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Stochastic dynamics and reliability of degrading systems
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Abstract. In this paper the basic methodology of the coupled response-degradation modelling of stochastic dynamical systems is presented
along with the effective analysis of selected problems. First, the general formulation of the problems of stochastic dynamics coupled with the
evolution of deterioration process is given. Then some specific degrading oscillatory systems under random excitation are analyzed with a
special attention on the systems with fatigue-induced stiffness degradation. Both, the general discussion and the analysis of selected exemplary
problems indicate how the reliability of deteriorating stochastic dynamical systems can be assessed.
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1. Introduction

In the last decades the response of linear and non-linear dy-
namical systems to random excitation (parametric and exter-
nal) has been studied extensively. These studies, stimulated
by application problems of control theory as well as by the
analysis of mechanical and structural systems, have resulted in
the theory constituting at present the subject of stochastic dy-
namics, or, in a narrower sense, random vibration theory. The
methods elaborated allow to characterize a stochastic response
process in a variety of important situations and at the same
time they provide the information for the reliability estimation
[1–3].

However, as it is known, dynamic excitation of engineer-
ing systems (including random varying excitation) causes ir-
reversible changes in the material structure and results in de-
creasing the system ability to carry the intended loading. Dam-
age caused by vibrations manifests itself primarily in the stiff-
ness degradation of the components and systems. Examples
of engineering systems with simultaneous stiffness deteriora-
tion are: (i) vibrating mechanical/structural elements with fa-
tigue process taking place in them; (ii) mechanical systems
with elasto-plastic properties in which, in addition to elastic
deformation, a plastic deformation occurs as well; (iii) sys-
tems composed of many elements with varying bearing capac-
ity; global mechanical and reliability characteristics (e.g. stiff-
ness) of such systems depend on the failure of some of the
elements.

In the last years an increasing amount of research efforts
has been directed towards stochastic modelling of various de-
terioration (or degradation) processes in mechanical/structural
components. Because of the practical importance of fatigue
damage and fracture in various engineering structures, stochas-
tic models of fatigue accumulation have been a subject of
special interest (cf. Sobczyk and Spencer [4] and references
therein). It should be underlined, however that though the fa-
tigue process is inherently associated with vibrations of me-

chanical/structural systems the research in random vibration
theory, and in modeling of fatigue has been conducted without
a proper mutual coupling. Stochastic analysis of dynamics of
mechanical/structural systems has been focused on the charac-
terization of the response (and its unsafe states, e.g. instabil-
ity regions, first-passage probabilities), whereas the analysis
of fatigue deterioration has been concentrated on the fatigue
crack growth analysis assuming that the characteristics of the
response (e.g. stresses) are given.

It is clear that a more adequate approach should account
for the joint (coupled) treatment of both the system dynamics
and deterioration process (e.g. fatigue accumulation). Such an
analysis allows to account the effect of stiffness degradation
during the vibration process on the response and, at the same
time, gives the actual stress values for estimation of fatigue. It
seems that in stochastic dynamics the coupled analysis of the
response and degradation had been treated first in the context
of elasto-plastic (hysteretic) systems [5,6]. In the articles cited
a degradation of the system is defined in terms of the hysteretic
energy dissipation. As far as the joint analysis of random vi-
brations and fatigue degradation is concerned, one should men-
tion the paper [7] containing the model in which fatigue crack
growth equation is coupled with the equation for the ampli-
tude of the response (obtained via the averaging method – cf.
[1,2]), and more extensive studies published in papers [8,9].
The objective of this paper is to expound the basic method-
ology of the coupled stochastic dynamics-degradation mod-
elling along with concise exposition of the effective analysis
of selected problems. First, a general formulation of various
problems of stochastic dynamics coupled with the evolution
of deterioration process is presented. Afterwards, some spe-
cific oscillatory systems subjected to random excitation, such
as hysteretic systems and systems with fatigue-induced deteri-
oration of stiffness are considered. The analysis presented also
shows how the reliability of deteriorating stochastic dynamical
systems can be assessed.
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2. Stochastic response-degradation models
2.1. General formulations. Stochastic governing equations
for many engineering dynamical systems should be repre-
sented in the form which accounts for both – the system dy-
namics and degradation process taking place in the system.
In the case of mechanical/structural systems these are, above
all, the elastic-plastic vibratory systems (under severe random
loadings) in which the restoring force has a hereditary nature
(cf. [3,6]) and elastic systems with stiffness degradation due to
fatigue damage.

In general, a coupled response-degradation model for non-
linear vibratory systems with random excitation (parametric
and/or external) can be formulated in the following vectorial
form:

MŸ (t) + CẎ (t)

+ R
[
Y (t), Ẏ (t),Z(t),X1(t, γ)

]
= X2(t, γ)

(1)

Q
{

Z (t) , Ż (t) , Y (t) , Ẏ (t)
}

= 0 (2)

Y (t0) = Y0, Ẏ (t0) = Y1,0, Z (t0) = Z0 (3)

whereM and C represent the constant mass and damping
matrices, respectively,Y (t) = [Y1, Y2, . . . , Yn] is an un-
known response vector process,R characterizes a nonlinear
restoring force depending onY and Ẏ , and on the process
Z (t) = [Z1, Z2, . . . , Zm], m < n, which characterizes
a process responsible for degradation phenomena;X1 (t, γ),
X2 (t, γ) are given random processes symbolizing parametric
and external excitations, respectively. The variableγ is an el-
ement of the space of elementary events in the basic scheme
(Γ, F, P ) of probability theory (cf. [1]). Q { · } denotes a
relationship between degradation and response processes; its
specific mathematical form depends on the particular physi-
cal/mechanical situation. It is clear thatY0, Y1,0, Z0 are given

initial values of the response
[
Y (t) , Ẏ (t)

]
and degradation

Z (t) processes, respectively.
It should be noted, that in the cases when the original sys-

tem is of a continuous type (e.g. beam, plate, shell) gov-
erned by partial differential equations, the model (1)–(3) is a
spatially discretized version (e.g. via Galerkin or finite ele-
ment methods) of the original equations and it describes the
system response-degradation (as a function of time) at fixed
spatial points. It is also worth noticing that the meaning of
Q { · } in (2) can be quite different in specific situations; it
can be a differential operator, and also a functional defined on[
Y (t) , Ẏ (t)

]
.

It is natural to assume thatZ(t0) = 0. During the dynam-
ical process vectorZ(t) approaches, as time increases, the un-
safe state symbolized by the boundaryB̃; eachZ ∈ B̃ denotes
a critical level of degradation. SetB of the admissible values
of Z(t) – being a part of the first quadrant – constitutes a qual-
ity space. Therefore, the reliability of the system in question is
defined as the probability that processZ(t) will belong toB,
i.e.

R(t) = P {Z (τ) ∈ B, τ ∈ [t0, t]} (4)

The most common case of model (1)–(3) is obtained if re-
lationship (2) takes the form of a differential equation, i.e.

Ż (t) = G
[
Z (t) , Y (t) , Ẏ (t)

]
(5)

whereG is the appropriate non-negative function specifying
the evolution of degradation; its mathematical form is inferred
from the elaboration of empirical data, or it is derived from
the physics of the process. It is clear that the model (1), (5)
has a feedback mechanism: large displacements and velocities
cause weakening of the restoring force, which in turn allows
for larger deflections. Although we do not introduce here the
notions of slow and fast variables, one should keep in mind that
the deteriorationZ(t) is a slow process, soY is a fast variable
compared toZ; this fact can be used for substantiation of some
approximations in analysis of specific problems.

Although a degradation processZ(t) in the most cases
can be taken as a scalar process, its vectorial natureZ(t) =
[Z1(t), . . . , Zm(t)] in Eqs. (2) and (5) allows one to account
for various types of degradation phenomena. The components
Zi(t), i = 1, 2, . . . , m, can be interpreted as different interact-
ing damage processes or internal damage variables influencing
a response processY (t), e.g. thermal or chemical degrada-
tions.

In various degradation problems, especially – in the anal-
ysis of response of vibrating system with the stiffness degra-
dation due to fatigue accumulation, it is natural to quantify the
processZ(t) in (2) by a scalar degradation quantityD(t) and
adopt as a coupling equation (2) one of the “kinetic” equations
for fatigue crack growth. These equations, however, contain
the stress intensity factor range, so the degradation rateḊ(t)
depends on the quantity related toYmax − Ymin. In this situa-
tion, equation (2) has the form

Ḋ (t) = H [D (t) , Ymax − Ymin] (6)

whereYmax andYmin are usually the maximal and minimal
values of a scalar processY (t) = Y1(t); H is a suitable non-
negative (generally nonlinear) function identified from the fa-
tigue studies.

Another version of an equation forD (t) in the cou-
pled response-degradation problem is obtained if functional
relationship (2) does not includėZ (t), and the degradation
Z (t) = D (t) depends on some functionals defined on the

response process
[
Y (t) , Ẏ (t)

]
, i.e. (2) takes the form (F

denotes here the appropriate functional)

D (t) = F
{

Y (t) , Ẏ (t)
}

. (7)

Important examples of Eq. (7) include randomly vibrating
systems in which a degradation process depends on the time
length which the responseY (t) spends above some critical
level y∗ (or, D (t) depends on the number of crossings of the
level y∗ by the trajectories of the processY (t) within a given
interval[0, T ]). This is the case of an elastic-plastic oscillatory
system withD (t) interpreted as accumulated plastic deforma-
tion generated by the “excursion” of the response processY (t)
into plastic domain (in this situationy∗ may be regarded as the
yield limit of the material component in question, cf. [10].
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This is also situation of randomly vibrating plate with fatigue-
induced stiffness degradation; in this caseD (t) is interpreted
as accumulated fatigue damage due to the exceeding the fa-
tigue limit by the response process.

The analysis of the stochastic response-degradation prob-
lem for elastic-plastic vibratory systems and for the system
with fatigue-induced degradation can also be analyzed by the
more explicit cumulative model for degradationD (t). We
mean the situation in which relationship (2) in whichZ (t) =
D (t) is represented as follows (in scalar form)

D (t) = D0 +
N(t)∑

i=1

∆i (Y, γ) (8)

where∆i = ∆i (Y, γ) are random variables characterizing the
elementary degradations taking place in the system; the magni-
tude of∆i depends on the characteristics of the processY (t)
above a fixed (critical) levely∗. ProcessN (t) is a stochastic
counting process characterizing number of degrading events in
the interval[t0, t]. In the case of elastic plastic oscillator (cf.
[10]) ∆i (Y, γ) are the yielding increments taking place in a
single yielding durationτY which is related to the time interval
which the response process spends above the yield level dur-
ing a single excursion or during a single clump of excursions.
In the case of fatigue∆i, i = 1, 2, . . . , N (t) can be regarded
as the magnitudes of elementary (e.g. within one cycle) crack
increments (cf. [4,11]).

Therefore, as the discussion above indicates, the general
stochastic response-degradation model (1)–(3) includes (in
specific practical situations) various untypical systems of equa-
tions in which ordinary differential equations are coupled with
not necessarily differential evolution models for degradation.
In the next sections we will show how such coupled models
can be treated effectively in practice.

2.2. Specific deteriorating systems

Daniels systems.Consider a system containingn brittle, par-
allel fibers fixed in their upper ends and carrying a mass (at-
tached to their lower ends); this system is subjected to a ran-
dom load processS (t), t ≥ 0 (cf. Fig. 1). Let us assume that
the fibers have the same stiffnessk and the damping param-
eter c, but random, independently distributed resistancesRi

(i = 1, 2, . . . , n). Such a system may carry a given load in var-
ious damage statesD (t) characterized by a fraction of failed
fibers at timet. The load (at each time instantt) is assumed to
be equally distributed among the unfailed fibers according to
the rule known as the equal load sharing. It is assumed, that
D (t) = 0 as long as the displacement of a massY (t) does not
exceed some “smallest” valuey0. During a random vibration
motion (generated byS (t)), the displacementY (t) changes
in time and causes failures/damage of some fibers. The system
goes through various degradation statesl, l = n, n− 1, . . . , 0.
The Daniels system collapses when the degradation statel = 0
(all fibers are damaged).

Let τl denote a time period in which the system remains in
its degradation statel. Reliability (or, life-time) of the system
is characterized by the probability

PS (τ) = P

(
n∑

l=1

τl > τ

)
(9)

that time to ultimate failure exceeds a fixed service life-time
τ . Probability (9) depends on the probability distributions
of the lengths of time intervalsτl. These probabilities, in
turn, depend on the relationships between the system displace-
ments in degradation statesl and random resistances of fibers;
fiber i fails at timet if the displacement process exceeds the
limit value, say∆i, of the fiber elongation for the first time
(∆i = Ri/k, i = 1, 2, . . . , n). The determination of proba-
bility (9) poses significant difficulties due to the coupling be-
tween system response and sequential degradation states of the
system. A detailed analysis can be found in the papers [12,13].

Fig. 1. Illustration of Daniels system with n fibers (n = 11); m fibers
unfailed (m = 7) andn−m failed fibers

Elastic-plastic/hysteretic vibratory systems.In engineering
design of structures which have to withstand severe random
loading there is a strong need for taking into account the yield-
ing behaviour of real structural components. This is the case of
structures subjected to earthquakes, strong wind loadings, etc.
Usually it is required to estimate the probability of structural
failure within a given interval of time, by using the appropri-
ate models of the system and excitation. However, a model
of the system has to account for plastic deformations which
may happen during the system dynamics and which degrade
its performance. Such a model is known as an elastic-plastic
oscillatory system.

Let us consider a vibrating system in which, in addition to
elastic deformations, some plastic deformations may occur oc-
casionally (in the form of “excursions” of the system response
into the plastic region – cf. Fig. 2). Such dynamics causes
accumulation of plastic deformations which, in turn, induce a
deterioration of the system properties. For example, the ini-
tial stiffness of the systemk decreases to, say,α (L1) k = k1,
whereL1 denotes the length of time interval in which the re-
sponse is in the plastic domain for the first time, andα(·) is a
specified non-negative monotonically decreasing function with
α (0) = 1. Assuming that the plastic degradationD (t) is
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scalar quantity and equal to the sum of the values of all plas-
tic partial deformations which took place within time interval
[0, t], we can representD (t) in the form of a random sum of
random increments∆Di:

D (t) =
N(t)∑

i=1

∆Di (10)

where N (t) is the appropriate stochastic counting process
characterizing a number of “degrading events” within inter-
val [0, t], whereas∆Di, i = 1, 2, . . . , N(t) are random vari-
ables which quantify magnitudes of partial plastic deforma-
tions. Since each plastic deformation degrades the system stiff-
ness, the magnitude of each increment∆Di depends on the
response of the system with its “stiffness state”ki−1; this fact
can be symbolized as

∆Di = ∆Di (Y (t); ki−1) . (11)

In the case of rare plastic “events” we can assume that∆Di

are independent random variables and thatN (t) is a Poisson
random process. For a detailed analysis a reader is referred to
[10]; (cf. also [14]).

Fig. 2. Random ‘excursions’ of the response into plastic region; cu-
mulative degradation

In the majority of situations deformations occurring in
elastic-plastic oscillatory systems are characterized by the ap-
propriate model of elastic force with hysteresis (containing ad-
ditional component governed by independent differential equa-
tion). In such a model the restoring force depends not only on
the instantaneous deformation but also on the past history of
deformation. More explicitly, the system dynamics is mod-
elled by the equation (in scalar representation)

Ÿ (t) + h
(
Y, Ẏ

)
+ kF (Y, Z) = X (t, γ) (12)

wherek is a stiffness coefficient,h
(
Y, Ẏ

)
represents arbi-

trary nonlinear damping, whereasF (Y,Z) has a primary elas-
tic component (with slopeα) and a secondary plastic com-
ponent. In the special case where the damping is linear, i.e.

h
(
Y, Ẏ

)
= 2ζẎ equation (12) can be represented in the ex-

plicit bilinear form

Ÿ (t) + 2ζẎ (t) + αkY (t) + (1− α) kZ = X (t, γ) (13)

whereζ is the usual damping coefficient for a linear system,k
is the pre-yielding stiffness,α is the ratio of post-yielding stiff-
ness to pre-yielding stiffness, and(1− α) kZ is the hysteretic

part of the restoring force, in whichZ = Z (t) characterizes
the hysteretic loop and varies in time according to the general
evolution equation (cf. equation (5))

Ż (t) = G
[
Y, Ẏ , Z

]
(14)

A variety of hysteresis laws have been used in the existing anal-
yses. A possible form is as follows (cf. [15])

Ż (t) = ẏ [1−H (ẏ) H (z − 1)−H (−ẏ)H (−z − 1)]
(15)

whereH(·) is the Heaviside unit step function. A smooth hys-
teretic evolution equation often used has the form of Bouc and
Wen (cf. [6])

Ż (t) = −A
∣∣∣Ẏ

∣∣∣ |Z|n−1
Z −BẎ

∣∣∣Ż
∣∣∣
n

+ CẎ (16)

where constantsA, B,C, n characterize the amplitude, shape
of the hysteretic loop, and transition from elastic to inelastic
ranges.

In the situation considered a degradation of the restoring
force has been defined in terms of the total hysteretic energy
dissipation characterizing the cumulative effect of severe re-
sponse (cf. [6]), that is

D (t) = εT (t) = (1− α) k

t∫

0

Ẏ (τ)Z (τ) dτ (17)

Therefore, the coupled response-degradation problem for ran-
domly excited vibratory hysteretic systems is governed by
equations: (12), (13), (14), (17). This is a complicated system
of stochastic differential equations which can only be treated
by use of approximate methods; some of such methods have
been developed in the last decades (cf. [3,5,16,17]).

Systems with fatigue-induced stiffness degradation.An im-
portant example of a coupled response-degradation problem
is concerned with stiffness degradation in randomly vibrat-
ing structural/mechanical components due to fatigue accumu-
lation. For a wide class of such systems (in general, nonlinear)
a coupled response-degradation model can be represented in
the following form:

Ÿ (t) + h
(
Y, Ẏ

)
+ k [A (t)] Y (t) = X (t, γ) (18)

Ȧ (t) = f (A, ∆S, R) (19)

wherek(A) is a given decreasing function,f is a non-negative,
empirically identified function,A(t) – the fatigue crack size at
time t – is governed by its evolution equation known in me-
chanics of fatigue fracture (cf. Fig. 3);∆S is the stress range,
i.e. ∆S = Smax−Smin, whereS(t) is a random applied stress
process,R is the stress ratio, i.e.R = Smin/Smax. The well-
known Paris-Erdogan model makes Eq. (19) more specific,
namely

Ȧ (t) = f1 (A)∆S, ∆S ∼ Ymax − Ymin (20)

wheref1(A) is a non-negative function whose functional form
depends on the geometries of the crack and the structural com-
ponent in which the crack is growing. If stressS(t) is a linear
function of the displacementY (t), then it is also governed by
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Eq. (18); in nonlinear case the model requires the appropri-
ate extension. Of course, Eq. (19) is a stochastic one since it
includes a random process being the amplitude or envelope of
random responseY (t).

Stochastic analysis of systems with fatigue-induced stiff-
ness degradation has attracted some attention in the last years
(cf. [7–9]) but there are still open problems to be solved. In
Section 4 a possible approach to the problem sketched above
will be presented in detail.

Fig. 3. Diagram of a vibratory system with stiffness degradation due
to fatigue crack propagation

3. Stochastic systems with stiffness degradation:
simple cases

3.1. Dynamics of defective systems; remarks.A special
class of vibration problems related in a sense with degrada-
tion of system properties consists in modelling and analysis
of defective vibratory systems when a “stationary” or “frozen”
degradation occurs in the form of some structural defects. The
basic objective of this type of research is to find out the rela-
tionships between some dynamic characteristics of a vibrat-
ing system (e.g. its natural frequencies) and the size of a
fixed defect. Since many years such studies have attracted
much attention in the context of vibration diagnosis of struc-
tural/mechanical systems (cf. papers [18,19]).

The most common structural defect is the existence of a
crack. A crack in an elastic structural/mechanical element in-
troduces considerable local flexibility due to the strain energy
concentration in the vicinity of the crack tip under load. To
take this effect into account an equivalent spring, a local com-
pliance, was used in many articles. It allowed to correlate the
crack depth to the change in natural frequencies of the first
three harmonics of the structure for known crack position. In
paper [19] a crack disturbance functionf(x, z) was introduced
to characterize the change in stress, strain and displacement
distribution due to the crack. This function directly affects the
characteristic equation for natural frequencies of the cracked
beam. In this way one can identify the size of crack defects via
measurements of the natural frequencies. However, all these
studies of cracked vibratory structural/mechanical components

(e.g. beams, shafts) do not account for a mutual coupling of
the response amplitude and crack growth during the vibration
process.

3.2. First order systems; stochastic dynamics with aging
and wear-out. Let us consider a first order system with ran-
dom white noise excitation of the following form (cf. [20])

Ẏ (t) = −a (t) Y (t) +
√

εξ (t, γ) (21)

ȧ (t) = −βh (a) (22)

wherea (t) , β andh (·) are positive. Functiona (t) charac-
terizes changes (weakening) of the restoring mechanism (e.g.
due to aging) andξ (t, γ) is an uncorrelated random process (a
white noise),ε > 0 quantifies the noise intensity. The aging
functiona (t) is governed by its own evolution equation (un-
coupled withY (t)). In fact, this equation could be solved and
the result substituted to (21). The main Eq. (21) would be still
linear inY . However, it is beneficial to look for the joint solu-
tion process[Y (t) , A (t)] which is a diffusion Markov process
(cf. [1]).

Letf (x, a) be a joint probability density of[Y (t) , a (t)] in
its stationary state. The Fokker-Planck-Kolmogorov equation
associated with system (21), (22) is

a (t) y
∂f

∂y
+

ε

2
∂2f

∂y2
− βh

∂f

∂a
= 0 (23)

We are interested in characterization of the exit of the process
from the regionB = {(Y, a′) , acr ≤ a′ ≤ a} at the boundary
pointacr. Therefore, the conditions which have to be satisfied
are

f (y, acr) = δ (y − y∗)
lim

y→±∞
f (y, a′) = 0, acr ≤ a′ ≤ a

(24)

With conditions (24)f (y, a) gives the probability density of
exit of process[Y (t) , a (t)] from the interval(y∗, acr) starting
from (y∗, a). The problem described here was first treated in
paper [20] where the probability density has been found (via
separation of variables) in the form of a series expansion in
terms of the parabolic cylinder functions.

Another situation discussed in [20] which can be regarded
as a simple coupled problem with wearout is described by the
system of equations

Ẏ (t) = AY +
√

εξ (t) (25)

Ȧ (t) = −β h (Y ) (26)

where functionh determines how wear-out depends on the
response (displacement, stress); large displacements cause
weakening of the restoring force, which in turn allows for
larger deflections.

System of Eqs. (25), (26) is a special case of a more gen-
eral system of equations in which one variable (say,y) changes
much faster than the second variable (say,D). They variable
is called a fast variable and theD variable is a slow variable.
One may construct the governing stochastic equations for these
two variables in nonlinear form

Ẏ (t) = ηf1 (Y, D) +
√

ηf2 (Y, D) ξY (t) (27)

Ḋ (t) = g1 (Y, D) + g2 (Y, D) ξD (t) (28)
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whereξY andξD are the white noise disturbances acting on
the response processY (t) and degradation processD (t), re-
spectively. Parameterη is introduced in Eq. (27) to indicate
the different time scales in the above equations. Making use of
this fact, the ‘fast’ variable can be eliminated (via the so called
adiabatic elimination procedure originating from the quantum
physics, cf. [21]). According to this procedure one is looking
for solutions of (27), (28) in the limitη → ∞, consistent with
the assumption thatY will decay very rapidly to an equilibrium
stateYeq. It is assumed that Eq. (27) without random noise has
a stable equilibrium stateyeq which can be obtained by solv-
ing the equationf1 (yeq, D) = 0. The equilibrium valueyeq

depends generally on the slow variableD. When the noise
term in (27) is taken into account one is looking for an equilib-
rium probability distribution of theY variable. If one is inter-
ested only in the time scale large compared to the decay time
(∼ η−1) of the fast variableY , the process[Y (t) , D (t)] gov-
erned by Eqs. (27), (28) can be approximately described only
by the motion of the slow variableD. In this sense one can say
that the slow variable is subordinated to the fast variable.

3.3. Vibratory systems with “empirical” stiffness degrada-
tion. As we have discussed in Section 2, the evolution of the
degradation in time can be specified in various ways depending
on its physical nature as well as on the availability of the em-
pirical information. If the available information on the degra-
dation process comes from experiments, then a rational way to
include it into the response analysis can be based on the fol-
lowing formulation:

Ÿ (t) + 2ζẎ (t) + q (D (t)) Y (t) = ξ1 (t, γ) , (29)

D (t) = φ (t) (30)

where φ (t) is a given, empirical function quantifying the
growth of the degradation in time. If degradation is gener-
ated by the fatigue crack growth andD (t) is identified with the
crack sizeA (t), thenφ (t) can be regarded as a function which
characterizes the averaged crack growth fort ≥ 0 and incor-
porates the “averaged” contribution of the stress range∆S. In
a special case of a narrow-band stress response process with
zero mean∆S may be approximated, for example, by the root
mean square of the stress processS (t) generated by the dis-
placementY (t).

In the above formulation, the problem is reduced to the
analysis of oscillator (29) with a given time-varying stiffness
coefficient, which is a composition of the monotonically de-
creasing functionq and degradationD (t) = φ (t). Gener-
ally, the functionq representing the stiffness dependence on
the degradation measureD (t) (in particular, on the dominant
crack size) is often taken in the form of a polynomial

q (D) =
M∑

i=1

βi D
i. (31)

However, it can be also approximated by the exponential func-
tion [8]

q (D) = (1− α1) exp (−α2D
α3) (32)

whereα1, α2, α3 are positive constants. The values of the
empirical parametersαi, βi should be identified from exper-
imental data. The probability distribution ofY (t) of the sys-
tem (29), (30) is Gaussian with time-dependent meanmY (t)
and varianceσ2

Y (t). These functions satisfy the differential
equations derivable from Eq. (29). Introducing the variables
Y1 = Y , Y2 = Ẏ1 we have the system

Ẏ1 = Y2

Ẏ2 = −q (D (t)) Y1 − 2ζY2 + ξ1 (t, γ) .
(33)

The equations for the second order momentsmij (t) =
〈Yi (t) Yj (t)〉, i, j = 1, 2, are as follows:

ṁ11 (t) = 2m12 (t)
ṁ12 (t) = − [q (D (t)) m11 (t) + 2ζm12 (t)] + m22 (t)
ṁ22 (t) = −2 [q (D (t)) m12 (t) + 2ζm22 (t)] + 2ζ.

(34)
Equations (34) along with the initial conditionsmij (t0)
(which follow from the initial conditions forY1 (t) andY2 (t)
when t = t0) determine the momentsmij (t). Because
〈Y (t)〉 = 0 the varianceσ2

Y (t) is equal tom11 (t).
If we wish to account for the statistical dispersion of the

degradation process we may considerD (t) = φ (t, C (γ)) in-
stead ofφ (t), whereC (γ) is a suitably defined random vari-
able. In such a case the probability distribution ofY (t) is no
longer Gaussian; it is a mixture of Gaussian distribution and
the probability distribution ofC (γ). It can be obtained by the
integration of the Gaussian (conditional) distribution with re-
spect to the distribution ofC (γ).

It is worth to add that the vibration equation can be supple-
mented by the degradation process which takes place at a much
earlier stage than growth of a dominant crack. For example, a
significant degradation mechanism that affects the reliability of
various engineering components is the pitting corrosion [22].
It has been found empirically that the pit volume in low-alloy
steels under cyclic loading increases linearly with timet.

Mathematically, model (29), (30) is uncoupled; onlyY (t)
is explicitly affected by the degradation of stiffness (D (t) is
assigned a priori). However, if the characteristics of the degra-
dation processD (t) are determined from the measurements of
D (t) during the vibration process, they are affected implicitly
by the response amplitudes.

4. Stochastic dynamics with fatigue-induced
stiffness degradation

4.1. Description of underlying model. As we have already
mentioned, the degradation of stiffness due to fatigue accu-
mulation during the vibration process is the phenomenon of
great importance in practice. In this section we show how the
coupled response-fatigue degradation problem can be treated
effectively.

Let us consider a thin rectangular plate of sizel0×b with an
initial central crack of length2A0 and supporting a rigid heavy
massM at its end (cf. Fig. 3). The plate is made of homoge-
neous and isotropic elastic material with linear viscous damp-
ing. The mass is subjected to a random Gaussian white noise
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excitationξ (t) perpendicular to the crack. Thus, the crack ex-
tends in a direction normal to the applied stress at a rate de-
pending on the system geometry and the intensity of random
applied stress. Let us denote byY (t), 2A (t), andq (D (t))
the plate displacement, the crack size and the degrading plate
stiffness due to crack growth at timet > 0. The displacement
processY (t) satisfies the following stochastic equation

mŸ (t) + cẎ (t) + q (D (t)) Y (t) = ξ (t) (35)

wherec denotes the system damping and is assumed to be time
invariant. If stress is a linear function of the displacement, then
it is also governed by Eq. (35) with suitably rescaled process
ξ (t). Dividing both sides of Eq. (35) bym (and then introduc-
ing simple transformation of variables:̃Y = Y/σY , τ = ω0t,
whereσY is a standard deviation of the stationary solution of
(35) without degradation, i.e. whenq (A) = ω2

0) one obtains
a dimensionless form of (35). It is convenient to represent this
equation as the system of two first order equations for the pro-

cess[Y1 (t) , Y2 (t)] =
[
Y (t) , Ẏ (t)

]

Ẏ1 (t) = Y2 (t)

Ẏ2 (t) = −2ζY2 (t)− q (D (t))Y1 (t) + ξ (t)
(36)

whereζ is a damping coefficient. Functionq(·) characterizes
the stiffness dependence on the degradation due to fatigue.
This stiffness function can be regarded as empirical one, but
it can also be inferred from the solutions of vibration prob-
lems with “frozen” cracks. The best known representation of
the stiffness dependence on the crack sizea has the form of a
polynomial, i.e.

k (x) = k (0)
K∑

i=1

βix
i, x =

2a

b
(37)

where coefficientsβi are suitably identified constants. For ex-
ample (cf. [7]):

k(x) = k(0)
[
1− 1.708x2 + 3.081x4

−7.036x6 + 8.928x8 − 4.266x10
] (38)

The stiffness function can also be approximated by the follow-
ing exponential function (cf. [8]):

k (x) = α1 + α2 exp (−α3x
α4) (39)

whereα1, α2, α3, α4 are positive constants, such thatα1 +
α2 = q0 to haveq(a = 0) = q0.

In order to obtain a complete response-degradation model
when degradation is due to the fatigue crack growth the ap-
propriate “kinetic” equation for crack sizeA(t) should be con-
structed. The physics of fatigue crack growth is a complex phe-
nomenon taking place on different scales (starting from nucle-
ation of micro-cracks, through their coalescence and growth,
and the growth of a macroscopic/dominant crack). This pro-
cess depends crucially on the material microstructure and the
macroscopic material properties; it depends also on exter-
nal conditions such as external loading acting on mechani-
cal/structural element, temperature, chemical environment etc.
(cf. [4,23]). Here we restrict our attention to the growth of

macroscopic crack in elastic material. In this case, the main
driving force for a crack growth is the stress intensity factor
K; it characterizes the stress intensity in the crack tip, and de-
pends on the crack length, i.e.K = K(a). In general

K = B (a)S
√

πa (40)

whereS represents the far-field stress resulting from the ap-
plied load andB(a) is a factor which accounts for the shape of
the specimen and the crack geometry. The crack growth rate
(∆a, or da/dt) is understood as the crack extension of a crack
of lengtha during unit of time, or in one stress cycle.

The investigations of fatigue crack growth in elastic ma-
terials have shown that the most suitable quantity for char-
acterizing the fatigue crack growth is the stress intensity, or
– more specifically – the stress intensity factor range∆K =
Kmax (a) −Kmin (a). Therefore, the crack growth equations
can be represented in the general form

dA

dN
= f (∆K)

= f
(
B (A)

√
πa∆S

) (41)

where∆S = Smax − Smin is the stress range,N denotes a
number of stress cycles andf is a suitable non-negative func-
tion. One of the most common equations belonging to class
(41) is the following Paris-Erdogan equation (for constant am-
plitude loading)

dA

dN
= C (∆K)m

, ∆K > 0

= CBm (A)
(√

πA
)m

(∆S)m
(42)

where∆S is the stress range associated with the response pro-
cessY (t), andC andm are empirical constants (cf. [4,23]).

Therefore, a coupled model of the response-fatigue degra-
dation process is represented by Eqs. (36), (42) along with the
initial conditions[Y1 (t0) , Y2 (t0) , A (t0)] and formulae (37),
(39). This is a system of three first order differential equa-
tions with random excitation. Because of large random scat-
ter of fatigue crack trajectories and uncertainty in effects of
many uncontrolled factors the evolution Eq. (42) can also be
randomized and included into the analysis (such equation was
proposed and analyzed in [24]).

To make the further analysis consistent with the model
(which includesD (t) ) we will deal not withA directly but
with the nonlinear transformationΨ (A) of A defined as

Ψ(A) =

A∫

A0

dx

Bm(x) (
√

πx)m (43)

whereA0 is the initial crack size. Let us denote byΨ∗ the
value ofΨ(A) for the critical crack lengthA = A∗, and define
the degradation measureD as

D =
Ψ(A)
Ψ∗ , Ψ∗ = Ψ(A∗), D ∈ [D0, 1] (44)
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Of course,

dD =
1

Ψ∗ dΨ(A) =
1

Ψ∗
dA

Bm(A) (
√

π A)m

=
1

Ψ∗C(∆S)mdN

(45)

Therefore, the evolution equation for the fatigue crack induced
degradationD(t) defined by (44) takes the form

dD

dN
=

1
Ψ∗C (∆SY )m (46)

where∆SY is the stress range generated by the response pro-
cessY (t).

4.2. Envelope approximation of stress range; moment
equations. In order to make the model (36), (46) effective
some approximations have to be introduced. Here, we show
how the random stress range∆S occurring in Eq. (42) and in
its transformed version (46) can be effectively characterized.
Let us assume that the vibrating system is lightly damped and
its response (the associated stress process) is a narrow band
process. In such a process a single frequency dominates and
its trajectories resemble harmonic oscillations. Such a process
may be approximated by two times the envelope process (cf.
[4,25]), i.e.

∆SY ≈ 2
√

Y 2
1 (t) + Y 2

2 (t) (47)

and the passage from cycles to time in Eqs. (42), (46) may be
made with use of the relationshipdN ≈ µdt, whereµ is the
average number of zero crossings by processY (t). Therefore,
Eq. (46) takes the form

dD

dt
= C1

[
Y 2

1 (t) + Y 2
2 (t)

]m/2
, (48)

whereD (t0) = D0, C1 = C2mµ (Ψ∗)−1. After the approx-
imations above the basic model is represented by the system
of Eqs. (36), (48). It should be noticed that even though the
vibrating system is linear, the coupled response-degradation
problem is nonlinear. The exact analysis of the coupled sys-
tem (36), (48) is involved. To make the further treatment of
the problem possible we will take advantage of the fact that
the envelope amplitude varies slowly in time. This agrees with
the observation that the degradation process is slow in com-
parison with the response itself. Therefore, making the ‘linear
approximation’D (t) = Ḋ (t) t whereḊ (t) is given by (48)
we can regardD occurring in Eq. (36) as explicitly expressed
by Y (t), Ẏ (t) andt. Hence, Eq. (36) can be written in the
form of the following Itô stochastic equations (cf. [8])

dY1 (t) = Y2 (t) dt

dY2 (t) = − [2ζY2 (t)− g (Y1, Y2, t)] dt + 2
√

ζdW (t)
(49)

whereW (t) is the standard Wiener process, andg (Y1, Y2, t)
is the nonlinear term accounting for the dependence of stiffness
on the degradation, i.e.

g (y1, y2, t) = y1q (D) = y1q (y1, y2, t)

= C1

(
y2
1 + y2

2

)m/2
y1t

(50)

In order to obtain quantitative results, one has to assume
the specific function characterizing the dependence of the stiff-
ness on the degradation due to fatigue. Here, the approxima-
tion (39) is used.

In order to obtain a probabilistic characterization of the re-
sponse with the degradation of stiffness (39) the moment equa-
tions for the stochastic system (49) are generated (cf. [1]). If

we denotemij (t) =
〈
Y i

1 (t)Y j
2 (t)

〉
where〈·〉 is the symbol

of the probabilistic mean value, then we have

ṁij(t) =
d

dt

〈
Y i

1 Y j
2

〉
=

〈
iY i−1

1 Y j+1
2

− j [2ζY2 + g (Y1, Y2, t)]

× Y i
1 Y j−1

2 + 2ζj (j − 1)Y i
1 Y j−2

2

〉

≡ 〈Gij (Y1, Y2; t)〉 ,
〈
Y i

1 (t0)Y j
2 (t0)

〉
= mij (t0)

(51)
i, j = 1, 2, . . .. The information on the behaviour of the sys-
tem is taken in the form of five first equations from the above
hierarchy of equations, i.e. equations for the first order and
second order moments (m10,m20,m01,m02,m11)

i = 1, j = 0 :
d

dt
〈Y1〉 = 〈Y2〉

i = 2, j = 0 :
d

dt

〈
Y 2

1

〉
= 2 〈Y2Y1〉

i = 0, j = 1 :
d

dt
〈Y2〉 = −〈2ζY2 + g (Y1, Y2, t)〉

i = 0, j = 2 :
d

dt

〈
Y 2

2

〉
= −2 〈2ζY2 + Y2g (Y1, Y2, t)〉+ 2ζ

i = 1, j = 1 :
d

dt
〈Y1Y2〉 =

〈
Y 2

2 − 2ζY1Y2 − Y1g (Y1, Y2, t)
〉

(52)
The approximate probability densityp (y1, y2; t) is determined
via the modified maximum entropy method (cf. [26,27]). This
density has the form

p (y1, y2, t) =
1
C̃

exp
{
− [ λ10y1 + λ20y1g(y1, y2, t)

+ λ01y2 + λ02y
2
2 + λ11y1y2

]}

=
1
C̃

p̃ (y1, y2, t)

(53)

whereλij are unknown Lagrange coefficients and

C̃ =

+∞∫

−∞
p̃ (y1, y2, t) dy1dy2 (54)

is the normalizing constant parametrized by time. Let us dis-
cretize system (52) using (for instance) the Euler scheme (to
make further equations more clear) with the step∆t. As the
result, the system (52) can be rewritten as

mij (tk+1) = mij (tk)

+ ∆t

+∞∫

−∞
Gij (y1, y2, tk) p (y1, y2, tk) dy1dy2

i, j = 0, 1, 2 0 < i + j ≤ 2
(55)
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with mij (t0) assumed to be given initial condition. In our
consideration these initial moments are taken as the moments
of stationary solution of the system (35) without degradation.

The Lagrange coefficientsλij are determined at each dis-
crete timetk numerically from the following system of alge-
braic nonlinear equations

mij (tk) =

+∞∫

−∞
yi
1y

j
2p (y1, y2, tk) dy1dy2

i, j = 0, 1, 2 0 < i + j ≤ 2

(56)

Taking into account (53) this system can be written as

+∞∫

−∞

[
yi
1y

j
2 −mij (tk)

]
p̃ (y1, y2, tk) dy1dy2 = 0

i, j = 0, 1, 2 0 < i + j ≤ 2

(57)

and can be solved using (for example) the five dimensional
Newton method.

In the calculations function (39) was used with the fol-
lowing values of parameters:α1 = α2 = 0.5, α4 = 2.0,
ζ = 0.125, m = 3.0, C1 = 1.3298 · 10−5. It is assumed that
the degradation starts when dimensionless system reaches the
stationary state. In the absence of degradation (q (D) = 1) the
response of the system (which is linear) is Gaussian. Degra-
dation introduces nonlinear and time-dependent stiffness and,
therefore leads – in general – to non-Gaussian behaviour of the
system.

Of the results of numerical calculations we show here two
illustrations. Figure 4 visualizes functionq (D) versusD for
selected values of parametersα3: for curve (1)α3 = 0.1, for
curve (2)α3 = 0.5, for curve (3)α3 = 1. Generally, the form
of degradation function (39) is very flexible and many kinds of
possible types of degradation (from linear to strongly nonlin-
ear) can be obtained. In practice, the values of parametersα1,
α2, α3, α4 should be estimated from experimental data.

Fig. 4. Function of degradationq (D) given in (39) for different val-
ues of parameterα3: (1) – α3 = 0.1; (2) – α3 = 0.5; (3) – α3 = 1.

Values of other parameters in the text

Figure 5 shows the varianceσ2
y of the displacement in the

system with degradation for the same different values of pa-
rametersα3 as in Fig. 4. In the case of dimensionless system
without degradation we haveσ2

y = 1. Therefore, Fig. 5 dis-
plays the effect of stiffness degradation on the response of the
system. The increasing of degradation causes the increase of
the variance of displacement of the system.

Fig. 5. The variance of the displacement in system with degradation
for degradation functions corresponding to the Figure 4

4.3. Analysis of response-degradation problem via condi-
tioning. In this subsection we wish to show another approach
to effective analysis of the coupled response-stiffness degrada-
tion problem which accounts explicitly for the cumulative na-
ture of the fatigue degradation process (cf. [9]). Let us notice
that Eq. (46) indicates that the increment of the degradation
measureD in one equivalent cycle can be represented as

∆Di =
1

Ψ∗ C (∆Si)
m (58)

where∆Si is the stress range in thei-th cycle of loading. Let
us representD (t) in the form of a sequence of random vari-
ablesDN (γ) =: D (tN ), N = 0, 1, . . . , N∗, whereDN (γ)
characterizes the state of the degradation process afterN cy-
cles. Therefore

DN (γ) =
N∑

i=1

∆Di (γ) (59)

∆Di (γ) = Di (γ)−Di−1 (γ) (60)

The coupled computational response-degradation model has
the form

Ÿ (t) + 2ζẎ (t) + q (DN−1 (γ)) Y (t) = ξ1 (t, γ) (61)

DN (γ) = DN−1 (γ) + ∆DN (γ) (62)

where∆DN (γ) denotes the increment of the degradation pro-
cess during theN -th cycle. It is defined by formula (58), in
which ∆SN is the stress range in theN -th cycle. Assuming
that the degradation starts when responseY (t) is in its sta-
tionary state and that the response is a narrow-band process
(2ζ ¿ 1) we approximate∆Yi = Ymax,i − Ymin,i by two
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times the amplitudeHi of theY (t), i.e. 2Hi. Therefore, the
stress range∆Si in thei-th cycle is

∆Si = 2Hi
E

l0
(63)

wherel0 is the length of the elastic element (cf. Fig. 3) and
E is the Young modulus. Finally, the increment∆DN of the
degradation process occurring in (62) has the form

∆DN (γ) = C1H
m
N (γ) (64)

where constantC1 = C2mEmσm
y /lm0 Ψ∗ is obtained during

the transformation from dimensional to non-dimensional sys-
tem (cf. [9]).

Eqs. (61), (62) along with (58) and (63), (64) con-
stitute a complete sequential model for characterization of
the response-degradation process[Y (t) , D (t)] in discretized
time instants (cycles)N = 0, 1, . . . , N∗. Because the degra-
dation process is slow in comparison to the response itself and
the degradation processD starts when the system (61) reached
its stationary state for initial stiffnessq (DN=0) generated by
deterministic or random value of the initial damage measure
DN=0 = D0 we take the distribution of the magnitudeHN

givenDN−1 as being the Rayleigh distribution. In this model
the response afterN cycles is affected by the stiffness degrada-
tion state afterN − 1 cycles, whereas the degradation process
afterN cycles depends on the response amplitudeHN at cycle
N , givenDN−1.

The probabilistic characterization of the response-
degradation process[YN , DN ], whereYN = HN (andHN is
the amplitude of the processY at cycleN ) has been performed
in paper [9] via conditioning. Without going into details, the
idea is as follows.

Let us denote byHN |DN−1 the (conditional) amplitude
of the processY (t) at theN -th cycle given a fixed value of
the stiffness in cycleN – specified by degradation level at
(N − 1)-st cycle. The conditional probability density ofHN

is the Rayleigh distribution

f̂HN (h|DN−1) =
h

σ2
Y |DN−1

exp
(
− h2

2σY |DN−1

)
(65)

whereσ2
Y |DN−1

is the variance of the (conditional) stationary
Gaussian response processY (t; DN−1) – evaluated from the
analysis of oscillator (61) with givenq (DN−1). In the case
considered (dimensionless oscillator, cf. [9])

σ2
Y |DN−1

=
1

q (DN−1)
(66)

and the probability density (65) characterizing the response
amplitude atN cycles is

f̂HN (h|DN−1) = hq (DN−1) exp
(
−1

2
h2q (DN−1)

)
.

(67)
In order to find probability distribution ofDN defined by

(62) we calculate first the probability density ofHm
N occurring

in (64) and then – the conditional density of∆DN whenDN−1

is fixed, i.e.g∆DN |DN−1 (x|DN−1). To evaluate the probabil-
ity density of the degradationDN at cycleN , we need, accord-
ing to (62), the joint distribution ofDN−1 and∆DN which is
represented as

f∆DN ,DN−1 (x, y) = g∆DN |DN−1 (x|y) fDN−1 (y) (68)

Finally, the probability density of random variableDN , being
a sum of∆DN andDN−1, is given in form of the following
convolution

fDN
(z) =

∫ z

0

f∆DN ,DN−1 (z − y, y) dy

=
∫ z

0

g∆DN |DN−1 (z − y, y)fDN−1 (y) dy

(69)

whereg∆DN |DN−1 is known, i.e. it is evaluated earlier on the
basis of formula (64); its explicit form is

g∆DN |DN−1 (x|DN−1) =
1

C1m
q (DN−1)

(
x

C1

)(2−m)/m

× exp

[
−1

2
q (DN−1)

(
x

C1

)2/m
]

.

(70)
Therefore, the probability densityfDN

(z) of the degradation
processD at theN -th cycle is expressed by the formula (69)
in terms of the conditional density (70) and the density of the
degradation process at(N − 1)-st cycle. This integral recur-
sive formula (69) can serve as a base for calculations. The
probability distribution of the response process at cycleN ,
given the degradation at cycleN − 1 is expressed by formula
(67).

In order to show the effectiveness of the method described
above the numerical calculations were performed assuming
that the specimen and crack geometry functionB (a) in crack
growth Eq. (42) has the form (cf. [28])

B (a) =

[
1− 0.025

(
A

b

)2

+ 0.06
(

A

b

)4
] (

cos
πA

2b

)−1/2

.

(71)
The stiffness-fatigue degradation relationshipq (D), obtained
with use of (44), (45) from the relation (38) for stiffness de-
pendence on the crack size was represented as follows

q (D) = 0.993283− 0.0544954D + 0.24168D2

− 2.82587D3 + 11.1158D4 − 23.1294D5

+ 23.2367D6 − 9.39197D7

(72)

Damping coefficient in the system (36) wasζ = 0.01, and the
constants in crack growth Eq. (48):C1 = 4.7015, m = 3.0.

The results of calculations according to the integral recur-
sive formula (69) are presented in detail in the paper [9]. Here
we show only two plots: one displaying the mean and stan-
dard deviation of the response (displacement) amplitude of the
system without and with stiffness degradation (Fig. 6) and the
second – showing probability density curves of the degrada-
tion measure for the system without and with simultaneous
stiffness degradation (Fig. 7) for different numbers of cycles.
These figures clearly indicate that stiffness degradation should
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play an important role in reliability analysis of vibrating sys-
tems. For example, for fixed level of degradationD∗ = 0.8
andN = 140 thousands of cycles we have the probability of
failurePF = 1−P (D < D∗) ≈ 0.05 – for non-degraded sys-
tem, andPF ≈ 0.45 for degraded system. The non-degraded
system is understood as the system whose stiffness degradation
is not taken into account.

Fig. 6. Mean and standard deviation of the response amplitude: sys-
tem with non-degraded stiffness (dashed line) and system with de-

graded stiffness (continuous line)

Fig. 7. Probability densities of the degradation measureD for the sys-
tem with non-degraded stiffness (dashed line) and degraded stiffness
(continuous line) at different number of cycles: (1) –N = 60, (2) –

N = 100, (3) –N = 140 (×1000)

4.4. Nonlinear dynamics; remarks. Although in the sub-
sections above the system dynamics was analyzed within a lin-
ear model, it does not mean that linearity is a crucial restric-
tion. Of course, the coupled response-degradation problem for
nonlinear systems is more involved, but its effective analysis is
still possible along the line described in this section, if suitable
approximations are adopted (cf. [29]).

The first problem which arises is concerned with the con-
struction of a consistent model of the evolution of fatigue-
induced degradation. The model presented in this section uses
(as the basic driving force of a crack growth) the stress inten-
sity factorK. However, this factor is derived on the basis of the
linear elasticity theory. So, the appropriate quantity is required
to describe stress intensity in materials with nonlinear stress-
strain behaviour. One might expect theJ-integral of Rice (cf.
[4] and references therein) to be applicable when plastic defor-
mations occur. But, a possible use ofJ-integral for predicting
fatigue crack growth is still not sufficiently understood.

Another problem in effective analysis of coupled response-
degradation models for nonlinear dynamical systems lies in
difficulties in obtaining analytical results for the stress range
for the nonlinear response. It seems that the stochastic averag-
ing method (cf. [1,2]) of stochastic dynamics should be useful
since it works directly with the equation for the response am-
plitude; one should, however, keep in mind that this method
has also its own limitations.

Paper [29] gives a possible treatment of the problem when
a nonlinear stochastic response is governed by the equation

mŸ (t) + cY (t) + k (D) g (Y ; η1, . . . , ηM ) = ξ (t) (73)

where functiong (y; η1, . . . , ηM ) is non-decreasing function
satisfying the conditiong (−y) = −g (−y), and the param-
etersηk, k = 1, . . . ,M , are the coefficients in the approximate
representation ofg in the form: g (y) = η1y + η2y

2 + . . . +
ηMyM . Such a representation is associated with a nonlinear
symmetric relationship between stressS and strainε in uniax-
ial tension-compression deformation of metals (cf. [30]).

5. Other related problems

5.1. Systems with varying structure. The dynamical sys-
tems discussed in previous sections have possessed a feature
that their structure (characterized by the appropriate parame-
ters) changed during the motion. It has been assumed that these
changes took place continuously in time and were governed by
the explicit evolution equations. We have also assumed that
the changes were degrading in nature, which means that the
system structure at timet2 was worse (in a suitably defined
sense) than at timet1, if t2 > t1, for eacht1, t2 belonging
to the time interval of interest. Such systems can be viewed
as closely related to a wider class of dynamical systems with
varying structure.

Saying ‘systems with varying/random structure’ we under-
stand systems whose behaviour at random time intervals is
characterized by different structures (and is governed by dif-
ferent equations). This class of systems includes, e.g. con-
trol systems in which relations between the system elements
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change depending on the system state. It is clear, that systems
(of various physical nature) with possible faults or inefficien-
cies, which can occur at random instants of time, are also ex-
amples of systems with varying structure.

Each sub-structure of a system with varying structure is
associated with its own sub-space in the state space of the sys-
tem. A change of structure consists in the passage of the sys-
tem from one sub-space of states to another. For large class of
systems of practical interest governed by ordinary differential
equations inRn this change takes place at hypersurfaces inRn,
and is associated with discontinuous change of the system pa-
rameters (switching systems). However, in general the change
of structure can take place at arbitrary point (of the state space
of the system) with some intensity, which depends on the state
of the system and is defined from the physics of the problem.

For mechanical/structural vibratory systems the sub-
structures can be specified by physical phenomena (processes)
taking place in the system. For example, in the case of vibra-
tory systems with dry friction the governing equations contain
discontinuity expressed by signum function of the state vari-
ables (which naturally induces a division of the state space). In
the case of degrading vibratory systems the changes in struc-
ture can be defined by requirement that a suitable functional
defined on the states of the system reaches specific (critical)
values.

Let K denote a number of possible sub-structures of the
dynamical system with variable structure under consideration.
In general, the dynamics of such a system can be described by
the extended state vector[Y (t) ,Φ (t)] whereY (t) ∈ Rn is a
piecewise smooth stochastic response process (characterizing
whole system), andΦ (t) is a function describing the nature
of transition of the system fromq-th sub-structure tor-th sub-
structure.

The dynamics of the system at its q-th sub-structure can be
modelled in the form of the following vectorial Itô stochastic
differential equation

dY (q) (t) = A(q) [Y (t) , t] dt + B(q) [Y (t) , t] dW (q) (t)

Y (q) (t0) = Y
(q)
0 , q = 1, 2, . . . ,K

(74)
whereA(q) (y, t) is a drift vector of the system in its q-th
sub-structure,B(q) (y, t) is the diffusion matrix in q-th sub-
structure, andW (q) (t) is the vectorial Wiener random pro-
cess.

Transition from theq-th structure tor-th structure is mod-
elled as the annihilation or absorption of the trajectories of the
processY (q) (t) and creation of the trajectories of the process
Y (r) (t). In general, this transition takes place on the boundary
∂Dqr (y) betweenq-th structure andr-th structure (a localized
change of structure). In order to characterize the intensity of
annihilation and creation of the trajectories two local matrix-
valued functions are introduced:c (y, t) = {cqr (y, t)} – the
annihilation function, andd (y, t) = {drq (y, t)} – the cre-
ation (or birth) function. These functions must be constructed
and included into the (extended) Fokker-Planck-Kolmogorov
equation for the probability density of the processY (t). More
detailed information on stochastic dynamics of systems with

varying structure can be found in [31]; in the doctoral the-
sis [32] the mechanical vibratory systems with varying struc-
ture were investigated with use of maximum entropy method.
Also, the switching stochastic systems were studied in the the-
sis [33].

5.2. Spatially extended/continuous systems.As one can
expect, more general formulation of the response-degradation
problems should take into account explicitly effect of spatial
variability of the system. We mean here the systems which are
governed by the partial differential equations of the form

mÜ (r, t) + cU̇ (r, t) + Mr,t [U , D (r, t)] = X (r, t, γ)
(75)

whereU (r, t) is unknown vector field defined forr ∈ G ⊂
Rn, t ∈ [0,∞), D (r, t) is the degradation (scalar or vectorial)
depending on spatial and temporal variables;r = (x, y, z).
On the right-hand side of Eq. (75) we have random exter-
nal excitation characterized by a spatial-temporal random field
X (r, t, γ). The third term on the left-hand sideMr,t[·] of Eq.
(75) denotes an operator (in general, nonlinear) with respect to
r andt acting on the fields indicated. The degradation space-
time fieldD (r, t) is governed by its own evolution equation of
the general form

Ḋ (r, t) = Nr [D, U ] (76)

whereNr is a differential, nonlinear operator with respect to
spatial variables. A coupled system of Eqs. (75), (76) includes
a variety of dynamical processes taking place in material media
whose physical/mechanical properties evolve in time.

Evolving material structures have attracted much attention
in the last years. For example, modern electronic and phonic
devices are solid structures of small feature size. During fab-
rication and use diffusion processes can relocate matter, so the
structure evolves in time. Collective actions of atoms, elec-
trons and photons contribute to the free energy, which in turn
contributes to thermodynamical forces, and these drive the
configurational change of structure. But, also on the macro-
scopic level various types of defects, like cracks or voids in
the material change their shapes and properties. In general, an
evolving structure is a dynamical system, which can be mod-
elled via the appropriate generalized coordinates or internal
variables (cf. [34,35]). Analysis of fracture of solid materials
containing various defects which interact with main/dominant
crack, and whose fractional volume changes is also related to
this new and prospective field (cf. [36,37]). Stochastic analysis
of such problems is open for future research.
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[8] K. Sobczyk and J. Trębicki, “Stochastic response of degrading
stochastic systems”, inRheology of Bodies with Defects(ed. R.
Wang),Proc. IUTAM Symp., Kluwer Acad. Publ., Dordrecht,
1999.
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