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Stochastic dynamics and reliability of degrading systems
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Abstract. In this paper the basic methodology of the coupled response-degradation modelling of stochastic dynamical systems is presente
along with the effective analysis of selected problems. First, the general formulation of the problems of stochastic dynamics coupled with the
evolution of deterioration process is given. Then some specific degrading oscillatory systems under random excitation are analyzed with
special attention on the systems with fatigue-induced stiffness degradation. Both, the general discussion and the analysis of selected exempl:
problems indicate how the reliability of deteriorating stochastic dynamical systems can be assessed.
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1. Introduction chanical/structural systems the research in random vibration

eory, and in modeling of fatigue has been conducted without

. i h
In th.e last decades the response O.f linear and nlon—llnear (&'proper mutual coupling. Stochastic analysis of dynamics of
namical systems to random excitation (parametric and ext%-

g ; . , chanical/structural systems has been focused on the charac-
nal) has_: be_en studied extensively. These studies, stimula ﬁzation of the response (and its unsafe states, e.g. instabil-
by app_hcaﬂon prob_lems of control theory as well as by th y regions, first-passage probabilities), whereas the analysis
analysis of mechanical and structural systems, have resulteq ing 0 ,e deterioration has been concentrated on the fatigue
the theory constituting at present the subject of stochastic dyz, ey growth analysis assuming that the characteristics of the
namics, or, in a narrower sense, randqm vibration theory. Tpgsponse (e.g. stresses) are given.
methods elaborated allow to characterize a stochastic response
process in a variety of important situations and at the same |t s clear that a more adequate approach should account
time they provide the information for the reliability estimationfor the joint (coupled) treatment of both the system dynamics
[1-3]. and deterioration process (e.g. fatigue accumulation). Such an

However, as it is known, dynamic excitation of engineeranalysis allows to account the effect of stiffness degradation
ing systems (including random varying excitation) causes iguring the vibration process on the response and, at the same
reversible changes in the material structure and results in d@éne, gives the actual stress values for estimation of fatigue. It
creasing the system ability to carry the intended loading. Dargeems that in stochastic dynamics the coupled analysis of the
age caused by vibrations manifests itself primarily in the stiffresponse and degradation had been treated first in the context
ness degradation of the components and systems. Exampi¢glasto-plastic (hysteretic) systems [5,6]. In the articles cited
of engineering systems with simultaneous stiffness deteriora-degradation of the system is defined in terms of the hysteretic
tion are: (i) vibrating mechanical/structural elements with faenergy dissipation. As far as the joint analysis of random vi-
tigue process taking place in them; (ii) mechanical systemgations and fatigue degradation is concerned, one should men-
with elasto-plastic properties in which, in addition to elastigion the paper [7] containing the model in which fatigue crack
deformation, a plastic deformation occurs as well; (iii) sysgrowth equation is coupled with the equation for the ampli-
tems composed of many elements with varying bearing capaade of the response (obtained via the averaging method — cf.
ity; global mechanical and reliability characteristics (e.g. stiff{1,2]), and more extensive studies published in papers [8,9].
ness) of such systems depend on the failure of some of tifae objective of this paper is to expound the basic method-
elements. ology of the coupled stochastic dynamics-degradation mod-

In the last years an increasing amount of research effortdling along with concise exposition of the effective analysis
has been directed towards stochastic modelling of various def selected problems. First, a general formulation of various
terioration (or degradation) processes in mechanical/structupabblems of stochastic dynamics coupled with the evolution
components. Because of the practical importance of fatigud deterioration process is presented. Afterwards, some spe-
damage and fracture in various engineering structures, stochasfic oscillatory systems subjected to random excitation, such
tic models of fatigue accumulation have been a subject afs hysteretic systems and systems with fatigue-induced deteri-
special interest (cf. Sobczyk and Spencer [4] and referenceration of stiffness are considered. The analysis presented also
therein). It should be underlined, however that though the fahows how the reliability of deteriorating stochastic dynamical
tigue process is inherently associated with vibrations of meystems can be assessed.
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2. Stochastic response-degradation models The most common case of model (1)—(3) is obtained if re-

2.1. General formulations. Stochastic governing equations'@ionship (2) takes the form of a differential equation, i.e.

for many engineering dynamical systems should be repre- Z(t) =Glz®), Y@, Y(t)} (5)
sented in the form which accounts for both — the system dy-
namics and degradation process taking place in the systewhereG is the appropriate non-negative function specifying
In the case of mechanical/structural systems these are, abdve evolution of degradation; its mathematical form is inferred
all, the elastic-plastic vibratory systems (under severe randdinom the elaboration of empirical data, or it is derived from
loadings) in which the restoring force has a hereditary natutbe physics of the process. It is clear that the model (1), (5)
(cf. [3,6]) and elastic systems with stiffness degradation due tas a feedback mechanism: large displacements and velocities
fatigue damage. cause weakening of the restoring force, which in turn allows
In general, a coupled response-degradation model for noior larger deflections. Although we do not introduce here the
linear vibratory systems with random excitation (parametriootions of slow and fast variables, one should keep in mind that
and/or external) can be formulated in the following vectorialhe deterioratiorZ () is a slow process, sy is a fast variable

form: compared tdZ; this fact can be used for substantiation of some
: y approximations in analysis of specific problems.
MY Y . .
) +CY (@) ) (1) Although a degradation process(t) in the most cases
+R {Y(t), Y (t), Z(t), X1 (t,w)] = X (t,7) can be taken as a scalar process, its vectorial n&ite =
[Z1(t),...,Zn(t)] in Egs. (2) and (5) allows one to account
Q {Z t), Z t), Y (), Y (t)} =0 (2) for various types of degradation phenomena. The components

Z;(t),i=1,2,...,m, can be interpreted as different interact-
Y () = Yo, Y (to) = Y10, Z(to) = Zo (3) ing damage processes or internal damage variables influencing

_a response proce3(t), e.g. thermal or chemical degrada-
where M and C represent the constant mass and damping o

matrices, respectivel)y (t) = [V, Y2, ..., Y,] is an un-
known response vector proces, characterizes a nonlinear
restoring force depending oW andY, and on the process

Z(t) = [Z1, 22, ..., Zm], m < n, which characterizes ,cese7(1) in (2) by a scalar degradation quantiy(t) and

a process responsible for degradation phenom&na{, ),  aqdopt as a coupling equation (2) one of the “kinetic” equations
X (, ) are given random processes symbolizing parametrig, fatigue crack growth. These equations, however, contain
and external excitations, respectively. The variaple an el- 4 siress intensity factor range, so the degradationl%t;z
ement of the space of elementary events in the basic SCheHlﬁ)ends on the quantity related¥Q.. — Y. In this situa-
(T, F, P) of probability theory (cf. [1]). Q{ -} denotes a tion, equation (2) has the form

relationship between degradation and response processes; its .

specific mathematical form depends on the particular physi- D(#t)=HI[D(), Yimax — Ymin] (6)

cal/mechanical situation. It is clear theg, Y7 o, Z, are given where ;.. and Yy, are usually the maximal and minimal

initial values of the respons%é’ t),Y (t)} and degradation values of a scalar proce33t) = Y;(¢); H is a suitable non-
Z (t) processes, respectively. negative (generally nonlinear) function identified from the fa-

It should be noted, that in the cases when the original sydgue studies. _ _
tem is of a continuous type (e.g. beam, plate, shell) gov- Another version of an equation fab () in the cou-
erned by partial differential equations, the model (1)(3) is gled_respgnse-degradatlop problem is obtained if func_nonal
spatially discretized version (e.g. via Galerkin or finite elel€lationship (2) does not includg (¢), and the degradation
ment methods) of the original equations and it describes tife(t) = D (t) depends on some functionals defined on the
system response-degradation (as a function of time) at fixeelsponse process” (¢), Y (t)}, i.e. (2) takes the formX
Spatial pOintS. It is also worth nOtiCing that the meaning annotes here the appropriate functiona|)
Q{-} in (2) can be quite different in specific situations; it )
can be a differential operator, and also a functional defined on D(t)=7F {Y t),Y (t)} : (7)

[Y ®), Y (t)}- Important examples of Eq. (7) include randomly vibrating
It is natural to assume tha&(t,) = 0. During the dynam- systems in which a degradation process depends on the time

ical process vectaZ (t) approaches, as time increases, the uength which the responsk (¢) spends above some critical

safe state symbolized by the bounda@tyeactZ < B denotes level y* (or, D (t) depends on the number of crossings of the

a critical level of degradation. Sét of the admissible values level y* by the trajectories of the proce¥s(t) within a given

of Z(t) — being a part of the first quadrant — constitutes a quainterval[0, T). This is the case of an elastic-plastic oscillatory

ity space. Therefore, the reliability of the system in question isystem withD (¢) interpreted as accumulated plastic deforma-

defined as the probability that proce$ét) will belong to B,  tion generated by the “excursion” of the response protegs

ie. into plastic domain (in this situatiogi* may be regarded as the
R(t)=P{Z (1) € B, 7€ [to,t]} (4) yield limit of the material component in question, cf. [10].

In various degradation problems, especially — in the anal-
ysis of response of vibrating system with the stiffness degra-
dation due to fatigue accumulation, it is natural to quantify the
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This is also situation of randomly vibrating plate with fatigue-
induced stiffness degradation; in this cd3€t) is interpreted -
as accumulated fatigue damage due to fht)a exceeding the fa- Ps(r)=PF (Z > T) (9)
tigue limit by the response process.

The ana|ysis of the stochastic response-degradation prdbat time to ultimate failure exceeds a fixed service life-time
lem for elastic-plastic vibratory systems and for the syster. Probability (9) depends on the probability distributions
with fatigue-induced degradation can also be analyzed by tRé the lengths of time intervals;. These probabilities, in

more explicit cumulative model for degradatidn(t). We turn, depend on the relationships between the system displace-

mean the situation in which relationship (2) in whigh(t) = ments in degradation stattand random resistances of fibers;
D (t) is represented as follows (in scalar form) fiber i fails at timet if the displacement process exceeds the
N(Y) limit value, sayA;, of the fiber elongation for the first time
A; = R;/k,i = 1,2,...,n). The determination of proba-
D(t)=D A; (Y, (..Z ¢ L .
®) ot ; i (V) ) bility (9) poses significant difficulties due to the coupling be-

. . tween system response and sequential degradation states of the
whereA; = A, (Y, ~) are random variables characterizing the Y P 9 9

. . . ] ?]YStem. A detailed analysis can be found in the papers [12,13].

elementary degradations taking place in the system; the magni-
tude of A; depends on the characteristics of the prodéss)
above a fixed (critical) leve}*. ProcessV (¢) is a stochastic
counting process characterizing number of degrading events in
the interval[ty, t]. In the case of elastic plastic oscillator (cf.
[10]) A; (Y, ~) are the yielding increments taking place in a
single yielding duratiorry which is related to the time interval
which the response process spends above the yield level dur-
ing a single excursion or during a single clump of excursions.
In the case of fatigué\;, i = 1,2,..., N (¢) can be regarded
as the magnitudes of elementary (e.g. within one cycle) crack
increments (cf. [4,11]).

Therefore, as the discussion above indicates, the general
stochastic response-degradation model (1)—(3) includes (in
specific practical situations) various untypical systems of equa- l 5(1)
tions in which ordinary differential equations are coupled with . _ _ ] .
not necessarily differential evolution models for degradatiorfi9- 1- lllustration of Daniels system with n fibers & 11); m fibers
In the next sections we will show how such coupled models unfailed ¢n = 7) andn — m failed fibers
can be treated effectively in practice.

2.2. Specific deteriorating systems Elastic-plastic/hysteretic vibratory systemsln engineering
design of structures which have to withstand severe random
Daniels systemsConsider a system containimgbrittle, par- loading there is a strong need for taking into account the yield-
allel fibers fixed in their upper ends and carrying a mass (aitig behaviour of real structural components. This is the case of
tached to their lower ends); this system is subjected to a rastructures subjected to earthquakes, strong wind loadings, etc.
dom load procesS (t), t > 0 (cf. Fig. 1). Let us assume that Usually it is required to estimate the probability of structural
the fibers have the same stiffndsand the damping param- failure within a given interval of time, by using the appropri-
eter ¢, but random, independently distributed resistanBgs ate models of the system and excitation. However, a model
(i=1,2,...,n). Such a system may carry a given load in varef the system has to account for plastic deformations which
ious damage state3 (t) characterized by a fraction of failed may happen during the system dynamics and which degrade
fibers at time. The load (at each time instaf)tis assumed to its performance. Such a model is known as an elastic-plastic
be equally distributed among the unfailed fibers according tscillatory system.
the rule known as the equal load sharing. It is assumed, that Let us consider a vibrating system in which, in addition to
D (t) = 0 as long as the displacement of a m&sg) does not  elastic deformations, some plastic deformations may occur oc-
exceed some “smallest” valug. During a random vibration casionally (in the form of “excursions” of the system response
motion (generated by (¢)), the displacement” (¢) changes into the plastic region — cf. Fig. 2). Such dynamics causes
in time and causes failures/damage of some fibers. The systaomtumulation of plastic deformations which, in turn, induce a

goes through various degradation stdtels=n,n —1,...,0. deterioration of the system properties. For example, the ini-
The Daniels system collapses when the degradationistate tial stiffness of the systerh decreases to, say,(L1) k = ki,
(all fibers are damaged). whereL; denotes the length of time interval in which the re-

Let 7; denote a time period in which the system remains isponse is in the plastic domain for the first time, ard is a
its degradation state Reliability (or, life-time) of the system specified non-negative monotonically decreasing function with
is characterized by the probability a(0) = 1. Assuming that the plastic degradatidh(¢) is
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scalar quantity and equal to the sum of the values of all plapart of the restoring force, in whichk = Z (¢) characterizes

tic partial deformations which took place within time intervalthe hysteretic loop and varies in time according to the general
[0,t], we can represen® (t) in the form of a random sum of evolution equation (cf. equation (5))

random incrementa D;:

Z({t)=G|Y,Y,Z 14

e () =G[v.7.2] (14)

D(t) = Z AD; (10)  Avariety of hysteresis laws have been used in the existing anal-
i=1 yses. A possible form is as follows (cf. [15])

where N (t) is the appropriate stochastic counting process Z (t) =gj[1— H (§)H (z —1) — H(—g) H (—z — 1)
characterizing a number of “degrading events” within inter- (15)

val [0,t], whereasAD;, i = 1,2,...,N(t) are random vari- whereH (-) is the Heaviside unit step function. A smooth hys-
ables which quantify magnitudes of partial plastic deformateretic evolution equation often used has the form of Bouc and
tions. Since each plastic deformation degrades the system stiffen (cf. [6])

ness, the magnitude of each increménD; depends on the . : o1 T .

response of the system with its “stiffness staitg”; ; this fact Z(t)=-4 )Y’ 12| Z - BY ’Z’ +OY (16)

can be symbolized as where constantsl, B, C, n characterize the amplitude, shape

AD; = AD; (Y (t); ki_1). (11)  of the hysteretic loop, and transition from elastic to inelastic
. ) ranges.

In the case of rare plastic “events” we can assume gt In the situation considered a degradation of the restoring

are independent random variables and tNat) is a Poisson ¢5ce has been defined in terms of the total hysteretic energy

ranQom process. For a detailed analysis a reader is referred4iQgipation characterizing the cumulative effect of severe re-
[10]; (cf. also [14]). sponse (cf. [6]), that is

A t
D(t)y=ep(t)=(1~— a)k/Y(T)Z(T) dr (17)

0
Therefore, the coupled response-degradation problem for ran-
domly excited vibratory hysteretic systems is governed by
equations: (12), (13), (14), (17). This is a complicated system
of stochastic differential equations which can only be treated
by use of approximate methods; some of such methods have
been developed in the last decades (cf. [3,5,16,17]).

Fig. 2. Random ‘excursions’ of the response into plastic region; cu- . . . . . .
mulative degradation Systems with fatigue-induced stiffness degradationAn im-

portant example of a coupled response-degradation problem
In the majority of situations deformations occurring inis concerned with stiffness degradation in randomly vibrat-

elastic-plastic oscillatory systems are characterized by the dpd structural/mechanical components due to fatigue accumu-
propriate model of elastic force with hysteresis (containing adation. For a wide class of such systems (in general, nonlinear)
ditional component governed by independent differential equé-coupled response-degradation model can be represented in
tion). In such a model the restoring force depends not only dhe following form:
the instantaneous deformation but also on the past history of ( y ) _
deformation. More explicitly, the system dynamics is mod- YO+ YY) +RAGIY () =X () (18)
elled by the equation (in scalar representation) A(t) = f(A,AS,R) (19)

Y (t)+h (Y, Y) +kF(Y,Z) =X (t,7) (12) wherek(A) is a given decreasing functiofijs a non-negative,
empirically identified functionA(t) — the fatigue crack size at
wherek is a stiffness coefficienth (Y, Y ) represents arbi- time ¢ —is governed by its evolution equation known in me-

trary nonlinear damping, where&(Y, Z) has a primary elas- _chanlcs of fatigue fracture (cf. Fig. 3\S is the stress range,

tic component (with sloper) and a secondary plastic com-"& AS Zsm?ﬁ_fmin' WflgreSétR) E zi\qrandgm ap_rr)lr:ed st:less
ponent. In the special case where the damping is linear, jrocess/vis the stress ralio, 1.€x = min/Smax. The well-

. . ) i known Paris-Erdogan model makes Eg. (19) more specific,
h (Y, Y) = 2CY equation (12) can be represented in the e

A *iamely
p|l?|t b|||near.form Alt) = 1 (A)AS,  AS ~ Ve — Yarin (20)
V() +20Y () + akY () + (1 - 0) kZ = X (t,7) (13) wheref;(A) is a non-negative function whose functional form
where( is the usual damping coefficient for a linear systém, depends on the geometries of the crack and the structural com-
is the pre-yielding stiffnessy is the ratio of post-yielding stiff- ponent in which the crack is growing. If streS§t) is a linear
ness to pre-yielding stiffness, aftl— «) kZ is the hysteretic function of the displacemer(¢), then it is also governed by
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Eqg. (18); in nonlinear case the model requires the appropfe.g. beams, shafts) do not account for a mutual coupling of
ate extension. Of course, Eq. (19) is a stochastic one sincehe response amplitude and crack growth during the vibration
includes a random process being the amplitude or envelopembcess.
random responsE (¢).

Stochastic analysis of systems with fatigue-induced stiff3.2. First order systems; stochastic dynamics with aging
ness degradation has attracted some attention in the last ye2itg wear-out. Let us consider a first order system with ran-
(cf. [7-9]) but there are still open problems to be solved. Idom white noise excitation of the following form (cf. [20])

Section 4 a possible approach to the problem sketched above Y (t)=—a(t)Y (t) + V& (t,7) (21)
will be presented in detail. .
i (t) = —ph (a) (22)
wherea (), andh () are positive. Functiom (¢t) charac-
A terizes changes (weakening) of the restoring mechanism (e.g.

due to aging) and (¢, ) is an uncorrelated random process (a
white noise),¢ > 0 quantifies the noise intensity. The aging
2A(f) functiona (¢) is governed by its own evolution equation (un-
coupled withY” (¢)). In fact, this equation could be solved and
the result substituted to (21). The main Eq. (21) would be still
linear inY. However, it is beneficial to look for the joint solu-
tion processY (t), A (¢)] which is a diffusion Markov process
v (cf. [1]).

) Let f (z, a) be ajoint probability density g (¢) ,a (¢)] in

( M its stationary state. The Fokker-Planck-Kolmogorov equation
l - associated with system (21), (22) is
&(r 2
a (t)y? 5% - ﬂh? =0 (23)
Fig. 3. Diagram of a vibratory system with stiffness degradation due y 20y a
to fatigue crack propagation We are interested in characterization of the exit of the process
from the regionB = {(Y,d’) ,a. < a’ < a} at the boundary
pointa.,.. Therefore, the conditions which have to be satisfied
3. Stochastic systems with stiffness degradation: are .
Slmp|e cases f (y7 acr) (y ) )

=4
. . . li "N=0 o < a' <
3.1. Dynamics of defective systems; remarksA special yJ’I:Eloof (v,4) » Ger >0 =0

class of vibration problems related in a sense with degradgyith conditions (24)f (y,a) gives the probability density of
tion of system properties consists in modelling and analysigit of proces$Y (t) , a (t)] from the intervaly*, a.,.) starting
of defective vibratory systems when a “stationary” or “frozenfrom (y*, a). The problem described here was first treated in
degradation occurs in the form of some structural defects. Thgper [20] where the probability density has been found (via
basic objective of this type of research is to find out the relaseparation of variables) in the form of a series expansion in
tionships between some dynamic characteristics of a vibrakrms of the parabolic cylinder functions.
ing system (e.g. its natural frequencies) and the size of a Another situation discussed in [20] which can be regarded
fixed defect. Since many years such studies have attractgsla simple coupled problem with wearout is described by the
much attention in the context of vibration diagnosis of strucsystem of equations
tural/mechanical systems (cf. papers [18,19]). .

The most common structural defect is the existence of a Y @ =AY + VEE (1) (25)
crack. A crack in an elastic structural/mechanical element in- A(t)=-Bh(Y) (26)

troduces considerable local flexibility due to the strain energyhere function. determines how wear-out depends on the
concentration in the vicinity of the crack tip under load. Taesponse (displacement, stress); large displacements cause
take this effect into account an equivalent spring, a local congeakening of the restoring force, which in turn allows for
pliance, was used in many articles. It allowed to correlate thgrger deflections.

crack depth to the change in natural frequencies of the first system of Egs. (25), (26) is a special case of a more gen-
three harmonics of the structure fOI" known CraC'k pOSition. |€ra| System of equations in which one variable (@&Ehanges
paper [19] a crack disturbance functige, z) was introduced much faster than the second variable (3ay, They variable

to characterize the change in stress, strain and displacemgn¢alled a fast variable and the variable is a slow variable.

distribution due to the crack. This function directly affects theone may construct the governing stochastic equations for these
characteristic equation for natural frequencies of the cracke@o variables in nonlinear form

beam. In this way one can identify the size of crack defects via .
measurements of the natural frequencies. However, all these Y @ =nfi (Y, D)+ Vinf2 (Y, D) &y (¢) (27)
studies of cracked vibratory structural/mechanical components D(t)=g1(Y,D)+g2(Y,D)¢p (1) (28)

(24)
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where&y andép are the white noise disturbances acting onvhere aq, ao, ag are positive constants. The values of the
the response proce3s(¢) and degradation procegs(t¢), re- empirical parameters;, 5; should be identified from exper-
spectively. Parameter is introduced in Eq. (27) to indicate imental data. The probability distribution &f (¢) of the sys-
the different time scales in the above equations. Making use &m (29), (30) is Gaussian with time-dependent mean(t)

this fact, the ‘fast’ variable can be eliminated (via the so callednd variances?. (). These functions satisfy the differential
adiabatic elimination procedure originating from the quanturaquations derivable from Eqg. (29). Introducing the variables
physics, cf. [21]). According to this procedure one is looking; = Y, Y> = Y; we have the system

for solutions of (27), (28) in the limity — oo, consistent with Vv _v

the assumption thaf will decay very rapidly to an equilibrium T2 (33)
stateY,,. Itis assumed that Eq. (27) without random noise has Yo=—q(D () Y1 —2CY2 + & (t,7).

a stable equilibrium statg., which can be obtained by solv-
ing the equatiory; (y.q, D) = 0. The equilibrium valuey,,
depends generally on the slow varialile When the noise
term in (27) is taken into account one is looking for an equilib- 111 (t) = 2ma2 (t)
rium probability distribution of th&” variable. If one is inter- 1y (t) = — [q (D (t)) may (£) + 2Cmas ()] + mas (t)
ested only in the time scale large compared to the decay time . _

(~ n~1) of the fast variablé’, the process$Y (t), D (t)] gov- iz (8) = =2[a (D (t)) maz (8) + 20maz (#)] + 2C.
erned by Egs. (27), (28) can be approximately described o
by the motion of the slow variablB. In this sense one can sa
that the slow variable is subordinated to the fast variable.

The equations for the second order moments; (t) =
(Y; () Y; (t)), 1,5 = 1,2, are as follows:

. (34)

nIlé"quations (34) along with the initial conditions;; (¢o)
y(which follow from the initial conditions foi¥; (¢t) andY; (t)

whent = t;) determine the momentsy;; (t). Because
] _ - _ (Y (t)) = 0 the variancer?. (t) is equal tom; (¢).
3.3. Vibratory systems with "empirical” stiffness degrada- If we wish to account for the statistical dispersion of the

tion. As we have discussed in Section 2, the evolution of thgegradation process we may considieft) = ¢ (t,C (7)) in-
degradation in time can be specified in various ways dependiggaqd of (t), whereC (v) is a suitably defined random vari-
on its physical nature as well as on the availability of the emyaple. In such a case the probability distributioryoft) is no
pirical information. If the available information on the degrajonger Gaussian; it is a mixture of Gaussian distribution and
dation process comes from experiments, then a rational wayQs probability distribution of” (+). It can be obtained by the
include it into the response analysis can be based on the f@fiegration of the Gaussian (conditional) distribution with re-

lowing formulation: spect to the distribution af' (7).
> - _ It is worth to add that the vibration equation can be supple-
Y)+2Y () +q(D®@)Y (t) =& (t,y), 29 X .
H+2Y O +a(DEY ) =& (E) (29) mented by the degradation process which takes place at a much
D(t)=¢(t) (30) earlier stage than growth of a dominant crack. For example, a

. ) . ) o significant degradation mechanism that affects the reliability of
where ¢ (t) is a given, em.plrl'cal function quantlfy!ng the yarious engineering components is the pitting corrosion [22].
growth of the degradation in time. If degradation is genefit has been found empirically that the pit volume in low-alloy
ated by the fatigue crack growth antl(z) is identified with the  gteels under cyclic loading increases linearly with time
crack sizeA (t), theng (t) can be regarded as afunctiqn which Mathematically, model (29), (30) is uncoupled; oify(t)
characterizes the averaged crack growthtfer 0 and incor-  ig explicitly affected by the degradation of stiffness (¢) is
porates the “averaged” contribution of the stress ralge In  assigned a priori). However, if the characteristics of the degra-
a special case of a narrow-band stress response process Wiflon proces® (t) are determined from the measurements of

zero meam\.S' may be approximated, for example, by the roof (1) quring the vibration process, they are affected implicitly
mean square of the stress procéss) generated by the dis- py the response amplitudes.

placement” (¢).

analysia of osellator (29) wih a ghve tme-vanying aiffness’” > 0CHaStC dynamics with fatigue-induced
coefficient, which is a composition of the monotonically de- stlffne.ss_degradatloh
creasing function; and degradatiorD (t) = ¢ (t). Gener- 4.1. pescnpuon of under_lylng mo_del. As we have glready
ally, the functionq representing the stiffness dependence ofentioned, the degradation of stiffness due to fatigue accu-
the degradation measuf2(t) (in particular, on the dominant mulation during the vibration process is the phenomenon of

crack size) is often taken in the form of a polynomial great importance in practice. In this section we show how the
coupled response-fatigue degradation problem can be treated
M - effectively.
(D) = ; pi D" (31) Let us consider a thin rectangular plate of digeb with an

initial central crack of lengtB Ay and supporting a rigid heavy
However, it can be also approximated by the exponential fungnassi/ at its end (cf. Fig. 3). The plate is made of homoge-
tion [8] neous and isotropic elastic material with linear viscous damp-
q(D)=(1—oaq)exp(—azD*) (32) ing. The mass is subjected to a random Gaussian white noise
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excitation¢ (t) perpendicular to the crack. Thus, the crack exmacroscopic crack in elastic material. In this case, the main
tends in a direction normal to the applied stress at a rate ddriving force for a crack growth is the stress intensity factor
pending on the system geometry and the intensity of randoAj; it characterizes the stress intensity in the crack tip, and de-
applied stress. Let us denote By(¢), 2A (¢), andg (D (¢t))  pends on the crack length, i.&. = K(a). In general

the plate displacement, the crack size and the degrading plate

stiffness due to crack growth at time> 0. The displacement K = B(a) SVma (40)

process (t) satisfies the following stochastic equation i .
where S represents the far-field stress resulting from the ap-

mY (t) +cY (t) +q (D (1) Y (1) = £ (¢) (35)  plied load and3(a) is a factor which accounts for the shape of

wherec denotes the system damping and is assumed to be tirkmg Specimen _and the crack geometry. The crapk growth rate
invariant. If stress is a linear function of the displacement, the a, orda/dt).|s unqerstc_)od as the crack extension of a crack
it is also governed by Eq. (35) with suitably rescaled procescg Iengtha dur|.ng 9”” of tlmg, orin one stress cycle. _

¢ (t). Dividing both sides of Eq. (35) by (and then introduc- _The investigations of fatigue cracl_< growth in v_elastlc ma-
ing simple transformation of variable¥: = Y/oy, 7 = wyt, tenal_s _have shov_vn that the most s_unable quantity for_char-
whereoy is a standard deviation of the stationary solution oftcterizing the fatigue crack growth is the stress intensity, or
(35) without degradation, i.e. when(4) = w?) one obtains — More specifically — the stress intensity factor radgk =

a dimensionless form of (35). It is convenient to represent thi max (@) — Kmin (a). Therefore, the crack growth equations
equation as the system of two first order equations for the pr6@n be represented in the general form

cessY; (1), Ya ()] = [Y 1), Y (t)} dA

Yi () = Ya (1) (36) — f (B(A) y7aAS)

Yy (1) = —=20Y> (t) — q (D (1)) Y1 (£) + £ (t) ,
] ) o . ] whereAS = Spnax — Smin IS the stress rangéy denotes a
where( is a damping coefficient. Functiar() characterizes  mper of stress cycles arfds a suitable non-negative func-
the stiffness dependence on the degradation due to fatigy®n oOne of the most common equations belonging to class

This stiffness function can be regarded as empirical one, by is the following Paris-Erdogan equation (for constant am-
it can also be inferred from the solutions of vibration prOb'pIitude loading)

lems with “frozen” cracks. The best known representation of

(41)

the stiffness dependence on the crack sites the form of a aA C(AK)™, AK >0
polynomial, i.e. dN (42)
K ) = CB™ (4) (VrA) " (as)"
k@) =k(0)) fa’, z="1 (37)
p (3 ) b

whereAS is the stress range associated with the response pro-
where coefficients; are suitably identified constants. For ex-CessY (t), andC andm are empirical constants (cf. [4,23]).
ample (cf. [7]): Therefore, a coupled model of the response-fatigue degra-
_ _ 2 4 dation process is represented by Egs. (36), (42) along with the
k(z) = k(0)[1 ~ 1.7082" + 3.0812 (38) initial conditions(Y; (t) , Y2 (to) , A (to)] and formulae (37),

~7.0362° + 8.9287° — 4.2662'"| (39). This is a system of three first order differential equa-
The stiffness function can also be approximated by the followiONs With random excitation. Because of large random scat-
ing exponential function (cf. [8]): ter of fatigue crack trajectories and 'uncertalnty in effects of
many uncontrolled factors the evolution Eq. (42) can also be
k(r) = ai + azexp (—azx™) (39)  randomized and included into the analysis (such equation was

where a;, as, g, iy are positive constants, such thag + Proposed and analyzed in [24]).

ay = qo to haveg(a = 0) = go. To make the further analysis consistent with the model
In order to obtain a complete response-degradation mod#hich includesD (¢) ) we will deal not with A directly but

when degradation is due to the fatigue crack growth the adth the nonlinear transformatiow (A) of A defined as

propriate “kinetic” equation for crack siz&(¢) should be con-

structed. The physics of fatigue crack growth is a complex phe- dx

nomenon taking place on different scales (starting from nucle- v(4) = / Bm ™ (43)
. : ; (x) (V7z)

ation of micro-cracks, through their coalescence and growth, Ao

and the growth of a macroscopic/dominant crack). This pro- . I .

cess depends crucially on the material microstructure and tw@erer is the initial prack size. Let us den*ote by the
macroscopic material properties; it depends also on exteV-Iue OW(A). for the critical crack lengtid = A%, and define
nal conditions such as external loading acting on mechari*® degradation measuf2as

cal/structural element, temperature, chemical environment etc. W(A)

(cf. [4,23]). Here we restrict our attention to the growth of D = TRk

Ut = W(A%), De Dol  (44)
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Of course, In order to obtain quantitative results, one has to assume
1 1 dA the specific function characterizing the dependence of the stiff-
dD = —dV¥(A) = — ———————— ness on the degradation due to fatigue. Here, the approxima-
b+ o+ gm . ,
. Br(4) (vr A) (45)  tion (39) is used.
= %C(As)mdzv In order to obtain a probabilistic characterization of the re-

_ _ _ _ sponse with the degradation of stiffness (39) the moment equa-
Therefore, the evolution equation for the fatigue crack inducegbns for the stochastic system (49) are generated (cf. [1]). If

degradatiorD(t) defined by (44) takes the form we denoten;, (t) = <Yf (1) Y2j (t)> where() is the symbol

371\7[ _ %C (ASy)™ (46) of the probabilistic mean value, then we have
: d iyJ oy ri—1y j+1
whereASy is the stress range generated by the response pro-mij(t) Tt <Y1 Y2]> = <ZY1 vy

cessY (t). —j[2¢Ys + g (Y1, Y2, )]

4.2. Envelope approximation of stress range; moment X Yijfl +2¢ (5 — 1)YfY2j*2>

equations. In order to make the model (36), (46) effective _ .

some approximations have to be introduced. Here, we show = (Giy (N1, Y231)), <Yf (to) Y4 (t0)> = my; (to)
how the random stress range5 occurring in Eq. (42) and in (51)

its transformed version (46) can be effectively characterized.; = 1,2,.... The information on the behaviour of the sys-

Let us assume that the vibrating system is lightly damped anem is taken in the form of five first equations from the above
its response (the associated stress process) is a narrow bhiedarchy of equations, i.e. equations for the first order and
process. In such a process a single frequency dominates asgtond order momentsi g, m2g, Mo1, Mo2, M11)

its trajectories resemble harmonic oscillations. Such a process . d
may be approximated by two times the envelope process (cf® ~ Lii=0: o (Y1) = (Y2)
[4125]), l.e. i = 2’ J =0: % <Y12> -9 <Y2Y1>
ASy ~ 2,/ Y2(t) + Y2(t) (47) !
) = j=1: — (Ya) = — (2CY- Y1, Yo, t
and the passage from cycles to time in Eqgs. (42), (46) may bé 0. J a {2 (22 +9 (11,12, 8)
made with use of the relationshipV' ~ pdt, wherepisthe  ; _ ;9. 4 (Y2) = —2(20Ys + Yag (Vi, Ya, 1)) + 2
average number of zero crossings by prodéss). Therefore, Cg
Eq. (46) takes the form i=1 j=1: & (Y1Ya) = (Y7 — 2(Y1Ya — Y1g (Y1, Ya,1))
dD ) 212 (52)
dt Cr [Y7 () + Y5 (1)] ’ (48) The approximate probability density(y:, y2; t) is determined

- e on—1 _ via the modified maximum entropy method (cf. [26,27]). This
whereD (tg) = Do, C1 = C2™p (¥*)" . After the approx density has the form

imations above the basic model is represented by the system
of Egs. (36), (48). It should be noticed that even though thep(
vibrating system is linear, the coupled response-degradation
problem is nonlinear. The exact analysis of the coupled sys- + Xo1yz + Ao2i? + /\11y1y2]} (53)
tem (36), (48) is involved. To make the further treatment of

the problem possible we will take advantage of the fact that
the envelope amplitude varies slowly in time. This agrees with
the observation that the degradation process is slow in cowhere;; are unknown Lagrange coefficients and

1
Y1, Y2, t) = o] exp{ — [ Moy1 + A2oy19(y1, y2, t)

1 _
= Ep (y11y27t)

parison with the response itself. Therefore, making the ‘linear +00

approximation’D (t) :_D (_t)t whereD (t) is given by (48) = / B (Y1, y2, t) dy1 dys (54)

we can regard) occurring in Eq. (36) as explicitly expressed

by Y (¢), Y (t) and¢. Hence, Eq. (36) can be written in the o - ) . )
form of the following 1td stochastic equations (cf. [8]) is the normalizing constant parametrized by time. Let us dis-

cretize system (52) using (for instance) the Euler scheme (to

dYy (1) =Yz (t)dt make further equations more clear) with the step As the

dYs (t) = — [2¢Y5s (t) — g (Y1, Ya, t)] dt + 24/CAW (t) result, the system (52) can be rewritten as

_ , (49) Mij (tr1) = mij (t)
whereW (t) is the standard Wiener process, and4, Ys, t) too
is the nonlinear term accounting for the dependence of stiffness '
on the degradation, i.e. ° P + At / Gij (Y1, Y2, tk) p (Y1, Y2, t) dy1dyo

g(yl,y27t):qu(D):qu(yl7y27t) (50) 7:7‘7':07172 0<Z+]§2
m/2
= (B +43)" (55)
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with m,; (to) assumed to be given initial condition. In our  Figure 5 shows the varianex% of the displacement in the
consideration these initial moments are taken as the momesistem with degradation for the same different values of pa-
of stationary solution of the system (35) without degradationrametersxys as in Fig. 4. In the case of dimensionless system

The Lagrange coefficients;; are determined at each dis-without degradation we havgf = 1. Therefore, Fig. 5 dis-
crete timet;, numerically from the following system of alge- plays the effect of stiffness degradation on the response of the
braic nonlinear equations system. The increasing of degradation causes the increase of
the variance of displacement of the system.

“Va

and can be solved using (for example) the five dimensiond
Newton method.

In the calculations function (39) was used with the fol- 1.0 ' T T
lowing values of parametersy; = as = 0.5, ay = 2.0, 0 40 185)00
¢ =0.125, m = 3.0, C; = 1.3298 - 10~°. It is assumed that (x )
the degradation starts when dimensionless system reachesklge 5. The variance of the displacement in system with degradation
stationary state. In the absence of degradatjdib)) = 1) the for degradation functions corresponding to the Figure 4
response of the system (which is linear) is Gaussian. Degra-
dation introduces nonlinear and time-dependent stiffness an 5 Analvsis of response-dearadation problem via condi-
therefore leads — in general — to non-Gaussian behaviour of t i. ' Y P 9 P

[ . : .
oning. In this subsection we wish to show another approach
system.
Of the results of humerical calculations we show here tw

{)o effective analysis of the coupled response-stiffness degrada-
illustrations. Figure 4 visualizes functian(D) versusD for lon problem \.Nh'Ch account-s explicitly for the cumulative na-

] ture of the fatigue degradation process (cf. [9]). Let us notice
selected values of parameters. for curve (1)as = 0.1, for
curve (2)as = 0.5, for curve (3)az = 1. Generally, the form

that Eg. (46) indicates that the increment of the degradation
of degradation function (39) is very flexible and many kinds 0¥neasureD in one equivalent cycle can be represented as

—+00
m; (tr) = / yiydp (1, v2, te) dy1dys (56) 1.8
— o0 -
i,7=0,1,2 0<i+j<2 4 ] -
’ ! § 1.6 (3)
Taking into account (53) this system can be written as g ]
CG —
+oo % ] (2)
i 0J = 2 1.4
/ {yqué — myj (tk)} P (Y1, Y2, tr) dyrdys = 0 (57) :; ]
“oo 8 ]
1,7 =0,1,2 0<i+j<2 £ 19

(1)

T
120 160

possible types of degradation (from linear to strongly nonlin- AD; = 1 C (AS)™ (58)
ear) can be obtained. In practice, the values of parameters _ v . .
as, o, s should be estimated from experimental data. whereAS; is the stress range in thigh cycle of loading. Let
us represenD (t) in the form of a sequence of random vari-
1.0 ablesDy (v) =: D (tn), N = 0,1,...,N*, whereDy (v)
| ) characterizes the state of the degradation process /sftey-
cles. Therefore
0.9 — N
g (2)
2 - Dy (v) =Y _AD;(y) (59)
208 3 i=1
g AD;(v) = D; (v) = Di-1(7) (60)
5 0.7 — The coupled computational response-degradation model has
S the form
@ .. .
S V() + 2V () +q(Dn o (0))Y (1) =& (1) (61)
i Dy (v) = Dn-1(7) + ADn (7) (62)
0.5 ‘ : ‘ : ‘ : ‘ : whereA Dy () denotes the increment of the degradation pro-
0.0 0.2 0.4 0.6 0.8 cess during theV-th cycle. It is defined by formula (58), in
D which ASy is the stress range in th€-th cycle. Assuming

Fig. 4. Function of degradation(D) given in (39) for different val- that the degradation starts when respolisg) is in its sta-
ues of parameters: (1) —as = 0.1; (2) —as = 0.5; (3) —as = 1. tionary state and that the response is a narrow-band process
Values of other parameters in the text (2¢ < 1) we approximateAY; = Ynaxi — Ymin,s DY twWo
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times the amplitudéd; of theY (t), i.e. 2H;. Therefore, the is fixed, i.e.gap,|py_, (z|Dn-1). To evaluate the probabil-

stress rang@\ S; in thei-th cycle is ity density of the degradatioPy at cycleN, we need, accord-
B ing to (62), the joint distribution oDy _; andA Dy which is
AS; = 2Hil— (63) represented as
0

wherel, is the length of the elastic element (cf. Fig. 3) and fapy.py (#,9) = 9apyipy - (219) fon- (v) - (68)
E is the Young modulus. Finally, the incremedtDy of the  Finally, the probability density of random variahi&y, being
degradation process occurring in (62) has the form asum ofADy and Dy 1, is given in form of the following

convolution
ADy (v) = C1HN () (64)

where constan€, = C2™E™o," /" ¥* is obtained during Jow (2) = /0 Japy b1 (2= 9,9) dy
the transformation from dimensional to non-dimensional sys- z
tem (cf. [9]). = /o 9ADN|Dy— (2 = YY) fDn s (y) dy
stituEthé cf)Gn?,l (62) along_W|th (58) and (63), (6.4) Fon'V\fheregADN‘DNfl is known, i.e. it is evaluated earlier on the
plete sequential model for characterization L sis of formula (64): its explicit form is
the response-degradation proc@sst¢), D (¢)] in discretized '
time instants (cyclesN = 0,1,..., N*. Because the degra- ( ) < x >(2‘m)/’”
g \UN-1

(69)

1
dation process is slow in comparison to the response itself andAD~|Dy—1 (@|Dn-1) Cim
the degradation procegs starts when the system (61) reached

. - . . 1 2/m
its stationary state for initial stiffness(Dy—o) generated by x exp |—=q(Dn_1) <x> .
deterministic or random value of the initial damage measure Ch

Dyn—o = Dqg we take the distribution of the magnitudéy (70)

given Dy _; as being the Rayleigh distribution. In this modelTherefore, the probability densitf . (z) of the degradation
the response aftéy cycles is affected by the stiffness degradaprocessD at the N-th cycle is expressed by the formula (69)
tion state afterV — 1 cycles, whereas the degradation procesis terms of the conditional density (70) and the density of the
after N cycles depends on the response amplitHdeat cycle degradation process &V — 1)-st cycle. This integral recur-
N, givenDp_1. sive formula (69) can serve as a base for calculations. The
The probabilistic characterization of the responseprobability distribution of the response process at cyble
degradation proceg¥, Dy|, whereYy = Hy (andHy is  given the degradation at cyclé — 1 is expressed by formula
the amplitude of the proce3sat cycleN) has been performed (67).
in paper [9] via conditioning. Without going into details, the  In order to show the effectiveness of the method described
idea is as follows. above the numerical calculations were performed assuming
Let us denote byH x| Dy _; the (conditional) amplitude that the specimen and crack geometry functid(u) in crack
of the procesd” () at the N-th cycle given a fixed value of growth Eq. (42) has the form (cf. [28])
the stiffness in cycleV — specified by degradation level at AN 2 AN AN 12
(N —1)-st cycle. The conditional probability density &fy B (a) = |1 — 0.025 () +0.06 () ] (cos ) .
is the Rayleigh distribution l b b 2b -
71
Fur (HDy_1) = — h exp (_ h? ) (65)  The stiffness-fatigue degradation relationshifD), obtained
20y|Dy_y with use of (44), (45) from the relation (38) for stiffness de-
pendence on the crack size was represented as follows

q (D) = 0.993283 — 0.0544954D + 0.24168 D*

YlDN71

whereaf/| py_, Is the variance of the (conditional) stationary
Gaussian response procésst; Dy _1) — evaluated from the

analysis of oscillator (61) with given(Dy_1). In the case —2.82587D3 +11.1158D* — 23.1294D°  (72)
considered (dimensionless oscillator, cf. [9]) +93.2367D% — 9.39197D7
032/|DN_1 — 1 (66) Damping qoefﬁcient in the system (36) wéas= 0.01, and the
q(Dn-1) constants in crack growth Eq. (48)4 = 4.7015, m = 3.0.
and the probability density (65) characterizing the response The results of calculations a'ccordln.g.to the integral recur-
amplitude atV cycles is sive formula (69) are presented in detfeul in the paper [9]. Here
we show only two plots: one displaying the mean and stan-
; 1 dard deviation of the response (displacement) amplitude of the
h|Dy_1) = hq (Dn— ——h*q¢(Dn_1) ). _ o . :
fry (D 1) 4 (Dn-1) exp ( 2 4(Dn-1) system without and with stiffness degradation (Fig. 6) and the

(67) second — showing probability density curves of the degrada-

In order to find probability distribution oD defined by tion measure for the system without and with simultaneous
(62) we calculate first the probability density 8%} occurring stiffness degradation (Fig. 7) for different numbers of cycles.

in (64) and then —the conditional density&™ y whenDy_;  These figures clearly indicate that stiffness degradation should
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play an important role in reliability analysis of vibrating sys-4.4. Nonlinear dynamics; remarks. Although in the sub-
tems. For example, for fixed level of degradatibri = 0.8  sections above the system dynamics was analyzed within a lin-
and N = 140 thousands of cycles we have the probability ofar model, it does not mean that linearity is a crucial restric-
failure Pr = 1— P (D < D*) =~ 0.05 — for non-degraded sys- tion. Of course, the coupled response-degradation problem for
tem, andPr ~ 0.45 for degraded system. The non-degradedonlinear systems is more involved, but its effective analysis is
system is understood as the system whose stiffness degradattith possible along the line described in this section, if suitable

is not taken into account. approximations are adopted (cf. [29]).
The first problem which arises is concerned with the con-
1.55 struction of a consistent model of the evolution of fatigue-
0.84 induced degradation. The model presented in this section uses

(as the basic driving force of a crack growth) the stress inten-
sity factor K. However, this factor is derived on the basis of the
linear elasticity theory. So, the appropriate quantity is required
to describe stress intensity in materials with nonlinear stress-
strain behaviour. One might expect thiéntegral of Rice (cf.
[4] and references therein) to be applicable when plastic defor-
mations occur. But, a possible use.bintegral for predicting
fatigue crack growth is still not sufficiently understood.
Another problem in effective analysis of coupled response-
degradation models for nonlinear dynamical systems lies in
difficulties in obtaining analytical results for the stress range

1.50— 0.80

0.76

1.45 Standard deviation
0.72

1.40 0.68

0.64 T T T T

Response amplitude

Mean value

1.30 for the nonlinear response. It seems that the stochastic averag-
ing method (cf. [1,2]) of stochastic dynamics should be useful
T since it works directly with the equation for the response am-

plitude; one should, however, keep in mind that this method

T r T r T y T y has also its own limitations.

30 60 90 120 150 Paper [29] gives a possible treatment of the problem when
N (% 1000) a nonlinear stochastic response is governed by the equation

Fig. 6._ Mean and standaro_l deviation of the_response amplitudg: sys-mY t)+cY )+ k(D) g(Yim,...,nu) =E(t)  (73)
tem with non-degraded stiffness (dashed line) and system with de-
graded stiffness (continuous line) where functiong (y;m1,...,na) is non-decreasing function
satisfying the conditiory (—y) = —¢g(—y), and the param-
etersne, k = 1,..., M, are the coefficients in the approximate
270 representation of in the form: g (y) = my + my® + ... +
«, nvry™. Such a representation is associated with a nonlinear
) symmetric relationship between stresand straire in uniax-
. N ial tension-compression deformation of metals (cf. [30]).

(1) ~_| 5. Other related problems

ot “ 5.1. Systems with varying structure. The dynamical sys-
l ] o / tems discussed in previous sections have possessed a feature
1 | b that their structure (characterized by the appropriate parame-
Z ! L (3) ters) changed during the motion. It has been assumed that these
| Cl o / changes took place continuously in time and were governed by
\ | ‘, the explicit evolution equations. We have also assumed that
| ! : the changes were degrading in nature, which means that the
(K | R system structure at timg& was worse (in a suitably defined
, o ' . sense) than at time, if ¢t > t;, for eachty, t5 belonging
! B R ‘ to the time interval of interest. Such systems can be viewed
0.0 N\ . . as closely related to a wider class of dynamical systems with
0.0 0.2 0.4 0.6 0.8 10  varying structure.
D Saying ‘systems with varying/random structure’ we under-
Fig. 7. Probability densities of the degradation meagifer the sys-  Stand systems whose behaviour at random time intervals is
tem with non-degraded stifiness (dashed line) and degraded stifinéddaracterized by different structures (and is governed by dif-
(continuous line) at different number of cycles: (1\-= 60, (2) — ferent equations). This class of systems includes, e.g. con-
N =100, (3) =N = 140 (x1000) trol systems in which relations between the system elements

D

o 18.0

©
o
|

Density function of
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change depending on the system state. It is clear, that systevasying structure can be found in [31]; in the doctoral the-

(of various physical nature) with possible faults or inefficiensis [32] the mechanical vibratory systems with varying struc-

cies, which can occur at random instants of time, are also eture were investigated with use of maximum entropy method.

amples of systems with varying structure. Also, the switching stochastic systems were studied in the the-
Each sub-structure of a system with varying structure isis [33].

associated with its own sub-space in the state space of the sys-

tem. A change of structure consists in the passage of the sys2. Spatially extended/continuous system#&s one can

tem from one sub-space of states to another. For large classapect, more general formulation of the response-degradation

systems of practical interest governed by ordinary differentigiroblems should take into account explicitly effect of spatial

equations ink" this change takes place at hypersurfacegin variability of the system. We mean here the systems which are

and is associated with discontinuous change of the system g@verned by the partial differential equations of the form

rameters (switching systems). However, in general the change,, /7 (r,t) + U7 (r,t) + M, [U,D (r,t)] = X (r,t,7)

of structure can take place at arbitrary point (of the state space ' (75)

of the system) with some intensity, which depends on the stajg,erers (r,t) is unknown vector field defined for € G C

of the system and is defined from the physics of the probIemRn, t € [0,00), D (r, ) is the degradation (scalar or vectorial)
For mechanical/structural vibratory systems the S”Qﬂepending on spatial and temporal variables= (z,y, 2).

structures can be specified by physical phenomena (processgg) the right-hand side of Eq. (75) we have random exter-

taking place in the system. For example, in the case of vibray) excitation characterized by a spatial-temporal random field

tqry sys_tems with dry friction Fhe governing equations contaer (r,t,~). The third term on the left-hand sid¥f,. ,[-] of Eq.

discontinuity expressed by signum function of the state var75) qenotes an operator (in general, nonlinear) with respect to

ables (which naturally induces a division of the state space). [ngnq; acting on the fields indicated. The degradation space-

the case of degrading vibratory systems the changes in strije;e field p (,t) is governed by its own evolution equation of
ture can be defined by requirement that a suitable functiong|s general form

defined on the states of the system reaches specific (critical) .
values. D (r,t) = N [D,U] (76)

Let K denote a number of possible sub-structures of thghere N, is a differential, nonlinear operator with respect to
dynamical system with variable structure under consideratiogpatial variables. A coupled system of Egs. (75), (76) includes
In general, the dynamics of such a system can be described®yariety of dynamical processes taking place in material media
the extended state vectdr (¢), @ (t)] whereY () € R"isa whose physical/mechanical properties evolve in time.
piecewise smooth stochastic response process (characterizingevolving material structures have attracted much attention
whole system), andp (t) is a function describing the nature in the last years. For example, modern electronic and phonic
of transition of the system fromgth sub-structure to-th sub-  devices are solid structures of small feature size. During fab-
structure. rication and use diffusion processes can relocate matter, so the

The dynamics of the system at its g-th sub-structure can Rgructure evolves in time. Collective actions of atoms, elec-
modelled in the form of the following vectorial Itd stochastictrons and photons contribute to the free energy, which in turn
differential equation contributes to thermodynamical forces, and these drive the

dY'@ (1) = AD Y (), 4] dt + BDO[Y (¢),8]dW@ (1) configurational (_:hange of structure. Bl_Jt, also on the macro-
scopic level various types of defects, like cracks or voids in
Y@ (tg) =Y, ¢=12....K the material change their shapes and properties. In general, an
(74)  evolving structure is a dynamical system, which can be mod-
where A9 (y,t) is a drift vector of the system in its g-th elled via the appropriate generalized coordinates or internal
sub-structure B (y, t) is the diffusion matrix in g-th sub- variables (cf. [34,35]). Analysis of fracture of solid materials
structure, and (9 (¢) is the vectorial Wiener random pro- containing various defects which interact with main/dominant
cess. crack, and whose fractional volume changes is also related to

Transition from thez-th structure ta-th structure is mod- this new and prospective field (cf. [36,37]). Stochastic analysis
elled as the annihilation or absorption of the trajectories of thef such problems is open for future research.
processY (@) (¢) and creation of the trajectories of the process
Y () (). In general, this transition takes place on the boundacknowledgements. It is my great pleasure to express my
0D, (y) betweery-th structure and-th structure (alocalized thanks to Dr J. Trebicki for his contribution to our joint ef-
change of structure). In order to characterize the intensity &brt to understand the response-degradation problems, and to
annihilation and creation of the trajectories two local matrixbr P. Hotobut for his help in bringing the typescript to its final
valued functions are introduced:(y,t) = {c4 (y,t)} —the form.
annihilation function, andl (y,t) = {d.q (y,t)} — the cre-
ation (or birth) function. These functions must be constructe@EFERENCES
and included into the (extended) Fokker-Planck-Kolmogorov(i] K. Sobczyk, Stochastic Differential Equations with Applica-
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