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1. Introduction

Stochastic dominance has traditionally been associated with the comparison

of probability measures p,q,... defined on the real line when it is presumed

that the decision agent likes outcome x as much as outcome y whenever x y.

In the non—strict first—degree version , p stochastically dominates q just when

the graph of the cumulative distribution for p never rises above the graph of

the cumulative distribution for q, and this occurs if and only if the expected

utility of p is as great as the expected utility of q for every nondecreasing

utility function on the line [2 , 6, 7, 8, 11, 14]. Less restrictive stochastic

dominance concepts have been developed for other classes of utility functions .

These include the class of risk averse utility functions [2 , 7, 8, 11, 14], the

class of risk averse utility functions that exhibit decreasing absolute risk

aversion [16, 17], and several other classes [5, 20]. Most of these develop-

ments along with various applications of stochastic dominance to investment

decisions and other risky choice problems are discussed in [20].

As shown in [2, 4, 6], stochastic dominance concepts also apply to risky

decision situations with arbitrary outcomes——qualitative , multiattribute , or

whatever——when the decision agent ’s preference—or—indifference relation R on the

outcome set X is a weak order (transitive , reflexive and complete). In this

case R replaces the natural order on the real line in defining first—degree

stochastic dominance. In other words, if p and q are simple probability

measures on X, so that p(A) ~ q(B) — 1 for finite A,B ~ X , and if we let SD(R)

denote the non—strict first—degree stochastic dominance relation based on R, then

p SD(R) q if and only if p({x: yRx}) < q({x: yRx}) for all y E X.
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It follows that p SD(R) q if , and only if , ~p(x)u(x) > Zq(x)u(x) for every

real valued function u on ALJB that preserves R in the sense that , for all

x,y € AUB , u(x) > u(y) if and only if xRy.

My aim here is to propose and analyze a generalization of SD(R) that

applies to every reflexive and complete preference—or—indifference relation

R on X, whether or not it is transitive. This aim is motivated by discussions

of intransitive indifference [3, 9, 12] and intransitive preference [1, 10, 13,

15, 18] which suggest that these phenomena can arise very naturally from factors

such as sensory thresholds, discriminatory vagueness, and multiattribute out-

comes. The problem that these phenomena pose for the stochastic dominance

approach to the analysis of risky decisions can be put in the form of a

question: Is there any reasonable or defensible notion of stochastic dominance

for situations in which the decision agent’s binary preferences on outcomes are

not transitive? The answer given in this paper is a qualified “yes”.

The basic proposal for stochastic dominance with “unordered” preferences is

presented in the next section along with an interpretation of its content. The

third section then shows that the new stochastic dominance relation satisfies a

number of conditions that seem like reasonable requirements for a dominance

relation in the unordered context. The paper concludes with a brief summary.

2. Definitions

J
Throughout the paper , X is the outcome set, IT is the set of all simple prob—

ability measures on X, and R is the set of reflexive and complete binary relations

on X. The indifference relation I and strict preference relation P that are

induced by R E R are defined by xly if f (if and only if) xRy and yRx, and xPy
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if f xRy and not (yRx) . We shall let Px ~ (y E X: yPx} and xP = {y € X: xPy}.

Hence Px is the set of outcomes preferred to x, and xP is the set of outcomes

that x is preferred to. In like manner, Rx = {y E X : yRx), xR {y € X: xRy},

and xl — {y € X: xly}. Thus p(Rx) is the probability that a risky decision

whose outcome probabilities are given by p will yield an outcome that is

prefert ad or indifferent to x.

Our primary stochastic dominance relation D(R) on IT is based on two other

relations on II for each R E R. These are defined as follows for all p,q E 1:

p D (R) q iff p{x: q(xP) < A } < q{x: p(xP) < X} for all A E [0,1]

p D (R) q iff p{x: q(Px) > A } < q{x: p (Px) > A } for all A L [0 , 1],
2 — — —

where p~x: . . .} is short for p({x: .. .}~~~
. These definitions can also be used

for nonsimple probability measures when the probabilities are well defined .

Since q(xP) + q (Rx ) = 1, p{x: q(xP) < A } ÷ p{x: q(xP) > A } 1, and so forth ,

it follows easily that for all p,q E II,

p D (R) q iff p{x: q(Rx) > A } < q{x: p(Rx) > A } for all A € [0,1]

i f f  p{x: q(xP) > A } > q(x: p(xP) > A} for all A € [0,1]

and

p D (K) q iff p{x: q(xR) < A) < q{x: p(xR) < A ) for all A E [0,1]
2 — —

iff p{x: q(Px) < A) > q~x: p(Px) < A } for all A € [0,11 .

It will be shown in the next section that each of D and D has a number
1 2

of properties that we would desire for a stochastic dominance relation, including



the fac t that D (R) — D (K) — SD(R) when R is a weak order. However , since——
1 2

as will be shown shortly——D (R) and D (K) are not generally equal , and since
1 2

both seem consistent with the general theme of stochastic dominance, I shall

propose the intersection of the two as the primary dominance relation for

“unordered” preferences :

p D(R) q iff p D (R) q and p D (R) q.
1 2

One could also consider the union of D (R) and D (R) as a viable candidate
1 2

for stochastic dominance in the present context although I find this less

intuitively appealing than the intersection proposal. Since D (R)IiD (R) ~1 2

D (R) 
~ D (R)UD (R) f or i = 1,2, D(R) is the most demanding relation in this

i 1 2

little hierarchy .

To appreciate the spirit of D(R) it is necessary to interpret D (R) and

D (R). We examine D (R) first. From its definition and equivalent character—
2 1

izations, it is clear that D (R) depends on interrelationships between p and q

in a way that is not evident from the definition of SD(R) for ordered outcomes.

Consider the third characterization of D (R), where we have

p{x: q(xP) > A} and q{x: p (xP) >

and let A and B be respectively the minimal supports of p and q so that

p (A) — q(B) — 1 with p(a) > 0 for all a E A and q(b) > 0 for all b € B. Then

p{x: q(xP) > A} — p{a € A: q(aP) > A }

q{x: p(xP) > A} — q{b € B: p (bP) > A}.

Since these equal 1 when A — 0, consider a fixed positive A. Then q(aP) > A

means that q has a probability of at lea8t A of yielding an outcome that is

_ _ _ _ _  4
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worse than a E A; hence the higher the value of p~a € A: q(aP) > A} the more

attractive is p relative to q at level A. But this is only half of the

picture. In the other half , p(bP) > A means that p has a probability of at

least A of yielding an outcome that is worse than b € B, so that the higher

the value ~f q{b E B: p (bP) > A ) the more attractive is q relative to p at

level A. If the difference p(a € A: q(aP) > A } — q{b € B: p(bP) > A} is

nonnegative, then we might say that p is at least as attractive as q at level A ,

and this is precisely what is required for every A € [0,1] to have p D (R) q.

In the third characterization of D (R) with A and B as in the preceding
2

paragraph we have

p{x: q (Px) < A ) = p{a € A: q(Pa) < A }

q(x: p (Px) < A ) = qCb € B: p (Pb) < A } .

Here q(Pa) < A means that q has a probability of no more than A of yielding an

outcome that is preferred to a € A , and p{a E A: q(Pa) < A } is the probabi l i ty

that p will produce such an outcome . Similarly , p (Pb) < A means tha t  p has a

p robabili ty of no more than A of yielding an outcome that is preferred to b E B,

and q{b € B: p (Pb) < A } is the probability that q will produce such an outcome .

As before , p{a E A: q (Pa) < A) — q{b € B: p(Pb) < A} is a measure of the

attractiveness of p relative to q at level A , and this must be nonnegative for

all A € (0,1] to have p D (R) q.

Given p (A) — q(B) 1, the preceding discussion shows that it is only

necessary to examine the A values where q(aP) = A or p (bP) — A in order to

check D (K) for p versus q. In like manner , D (R) for p versus q is completely
1 2

determined by what happens at the A values for which q (Pa) A or p(Pb) A.

This will be illustrated in the proof of the following lemma.
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Lemma 1. If P is not transitive then D (K) ~ D (R).— 1 2

Proof. Suppose P is not transitive on X. Then there must be distinc t

x ,x ,x € X such that either x Px Px Px (a cycle) or x Px Px Ix . With
1 2 3 1 2 3 1 1 2 3 1

p p(x ) and q q(x ), let p = (p ,p ,p ) = (.3,.5,.2) and q = (q ,q ,q ) =
i i i i 1 2 3 1 2 3

(.l ,.6,.3), and suppose that x Px Px Ix . Then, to examine D (K), we need to
1 2 3 1 1

look at p{x: q(xP) < A)  and q{x: p (xP) < A ) at the A E {p(x
i
P), q(x~P)} for

i = 1,2,3. These A values are 0 — p(x P) q(x P), .2 = p(x P), .3 = q(x F),
3 3 2 2

.5 = p(x F), and .6 = q(x P). The values of p{x: q (xP) < A) and q {x : p (xP ) < A )
1 1 

— —

for each critical A value are as follows:

critical A value: 0 .2 .3 .5 .6

p{x: q(xP) < A ) :  .2 .2 .7 .7 1.0

q{x: p(xP) < A}: .3 .9 .9 1.0 1.0.

Since p{x: q(xP) < A} < q{x: p(xP) < A ) for each critical A , we get p D (R) q.

To examine D (R) we look at the values of A for which A € {p(Px.), q(Px~)} for

i — 1,2,3. These are 0 — p (Px ) — q(Px ), .1 = q (Px ), .3 = p(Px ), .5 = p (Px )
1 1 2 2 3

and .6 = q(Px ):
3

critical A value: 0 .1 .3 .5 .6

p{x: q (Px) < A): .3 .8 .8 .8 1.0

q{x: p (Px) < A}: .1 .1 .7 1.0 1.0.

According to the third characterization of D (R), which requires p{x: q (Px) <

2

> q{x: p (Px) < A } for all A € [0,1], not (p D (R) q) since p{x: q(Px) < .5) <

q{x: p(Px) < .i}. Hence D (K) # D (K) when x Px Px Ix
1 2 1 2 3 1

__________________________________________________ —--
~~~~

— — -
~~~~~~~ - 

-
~~~~~~~~

— - — -
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The cyclic case of x Px Px Px is handled with p = (.l ,.5,.4) and
1 2 3 1

q — (.2,.2,.6). The computations for D (R) are :

critical A value : .1 .2 .4 .5 .6

p{x: q(xP) < A} :  0 .5 .5 .5 1.0

q(x: p (xP) < A ) :  .6 .6 .8 1.0 1.0

so that p D CR) q. The computations for D (K) are
1 2

critical A value : .1 .2 .4 .5 .6

p{x: q(Px) < A ) :  0 .9 .9 .9 1.0

q{x: p (Px) < A}: .2 .2 .4 1.0 1.0

which imply not (p D (R) q). Hence D (R) 
~ D (R) in this case also and the2 1 2

proof of the 1e~ na is complete.

The next le~~ia will be needed in ensuing developments. For all A € [0,1]

and all p,q € IT and K € R let

~(A,p; q,R) — p{x: q(xP) < A ) — p{x: q(xR)< A )

— p{x: q(xP) < A < q(xP) + q(xI)}.

Lemma 2. For all p,q € II and all R € R ,

1 1

J. 
~(A ,p; q,R)dA — J z~(A,q; p,R)dA .

X—o A— o

Proof . Let A and B be respectively the minimal supports of p and q.

Since the total contribution of a € A to j~~(A,p; q,R)dA is p(a)q(aI), i.e. a

contributes p(a) to t
~ 
over an interval of length q(aI),
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J t~(A ,p;  q, R)dA = E
A 
p(a)q(aI).

A—

For a similar reason

J~ ~
(A ,q;  p , R)dA — E

B 
q(b)p(bI).

A—

The term p(a)q(b) is in iff alb , and q(b)p(a) is in iff bla. Since I

is symmetric , 
~A 

— E
B 
and the proof is complete.

Although Lemma 1 shows that D (K) and D (R) can be different , it does not
1 2

answer the question of whether it is possible to have both p D (R) q and

q D (R) p without also having the converses of these two . The following
2

theorem shows that this cannot happen.

Theorem 1. For all p,q € II and all K E R , if p D (R) q and q D (R) p

then q D (R) p and p D (R) q.
1 

— 
2

Proof. Suppose p D (R) q and q D (R) p. Then, by the initial definition

of D (K) and the second characterization of D (K),
1 2

q{x: p(xR) < A )  < p{x: q(xR) < A }  < p{x: q(xP) < A )  < qCx: p(xP) < A }  (1)

for all A € (0,1], where the middle inequality results from the fact that if

q(xR) < A then q(xP) < A. Now (1) implies that ~ (A ,p; q,R) < ~(A,q; p,
R) f or

all A E [0,1). Hence, by Lemma 2, ~(A,p; q,R) = t~(A ,q; p,R) for all A € [0,1].

Therefore

q{x: p(xR) < A) — p{x: q(xR) < A) for all A € [0,1],

p{x: q (xP) < A } — q{x: p(xP) < A} for all A € [0,1],

and these imply respectively that p D (R) q and that q D (R) p.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _  
_ _ _  _ _ _ _ _ _  

4
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For any “as good as” dominance relation D*(R) on IT let E*(R) be defined

by p E*(R) q iff p D*(R) q and q D*(R) p. Thus E*(R) is a stochastic

indifference relation . When R is a weak order , we have p SE(R) q i f f

p SD(R) q and q SD(R) p, which is true iff p(xR) — q(xR) for all x € X.

The stochastic ind i f fe rence  funct ions  for D , D and D are respectively

E , E and E with
2 2

p E (R) q iff p{x: q(xP) < A } = q{x: p(xP) < A ) for all A € [0,1],

p E (R) q iff p{x: q(Px) < A )  = q{x: p (Px) < A )  for  all A E [0 , 1],
2 — —

and E(R) = E (R)IIE (R). Moreover , it follows easily from Theorem 1 that the

stochastic indi f ference  relation for D (R)UD (R) is E (R)UE (R).
1 2 1 2

When A and B are respectively the minimal supports of p and q, i t  is

readily verif ied that

p E (R) q iff p{a E A: q(aP) = A} = q{b E B: p(bP) = A} for all A € [0,1],

— 

p E (R) q 1f f  p{a € A: q(Pa) A } — qCb E B: p(Pb) = A ) for all A E [0,1].

These can be checked using only the A values in {q(aP),p(bP),q(Pa),p(Pb)} ,

and both must be checked for E(R). That is, it is not generally true that

E (R) E (K). For example , when A = {a ,a ,a ,a }, B = {b ,b ,b ,b },
1 2 1 2 3 I. 1 2 3 1

ASIB — 0, p — (.3,.2,.l,.4), q — (.l ,.l,.3,.5), and P — {(a ,b), (a ,b),

(b ,a ), (b ,a ), (b ,a )} ,  we get p E CR) q and not (p E (R) q).
1 3 2 3 3 3 1 2

A simple and nontrivial example of p E(R) q is given by A = {a ,a} ,

B — Cb ,b } , p (.5,.5), q — (.5,.5) and P = {(a ,b ) , (b , a ) }.
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3. Properties of the Dominance Functions

To suppo r t  the claim that  D(R)  is a reasonable s tochas t ic  dominance

relation in the R context  we shall p rove that  it sa t i st i e s  nine cond i t ions

that seem like desirable requirements for “as good as” dominance relations

in this context. Each of D (R) and D (R) satisfies the first eight conditions ,

but they violate the final condition.

In the statements of the conditions , D* denotes a generic function on R

that  assigns a binary relation D*(R) on IT to each R E R , pAA means that  A ~ X

is the minimal support of p € IT , ARB signifies that aRb for all (a,b) € AX B ,

bPA means that bPa for all a E A , and EPa means that bPa for all I~ ~ B. In

C6 through C8 , xP~ y 1ff xR
1
y and not (yR .x ) .  In C9 , R is the conve rse or

dual of R with x R y  i f f  yR~c. The condit ions apply to all R E R and all

p ,q  E II.

Cl. I f pM, qAB and if the res t r ic t ion of R to AUB is a weak order on

ALJ B , then p D*(R) q iff p SD(R) q.

C2. If pM , qAB and ARE, then p D*(R) q.

C3. If pM, qAB, ARB and not (BRA), then not (q D*(R) p).

C4. If pM, qAB and bPA for some b € B, then not (p D*(R) q).

CS. If pM, qI\B and BPa for some a E A , then not (p D*(R) q).

C6. If pM , qAB and P 11(AXBJBXA) — P fl(AxBUBxA), then p D*(R1
) q

iff p D*(R2
)q.

C7. If pM, qAB , P and P are the same on A[JB except that P fl(AxB) ~
.

P (1(AxB ) and P fl(BxA) ~ P 1 l (B <A ) , and if p D*(R ) q, then p D*(R ) q.
• 2 2 1 1 2

_____________
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C8. If pM , qAB, if the conditions of Cl on P and P hold along with
1 2

P ~ P on AUB, and if p D*(R ) q, then not (q D*(K ) p).
1 2 1 2

C9. p D*(R) q 1ff q D*(K~) p.

Condition Cl requires D *(R) to be identical to the basic stochastic

dominance relation SD(R) for all pairs of simple measures in II for which R

on the union of the minimal supports of these measures is a weak order. Conditions

C2 and C3 are fundamental dominance conditions. For example , C2 says that if

every possible outcome under p is as preferable as every possible outcome under

q, then p D*(R) q; if , in addition, some p outcome is st r ictly p referred to

some q outcome, then C3 requires that q not stochastically dominate p.

Conditions C4 and C5 might respectively be referred to as the “heaven” and

“hell” conditions. If bPA for some b E B, then b could be “infinitely” better

than everything in A and it would not be reasonable to asse r t that p dominates

q. Similarly , if BPa for some a € A , then a could be “infinitely” worse than

everything in B and again it would not be reasonable to assert that p dominates

q.

Conditica C6 is an independence condition. It says that D*(R) between p

and q shall depend only on the ordered pairs in P whose first and second

components are respectively in A and in B or else in B and in A. Equivalently,

C6 says that the behavior of P in A\B — (a E A: a 
~ 
B} and in B\A Cb € B: b 

~ 
A}

is irrelevant to the determination of D*(R) between p and q. Since this may

seem odd at first, it should be remarked that the dominance comparison between

p and q is concerned with the interrelationships between p and q and , in my

judgment , should not depend on aspects of the risky decisions that are not

directly related to one another. This says, f or example, that if a and a are

______________ 

.4
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in A but neither is in B , then the one of aPa , a P a  and aIa~ that  obtains

should have no bearing on whether p dominates q.

The seventh condition is a monotonicity condition. It says that if P and

P are identical within A\B and within B\A , and if aP b ~ aP b and bP a ~ bP a2 1 2 2 1

fo r all (a ,b) € Ax B , then p D*(R ) q whenever p D* (R ) q.  In other words , C7

asserts that if P is changed by adding a—over—b preferences and/or deleting

b—over—a preferences, then p dominates q after the changes if p dominates q

before the changes. Together , C6 and C7 are equivalent to

C7*. If pM, qAB and if aP b ~ aP b and bP a ~ bP a for all a € A and1 2 2 1

all b € B, then p D*(R ) q 
~ 

p D*(R ) q.
1 2

Condition C8 is a strong monotonicity condition. It says that if p

dominates q under P , and if p is improved re]~ative to q by adding one or more

a—over—b preferences and/or deleting one or more b—over—a preferences to give

P (with a E A\B or b € B~A required by the P. conditions), then q shall not

dominate p under P
2
. In other words, if p dominates q before the change, then

p will ~trictly dominate q after the change.

The final condition is a syunnetry or duality condition. It says that if

p dominates q under the preference relation P and if P is formed from P by

reversing all preferences , then q dominates p under P .  Thus reversing all

preferences reverses all dominance comparisons.

Although other conditions might be proposed for D*, these nine form a

core that, in my opinion , should hold for any satisfactory conception ot

stochastic dominance in the R context. We shall now prove that D and D

satisfy the first eight conditions but do not satisfy the ninth. We not: later

that D satisfies all nine.

a



13

Theo rem 2. Conditions Cl through C8 hold for  D (R) and D (R) fo r  every
1 2

K € R. If X has more than two outcomes then neither D nor D satisfies C9.
— 

1~~~~~~ 2

Proof. The theorem will be verified only for D since the proofs for D
1 2

are similar to those for D .  Thus, we wish to show f i r s t  that  Cl thro igh C8

hold when D* therein is replaced by D . The failure of D for C9 will then
1 1

be noted .

Cl. Assume that K on AUB is a weak order . Suppose first that p SD(R) q,

and fix A € [0,1]. It is easily verified that p SD(R) q iff [p(yR) < q(yR)

for all y E AUB] iff [p(xP ) < q (xP) for all x € AL JB ].  The last of these

implies that {x: q(xP) < A ) 
~ {x: p(xP) < A ) within ALJB under the weak order

hypothesis. Therefore, with y an element in AUB that maximizes p(xP) subject

to p(xP ) < A , we obtain (x: p (xP) < A) = yR and p{x: q(xP) < A} < p( yR) <

q (yR) = q{x: p ( x P ) < A), so that p{x: q (xP) < A } < q{x: p(xP ) < A). Since t~iis

is true for every A E [0,1], p D (R) q. To prove the converse suppose that

p SD(R) q is false and let y be such that p (yP) > q ( y P ) .  Then take A = q(y P ) .

Since (x: p (xP) < A) doesn’t contain y, and since yR Cx: q(xP) < A), we get

q{x: p(xP) < X} < q(yP) < p(yP) < p (yR) p{x: q(xP) < XI,  or qCx: p (xP) < XI <

p{x: q(xP) < A), and this shows that p D (R) q is false.

C2. If ARE then p(bP) — 0 for all b € B so that q(x: p(xP) < A ) I for

all A € [0,1]. Hence p D (R) q.

C3. If ARE and aPb for some a € A and b € B then q{x: p (xP) < A ) 1

for all A € [0 ,1] but p (x: q(xP) < 0) < 1 since q(aP) > 0 and p(a) > 0. Hence

not (q D (R) p). 

-
~~~~~~~~ — ~~~~—=-- -~~~

-.- --—- - • - - -- - --- - -•- - --  -
~~~
-- - -
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C4. Suppose bPA for some b E B. Then p(bP) — 1 so that qix: p(xP) < A }

< 1 for all A < 1. But q(aP) < 1 for every a € A and theretore p{x: q(xP) < A } =

1 for  some A < 1. Hence not (p D (R) q ) .

CS. Suppose BPa for  some a E A. Then q( aP ) = 0 so that p{x: q(xP) = o} > 0.

But q {x: p(xP ) — o} = 0 since p (bP) > p ( a )  fo r  every b € B. There fo re  not

(p D (R) q).

C7*. When P fl(AXB) ~ P fl (AX B)  and P f l (B x A)  
~
. P 1I(BXA) , we get q(aP ) <

1 2 2 1 1 
—

q(aP ) for all a € A , and p(bP ) < p(bP ) for all b € B. Therefore Ca € A:
2 2 1

q(aP ) < A) 
~ 
{a € A: q(aP ) < A} and {b € B: p(bP ) < A )  

~ 
{b E B: p(bP ) < A}

2 1 1 2

for  all A € [0 ,1]. Hence , if p{a E A: q(aP ) < A ) < q{b E B: p(bP ) ‘— Al for
1 — — 1

all A € [0,1], or if p D (R ) q, then pCa € A: q(aP ) < A l  < qCb € B: p(bP ) < X}
1 1 2 — — 2

for all A € [0 ,11, or p D (R ) q.
1 2

C8. In addition to the conditions on P and P of the preceding proof ,
1 2

the hypotheses of CS imply that  q (aP ) < q(aP ) for some a 
~- A or p(bP ) <

1 2 2

p (bP ) for some b € B. Suppose for  def ini teness  that  q ( a  P ) < q(a P ) ,  and
1 0 1  0 2

take A — q(a P ). Then (a E A: q(aP ) < A l C Ca E A: q(aP ) < A) and therefore
0 1  2 1 —

p {a € A: q(aP ) < A)  < p{a € A: q(aP ) < A ) .  I t  then fo l lows  f r o m  the i n e q u a l i t i e s

of the preceding proof that p{a € A: q(aP ) < A) < q{b ~ B: p(bP ) < 
~~

}, and
2 — 2 —

therefore not (q D (K ) p). A similar conclusion obtains when p(hP ) p(hP )
1 2 2

for  some b E B.

C9. The proof of Lemma 1 gives examples of R on three outcomes for which

p D (R) q and not (p D (R) q). Since p D (R) q 1ff q D(R ) p when R is the

dual of K, the Lemma 1 examples imply not (q D(R ) p). Therefore C9 does not

generally hold for D when X has three or more elements.

We now observe that D satisfies all of Cl through C9 and that the union

function introduced in section 2 also satisfies these conditions. 

— —.— - --- .—— -
~~~~~~~— - -

~---=.— - —— — • --—-- 
- ~~~— _i

~~~
i
~~~~~~~~~~~~~~~

’ _ - 
-~
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Theorem 3. Conditions Cl through C9 hold for D(R) = D (R)f lD (R)
1 2

and fo r D (R) t J D (K) for  all R € R.
1 2

Proof. It follows readily from Theorem 2 and the statements of the

conditions that Cl through C7 hold for both D u D  and DUD . Condition C9

also holds for both since p D (K) q iff q D (R~) p, and p D (K) q ift q D (R~) p.1 2 2 1

Since C8 holds for each of D and D , it must hold for their intersection. To
1 2

violate C8 for D UD we need p,q € II and K ,R € R that satisf y the hypotheses
1 2 1 2

of C8 such that  either p D ( R ) q or p D ( K ) q along wi th  ei ther  q D ( R ) p

or q D (K ) p. Suppose for definiteness that p D (K ) q. Then not (q D (R ) p)
2 2 1 1 1 2

by Theorem 2, so that q D CR ) p is needed to violate CS for D UD . But if
2 2 1 2

q D (K ) p then , in view of the fact that p D (R ) q by C7 for D , Theo rem 1
2 2 1 2 1

implies that  q D (R ) p . a contradic t ion . The re fore  D (R)UD (R) satisti.es C8
1 2 1 2

for all R 
~ R.

4. Summary

The purpose of this paper has been to introduce a definition of stochastic

dominance for “unordered” preferences and to argue that it is a reasonable

definition . Although the presentation was based on reflexive and complete

4 preference—or—indifference relations K € R , we could just as well have begun

with asymmetric strict preference relations P with I and K defined respectively

as the symmetric complement of P and the union of P and I.

The basic relations D (K) and D (K), whose intersection was suggested as

the primary stochastic dominance rel:tion for the R context , are based on

interrelationships between probability measures that are implicit but by no

______ _____.-- -—S- - -r
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means obvious in the usual stochastic dominance relation for ordered preferences.

It was shown that D (R) and D (K) are equal to each other and to the usua l
1 2

s tochas t i c  dominance r e l a t i on  when K is a weak order. Moreover , D and D
1 2

sati sfy several reasonable conditions for stochastic dominance in t he  unordered

context. However , neither one satisfies an appealing symmetry condition which

says that dominance reverses when all preferences reverse. The latter condition

holds for both the intersection relation D(R) = D (R)IID (R) and the union
1 2

relation D (R)UD (R) , m d  both of these sa t i s f y the  o t i m e r  c on d i t io n s.

The development of D and D was motivated by intransicivity phenomena
1 2

whose occurrence may be due to natural factors tha t have little if anything

to do with “ i r ra t ional i ty .” I would argue that  the proposed relat ion D(R)

shows that one can make reasonable dominance comparisons between risky alter-

natives even when the individual ’s preferences on outcomes violate the

“rationality ” axiom of transitivity in the most flagrant ways.
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