left(P x_{i}\right), q\left(P x_{i}\right)\right\}$ for $i=1,2,3$. These are $0=p\left(P x_{1}\right)=q\left(P x_{1}\right), .1=q\left(P x_{2}\right), .3=p\left(P x_{2}\right), .5=p\left(P x_{3}\right)$ and $.6=\mathrm{q}\left(\mathrm{Px}_{3}\right)$:

aritical λ value:	0	.1	.3	.5	.6
$\mathrm{p}\{\mathrm{x}: \mathrm{q}(\mathrm{Px}) \leq \lambda\}:$.3	.8	.8	.8	1.0
$\mathrm{q}\{\mathrm{x}: \mathrm{p}(\mathrm{Px}) \leq \lambda\}:$.1	.1	.7	1.0	1.0.

According to the third characterization of $D_{2}(R)$, which requires $p\{x: q(P x) \leq \lambda\}$ $\geq q\{x: p(P x) \leq \lambda\}$ for all $\lambda \in[0,1]$, not $\left(p D_{2}(R) q\right.$) since $p\{x: q(P x) \leq .5\}<$ $q\{x: p(P x) \leq . j\}$. Hence $D_{1}(R) \neq D_{2}(R)$ when $x_{1} P x_{2} P x_{3} I x_{1}$.

The cyclic case of $x_{1} P x_{2} P x_{3} P x_{1}$ is handled with $p=(.1, .5, .4)$ and $q=(.2, .2, .6)$. The computations for $D_{1}(R)$ are:

critical λ value:	.1	.2	.4	.5	.6
$\mathrm{p}\{\mathrm{x}: \mathrm{q}(\mathrm{xP}) \leq \lambda\}:$	0	.5	.5	.5	1.0
$\mathrm{q}\{\mathrm{x}: \mathrm{p}(\mathrm{xP}) \leq \lambda\}:$.6	.6	.8	1.0	1.0

so that $p D_{1}(R) q$. The computations for $D_{2}(R)$ are

critical λ value:	.1	.2	.4	.5	.6
$\mathrm{p}\{\mathrm{x}: \mathrm{q}(\mathrm{Px}) \leq \lambda\}:$	0	.9	.9	.9	1.0
$\mathrm{q}\{\mathrm{x}: \mathrm{p}(\mathrm{Px}) \leq \lambda\}:$.2	.2	.4	1.0	1.0

which imply not $\left(p D_{2}(R) q\right)$. Hence $D_{1}(R) \neq D_{2}(R)$ in this case also and the proof of the lemma is complete.

The next lemma will be needed in ensuing developments. For all $\lambda \in[0,1]$ and all $p, q \in \Pi$ and $R \in R$ let

$$
\begin{aligned}
\Delta(\lambda, \mathrm{p} ; \mathrm{q}, \mathrm{R}) & =\mathrm{p}\{\mathrm{x}: \mathrm{q}(\mathrm{xP}) \leq \lambda\}-\mathrm{p}\{\mathrm{x}: \mathrm{q}(\mathrm{xR}) \leq \lambda\} \\
& =\mathrm{p}\{\mathrm{x}: \mathrm{q}(\mathrm{xP}) \leq \lambda<\mathrm{q}(\mathrm{xP})+\mathrm{q}(\mathrm{xI})\}
\end{aligned}
$$

Lemma 2. For all $p, q \in \Pi$ and all $R \in R$,

$$
\int_{\lambda=0}^{1} \Delta(\lambda, p ; q, R) d \lambda=\int_{\lambda=0}^{1} \Delta(\lambda, q ; p, R) d \lambda .
$$

Proof, Let A and B be respectively the minimal supports of p and q. Since the total contribution of $a \in A$ to $\int \Delta(\lambda, p ; q, R) d \lambda$ is $p(a) q(a I)$, i.e. a contributes $p(a)$ to Δ over an interval of length $q(a I)$,

$$
\int_{\lambda=0}^{1} \Delta(\lambda, p ; q, R) d \lambda=\Sigma_{A} p(a) q(a I) .
$$

For a similar reason

$$
\int_{\lambda=0}^{1} \Delta(\lambda, q ; p, R) d \lambda=\Sigma_{B} q(b) p(b I)
$$

The term $p(a) q(b)$ is in \sum_{A} iff $a I b$, and $q(b) p(a)$ is in Σ_{B} iff bIa. Since I is symmetric, $\Sigma_{A}=\Sigma_{B}$ and the proof is complete.

Although Lemma 1 shows that $D_{1}(R)$ and $D_{2}(R)$ can be different, it does not answer the question of whether it is possible to have both $p D_{1}(R) q$ and $q D_{2}(R) p$ without also having the converses of these two. The following theorem shows that this cannot happen.

Theorem 1. For all $p, q \in \Pi$ and all $R \in R$, if $p D_{1}(R) q$ and $q D_{2}(R) p$ then $q D_{1}(R) P$ and $p D_{2}(R) q$.

Proof. Suppose $p D_{1}(R) q$ and $q D_{2}(R) p$. Then, by the initial definition of $D_{1}(R)$ and the second characterization of $D_{2}(R)$,

$$
\begin{equation*}
\mathrm{q}\{\mathrm{x}: \mathrm{p}(\mathrm{xR}) \leq \lambda\} \leq \mathrm{p}\{\mathrm{x}: \mathrm{q}(\mathrm{xR}) \leq \lambda\} \leq \mathrm{p}\{\mathrm{x}: \mathrm{q}(\mathrm{xP}) \leq \lambda\} \leq \mathrm{q}\{\mathrm{x}: \mathrm{p}(\mathrm{xP}) \leq \lambda\} \tag{1}
\end{equation*}
$$

for all $\lambda \in[0,1]$, where the middle inequality results from the fact that if $q(x R) \leq \lambda$ then $q(x P) \leq \lambda$. Now (1) implies that $\Delta(\lambda, p ; q, R) \leq \Delta(\lambda, q ; p, R)$ for all $\lambda \in[0,1]$. Hence, by Lemma $2, \Delta(\lambda, p ; q, R)=\Delta(\lambda, q ; p, R)$ for all $\lambda \in[0,1]$. Therefore

$$
\begin{aligned}
& \mathrm{q}\{\mathrm{x}: \mathrm{p}(\mathrm{x} R) \leq \lambda\}=\mathrm{p}\{\mathrm{x}: \mathrm{q}(\mathrm{xR}) \leq \lambda\} \text { for all } \lambda \in[0,1], \\
& \mathrm{p}\{\mathrm{x}: \mathrm{q}(\mathrm{xP}) \leq \lambda\}=\mathrm{q}\{\mathrm{x}: \mathrm{p}(\mathrm{xP}) \leq \lambda\} \text { for all } \lambda \in[0,1],
\end{aligned}
$$

and these imply respectively that $p D_{2}(R) q$ and that $q D_{1}(R) p$.

For any "as good as" dominance relation $D *(R)$ on Π let $E \star(R)$ be defined by $p E^{\star}(R) q$ iff $p D^{*}(R) q$ and $q D^{*}(R) p$. Thus $E *(R)$ is a stochastic indifference relation. When R is a weak order, we have p SE(R) q iff $p S D(R) q$ and $q S D(R) p$, which is true iff $p(x R)=q(x R)$ for all $x \in x$. The stochastic indifference functions for D_{1}, D_{2} and D are respectively E_{1}, E_{2} and E with

$$
\begin{aligned}
& p E_{1}(R) q \text { iff } p\{x: q(x P) \leq \lambda\}=q\{x: p(x P) \leq \lambda\} \text { for all } \lambda \in[0,1] \text {, } \\
& p E_{2}(R) q \text { iff } p\{x: q(P x) \leq \lambda\}=q\{x: p(P x) \leq \lambda\} \text { for all } \lambda \in[0,1],
\end{aligned}
$$

and $E(R)=E_{1}(R) \cap E_{2}(R)$. Moreover, it follows easily from Theorem 1 that the stochastic indifference relation for $D_{1}(R) \cup D_{2}(R)$ is $E_{1}(R) \cup E_{2}(R)$.

When A and B are respectively the minimal supports of p and q, it is readily verified that

$$
\begin{aligned}
& p E_{1}(R) q \text { iff } p\{a \in A: q(a P)=\lambda\}=q\{b \in B: p(b P)=\lambda\} \text { for all } \lambda \in[0,1], \\
& p E_{2}(R) q \text { iff } p\{a \in A: q(P a)=\lambda\}=q\{b \in B: p(P b)=\lambda\} \text { for all } \lambda \in[0,1] .
\end{aligned}
$$

These can be checked using only the λ values in $\{q(a P), p(b P), q(P a), p(P b)\}$, and both must be checked for $E(R)$. That is, it is not generally true that $E_{1}(R)=E_{2}(R)$. For example, when $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}, B=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$, $A \backslash B=\emptyset, p=(.3, .2, .1, .4), q=(.1, .1, .3, .5)$, and $P=\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right.$, $\left.\left(b_{1}, a_{3}\right),\left(b_{2}, a_{3}\right),\left(b_{3}, a_{3}\right)\right\}$, we get $p E_{1}(R) q$ and not $\left(p E_{2}(R) q\right)$.

A simple and nontrivial example of $p E(R) q$ is given by $A=\left\{a_{1}, a_{2}\right\}$, $B=\left\{b_{1}, b_{2}\right\}, p=(.5, .5), q=(.5, .5)$ and $P=\left\{\left(a_{1}, b_{1}\right),\left(b_{1}, a_{2}\right)\right\}$.

3. Properties of the Dominance Functions

To support the claim that $D(R)$ is a reasonable stochastic dominance relation in the R context we shall prove that it satisfies nine conditions that seem like desirable requirements for "as good as" dominance relations in this context. Each of $D_{1}(R)$ and $D_{2}(R)$ satisfies the first eight conditions, but they violate the final condition.

In the statements of the conditions, D^{*} denotes a generic function on R that assigns a binary relation $D *(R)$ on Π to each $R \in R$, $P \wedge A$ means that $A \subseteq X$ is the minimal support of $p \in \Pi$, ARB signifies that $a R b$ for $a l l(a, b) \in A \times B$, $b P A$ means that $b P a$ for $a l l a \in A$, and $B P a$ means that $b P a$ for $a l l b \in B$. In C6 through C8, $x P_{i} y$ iff $x R_{i} y$ and not $\left(y R_{i} x\right)$. In C9, R^{\prime} is the converse or dual of R with $x R^{\prime} y$ iff $y R x$. The conditions apply to all $R \in R$ and all $p, q \in \pi$.

C1. If $P \wedge A, q \wedge B$ and if the restriction of R to $A \cup B$ is a weak order on $A \cup B$, then $p D^{*}(R) q$ iff $p \operatorname{SD}(R) q$.
$C 2$. If $p \wedge A, q \wedge B$ and $A R B$, then $p D^{*}(R) q$.
C3. If $p \wedge A, q \wedge B, A R B$ and not (BRA), then not $(q) d(R) p)$.
C4. If $p \wedge A, q \wedge B$ and $b P A$ for some $b \in B$, then not ($\left.p D^{\star}(R) q\right)$.
C5. If $p \wedge A, q \wedge B$ and $B P a$ for some $a \in A$, then not ($p D^{*}(R) q$).
C6. If $p \wedge A, q \wedge B$ and $P_{1} \cap(A \times B \cup B \times A)=P_{2} \cap(A \times B \cup B \times A)$, then $p D^{*}\left(R_{1}\right) q$ iff $p D^{*}\left(R_{2}\right) q$.

C7. If $p \wedge A, q \wedge B, P_{1}$ and P_{2} are the same on $A \cup B$ except that $P_{1} \cap(A \times B) \subseteq$ $P_{2} \cap(A \times B)$ and $P_{2} \cap(B \times A) \subseteq P_{1} \cap(B \times A)$, and if $p D *\left(R_{1}\right) q$, then $p D^{*}\left(R_{2}\right) q$.

C8. If $p \wedge A, q \wedge B$, if the conditions of $C 7$ on P_{1} and P_{2} hold along with $P_{1} \neq P_{2}$ on $A \cup B$, and if $p D^{*}\left(R_{1}\right) q$, then $\operatorname{not}\left(q D^{*}\left(R_{2}\right) p\right)$.

C9. $p D^{*}(R) q$ iff $q D^{*}\left(R^{\wedge}\right) p$.

Condition Cl requires $D^{*}(R)$ to be identical to the basic stochastic dominance relation $S D(R)$ for all pairs of simple measures in Π for which R on the union of the minimal supports of these measures is a weak order. Conditions C2 and C3 are fundamental dominance conditions. For example, C2 says that if every possible outcome under p is as preferable as every possible outcome under q, then $p D^{*}(R) q$; if, in addition, some p outcome is strictly preferred to some q outcome, then $C 3$ requires that q not stochastically dominate p.

Conditions C4 and C5 might respectively be referred to as the "heaven" and "hell" conditions. If bPA for some $b \in B$, then b could be "infinitely" better than everything in A and it would not be reasonable to assert that p dominates q. Similarly, if $B P a$ for some $a \in A$, then a could be "infinitely" worse than everything in B and again it would not be reasonable to assert that p dominates q.

Condition C6 is an independence condition. It says that $D *(R)$ between p and q shall depend only on the ordered pairs in P whose first and second components are respectively in A and in B or else in B and in A. Equivalently, C6 says that the behavior of P in $A \backslash B=\{a \in A: a \notin B\}$ and in $B \backslash A=\{b \in B: b \notin A\}$ is irrelevant to the determination of $D^{*}(R)$ between p and q. Since this may seem odd at first, it should be remarked that the dominance comparison between p and q is concerned with the interrelationships between p and q and, in my judgment, should not depend on aspects of the risky decisions that are not directly related to one another. This says, for example, that if a and a^{\prime} are
in A but neither is in B, then the one of $\mathrm{aPa}^{\wedge}, \mathrm{a}^{\wedge} \mathrm{Pa}$ and aIa , that obtains should have no bearing on whether p dominates q.

The seventh condition is monotonicity condition. It says that if P_{1} and P_{2} are identical within $A \backslash B$ and within $B \backslash A$, and if $a P_{1} b \Rightarrow a P_{2} b$ and $b P_{2} a \Rightarrow b P_{1} a$ for all $(a, b) \in A \times B$, then $p D *\left(R_{2}\right) q$ whenever $p D *\left(R_{1}\right) q$. In other words, $C 7$ asserts that if P is changed by adding a-over-b preferences and/or deleting b-over-a preferences, then p dominates q after the changes if p dominates q before the changes. Together, C6 and C7 are equivalent to
$C 7 *$. If $P \wedge A, q \wedge B$ and if $a P_{1} b \Rightarrow a P_{2} b$ and $b P_{2} a \Rightarrow b P_{1} a$ for $a l l a \in A$ and all $b \in B$, then $p D^{*}\left(R_{1}\right) q \Rightarrow p D *\left(R_{2}\right) q$.

Condition C 8 is a strong monotonicity condition. It says that if p dominates q under P_{1}, and if p is improved relative to q by adding one or more $a-o v e r-b$ preferences and/or deleting one or more b-over-a preferences to give P_{2} (with $a \in A \mid B$ or $b \in B \mid A$ required by the P_{i} conditions), then q shall not dominate p under P_{2}. In other words, if p dominates q before the change, then p will strictly dominate q after the change.

The final condition is a symmetry or duality condition. It says that if P dominates q under the preference relation P and if P^{-}is formed from P by reversing all preferences, then q dominates p under p^{\prime}. Thus reversing all preferences reverses all dominance comparisons.

Although other conditions might be proposed for D^{*}, these nine form a core that, in my opinion, should hold for any satisfactory conception of stochastic dominance in the R context. We shall now prove that D_{1} and D_{2} satisfy the first eight conditions but do not satisfy the ninth. We note later that D satisfies all nine.

Theorem 2. Conditions $C 1$ through $C 8$ hold for $D_{1}(R)$ and $D_{2}(R)$ for every $R \in R . \quad$ If X has more than two outcomes then neither D_{1} nor D_{2} satisfies C9.

Proof. The theorem will be verified only for D_{1} since the proofs for D_{2} are similar to those for D_{1}. Thus, we wish to show first that $C 1$ through C8 hold when D^{*} therein is replaced by D_{1}. The failure of D_{1} for $C 9$ will then be noted.

C1. Assume that R on $A \cup B$ is a weak order. Suppose first that $p \operatorname{SD}(R) q$, and fix $\lambda \in[0,1]$. It is easily verified that $p \operatorname{SD}(R)$ q iff $[p(y R) \leq q(y R)$ for all $y \in A \cup B]$ iff $[p(x P) \leq q(x P)$ for all $x \in A \cup B]$. The last of these implies that $\{x: q(x P) \leq \lambda\} \leq\{x: p(x P) \leq \lambda\}$ within $A \cup B$ under the weak order hypothesis. Therefore, with y an element in $A \cup B$ that maximizes $p(x P)$ subject to $\mathrm{p}(\mathrm{xP}) \leq \lambda$, we obtain $\{\mathrm{x}: \mathrm{p}(\mathrm{xP}) \leq \lambda\}=\mathrm{yR}$ and $\mathrm{p}\{\mathrm{x}: \mathrm{q}(\mathrm{xP}) \leq \lambda\} \leq \mathrm{p}(\mathrm{yR}) \leq$ $\mathrm{q}(\mathrm{yR})=\mathrm{q}\{\mathrm{x}: \mathrm{p}(\mathrm{xP}) \leq \lambda\}$, so that $\mathrm{p}\{\mathrm{x}: \mathrm{q}(\mathrm{xP}) \leq \lambda\} \leq \mathrm{q}\{\mathrm{x}: \mathrm{p}(\mathrm{xP}) \leq \lambda\}$. Since this is true for every $\lambda \in[0,1], p D_{1}(R) q$. To prove the converse suppose that $p S D(R) q$ is false and let y be such that $p(y P)>q(y P)$. Then take $\lambda=q(y P)$. Since $\{x: p(x P) \leq \lambda\}$ doesn't contain y, and since $y R=\{x: q(x P) \leq \lambda\}$, we get $\mathrm{q}\{\mathrm{x}: \mathrm{p}(\mathrm{xP}) \leq \lambda\} \leq \mathrm{q}(\mathrm{yP})<\mathrm{p}(\mathrm{yP}) \leq \mathrm{p}(\mathrm{yR})=\mathrm{p}\{\mathrm{x}: \mathrm{q}(\mathrm{xP}) \leq \lambda\}$, or $\mathrm{q}\{\mathrm{x}: \mathrm{p}(\mathrm{xP}) \leq \lambda\}<$ $\mathrm{p}\{\mathrm{x}: \mathrm{q}(\mathrm{xP}) \leq \lambda\}$, and this shows that $\mathrm{p} \mathrm{D}_{1}(\mathrm{R}) \mathrm{q}$ is false.

C2. If $A R B$ then $p(b P)=0$ for $a l l b \in B$ so that $q\{x: p(x P) \leq \lambda\}=1$ for all $\lambda \in[0,1]$. Hence $p D_{1}(R) q$.

C3. If $A R B$ and $a P b$ for some $a \in A$ and $b \in B$ then $q\{x: p(x P) \leq \lambda\}=1$ for all $\lambda \in[0,1]$ but $p\{x: q(x P) \leq 0\}<1$ since $q(a P)>0$ and $p(a)>0$. Hence $\operatorname{not}\left(q D_{1}(R) p\right)$.

C4. Suppose bPA for some $b \in B$. Then $p(b P)=1$ so that $q\{x: p(x P) \leq \lambda\}$ <1 for all $\lambda<1$. But $q(a P)<1$ for every $a \in A$ and therefore $p\{x: q(x P) \leq \lambda\}=$ 1 for some $\lambda<1$. Hence not ($p D_{1}(R) q$).

C5. Suppose $B P a$ for some $a \in A$. Then $q(a P)=0$ so that $p\{x: q(x P)=0\}>0$. But $q\{x: p(x P)=0\}=0$ since $p(b P) \geq p(a)$ for every $b \in B$. Therefore not ($p D_{1}(R) q$).
$C 7 *$. When $P \cap(A \times B) \subseteq P_{2} \cap(A \times B)$ and $P_{2} \cap(B \times A) \subseteq P_{1} \cap(B \times A)$, we get $q\left(a P{ }_{1}\right) \leq$ $q\left(a P_{2}\right)$ for all $a \in A$, and $p\left(b P_{2}\right) \leq p\left(b P_{1}\right)$ for all $b \in B$. Therefore $\{a \in A$: $\left.\mathrm{q}\left(\mathrm{aP}_{2}\right) \leq \lambda\right\} \leq\left\{\mathrm{a} \in \mathrm{A}: \mathrm{q}\left(\mathrm{aP}_{1}\right) \leq \lambda\right\}$ and $\left\{\mathrm{b} \in \mathrm{B}: \mathrm{p}\left(\mathrm{bP} \mathrm{P}_{1}\right) \leq \lambda\right\} \leq\left\{\mathrm{b} \in \mathrm{B}: \mathrm{p}\left(\mathrm{bP} \mathrm{D}_{2}\right) \leq \lambda\right\}$ for all $\lambda \in[0,1]$. Hence, if $p\left\{a \in A: q\left(a P_{1}\right) \leq \lambda\right\} \leq q\left\{b \in B: p\left(b P_{1}\right) \leq \lambda\right\}$ for all $\lambda \in[0,1]$, or if $p D_{1}\left(R_{1}\right) q$, then $p\left\{a \in A: q\left(a P_{2}\right) \leq \lambda\right\} \leq q\left\{b \in B: p\left(b P_{2}\right) \leq \lambda\right\}$ for all $\lambda \in[0,1]$, or $p D_{1}\left(R_{2}\right) q$.

C8. In addition to the conditions on P_{1} and P_{2} of the preceding proof, the hypotheses of C8 imply that $q\left(a P_{1}\right)<q\left(\mathrm{aP}_{2}\right)$ for some $a \in A$ or $p\left(b P_{2}\right)<$ $p\left(b P_{1}\right)$ for some $b \in B$. Suppose for definiteness that $q\left(a_{0} P_{1}\right)<q\left(a_{0} P_{2}\right)$, and take $\lambda=\mathrm{q}\left(\mathrm{a}_{0} \mathrm{P}_{1}\right)$. Then $\left\{\mathrm{a} \in \mathrm{A}: \mathrm{q}\left(\mathrm{aP}_{2}\right) \leq \lambda\right\} \subset\left\{\mathrm{a} \in \mathrm{A}: \mathrm{q}\left(\mathrm{aP} \mathrm{P}_{1}\right) \leq \lambda\right\}$ and therefore $\mathrm{p}\left\{\mathrm{a} \in \mathrm{A}: \mathrm{q}\left(\mathrm{aP}_{2}\right) \leq \lambda\right\}<\mathrm{p}\left\{\mathrm{a} \in \mathrm{A}: \mathrm{q}\left(\mathrm{aP} \mathrm{I}_{1}\right) \leq \lambda\right\}$. It then follows from the inequalities of the preceding proof that $p\left\{a \in A: q\left(a P_{2}\right) \leq \lambda\right\}<q\left\{b \in B: p\left(b P_{2}\right) \leq \lambda\right\}$, and therefore not $\left(q D_{1}\left(R_{2}\right) p\right)$. A similar conclusion obtains when $p\left(b P_{2}\right)<p\left(b P_{1}\right)$ for some $b \in B$.

C9. The proof of Lemma 1 gives examples of R on three outcomes for which $p D_{1}(R) q$ and not $\left(p D_{2}(R) q\right)$. Since $p D_{2}(R) q$ iff $q D_{1}\left(R^{\prime}\right) p$ when R^{\prime} is the dual of R, the Lemma 1 examples imply not $\left(q D_{1}\left(R^{\prime}\right) p\right)$. Therefore $C 9$ does not generally hold for D_{1} when X has three or more elements.

We now observe that D satisfies all of $C 1$ through $C 9$ and that the union function introduced in section 2 also satisfies these conditions.

Theorem 3. Conditions $C 1$ through $C 9$ hold for $D(R)=D_{1}(R) \cap D_{2}(R)$ and for $D_{1}(R) \cup D_{2}(R)$ for all $R \in R$.

Proof. It follows readily from Theorem 2 and the statements of the conditions that $C 1$ through $C 7$ hold for both $D_{1} \cap D_{2}$ and $D_{1} U D_{2}$. Condition C9 also holds for both since $p D_{1}(R) q$ iff $q D_{2}\left(R^{\prime}\right) p$, and $p D_{2}(R) q$ iff $q D_{1}\left(R^{\prime}\right) p$. Since C8 holds for each of D_{1} and D_{2}, it must hold for their intersection. To violate C8 for $D_{1} U D_{2}$ we need $p, q \in \Pi$ and $R_{1}, R_{2} \in R$ that satisfy the hypotheses of $C 8$ such that either $p D_{1}\left(R_{1}\right) q$ or $p D_{2}\left(R_{1}\right) q$ along with either $q D_{1}\left(R_{2}\right) p$ or $q D_{2}\left(R_{2}\right) p$. Suppose for definiteness that $p D_{1}\left(R_{1}\right) q$. Then not ($q D_{1}\left(R_{2}\right) p$) by Theorem 2, so that $q D_{2}\left(R_{2}\right) p$ is needed to violate $C 8$ for $D_{1} U D{ }_{2}$. But if $q D_{2}\left(R_{2}\right) p$ then, in view of the fact that $p D_{1}\left(R_{2}\right) q$ by $C 7$ for D_{1}, Theorem 1 implies that $q D_{1}\left(R_{2}\right) p$, a contradiction. Therefore $D_{1}(R) \cup D_{2}(R)$ satisfies C8 for all $R \in R$.

4. Summary

Abstract

The purpose of this paper has been to introduce a definition of stochastic dominance for "unordered" preferences and to argue that it is a reasonable definition. Although the presentation was based on reflexive and complete preference-or-indifference relations $R \in R$, we could just as well have begun with asymmetric strict preference relations P with I and R defined respectively as the symmetric complement of P and the union of P and I.

The basic relations $D_{1}(R)$ and $D_{2}(R)$, whose intersection was suggested as the primary stochastic dominance relation for the R context, are based on interrelationships between probability measures that are implicit but by no

means obvious in the usual stochastic dominance relation for ordered preferences. It was shown that $D_{1}(R)$ and $D_{2}(R)$ are equal to each other and to the usual stochastic dominance relation when R is a weak order. Moreover, D_{1} and D_{2} satisfy several reasonable conditions for stochastic dominance in the unordered context. However, neither one satisfies an appealing symmetry condition which says that dominance reverses when all preferences reverse. The latter condition holds for both the intersection relation $D(R)=D_{1}(R) \cap D_{2}(R)$ and the union relation $D_{1}(R) \cup D_{2}(R)$, and both of these satisfy the other conditions.

The development of D_{1} and D_{2} was motivated by intransitivity phenomena whose occurrence may be due to natural factors that have little if anything to do with "irrationality." I would argue that the proposed relation $D(R)$ shows that one can make reasonable dominance comparisons between risky alternatives even when the individual's preferences on outcomes violate the "rationality" axiom of transitivity in the most flagrant ways.

References

1. Davidson, D., McKinsey, J. C. C. and Suppes, P., "Outlines of a Formal Theory of Value," Philosophy of Science, Vol. 22 (1955), pp. 140-160.
2. Fishburn, P. C., Decision and Value Theory, Wiley, New York, 1964.
3. \qquad , "Intransitive Indifference in Preference Theory: A Survey," Operations Research, Vol. 18 (1970), pp. 207-228.
4. \qquad , "Stochastic Dominance: Theory and Applications," in D. J. White and K. C. Bowen (eds.), The Role and Effectiveness of Theories of Decision in Practice, Hodder and Stoughton, London, 1975.
5. \qquad , "Continua of Stochastic Dominance Relations for Bounded Probability Distributions," Journal of Mathematical Economics, Vol. 3 (1976), pp. 295-311.
6. \qquad and Vickson, R. G., "Theoretical Foundations of Stochastic Dominance," in G. A. Whitmore and M. C. Findlay (eds.), Stochastic Dominance: An Approach to Decision Making Under Risk, D. C. Heath and (o)mpany, 1977.
7. Hadar, J. and Russell, W. R., "Rules for Ordering Uncertain Prospects," American Economic Review, Vol. 59 (1969), pp. 25-34.
8. Hanoch, G. and Levy, H., "The Efficiency Analysis of Choices Involving Risk," Review of Economic Studies, Vol. 36 (1969), pp. 335-346.
9. Luce, R. D., "Semiorders and a Theory of Utility Discrimination,"

Econometrica, Vol. 24 (1956), pp. 178-191.
10. May, K. 0., "Intransitivity, Utility, and the Aggregation of Preference

Patterns," Econometrica, Vol. 22 (1954), pp. 1-13.
11. Quirk, J. P. and Saposnik, R., "Admissibility and Measurable Utility

Functions," Review of Economic Studies, Vol. 29 (1962), pp.
140-146.
12. Roberts, F. S., "On Nontransitive Indifference," Journal of Mathematical Psychology, Vol. 7 (1970), pp. 243-258.
13. Schwartz, T., "Rationality and the Myth of the Maximum," Noûs, Vol. 6 (1972), pp. 97-117.
14. Tesfatsion, L., "Stochastic Dominance and the Maximization of Expected Utility," Review of Economic Studies, Vol. 43 (1976), pp. 301-315.
15. Tversky, A., "Intransitivity of Preferences," Psychological Review, Vol. 76 (1969), pp. 31-48.
16. Vickson, R. G., "Stochastic Dominance Tests for Decreasing Absolute Risk Aversion. I. Discrete Random Variables," Management Science, Vol. 21 (1975), pp. 1438-1446.
17. \qquad , "Stochastic Dominance Tests for Decreasing Absolute Risk Aversion.
II. General Random Variables," Management Science, Vol. 23 (1977), pp. 478-489.
18.A., "Individual Preference Intransitivity," Southern Economic Journal, Vol. 34 (1968), pp. 335-343.
19. Whitmore, G. A., "Third-Degree Stochastic Dominance," American Economic Review, Vol. 60 (1970), pp. 457-459.
20. \qquad and Findlay, M. C. (eds.), Stochastic Dominance: An Approach to Decision Making Under Risk, D. C. Heath and Company, Lexington, Mass., 1977.

BASIC DISTRIBUTION LIST FOR UNCLASSIFIED TECHNICAL REPORTS Operations Research Program

Code 434

```
Operations Research
Office of Naval Research (Code 434)
Arlington, Virginia 22217
Director, Naval Research Laboratory
Attn: Library, Code 2029 (ONRL)
Washington, D.C. }2039
Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314
Defense Logistics Studies
    Information Exchange
Army Logistics Management Center
Fort Lee, Virginia 23801
Technical Information Center
Naval Research Laboratory
Washington, D.C. }2039
Director, Office of Naval Research
    Branch Office
1030 East Green Street
Pasadena, California 91106
Attn: Dr. R. Lau
Mr. William Dejka
Naval Electro.1ics Laboratory
    Center, Code 360
San Diego, California 92132
Director
Office of Naval Research
    Branch Office
4 9 5 \text { Summer Street}
Boston, Massachusetts 02210
Attn: Dr. A. L. Powell
Library
Naval Postgraduate School
Ccde 0212
Monterey, California 93940
Naval Ordnance Station
Louisville, Kentucky 40214
```

LibraryNaval Electronics Laboratory Center3 San Diego, California 92152Dr. A. L. SlafkoskyScientific Advisor2 Commandant Marine Corps (Code AX)Washington, D.C. 203801
Naval Undersea Warfare Center123202 E. Foothill Boulevard
Pasadena, California 91107
Attn: Technical Library
Stanford University
1 Department of Statistics
Stanford, California 94305Attn: Prof. G. J. Lieberman6 Stanford University
Department of Statistics
Stanford, California 94305
Attn: Prof. T. W. Anderson
University of California
1 Department of EngineeringLos Angeles, California 90024Attn: Prof. R, R. O'Neill1
Maritime Transportation ResearchBoard
National Academy of Sciences
2101 Constitution Avenue
Washington, D.C. 20418
Attn: RADM J. B. Oren, USCG (RET) 1
Director1 Office of Naval ResearchBranch Office
536 South Clark Street
Chicago, Illinois 60605

 Chicago, Illinois 60605Attn: Dr. R. Buchal1
 Stanford University
Department of Operations Research
1 Stanford, California 94305Attn: Prof. A. F. Veinott, Jr.
Branch Office
Attn: Dr. R. Buchal

Texas A δ M Foundation
College Station, Texas 77843
Attn: Prof. H. O. Hartley
U.S. Naval Postgraduate School

Department of Operations Research and Administrative Services
Monterey, California 93940
Captain Robert Bush
AFOSR (SRMA)
1400 Wilson Blvd.
Arlington, Virginia 22209
Professor Richard L. Fox
School of Engineering
Case Western Reserve University
Cleveland, Ohio 44106
Director, National Security Agency
Ft. George G. Meade, Maryland 20755
Attn: Dr. Joseph Blum, R44
Logistics Research Project
The George Washington University
707 22nd Street, N.W.
Washington, D.C. 20037
Attn: Dr. W. H. Marlow
Harvard University
Department of Economics
Cambridge, Massachusetts 02138
Attn: Prof. K. J. Arrow
Cowles Commission for Research
in Economics
Yale University
New Haven, Connecticut 06520
Attn: Prof. Martin Shubik
University of California
Operations Research Center
Institute of Engineering Research
Berkeley, California 94720
Attn: Prof. D. Gale
The University of Michigan
Department of Mathematics, W.E.
Ann Arbor, Michigan 48104
Attn: Prof. R. M. Thrall

University of Texas
Department of Mathematics
1 Austin, Texas 78712
Attn: Dr. A. Charnes
Stanford University
Department of Operations Research
1 Stanford, California 94305
Attn: Prof. F. S. Hillier
Stanford University
Department of Operations Research
1 Stanford, California 94305
Attn: Prof. G. B. Dantzig
Cornell University
Department of Industrial Engineering
1 Ithaca, New York 19850
Attn: Prof. W. Lucas
Dr. Jay Lewallen
1 E-D-13 Theory and Analysis Division NASA Manned Spacecraft Center
Houston, Texas 77058
Applied Mathematics Laboratory
Naval Ships Research Development
Center
Washington, D.C. 20007
Mr. A. S. Rhode
Office of Chief of Naval Operations
1 Code 964
Arlington, Virginia 22203
Dr. Del Cilmer
Naval Weapons Center (Code 607)
China Lake, California 93555
Carnegie-Mellon University
Graduate School of Industrial Adm.
Pittsburgh, Pennsylvania 15213
Attn: Prof. G. Thompson
1 Dr. Thom J. Hodgson
Department of Industrial and Systems Engineering
University of Florida
Gainesville, Florida 32601
1

Professor Salah E. Elmaghraby
Department of Operations Research and Industrial Engineering
North Carolina State University
Raleigh, North Carolina 27607
Mr. Thaddeus G. Bell
Navy Underwater Sound Laboratory Fort Trumbull
New London, Connecticut 06320
Dr. Jack R. Borsting, Chairman
Dept. of Operations Research and Administrative Sciences
Naval Postgraduate School
Monterey, California 93940
Dr. G. S. Colladay
Naval Undersea Research and Development Center
San Diego, California 92132
Professor F. J. Gould Graduate School of Business
University of Chicago
5836 Greenwood Avenue
Chicago, Illinois 60637
Professor Joseph L. Balintfy
Department of General Business and Finance
School of Business Administration University of Massachusetts Amherst, Massachusetts 01002

Professor H. Dona..d Ratliff
Department of Industrial and Systems Engineering
University of Florida
Gainesville, Florida 32601
Prof. Leon Lasdon Operations Research Dept. Case Western Reserve University Cleveland, Ohio 44106

Professor A. Geoffrion Graduate School of Business Adm. University of California Los Angeles, California 90024

Dr. Peter C. Fishburn
Research Professor of Management Science
College of Business Administration
1 The Pennsylvania State University University Park, Pa. 16802

Professor Ralph L. Keeney
Woodward-Clyde Consultants
1 Three Embarcadero Center
Suite 700
San Francisco, California 94111
Professor Oskar Morgenstern Mathematica, Inc.
1 Princeton Station Office Park
P. O. Box 2392

Princeton, New Jersey 08540
Assistant Chief for Technology
1 Office of Naval Research, Code 200 Arlington, Virginia 22217 1

