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Stochastic dynamics and non-equilibrium
thermodynamics of a bistable chemical
system: the Schlögl model revisited

Melissa Vellela* and Hong Qian*

Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA

Schlögl’s model is the canonical example of a chemical reaction system that exhibits
bistability. Because the biological examples of bistability and switching behaviour are
increasingly numerous, this paper presents an integrated deterministic, stochastic and
thermodynamic analysis of the model. After a brief review of the deterministic and stochastic
modelling frameworks, the concepts of chemical and mathematical detailed balances are
discussed and non-equilibrium conditions are shown to be necessary for bistability.
Thermodynamic quantities such as the flux, chemical potential and entropy production
rate are defined and compared across the two models. In the bistable region, the stochastic
model exhibits an exchange of the global stability between the two stable states under
changes in the pump parameters and volume size. The stochastic entropy production rate
shows a sharp transition that mirrors this exchange. A new hybrid model that includes
continuous diffusion and discrete jumps is suggested to deal with the multiscale dynamics of
the bistable system. Accurate approximations of the exponentially small eigenvalue
associated with the time scale of this switching and the full time-dependent solution are
calculated using MATLAB. A breakdown of previously known asymptotic approximations on
small volume scales is observed through comparison with these and Monte Carlo results.
Finally, in the appendix section is an illustration of how the diffusion approximation of the
chemical master equation can fail to represent correctly the mesoscopically interesting
steady-state behaviour of the system.

Keywords: bistable systems; chemical master equation; stochastic processes;
multiscale dynamics; entropy production rate; non-equilibrium steady state
1. INTRODUCTION

Molecular reactions are the chemical basis of cellular
biological functions. The complex biochemical reaction
networks in terms of proteins and macromolecular
complexes play a wide range of important roles in
cellular signalling, control and regulation (Zhu et al.
2004). In recent years, a great amount of attention has
been given to the formulation and analysis of models
describing reaction networks. We are still looking for
new concepts and ideas to illustrate and quantify what
is important in these systems.

In this paper, we wish to use the example of a simple
model first studied by Schlögl (1972) to illustrate and
interlace some of these recent ideas. The major issues
are as follows.
1.1. Stochastic modelling

Chemical systems inside a cell (especially those of
signalling networks involving transcription regulation,
protein phosphorylation and GTPases) often involve
r correspondence (tmbgnut@amath.washington.edu;
washington.edu).
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a small number of molecules of one or more of the
reactants. Thus, the traditional method of modelling
systems by describing concentration changes with ordin-
ary differential equations (ODEs) and the law of mass
action (Zheng & Ross 1991; Murray 2002) is inappropri-
ate. AMarkov chain (or master equation)model accounts
for the discrete, probabilistic nature of the chemical
reactions at the molecular level, but can be difficult to
analyse. Diffusion (Fokker–Planck) approximations to
the master equation were first developed by Van Kampen
(1981) and shown by Kurtz (1976, 1978) to match the
solution to the master equation in the thermodynamic
limit for some finite time. However, unless the steady
state is unique in the macroscopic description (Mansour
et al. 1981), the two models can disagree in the infinite
time limit (see appendix A). Microscopic simulations
have validated the master equation as the most accurate
description of a reactive process; see Baras & Mansour
(1997) for an up-to-date review. In this paper, we
illustrate the inability of a deterministic model to capture
the behaviour of Schlögl’s model. We suggest a new
method of analysing the master equation through its
spectrum and discuss which model formulation best
represents the complete dynamics of the system.
doi:10.1098/rsif.2008.0476
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1.2. Functional cellular attractors and
multiple time scales

In terms of the chemical master equation (CME)
formulation (Delbrück 1940; McQuarrie 1968; Arkin
et al. 1998; Gillespie 2007; Beard & Qian 2008), each
stable steady state of the deterministic model corre-
sponds to a peak (while an unstable steady state
corresponds to a trough or a saddle) in the stationary
probabilitydistribution (the ‘steady-state’ solution to the
master equation,which is generally unique Schnakenberg
1976). We refer to these states as functional cellular
attractors (FCA) because from the standpoint of cell
biology, which is the most relevant field for our theory,
they are the states inwhich the system ismost likely to be
found and in which the system performs its function(s).
In fact, Schlögl’s model exhibits multiple time scales: a
fast scale where the system relaxes to one of the FCA, and
a slow scale over which the system transitions from one
FCA to another (Matheson et al. 1974). A key question is
how long the system remains in each of the FCA and, as
we will show, the CME and Fokker–Planck descriptions
can yield conflicting answers to this question. Although
we restrict ourselves to the case of well-mixed reactions,
spatial considerations are a key component of
intracellular modelling (Antoine & Lemarchand 2007).
See Elf & Ehrenberg (2004) for an analysis of biological
bistability including spatial domains.
1.3. Thermodynamics of open
chemical systems

In the environment of a living cell, biochemical
reaction systems operate in an ‘open’ setting (Nicolis &
Prigogine 1977; Qian 2006, 2007; Ross 2008). That is,
there is a flux of material and/or energy acting on the
system. We can no longer rely on the traditional theory
of equilibrium thermodynamics to create an accurate
model of these systems. The non-equilibrium theory
allows the possibility of multiple steady states and non-
zero steady-state flux (Kjelstrup & Bedeaux 2008),
whereas a closed molecular system tends to a thermal,
chemical equilibrium, which is unique and in which the
fluxes are zero (Lewis’ 1925 principle of detailed
balance). There is also a non-zero entropy production
rate, which characterizes the non-equilibrium steady
state (NESS). Recent developments in the area of
fluctuation theorem (Andrieux & Gaspard 2007; Sevick
et al. 2008) have highlighted the importance of entropy
production and its relationship with the irreversible
nature of a system. Han & Wang (2007, 2008) have
related entropy production (or ‘dissipation cost’) to
the robustness of a network. Can entropy production
rates predict the relative stability of the FCA? The
issues related to this have been controversial in the
literature (Callen 1957; Glansdorff et al. 1974; Keizer &
Fox 1974; Jaynes 1986; Qian 2002; Dewar 2005;
Martyusheva & Seleznev 2006), and we seek insights
through this concrete example.

This paper is organized as follows. In §2, we
introduce the deterministic and stochastic formulations
of Schlögl’s model. In §3, the equilibrium and NESSs
are examined, the region of bistability is discussed and
J. R. Soc. Interface (2009)
the flux, chemical potential and entropy production
rate are defined for both the models. A new way to
formulate the model in the case of bistable behaviour is
suggested. In §4, a numerical method for the time-
dependent and steady-state behaviours is examined,
and compared with Monte Carlo simulations and
asymptotic results. Section 5 gives a review of the
results and an outline of the future work. Appendix A
illustrates how the Fokker–Planck approximation to
the master equation can fail to accurately predict the
correct steady-state distribution.
2. THE MODELS

Wewill focus on an autocatalytic, trimolecular reaction
scheme, first proposed by Schlögl (1972),

AC2X#
k 1

k 2
3X; ð2:1Þ

and

B#
k 3

k 4
X: ð2:2Þ

Let a and b denote the concentrations of the chemicals
A and B, respectively, which are parameters of the
system. Let x be the concentration of the dynamic
chemical X. The system is assumed to be homogeneous
in space, and the volume of the system will be denoted
as V. Owing to the fixed a and b, the system is not
closed, but rather open, with an exchange of chemicals
between two material baths. When the chemical
potentials (see §3.2) of the two baths are equal, the
system reaches chemical equilibrium, as predicted by
Gibbs’ grand canonical theory. When the baths are not
equal, the reaction system is driven.

The deterministic model based on the law of mass
action is a first-order, nonlinear ODE (Murray 2002),

dx

dt
Z k1ax

2K k2x
3K k4xCk3b: ð2:3Þ

Depending on the parameters, there can be one, two or
three non-negative steady states. We are particularly
interested in the set of parameters for which there are
two stable steady states separated by an unstable
steady state, the bistable case.

The stochastic model is given in the form of the
CME, an infinite system of coupled ODEs (Beard &
Qian 2008). Let integer random variable nX(t) be the
number of X molecules at time t, nA and nB be the
number of A and Bmolecules, which are fixed for a fixed
V, and pn(t) be the probability of having n X molecules
at time t: pn(t)ZPr{nX(t)Zn}. The equations are

dp0ðtÞ
dt

Zm1p1K l0p0; ð2:4Þ

and

dpnðtÞ
dt

Z lnK1pnK1 CmnC1pnC1Kðln CmnÞpn;
for n Z 1 .N; ð2:5Þ

where lnZ k̂3nBC k̂1nAnðnK1Þ and mnZ k̂4nC
k̂2nðnK1ÞðnK2Þ. The CME may also be referred to
as a birth and death process in the theory of Markov
processes (Gardiner 1985), where ln and mn are the
birth and death rates, respectively.
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The rates in the stochastic model k̂i are related to the
rates in the deterministic model by a factor of V which
depends on the number of reactants involved in the ith
reaction. For a reaction involving m reactants, the
relation will be k̂iZki=V

mK1. In the following analysis,
when the volume varies, we consider the ODE reaction
rates ki and the parameters a and b to be constant
(as opposed to fixing the k̂i, nA and nB). This
corresponds to the thought experiment in which the
concentrations are fixed while the system volume and
numbers of molecules vary correspondingly. Thus, the
birth and death rates are written in terms of the ODE
parameters as

ln Z
ak1nðnK1Þ

V
Cbk3V ; ð2:6Þ

and

mn Z nk4 C
k2nðnK1ÞðnK2Þ

V 2
: ð2:7Þ

The steady-state probability distribution of the stoch-
astic model can be found by noting that lnK1p

ss
nK1Z

mnp
ss
n when the system is stationary. We shall call this

equation mathematical detailed balance following the
theory of Markov processes (Schnakenberg 1976;
Gardiner 1985; Jiang et al. 2004), in which the
probability flux in the forward direction is equal to
the probability flux in the backward direction at each
state in the CME. This leads to the well-known
stationary probability,

pssn
pss0

Z
YnK1

iZ0

li

miC1

; pss0 Z 1K
XN
jZ1

pssj : ð2:8Þ

Note that the steady state of the stochastic model (i.e.
mesoscopic view) is unique for all values of the
parameters. The stable and unstable steady states of
the ODE are represented as minima and maxima,
respectively, in the steady-state probability distri-
bution of the CME.
3. ANALYSIS

In this section, we analyse and compare the determi-
nistic (ODE) and the stochastic (CME) models. Under
equilibrium conditions, the two models are in complete
agreement. However, for the parameters that yield a
bistable system, there are stark differences in the
predicted behaviour, and in the definition of thermo-
dynamic quantities which describe the system.
3.1. Chemical flux and steady-state behaviour

There are four chemical reactions, each of which has a
chemical flux, which describes how that reaction
contributes to the change of x:

JC
1 ðxÞZ k1ax

2; JK
1 ðxÞZ k2x

3 and

JC
2 ðxÞZ k3b; JK

2 ðxÞZ k4x:
ð3:1Þ

The ODE model can be expressed as the sum of the
forward fluxes minus the sum of the backward fluxes,

dx

dt
Z ðJC

1 CJC
2 ÞKðJK1 CJK2 Þ: ð3:2Þ
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In the macroscopic setting, the steady state is reached
when dx/dtZ0. Because the ODE form of Schlögl’s
model is a cubic, there can be one, two or three steady
states for a given set of parameters. Note that the cubic
term comes from the trimolecular portion of the
reaction: bistability is not possible in a one-dimensional
model involving only uni- and bimolecular reactions.

We will begin with the simplest case. Recall that, in
general, in order to keep the concentrations of A and B
at constants a and b, there will be a net flux of A going
into the system and B coming out of the system, or vice
versa. However, there is a particular ratio of a and b at
which there will be no need for an external agent to add
or remove A and B molecules from the system to
maintain their concentrations on average (i.e. ignoring
microscopic fluctuations). The values of a and b that
make this possible are called equilibrium concen-
trations. These concentrations lead the system to a
unique and completely describable fate: the equilibrium
steady state.

Chemical detailed balance occurs when JC
i ZJK

i , so
that the forward and backward fluxes are balanced in
each and every reaction in the system. Note that this is
a stronger condition than mathematical detailed
balance, which simply assumes that the total forward
rate is equal to the total backward rate. Using the
definitions in equation (3.1), the chemical detailed
balance (or equilibrium steady state) condition for
Schlögl’s model is

k1k4a

k2k3b
Z 1: ð3:3Þ

This condition is derived later in equation (3.10) by
assuming that there is no chemical potential difference
between A and B and no free energy lost when
exchanging an A for a B or vice versa.

The value of x for which chemical detailed balance
occurs is denoted as xess. This is the equilibrium steady
state. When a system is closed to outside influences,
or in contact with material baths with a constant
chemical potential, this is the unique concentration
value of x to which the system will tend. In the CME
setting, the steady-state probability distribution of
the equilibrium steady state is a Poisson (or multi-
Poisson) distribution, as predicted by Gibbs’ theory
for grand canonical systems (Gardiner 1985; Heuett &
Qian 2006). The number of molecules at which the
distribution peaks corresponds (when divided by
volume size) to the steady-state concentration in the
ODE model. For our example, the steady-state
concentration is

xess Z
k1a

k2
Z

k3b

k4
; ð3:4Þ

and the steady-state probability distribution is

pssn Z pss0
qn

n!
eKq; qZ

ak1V

k2
: ð3:5Þ

When the parameter set does not satisfy equation
(3.3), the system will reach a NESS. Unlike equilibrium
conditions, multiple NESS may exist for a given set
of parameters. Since it is not necessary for JC

i ZJK
i , an
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Figure 1. Plots of dx/dt versus x for the cases of chemical
equilibrium (dashed curve) and bistability (solid curve) in the
ODE model. The reaction rates are k1Z3, k2Z0.6, k3Z0.25
and k4Z2.95 for both plots. The pump parameters are aZ0.5,
bZ29.5 for chemical equilibrium and aZ1, bZ1 for the
bistable case.
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Figure 2. Regions of monostability and bistability in the ab-
plane with reaction rates fixed at the values k1Z3, k2Z0.6,
k3Z0.25 and k4Z2.95.

1For example, this bifurcation does not correspond to the point at
which the potential function

Ð x
0 x_dx has two minima of equal depth.

2In a more strict sense, the relative stability of the two peaks depends
not only on the heights of the peak, but also on the curvature. In
thermodynamic terms, the former is enthopic and the latter is
entropic contribution to the free energy. For large system size, the
dominant effect is from the height difference, which is exponentially
related to the volume V. The curvature converges when V/N.
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NESS is characterized by the reactions forming a cycle:
the reversible reaction in equation (2.1) makes an X
from A, and the reaction in equation (2.2) transforms
an X to B. Then, an external agent has to constantly
make A from B to keep the concentrations of A and B
constant. Hence, there is a chemical reaction cycle A/
X/B/A. In the stochastic model in §3.3, we shall
quantify this reaction cycle by a cycle flux.

We now categorize the types of behaviours that may
occur under non-equilibrium conditions through bifur-
cation analysis, including a ‘bifurcation’ which can only
be observed through the CME. Figure 1 shows plots of
the ODE, dx/dt versus x, for an example of chemical
equilibrium and for a bistable set of the parameters.
When there is only one real root, the steady-state
behaviour of the stochastic system will match that of
the deterministic system (Mansour et al. 1981).
However, as the parameters move away from the
chemical detailed balance condition, the shape of the
probability steady-state function will deform from its
Poissonian shape.

In a biological setting, it is more likely that the
concentrations of the pump parameters (A and B) could
differ in varying situations, while the rate constants,
which are inherent to the types of molecules involved,
would stay the same. Thus, we assume that only the
concentrations of A and B will change, and locate
curves in the ab-plane at which the bifurcation to
bistability occurs. The bifurcation point can be found
through the discriminant of equation (2.3),

DZ 4k31a
3k3bKk21a

2k 2
4 C4k2k

3
4K18k2k1ak4k3b

C27k22k
2
3b

2: ð3:6Þ

When DO0, there is only one steady state. When D!0,
there are three steady states: two stable and one
unstable. The curves for which DZ0 in the ab-plane are
shown in figure 2. Nicolis and Turner developed a
method based on generating functions to analyse
fluctuations in the steady state and have shown that,
J. R. Soc. Interface (2009)
in the case of Schlögl’s model, the variance diverges at
the bifurcation point, DZ0 (Nicolis & Turner 1977).

Under bistable conditions, the stochastic and deter-
ministic models yield different predictions (an example
of Keizer’s paradox, see Vellela & Qian 2007). In the
deterministic model, the system will tend towards one
of the two stable fixed points, depending on the initial
condition. The stochastic model also predicts that the
system will quickly relax towards one stable point
(FCA), but randomly switch between the two FCA on a
time scale related to the system size.

Plotting the steady-state solution to the master
equation (equation (2.8)), we observe that the two
peaks can exchange their relative heights under changes
in a, b or V individually (i.e. changing one parameter
while keeping the other two constant). Figures 3 and 4
illustrate this switch under a change in the pump
parameter b, and the volume size V, respectively. The
volume size is a critical part of this bifurcation: the
value of a or b at which the peaks have equal height
depends on the volume size. Thus, this change cannot
be observed through studying the ODE model.1,2

It has been shown that under multistable conditions,
it is impossible to derive a Fokker–Planck equation that
correctly describes the behaviour predicted by the
master equation (Horsthemke et al. 1977). The relative
heights of the two peaks in the steady state are
incorrectly approximated in the continuous limit by
diffusion approximation. Since these heights dictate the
relative stability of the FCA, and the height differences
are amplified in the limit of large system size, accuracy
of the probability steady state is critical.

None of the continuous models are able to accurately
describe the switching behaviour for small volume
systems, as we illustrate in §4.3. As of yet, there is no
experimental data to confirm the predictions from any
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Figure 3. Plots of the steady state in the CME model as b
changes, with reaction rates fixed at k1Z3, k2Z0.6, k3Z0.25,
k4Z2.95 and aZ1.
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of these models. However, simulations through mol-
ecular dynamics (Baras & Mansour 1997) have shown
agreement with the master equation. Thus, when
studying non-equilibrium processes occurring on the
microscopic and mesoscopic scales, the CME is the
most valid mathematical model.
3.2. Deterministic chemical potential and
entropy production

In this section, we attempt to characterize the steady-
state behaviour using concepts from physical chemi-
stry. In each of the reactions there is a chemical
potential difference, between the Gibbs free energy
stored in the system before the reaction occurs versus
after it has occurred. The first reaction in the Schlögl
model changes an A molecule into an X molecule. By
definition (Beard & Qian 2008), the amount of chemical
potential energy it takes to change one A into one X is

DmAX Z kBT ln
JC
1

JK
1

� �
Z kBT ln

k1a

k2x

� �
; ð3:7Þ

where kB is Boltzmann’s constant and T is the
temperature (constant throughout our theory). Like-
wise, the Gibbs free energy used to change one B into
one X is

DmBX Z kBT ln
JC
2

JK
2

� �
Z kBT ln

k3b

k4x

� �
: ð3:8Þ

The overall result of this reaction system is creating B
molecules out of A molecules (or vice versa). Com-
bining the two chemical potentials above, we see that
the amount of potential energy lost in exchanging one A
for one B is

DmAB ZDmAX CDmXB Z kBT ln
k1k4a

k2k3b

� �
ZDG;

ð3:9Þ

where we have used DmXBZKDmBX. We rename this
expression DG because it represents the change in the
Gibbs free energy which occurs through one ‘forward’
cycle of the reaction (i.e. producing one B from one A).
J. R. Soc. Interface (2009)
The chemical potential difference depends on the
values of the rate constants (enthalpic) and the
amounts of substrate and product (entropic). For a
special value of the parameters, namely

k1k4a

k2k3b
Z 1; ð3:10Þ

the chemical potential difference between A and B is
zero. This is the same condition as in equation (3.3) and
the system will tend towards the equilibrium steady
state discussed in §3.1. In this state, there is no
preference for producing B from A or vice versa because
there is no energy difference between them.

Another important physical quantity is the entropy
production rate. Entropy is created when an amount of
useful energy is converted to heat in an isothermal
process. In order to keep the concentrations of A and B
constant, an external agent has to constantly remove
the B, convert B back to A, and put A back in
the system. All this work becomes heat in the steady-
state reaction.

If chemical energy is constantly pumped into the
system, a NESS will be reached in which the entropy is
produced at a constant rate (related to the amount of
work being done on the system) converted to heat and
dissipated. The amount of entropy produced in turning
one A into one B is equal to the free energy (differing by
a constant factor of T, the temperature in Kelvin;
equation (3.9)). Thus, the entropy production rate will
be this constant multiplied by the rate of producing B
from A. This rate is called the steady-state flux

J ss
i Z ðJC

1 KJK
1 Þjx �i Z ðJ

K
2KJC

2 Þjx �i ; ð3:11Þ

where x�i is the left, middle or right fixed point of
equation (2.3) for iZK, 0 andC, respectively. The two
differences in equation (3.11) represent the net amount
of A being used, and the amount of B being produced,
respectively, per unit time. These two rates will be
equal in the steady state. Thus, we have the entropy
production rate in the ith steady state as

xi ZDG!J ss
i : ð3:12Þ

Note that when the system is in the equilibrium steady
state, there is only one entropy production rate and it
is zero.

For all other cases, there may be multiple entropy
production rates, and they will always be positive. To
show this, we rewrite the entropy production rate in
terms of each reaction, and use both definitions of the
steady-state flux in equation (3.11):

xi Z ðDmAX CDmXBÞJ ss
i ; ð3:13Þ

Z kBT ln
JC
1

JK
1

� �
ðJC

1 KJK
1 Þjx �i

�

Cln
JK

2

JC
2

� �
ðJK

2KJC
2 Þjx �i

�
: ð3:14Þ

Note that a term such as ln(x/y)(xKy) is always
greater than or equal to zero, since (xKy)O0 implies
ln(x/y)O0 and (xKy)!0 implies lnðx=yÞ!0. Thus, we
know that xiR0 in all cases.
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3.3. Stochastic entropy production
and cycle flux

The entropy production rate is an important charac-
teristic of the NESS. The entropy production rates can
be different for each steady state in the deterministic
model of a bistable system. In the stochastic model,
there is a unique steady-state distribution, even in the
case of bistability. Likewise, there is a unique entropy
production rate, even when the system is in a NESS. In
this section, we describe how the stochastic entropy
production rate is defined and how it relates to the
deterministic rate from above.

Let us ‘visualize’ the stochastic dynamics of the
chemical reaction system, one reaction at a time. Every
time a reaction occurs, there is an associated amount of
chemical energy loss (to the solvent via heat) or gain
(from the solvent via heat). Since the occurrences of the
reactions are stochastic, the system’s net heat output
fluctuates. When the system reaches its stationary state,
this heat output isnot constant, but continues to increase
on average (i.e. it increases at a constant rate). Thus,
there is a mean stationary entropy production rate.

The entropy production rate for the stochastic model
is calculated through a double sum: first over each
possible state, then over each reaction (Luo et al. 2002).
Thus, we must first split up the birth and death rates
from equation (2.6) into the transition rates corre-
sponding to each reaction. We define

l1n Z k1anðnK1Þ=V ; ð3:15Þ

l2n Z k3bV ; ð3:16Þ

m1
n Z k2nðnK1ÞðnK2Þ=V 2; ð3:17Þ

and m2
n Z k4n; ð3:18Þ

so that lnZl1nCl2n and mnZm1
nCm2

n. We may then
define the stochastic forward and backward steady-
state fluxes analogous to those in equation (3.1):

Ĵ
C
1 ðnÞZ l1np

ss
n ; Ĵ

K
1 ðnÞZm1

np
ss
n ;

Ĵ
C
2 ðnÞZ l2np

ss
n ; Ĵ

K
2 ðnÞZm2

np
ss
n ;

ð3:19Þ

where p ss
n is the distribution given in equation (2.8).
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The stochastic entropy production rate (as defined in
Luo et al. (2002)) is

xCMEZ
1

2

X2
jZ1

XN
nZ0

Ĵ
C
j ðnÞKĴ

K
j ðnC1Þ

� �
ln

Ĵ
C
j ðnÞ

Ĵ
K
j ðnC1Þ

 !" #
;

ð3:20Þ

which represents summing the product of flux and
chemical potential over all the states in the probability
steady-state distribution for each reaction separately.

This definition can be rewritten in terms of the
product of the Gibbs free energy change, DG, and the
cycle flux, a quantity analogous to the steady-state flux
from equation (3.11). Figure 5 illustrates how the
rates from equation (3.15) affect the movement on the
Markov chain. The net forward movement is equal to
^C
1 ðnÞKĴ

K
1 ðnC1Þ. This is defined as the forward cycle

flux. Likewise, the net movement backward is equal to
^K
2 ðnC1ÞKĴ

C
2 ðnÞ and is the backward cycle flux. These

fluxes represent the rate at which the cycle turns over
in the forward (i.e. A/B) and backward (i.e. B/A)
directions in a given state n.

The forward and backward cycle fluxes must be
equal when the system is in a steady state. Thus, the
double sum in equation (3.20) can be rewritten as a
single sum using either cycle flux, and the log terms can
be combined,

xCME Z
XN
nZ0

Ĵ
C
1 ðnÞKĴ

K
1 ðnC1Þ

� �
ln

Ĵ
C
1 ðnÞĴ

K
2 ðnC1Þ

Ĵ
K
1 ðnC1ÞĴC

2 ðnÞ

 !
:

ð3:21Þ

Plugging in the definitions of the single reaction fluxes,
the log term becomes the Gibbs free energy from
equation (3.9),

ln
Ĵ
C
1 ðnÞĴ

K
2 ðnC1Þ

Ĵ
K
1 ðnC1ÞĴC

2 ðnÞ

 !
Z ln

k1k4a

k2k3b

� �
ZDG: ð3:22Þ

This term represents the entropy production of one
forward completion of cycle n (which is actually
independent of n), since the Gibbs free energy is
converted into entropy. The stochastic entropy pro-
duction rate then becomes



Figure 5. The Markov chain representation of Schlögl’s model. The cycle moves forward in the clockwise direction. The steady-
state flux is equal to the forward and backward cycle fluxes, which are the same in the steady state.
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equation (divided by the volume) matches the entropy
production rate of the ‘more stable’ steady state in the ODE
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xCME ZDG
XN
nZ0

Ĵ
C
1 ðnÞKĴ

K
1 ðnC1Þ

� �

ZDG
XN
nZ0

l1np
ss
n Km1

nC1p
ss
nC1: ð3:23Þ

In this form, we see that the stochastic entropy
production rate is intimately related to the entropy
production rates defined in equation (3.12). Note that
when we make the substitution xZn/V, the birth and
death rates in equation (3.15) are related to the fluxes in
equation (3.1) by

l1nzVJC
1 ðn=V Þ; l2nzVJC

2 ðn=V Þ;
m1
nzVJK

1 ðn=V Þ; m2
nzVJK

2 ðn=V Þ:
ð3:24Þ

The stochastic entropy production rate can then be
written in terms of the deterministic fluxes as

xCMEzVDG
XN
nZ0

JC
1

n

V

� �
pssn KJK

1

nC1

V

� �
pssnC1: ð3:25Þ

Assuming that the probability steady state is dominated
by the values at its two peaks, we can approximate the

model.
J. R. Soc. Interface (2009)
entropy production rate by the sum of the two terms
corresponding to those states:

xCMEzVDG
X2

iZfC;Kg
JC
1

ni

V

� �
KJK

1

ni C1

V

� �� �
pssni ;

ð3:26Þ

where the nG represent the integers which approximate
the x �G the closest and we have used the approximation
p ss
nC1zp ss

n around these states. Using the definition of
the deterministic entropy production rate from equation
(3.12), we have

xCMEzV xCp
ss
nC CxKp

ss
nK

� �
; ð3:27Þ

which states that the stochasticmean entropyproduction
rate is approximately the sum of the deterministic
entropy production rates of the stable equilibria,
weighted by their probabilities, times the systemvolume.
Thus, when all other parameters are held constant, the
stochastic entropyproduction ratewill grow linearlywith
volume size.

As seen in the plots of pss in figures 3 and 4,
even when there are two peaks in the probability
steady state, one of the peaks is usually much
more dominant (note the log scale). Owing to this,
the stochastic entropy production rate will follow the
deterministic entropy production rate of whichever
equilibrium is more stable. Figure 6 shows a plot of the
possible entropy productions rates (the xK,0,C and
xCME) over a range of volumes. Only for a small range of
the parameters will xCME not match one of xK;C; this
is the range over which the peaks are comparable
in height.

A topic of current interest is whether a general
principle involving the entropy production rate can be
stated (Callen 1957; Glansdorff et al. 1974; Keizer &
Fox 1974; Jaynes 1986; Qian 2002; Dewar 2005;
Martyusheva & Seleznev 2006): is the rate of entropy
production always maximized, minimized or neither?
Schlögl’s model illustrates how the entropy production
of a system in a NESS is not necessarily minimized
(Callen 1957; Jaynes 1986) or maximized (Dewar 2005;
Martyusheva & Seleznev 2006) with respect to the
three choices of the deterministic entropy production
rate. We see that the more stable of the two stable
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Figure 7. The stochastic entropy production rate versus the
barrier height between the left FCA ðDpssKÞ and right FCA
ðDpssCÞ. The lines have been darkened when the FCA is more
stable to illustrate that the entropy production rate decreases
as the height of the more stable barrier increases. The
parameter values used are k1Z3, k2Z0.6, k3Z0.25, k4Z2.95,
bZ0.5 and 0.9%a%2.4. The point at which the FCA
exchange stability is aZ1.105, is indicated by the intersection
of the bold and dashed lines. Grey dashed line, DpssK when nK
is less stable; grey solid line, DpssC when nC is less stable; black
dashed line, DpssK when nK is more stable; black solid line, DpssC
when nC is more stable.

3Although the transition rates in Hanggi’s model match the rates
predicted by the master equation in the limit of large system size, it is
important to note that the solution to Hanggi’s model does not match
the solution to the CME at any point other than in the steady state,
and that his rates are not a good approximation in small volume
systems (see §4.3).
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equilibria can have either a high or a low entropy
production rate, as is discussed in Landauer (1975) and
Andresen et al. (1984), and that the stochastic entropy
production rate mimics this value. However, we note
that the middle value of the entropy production rate,
which corresponds to the unstable equilibrium, is not
captured by the stochastic model. For this example, the
stochastic entropy production rate will be either
the maximum or minimum of the three choices, since
the value of x0 is between xK and xC. It is not known
if this is true for the systems in general.

Han and Wang have shown that the lower entropy
production rates are indicative of less dissipation cost in
a complex biochemical network, leading to a network
that is more robust to perturbations. Thus, minimizing
the entropy production may be a design principle in the
biological systems (Han &Wang 2007, 2008) and/or an
indication of stability (or robustness) of a given FCA.
In our model, one measure of robustness is the
difference between the peaks of the probability steady
state i:e: pssnG

� �
and the trough between them. We refer

to this difference as the barrier height, and define

DpssK Z pssnKKpssn0
; and DpssCZ pssnCKpssn0

; ð3:28Þ

where n0 corresponds to the position of the trough,
n0ZVx0. By varying a and keeping the other par-
ameters constant, we can observe how xCME changes
with respect to the quantities Dp ss

G. Figure 7 illustrates
this. The dark lines show the relationship between the
stochastic entropy production and barrier height
for the more stable FCA only. The negative slopes
of these dark lines do suggest that the entropy
production decreases as the more stable FCA becomes
increasingly robust.
J. R. Soc. Interface (2009)
3.4. Bistable system as a two-state
Markov process

When the system is bistable, there exists a non-zero
possibility of jumping from one stable state to another
in the stochastic model. When the system starts near
one of the functional reaction system states (FCA), it
will fluctuate around it for a long time. However, since
stochastic fluctuations are always present, eventually
they will push the system far enough away from one
FCA so that it reaches the point corresponding to the
unstable fixed point of the ODE model. Then the
system will relax towards the other FCA and remain
there for a long time.

This behaviour motivates a new method for viewing
bistable systems. The infinite-state Markov chain
can be compressed into a model with only two states:
the two stable FCA. Movement near the FCA can
be modelled with simple Gaussian processes (Keizer
1979), and jumping between the FCA can be predicted
using the two-state Markov chain. This simplified
view of the system will capture the behaviours on
both time scales, and allow for a new, simpler method
of simulation.

The key behaviour of a bistable system is the
transition between the FCA. The transition rates
from xK to xC have been approximated asymptotically
by Hänggi.3 He showed that the rates depend exponen-
tially on the volume size, so that as volume increases,
the likelihood of a transition between the FCA
decreases exponentially. These rates were also derived
through a different method in (Hinch & Chapman
2005). The expression for the transition rate from xK to
xC is (Hänggi et al. 1984; Hinch & Chapman 2005)

rKZ
3eDuK=3JCðxKÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ku 000u

00
K

p
2p

; ð3:29Þ

and the transition rate from xC to xK is

rCZ
3eDuC=3JCðxCÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ku 000u

00
C

p
2p

: ð3:30Þ

In these expressions, DuGZu(0)Ku(xG) where uðxÞZÐ x
0 lnðJC=JKdyÞ and u 00i is the second derivative of u(x)
evaluated at xi. The functions JCZJC1 CJC

2 and JKZ
JK

1CJK
2 from equation (3.1) are the total continuous

forward and backward fluxes and the volume is
represented as 1/e.

We may think of the long-term behaviour as a two-
state Markov chain whose infinitesimal matrix contains
the transition rates

d

dt

PK

PC

 !
ZAP Z

KrK rC
rK KrC

� �
PK

PC

 !
: ð3:31Þ

The vector P has two components: PK and PC are the
probabilities of being near the FCA nK and nC,
respectively. The process jumps between the two states,
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4This approximation was found by expanding the logarithm of the
function in equation (3.34) about nG and matching the first three
terms to fit a Gaussian, noting that JCZJK at the fixed points.
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with a waiting time in each state whose average is
inversely proportional to the transition rate into that
state. The long-run probability of finding the process in
the nC state is rC/(rCCrK), and the probability of
finding it in the nK state is rK/(rCCrK).

The full CME model can also be represented as a
matrix equation (see §4.1). To see how the system
in equation (3.31) is related to the original Markov
chain formulation, we examine the eigenvalues and
eigenvectors of the matrix A. Because the columns
of A sum to 0, the first eigenvalue is l0Z0. The
second eigenvalue is the sum of the transition rates,
l1ZK(rCCrK). These are also the first two eigen-
values of the matrix Q which represent the full chain
(see §4.1). As discussed in the §4, these eigenvalues are
the most important for the full system because they
represent the long-term behaviour.

The right eigenvectors of the matrix A (normalized
so that the sum of the terms equals one) are

v0 Z

rC
rCCrK

rK
rCCrK

0
BBB@

1
CCCA; v1 Z

K
1

2

1

2

0
BBBB@

1
CCCCA; ð3:32Þ

and the left eigenvectors are

w0 Z
1

2

1

2

 !
; w1 Z

rK
rCCrK

K
rC

rCCrK

� �
:

ð3:33Þ
These four eigenvectors are connected to the first four
eigenvectors of the matrix Q in equation (4.2), which
represents the full system. Figure 8 shows an example of
the eigenvectors v0, v1, w0 and w1 for the matrix Q.

The right eigenvectors of Q, vi , represent contri-
butions to the solution vector (see equation (4.3) in
§4.1). The two right eigenvectors of A, vi contain a
shortened version of the main contributors, v0 and v1.
The right eigenvector v0 represents the probability
steady-state distribution. The two values in the
J. R. Soc. Interface (2009)
eigenvector v0 represent the proportion of probability
around each FCA in the steady state. Thus, if we
sum the first n0 entries of v0, they will be equal to rC/
(rCCrK) (the first entry of v0) and the sum of the rest
of the entries will equal rK/(rCCrK) (the second entry
of v0). Likewise, if we sum the first n0 entries of v1,
they will be equal to 1/2 and the sum of the rest will
be K1/2, the two entries of v1.

The vectors w0 and w0 are both entirely constant,
since the equations wQZ0 and wAZ0 are both
satisfied by vectors of ones. The eigenvector w1

comprises two constant parts and changes values
quickly near the unstable point n0. The ratio of these
two constants is the same as the ratio of the two entries
of w1. Thus, we see that the two-state process based on
the transition rates between the FCA shares key
characteristics of the original stochastic model.

Assuming that the system acts as a two-state process
with the Gaussian noise around each FCA, we can
model the probability distribution as the sum of two
unnormalized Gaussian distributions. From Hinch &
Chapman (2005), the zeroth-order asymptotic approxi-
mation to the steady-state probability distribution is

pssn z
Affiffiffiffiffiffiffiffiffiffiffiffi
JCJK
p exp V

ðx
0
ln

JC
JK

� �
dy

� �
CO

1

V

� �
; ð3:34Þ

where the constant A can change to match the function
properly near each FCA. The unnormalized Gaussian
that best matches this function near nK is4

pssn z
eVuðxKÞ

JCðxKÞ
exp

Ku 00KðxK xKÞ2

2

� �
; ð3:35Þ

and near nC, it is

pssn z
eVuðxCÞ

JCðxCÞ
exp

Ku 00CðxK xCÞ2

2

� �
: ð3:36Þ

We might consider the ratio of finding the two-state
process in one state versus another. By integrating
the approximations in equations (3.35) and (3.36) on
the left- and right-hand sides of n0 (and using the
identity

Ð
eKaðxKmÞ2=2Z

ffiffiffiffiffiffiffiffiffiffiffi
2p=a

p
), we can approximate

this ratio byÐ n0

0 pssnÐN
n0
pssn

zeVuðxCÞKuðxKÞ J
CðxCÞ

JCðxKÞ

ffiffiffiffiffiffiffi
u 00C
u 00K

s
: ð3:37Þ

If we instead use the asymptotic equations for the
transition rates themselves (equations (3.29) and
(3.30)), we find

rC
rK

Z e
uðxCÞKuðxKÞ

3
JCðxCÞ
JCðxKÞ

ffiffiffiffiffiffiffi
u 00C
u 00K

s
; ð3:38Þ

which is the same result. Thus, we conclude that,
asymptotically, the steady-state behaviour is well
approximated by the Gaussian noise around both
FCA, with the process in equation (3.31) dictating
the jumps between the two.
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When V is large, a realistic system with any external
noise will almost surely be found in only one of two
FCA. Which state it ends up in depends solely on the
parameter values (i.e. whether u(xC)Ou(xK) or vice
versa) and not on the initial condition! Deterministi-
cally, which state the system ends up in depends solely
on the initial condition. This is a significant contri-
bution from the stochastic model and another example
of the Keizer’s paradox (Vellela & Qian 2007).
Although there is a result from Kurtz (1976, 1978)
which states that the solutions of the two types of
models must match to a negligible probability in the
thermodynamic limit for all finite time, there is no such
statement when limV/N and limt/N are switched.
Here, we observe again the disagreement when we
assume the system has reached a steady state before
taking the thermodynamic limit.

When working with a small volume system, jumping
from one FCA to another is an event that may happen
on a reasonable time scale. The system will reach its
steady state (i.e. infinite time limit) without reaching
the infinite volume limit. Thus, an understanding of the
correct steady-state behaviour is crucial. In the §4, we
derive a numerical method to examine small volume
behaviours, and compare the asymptotic results with
direct results from the master equation.
4. NUMERICAL METHODS

In this section, we investigate a numerical method for
analysing the Schlögl model. We show that MATLAB is
capable of accurately computing the eigenvalues and
eigenvectors of a truncated linear system that rep-
resents the master equation. The exponentially small
eigenvalue is well approximated for appropriately large
truncations. This method not only produces the
probability steady-state distribution; it also yields the
full, time-dependent solution of the truncated system.
4.1. Calculating the solution

The stochastic model is represented by the infinite
linear system

dp

dt
ZQp; ð4:1Þ

where pZðp0ðtÞ; p1ðtÞ; p2ðtÞ;.ÞT, the vector of prob-
abilities for each state. The matrix,

QZ

Kl0 m1 0 .

l0 Kl1Km1 m2 .

0 l1 Kl2Km2 .

« « « .

0
BBBB@

1
CCCCA; ð4:2Þ

is a stochastic matrix, which has all real eigenvalues,
the largest being l0Z0.

Although all eigenvalues li with iR1 are real and
negative, the second largest eigenvalue (or the eigen-
value with the second smallest magnitude), l1, differs
from the others. This eigenvalue is exponentially small,
i.e. it decays exponentially as the volume size increases.
The other eigenvalues are relatively stationary with
the volume change, and are much larger in magnitude
J. R. Soc. Interface (2009)
for large volume. This behaviour is related to the
exponential decay seen in the transition rates (see
equations (3.29) and (3.30)). In fact, the exponentially
small eigenvalue represents the sum of the two
transition rates and therefore dictates the slow time
scale of the system.

The solution in terms of the eigenvalues li and
eigenvectors vi of Q will be

pðtÞZ c0v0 Cc1e
l1tv1 C/: ð4:3Þ

Because all of the li are real and negative, all the terms
in this solution will decay to zero as time increases
except the first term, corresponding to l0Z0. The
eigenvector for the zero eigenvalue v0 therefore
represents the steady-state probability distribution.
The second eigenvalue l1 is related to the time scale of
the transitions between the FCA, and the contribution
of its eigenvector v1 to the solution will decay on a much
slower time scale than the eigenvectors vi for iO1.

Although this system is infinite in size, the most
probable states are those near the twoFCA.The states in
which n is much larger than xCV are very unlikely, and
the stationary probability distribution tends to zero as n
tends to infinity. Therefore, it is reasonable to cut the
system off at some finite valueN and analyse the solution
under these conditions (see Vellela & Qian (2007) for
verification of this method). Thus, we consider the finite
system formed by setting lNZ0, so that the system
cannot move past N. Along with setting mNC1Z0, the
corresponding transition matrix will remain a stochastic
matrix with the expected properties.

We formed the matrix Q using the spdiags
command in MATLAB, with the following parameter
values (which lie in the bistable region of parameter
space):

k1Z 3; k2Z 0:6; k3Z 0:25; k4Z 2:95; a Z 1; bZ 1:

ð4:4Þ

The function dx=dtZ f ðxÞ is shown in figure 1 in §3.1.
There are two stable steady states: xKZ0.0935 and
xCZ3.7024i and one unstable steady state: x0Z1.2041.

The matrix was truncated at a value N, past the
right fixed point xC. The choice of N was based on a
study of the convergence rate of the exponentially small
eigenvalue for different choices of N. As in Vellela &
Qian (2007), the eigenvalue quickly converges for
truncation values past NZx0V. The truncation value
ofNZ2xCV is sufficient, and was used for the rest of the
calculations below. Eigenvalues and eigenvectors were
calculated using the command eig(full(Q)).
4.2. Accuracy of the eigenvalues

The time-dependent solution can be expressed
as in equation (4.3) as long as the calculated eigen-
values and eigenvectors are accurate. To test the
accuracy of MATLAB’s results, we calculate the absolute
residual vector,

r i ZQviK livi; ð4:5Þ
and look at the L2 norm. Table 1 gives a list of the
residuals for the first five eigenvalue/eigenvector pairs



Table 1. The first five eigenvalues and residuals (from
equation (4.5)) for the system with parameter values
from equation (4.4) and VZ100.

i li krik2

0 2.15!10K12 7.87!10K11

1 K1.755!10K10 7.9064!10K11

2 K1.643 8.0805!10K11

3 K2.372 7.9897!10K11

4 K3.1778 7.8154!10K11
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Figure 9. Relative residuals in the first four eigenvalue/ei-
genvector pairs, plotted on a logarithm scale (solid curve, l0;
dashed curve, l1; dotted curve, l2; dot-dashed curve, l3).
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Figure 10. Plot of the probability steady state (solid curve),
calculated using detailed balance and as the eigenvector v0 in
MATLAB (dashed curve). Note that the drastic errors begin to
occur in the MATLAB’s solution for values of pss less than
machine epsilon, 10K16.
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using a volume size of VZ100 and the parameter values
in equation (4.4). The absolute residual is of the order
of 10K11 for all eigenvalues when VZ100.

Other values of V were also examined, and it was
found that the absolute residual grows slowly and
approximately linearly for all eigenvalues asV increases.
Although this residual is of the same order for all
eigenvalues, l1 grows exponentially with volume size,
while the others remain relatively constant. A study of
the relative residual, i.e. the absolute residual divided by
the magnitude of the eigenvalue, may serve as a better
measure of the accuracy of theMATLAB’s results. Figure 9
shows a plot of the relative residual, krik2/jlij for
increasing values of V. Similar to the eigenvalues
themselves, this residual grows exponentially with V
for l1 and is constant for the other eigenvalues. Since the
magnitude of l0 is so small, its relative residual is
expectedly high. However, this residual remains con-
stant with increasing V. For large volumes, such as
VR100, the absolute residuals are still small, but the
relative residual for l1 becomes greater than one and
the exponential growth is lost. Thus, we cannot trust the
MATLAB’s results for V in this region.

To check the accuracy of the MATLAB’s eigenvector
calculations, we compare the eigenvector v0 with pssn ,
which can be calculated exactly using equation (2.8).
Figure 10 is a plot of the actual probability steady state
versus the eigenvector v0, for VZ100. The eigenvector
is a good approximation for the values above machine
epsilon (10K16). However, as V increases, the vector v0
begins to diverge from the true probability steady state
J. R. Soc. Interface (2009)
for values near the FCA (as is seen around nC in
figure 10). A study of the difference between these
two vectors, jjv0Kpssn jj2, shows that the error in v0
grows exponentially with volume size as well. As in
figure 9, for volumes greater than 100, the error
fluctuates wildly and even the exponential growth is
no longer observable.

The first two right and left eigenvectors, v0, v1, w0

and w1, respectively, are shown in figure 8. Another
check of the MATLAB’s accuracy is to verify the
orthogonality condition,

vi$wj Z 0 for isj: ð4:6Þ

The left eigenvectors were calculated by calculating the
right eigenvectors of the transpose matrix with
eig(full(Q). 0), and taking the transpose of the
eigenvector output. Both v0$w1 and v1$w0 were
observed to grow exponentially with increasing V. For
VZ40, the dot products are

v0$w1 ZK3:5277!10K10; ð4:7Þ
and

v1$w0 ZK8:7035!10K09; ð4:8Þ
and for VZ100, they are

v0$w1 ZK0:00057286; ð4:9Þ
and

v1$w0 ZK0:006249: ð4:10Þ
Again, for volume sizes greater than 100, the error
becomes too large to display the exponential growth
with V.

These tests confirm that the MATLAB’s calculations
are accurate for a range of small V, but as the
volume and the matrix size grow, so do errors in the
eigenvalues and the eigenvectors. The first two eigen-
values and their corresponding left and right
eigenvalues are the most difficult to calculate, and the
error grows exponentially as V increases. In the §4.3, we
compare the results for l1 from MATLAB with the
asymptotic predictions from Hänggi et al. (1984) and
Hinch & Chapman (2005). As we will see, asymptotic
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approximations have the opposite problem: they are
accurate for large V and break down for small V.
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Figure 11. Comparison of MATLAB’s calculated l1 with that
obtained through Monte Carlo simulations. As the volume
size increases, a l1 decays exponentially. Solid line, MATLAB,
yZK0.22!K1.4; dot-dashed line, asymptotic, yZ
K0.27!K2.8; dashed line, Monte Carlo, yZK0.21!K1.8.
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4.3. Comparison with simulations
and asymptotics

Another way to check the accuracy of the exponentially
small eigenvalue l1 is to compare the MATLAB’s l1 with
a value obtained from the Monte Carlo simulations
and with the sum of the asymptotic transition rates
from equations (3.29) and (3.30). From Hänggi et al.
(1984), the relationships between l1, the transition
rates dPG/dt and the waiting times TG is

l1 Z rCCrKZK
1

2TC

K
1

2TK

: ð4:11Þ

The waiting times were calculated from the
simulations by keeping track of which FCA the system
was near (i.e. which ‘well’ the system was in), and the
amount of time it spent while near that FCA. By
dividing the total time spent in each well by the number
of times that well was visited, we obtained the average
waiting time near each stable FCA. The two waiting
times were used in equation (4.11) as TC and TK to
calculate the exponentially small eigenvalue.

The definition of one ‘visit’ to a well must be
explicitly stated. The state n0Zround(x0V) was first
used as the dividing line: if the system was greater than
x0V, it was defined to be in the right-hand well, and if it
was less than n0, the left-hand well. However, it was
observed during simulations that the system does not
necessarily fall immediately into one well or another
after passing over this point. Occasionally, the
simulation would return to n0 several times before
heading towards one of the FCA. This behaviour
caused the calculation of average waiting time to be
underestimated (and l1 to be overestimated), because
the number of visits was increased by one each time the
state n0 was reached.

Thus, when calculating the average waiting times,
we assumed that the simulation had visited a well only
when it had reached a particular point, closer to the
FCA than just n0G1. A study was done of the change in
l1 with respect to the definition of this point. The
eigenvalue displayed a fast, exponential-like conver-
gence as the boundary moved away from n0. For the
rest of the simulations, we defined the point at which
the system had officially entered a well to correspond to
the inflection point in the potential function generated
by integrating the cubic ODE.

In figure 11, we see agreement between the
simulation predictions, the asymptotic approximations
and the MATLAB’s calculations, and the exponential
decay of l1 as volume increases. The values obtained
through the Monte Carlo simulations and the MATLAB

calculations are fairly similar. Although there is a small
gap between these two lines, the slopes are very close,
which indicates the same rate of predicted exponential
decay with volume size.

However, the asymptotic predictions are much
smaller than the other two, and the slope of the line is
noticeably different. This is because the asymptotic
J. R. Soc. Interface (2009)
equations are only valid for large volume systems. The
simulations and the MATLAB calculations were carried
out for relatively small volumes, because of computing
restrictions in both cases.

An attempt to unify the asymptotic results with
those of the MATLAB and the Monte Carlo was made.
The slopes of the lines seen in figure 11 are related to
the DuG from equations (3.29) and (3.30). The
constants DuG are the asymptotic (continuous space)
approximations to the barrier heights, DpssG from
equation (3.28). Although it is too computationally
intense to compute l1 for large V using the eig
command or a simulation, it is possible to compute pssn
from the detailed balance equation for larger V using
MATLAB. Thus, we can study the change in DpssG with
volume. Figure 12 shows the convergence of the barrier
heights to the asymptotic values DuG as the system
volume increases. We see the asymptotic prediction for
the height differences in the probability steady state
become accurate for volumes of the order of 100 and
higher. Although the asymptotic line for l1 in figure 11
is much lower than the other two lines, figure 12 tells
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us that eventually these lines should all converge as V
increases further.

We can obtain the MATLAB and the Monte Carlo
data for values of V in the approximate range
5%V%40, and have shown that these two methods
yield similar predictions for l1. We have also shown the
range of V on which the asymptotic prediction becomes
realistic. Unfortunately, these two ranges of volume
size do not overlap. Computational limitations do not
allow us to confirm the MATLAB’s predictions with those
made in Hänggi et al. (1984) and Hinch & Chapman
(2005) or vice versa. However, a study of this kind can
suggest which method is the best when working with a
model of a real biochemical system, in which the volume
size is known.
5. CONCLUSION AND FUTURE DIRECTIONS

Schlögl’s model is a simple example of a chemical
reaction system that exhibits bistability. Bistable
behaviour can be found in many biological networks,
including the heart models (Hinch & Chapman 2005),
the visual perception (Moreno-Bote et al. 2007), the
gene networks (Paulsson 2005), etc. Owing to the
ubiquity of switching behaviour, it is important to have
comprehensive mathematical models of the bistable
chemical reaction systems. In this paper, we used
Schlögl’s model as an example to study the differences
between the deterministic and the stochastic modelling
techniques applied to bistability, and examine this
behaviour through a thermodynamic perspective.

For a finite volume system, the steady-state
behaviours predicted by the deterministic and the
stochastic models can be drastically different.When the
system is bistable, the behaviour in the deterministic
model depends entirely on the initial condition, i.e. on
which side of the unstable steady state the system
started. On the contrary, the steady-state behaviour in
the stochastic model is completely independent of the
initial condition.

In the long term, the stochastic model predicts that
the system spends almost all its time in the two FCA
(states that correspond to the stable states of the ODE
model), and the proportion of time spent in each is
dictated by the ratio of the transition rates between
them. Because this ratio increases exponentially with
volume, as the volume size increases, the proportion of
time the system spends in the more stable FCA
increases as well. Thus, for a large but finite volume
size, the stochastic models predicts that, independent of
the starting point, the system will end up in the more
stable FCA and spend most of its time there.

The parameters determine which of the FCA is more
stable. Asymptotic analysis, which assumes a large
volume limit, predicts that one of the FCA will be more
stable for all values of V. Although this is true for large
V, we have shown that for small V, the FCA may
exchange relative stability with the changes solely in V.
This observation highlights the importance of using a
CME model when addressing the intracellular reaction
networks. The stability exchange between the FCA has
been observed with changes in the pump parameter b
and the system volume. In the future, a full bifurcation
J. R. Soc. Interface (2009)
diagram could be drawn so that the precise effects of a, b
and V on the system’s stability are known.

When the system is bistable, there are multiple
entropy production rates that come from the ODE
model, one for each steady state. After calculating this
rate in the master equation model, we see that the
stochastic entropy production rate is a combination of
the rates in each possible state, weighted by the
probability of being in each of those states. Thus, the
stochastic rate ‘follows’ that of the deterministic system
for the more stable FCA (which is the most likely state
of the system). This shows that the entropy production
rate is neither maximized nor minimized for all NESSs.
We conclude, as in (Landauer 1975), that the entropy
production rate alone is unable to fully describe
stability in the steady state. However, this example
does not disprove the conjecture that the entropy
production rate will take on some critical value (i.e. a
minimum or a maximum) in the NESS. A similar study
of a more complicated model, such as a tristable model,
may also debunk this idea.

The long-term behaviour of the bistable system is
determined by the transition rates between the FCA.
For large volumes, the system can be simplified by a
two-state Markov chain in which all states to the left of
the unstable fixed point are lumped into one state, and
all states to the right are considered as another. The
transition rates are the entries of the four-by-four
stochastic matrix modelling the jumping between the
FCA, and while near one FCA, we can model the short
time-scale behaviour with Gaussian noise.

The sum of these two transition rates is equal to the
second largest (or the second smallest in magnitude)
eigenvalue in the stochastic matrix that represents the
full Markov chain. This eigenvalue can be calculated
with some accuracy using the eig command in
MATLAB. For small volume systems, the MATLAB result
is more accurate than the asymptotic prediction, and it
is faster than calculating the eigenvalue through the
Monte Carlo simulations. However, a reliable method
has not yet been found to compute this eigenvalue for
all ranges of volume. Such a method will be crucial in
predicting the time scales of a bistable chemical
reaction system for mesoscopic volume sizes.
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APPENDIX A: FOKKER–PLANCK
APPROXIMATION AND KEIZER’S PARADOX

In appendix A, we illustrate how the steady-state
solution of the Fokker–Planck approximation to
Schlögl’s model does not agree with the solution
obtained through mathematical detailed balance. Let
P(k,t)ZPr{nX(t)Zk}, then we have

dPðk; tÞ
dt

Z vkK1PðkK1; tÞCwkPðkC1; tÞ
Kðvk CwkK1ÞPðk; tÞ; ðA 1Þ



5For example, using the parameter values k1Z3, k2Z0.6, k3Z0.25,
k4Z2.95, aZ1, and bZ1.305, the two integrals have different signs.
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where

vk Z
k1akðkK1Þ

V 2
Ck3b;

wk Z
k2ðkC1ÞkðkK1Þ

V 3
C

k4ðkC1Þ
V

;

and V is the volume of the reaction system. The exact
stationary solution to equation (A 1) can be found
(Gardiner 1985) as

PðkÞZC0

YkK1

jZ0

vj
wj

; ðA 2Þ

where C0 is a normalization constant satisfyingPN
kZ0 PðkÞZ1. For large V,

ln PðkÞZ
XkK1

jZ0

ln
vj
wj

CC1

Z
XkK1

jZ0

ln
vðj=V Þ
wðj=V ÞCo

1

V

� �
CC1

zV

ðk=V
0

ln
vðzÞ
wðzÞ dzCC1;

in which we introduce the dimensionless functions,

vðzÞZ z2 Cs; wðzÞZ z3 Cmz;

and C1Zln C0. Therefore, in terms of the non-
dimensionalized concentration uZk/V, we have the
probability distribution f̂ ðuÞZVPðVuÞ:

1

2V
ln f̂ ðuÞZ 1

2V
ln PðVuÞCC2

z
1

2

ðu
0
ln

vðzÞ
wðzÞ dzC Ĉ ; ðA 3Þ

Z
1

2

ðu
0
ln

z2 Cs

z3 Cmz
dzC Ĉ : ðA 4Þ

When V is large, the CME (A 1) is often approxi-
mated by a Fokker–Planck equation (Gardiner 1985).
Let us introduce the finite-difference scheme

f ðuCDuÞKf ðuKDuÞz2f 0ðuÞDu

f ðuCDuÞK2f ðuÞC f ðuKDuÞzf 00ðuÞðDuÞ2;
equation (A 1) can be approximated by

vf ðu; tÞ
vt

Z
v

vu

vðuÞCwðuÞ
2V

vf

vu
KðvðuÞKwðuÞÞf

� �
;

ðA 5Þ
where f (u,t)duzVP(Vu,t). One notes that when
V/N, the diffusion term vanishes. Thus, equation
(A 5) is a first-order partial differential equation whose
characteristics, the macroscopic deterministic
dynamics for the Schlögl model, are similar to equation
(2.3). This relation provides the law of mass action for
the biochemical reactions with a rigorous Markovian
stochastic basis: ‘The stochastic model is not an
alternative to the deterministic kinetics, it is a more
complete kinetic description which is capable of
modelling reactions with and without fluctuations.’
(Qian & Elson 2002).
J. R. Soc. Interface (2009)
Equation (A 5) is an approximation for equation
(A 1) in the limit of large V. What has been neglected is
the term of the order of VK3/2. The stationary
distributions also can be analytically obtained for
equation (A 5):

1

2V
ln f ðuÞZK

ð
wðuÞKvðuÞ
wðuÞCvðuÞ duCC ; ðA 6Þ

where the constant C is determined by the normal-
ization of f ðuÞ :

ÐN
0 f ðuÞduZ1.

Are stationary distributions f(x) and f̂ ðxÞ the same
asymptotically? Both can be written in compact forms

f ðuÞZC exp K2V

ðu
0

qðzÞK1

qðzÞC1
dz


 �
; ðA 7Þ

and

f̂ ðuÞZC 0 exp KV

ðu
0
ln qðzÞdz


 �
; ðA 8Þ

where C and C 0 are the normalization factors and
q(u)Zw(u)/v(u). Both functions have identical local
extrema since

d

du
f ðxÞZ 0 and

d

du
f̂ ðuÞZ 0;

lead to the same equation for steady states q(u)Z1.
Furthermore, the corresponding local maxima of f(u)
and f̂ ðuÞ are asymptotically equivalent in the limit of
V/N. To show this, let u� be a root of q(u)Z1. Then,
we have

f ðuÞZC exp K2V

ðu*

0

qðzÞK1

qðzÞC1
dz




K
Vq 0ðu*ÞðuKu*Þ2

2

�
; ðA 9Þ

and

f̂ ðuÞZC 0 exp KV

ðu*

0
ln qðzÞdzKVq 0ðu*ÞðuKu*Þ2

2


 �
:

ðA 10Þ

The quadratic terms in equations (A 9) and (A 10) are
the same.

Now let u� and u�� be the two roots of q(u)Z1 with
q0(u)O0, each represent an local maximum for the
functions f(u) and f �(u). The important question, then,
is which maximum is the larger one. This is determined
by the signs ofðu��

u�
ln qðzÞdz and 2

ðu��
u�

qðzÞK1

qðzÞC1
dz: ðA 11Þ

A simple counter example can be constructed to show
that the signs of expressions in (A 11) can be different.5

Therefore, in the limit of V/N, f(u) and f̂ ðuÞ could
converge to different local maxima.

Van Kampen repeatedly emphasized that the
Fokker–Planck approximation can only be obtained
for master equations with small individual jumps.
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A more sophisticated treatment of the diffusion
approximation for master equation was given in terms
of the U-expansion (ch. 10, Van Kampen 1981). This
theory provides a satisfying approximation for the
stochastic relaxation in the limit of large U (our V).
However, it does not address how to obtain a stationary
distribution with multiple equilibria.

Both Hänggi et al. (1984) and Baras et al. (1996)
pointed out the delicate issue of V/N and t/N and
their non-commutative relation. If one takes the V/N
first, one arrives at equation (2.3). If there are multiple
stable steady states, the relative population is
determined by the initial condition for the deterministic
differential equation. How can one obtain a reasonable
distribution of initial conditions for the various basins
of attractors? This problem, interestingly, can be
cogently addressed if we consider the limit t/N for
large but finite V. Laplace’s method for integrals
(Murray 2002) shows that the probability associated
with each basin of attraction (we consider simple
convex attractors and neglect the strange attractors
arising in chaotic dynamics) is precisely eKF where
FZUKTS are free energy (total probability), energy
(depth of the well) and entropy (broadness of the well),
respectively (T being the temperature in Kelvin, a
constant). The last term comes from the curvature of
the basin of the attractor. Hence, it is clear that for
deterministic differential equations, the initial distri-
bution should be chosen according to the region of
asymptotic stability.

The one-dimensional example indicates that even
though a chemical reaction system is open, the
mathematical model (CME) can still satisfy detailed
balance, and its steady-state probability thus is
completely solvable: Pk/PkC1Zwk/vk. For such a
system, one immediately has a physical interpretation:
jkZ(vkKwk) as the ‘drift’ and DkZ(vkCwk)/2 as
the ‘diffusion coefficient’ (Feller 1971). On the other
hand, AkZkBT ln(wk/vk) can be viewed as ‘chemical
affinity’ (De Donder & Rysselberghe 1936). Thus, there
is a relationship between these three quantities Ak, Dk

and jk:

jk Z 2Dktanh K
Ak

2kBT

� �
Z 2Dktanh K

fkKfkC1

2kBT

� �
;

ðA 12Þ

if we introduce fkZ kBT lnPk. Equation (A 12), which
relates thermodynamic flux to force nonlinearly, was
introduced by J. Ross and his co-workers (Ross & Vlad
1999). This result is in complete agreement with T. L.
Hill’s theory (Hill 1974, 1989) in terms of the forward
and backward fluxes (Beard & Qian 2007). Note
however, owing to the one-dimensional nature of the
problem, that the v and w are not the forward and
backward fluxes of a single chemical reaction.
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