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We investigate the stationary solution of the modified Fokker· Planck equation which governs the 
global dynamics of the inflation. Contrary to the original FP equation which is for a: Hubble horizon 
size region, we found that the normalizable stationary solution can exist for modified Fokker-Planck 
equation which is for many Hubble horizon size regions. For a chaotic inflationary model with the 
potential Aq:>2n, we get initial distribution of classical universes using this solution, and discussed the 
physical meaning of it. Especially for n=2, this distribution obeys power-law and classical universes 
which, created from the Planck energy region, make the fractal structure. In other cases n=l=2, 

creation of large classical universes is strongly suppressed. 

§ 1. Introduction 

An inflationary model was proposed to solve many problems in the standard 

cosmological model. In this model, background geometry experiences exponentially 

expanding de Sitter stage. By this exponential expansion, problems contained in the 

standard cosmological model can be solved. Furthermore, a natural explanation for 

the origin of the density fluctuations is obtained by considering quantum fluctuations 

of the scalar field in de Sitter expanding space-time. When one considers dynamics 

of an inflationary model, quantum aspect of a scalar field becomes very important. In 

a classical picture, dynamics of the model is as follows: At some time, potential 

energy of the scalar field dominates the energy momentum tensor, and this becomes 

. an effective cosmological constant. Then background space-time begins to expand 

exponentially. At this time, owing to a large friction force arising from exponential 

expansion, the acceleration of the scalar field becomes negligible compared to the 

velocity and the slow rolling condition is attained. The value of the scalar field rolls 

down a hill of potential very slowly. Due to this slow rolling, we can get sufficient 

duration of de Sitter expansion to solve problems in standard cosmology. But this 

picture must be changed when inflation is treated with quantum theory and we must 

be careful about difference, what variable can be treated as classical. But it is very 

difficult to solve full quantum field theory and get dynamics from it. 

Recently stochastic treatment of an inflationary model is studied by many 

people.1H3
) This method describes dynamics of a long wave mode of the scalar field 

which drives de Sitter expansion. Starting from the operator Heisenberg equation of 

the scalar field on de Sitter space-time, one, gets a "classical" Langevin equation by 

coarse graining the short' wave length modes of the scalar field. In this equation, 

quantum effect enters 'as a Gaussian white noise and dynamics of the long wave mode 

of the scalar field becomes a stochastic process driven by this noise. In spite of 

treating a quantum system, the only thing one has to do is to solve a c-number 

stochastic equation. Therefore it becomes fairly easy to understand the dynamics of 
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1038 Y. Nambu 

quantum inflation. 

From this approach, an important aspect of an inflationary model has been 

understood. As domains of Hubble horizon size (called h-region) are causally in-

. dependent, each h-region evolves independently, driven by quantum fluctuations and 

the potential force. Therefore, viewed on a large scale, an inflationary model can be 

recognized as a stochastic random process with each h-region being an equivalent 

sample. But it differs from an ordinary stochastic process such as a Brownian 

particle, since number of h-regions increases in time due to the expansion of the 

universe. As time goes on, the probability that one h-region is. under inflation 

becomes very small, but the number of h-regions becomes very large. Therefore 

viewed on a large scale, there necessarily exists some h-regions which are under 

inflation. So an inflationary process continues forever on a global scale. 

To investigate the stochastic feature of inflation, we must solve Langevin equa­

tion or equivalent Fokker-Planck equation (FP equation) and obtain a probability 

distribution Pc( rp, t) for the scalar field. .It describes probability of finding a value of 

rp of the scalar field in only one of h-regions in the universe. However the size of an 

h-region varies with the expansion rate, hence with the value of rp. Therefore we 

cannot say enough thing about the global structure of an inflationary universe by Pc. 

We have to investigate probability Pp for a fixed proper volume which contains many 

h-regions which are of various sizes. Owing to different expansion rate of each 

h-region, Pp satisfies a modified FP equation.H
) 

In this paper, we investigate a chaotic inflationary model by the stochastic 

method. The chaotic inflationary model is considered to be the most natural model 

which needs no artificial initial condition for the scalar field. At Planck energy scale, 

the scalar field is excited quantumly, and gets the vacuum energy which becomes an 

effective cosmological constant. One of the most interesting approaches of stochas­

tic method is to find initial condition of the inflationary universe. In the chaotic 

inflation, due to quantum tunneling or quantum diffusion, some universes escape from 

chaotic Planck energy scale to under Planck energy scale, and begin to evolve 

classically. The stationary solution of the FP equation is expected to give the 

probability of this stationary process. The stationary solution for Pc is discussed by 

several authors and its relation to a quantum cosmological wave function is suggest­

ed.1),6);14) But this solution is not normalizable, so the physical meaning is unclear. 

Furthermore P~ does not reflect the global structure of the inflationary universe. 

Hence we pay. attention to the modified FP equation for Pp and search for the 

stationary solution of it: This modified FP equation has a different structure from 

the original one. Difference of expansion rate owing to that of the value rp enters as 

a source term of probability and this term acts the scalar field to pull up its value 

against the potential force. Hence we may expect the existence of a normalizable 

stationary solution. Furthermore since Pp describes the global" structure of the 

inflationary universe, the stationary solution; if it exists, is expected to be closely 

related to the initial condition of the classical universe. These expectations were 

found to be true recently in Ref. 15). In this paper, we extend the approach given in 

Ref. 15) and perform a more general and complete analysis of the modified FP 

equation and its stationary solution. 
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Stochastic Dynamics of an Inflationary Model 1039 

The paper is organized as follows. In § 2, we review our formulation. In § 3, we 

treat a chaotic inflationary model by stochastic approach and discuss dynamics of the 

scalar field. In § 4, we search for a stationary solution for the modified FP equation. 

Finally, § 5 is devoted, to conclusion. 

§ 2. Review of formulation 

In this section, we briefly summarize the stochastic approach to inflation. Our 

basic equations are the following Langevin equation on phase space (cp, v) with a 

Gaussian white noise/i) 

¢=V+6, 

iJ = -3Hv+ ;2.dCP~ V'(cp)-~ 6, (2·1) 

where 

(2·2) 

These equations are obtained by coarse-graining the short wave length modes of the 

Heisenberg equation for the scalar field on de Sitter space-time. Equation (2·1) 

contains degrees of freedom for the velocity of the field cp. But due to rapid de Sitter 

expansion, a large friction force acts to the field and degrees of freedom for the 

velocity are erased adiabatically within a Hubble time scale.lO) After the time, we 

recognize that the slow rolling condition is realized and we can use the following 

equation, 

(2·3) 

In addition, we ignored the spatial degrees of freedom and dropped out the gradient 

term of cp. This corresponds to paying our attention only to dynamics of the scalar 

field in a single h-region, in which field is regarded as homogeneous. Instead of 

treating this Langevin equation, we can use the equivalent FP equation, 

(2·4) 

where Pc( cp, t) represents a probability of finding the value of the scalar field cp in an 

h-region. The Hubble expansion rate H is connected to the value of the scalar field 

through the Einstein equation, 

(2·5) 
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1040 y. Nambu 

Therefore, the evolution of the background metric is influenced by the evolution of the 

scalar field and the FP equation (2·4) includes this back reaction effect implicitly. 

As already mentioned in'the Introduction, we cannot get information on the 

global structure of an inflationary universe by investigating a single h-region. When 

one considers only one h-region, the probability of finding values of the scalar field for 

which V(cp) is large becomes small as time goes on, because the classical rolling force 

always acts on the scalar field to pull it down. But if the value of the potential is 

large, the physical volume becomes very large due to large Hubble expansion rate. It 

turns out that the average number of h-regions which are under inflation never 

becomes zero, and the inflationary process never ends, viewed on the global scale. 

We can see this feature explicitly by the following consideration. If the Hubble 

pamameter is sufficiently large (corresponds to the large value of the potential), time 

evolution of the dispersion of the scalar field is given by 

H 3 t 
<cp2)= 47r2 • (2·6) 

This is the same expression as the usual Brownian particle. Characteristic time scale 

of the system is Hubble time scale H-r, and the step number of the Brownian particle 

is n = Ht. Therefore the probability of finding the system in the large potential value 

and the system is under inflation at time t is roughly given by 

(2·7) 

This value becomes zero after sufficient time. On the other hand, the physical volume 

or the number of h-regions of the system increases as 

(2·8) 

Therefore, average number of h-region which is under inflation is given by 

pN ~ eHt {3-1n2) , (2·9) 

and this value increases with time and the inflationary process never ends. To 

investigate this feature; we must .observe the distribution of the values of the scalar 

fleld over a physical volume which contains many h-regions. Different h-regions are 

statistically independent and each h-region has different Hubble expansion rate. The 

number of h-region is- proportional to the physical volume, and considering the 

infinitesimal duration of time LIt, each h-region splits into e3HL1t h-regions. 

On the basis of the above consideration, we analyze a weighted distribution 

function defined by 

P( cp, t)= (o( cp- cp~(t»exp( 3 ftdt' H( cp~(t'»)) , (2·10) 
~ 

where cp~ is a solution of the Langevin equation (2·3) with a fixed noise 7), and the 

average is taken over the noise distribution with a weight. factor representing the 

physical volume. From the above distribution, we can derive a FP equation for P. 
We start from the following distribution function for a fixed noise, 
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Stochastic Dynamics of an Inflationary Model 1041 

(2·11) 

This distribution function traces a classical orbit on phase space for a given function 

of noise and satisfies the following Liouville equation: 

(2·12) 

We can solve this equation by iteration, 

/(rp, t+Llt)=/(rp, t)+ I
t
+

L1t 
dtJJ(tl)/(rp, t) 

+ It+L1t dtlltIdt2iJ(tl)iJ(t2)/(rp, t)+ .... (2·13) 

Then by averaging over the noise 7J and taking the limit Llt --+ 0, we get the evolution 

equation for P=<8(rp- rp1»)exp(3 jdtH» 1) , 

aP =~(Lp+_1_H3/2~H3/2P)+3HP. 
at arp 3H 871"2 arp 

(2·14) 

To normalize the total probability to unity, we define 

( )
_ P(ep, t) 

Pp rp, t - <exp(3J dtH» . (2·15) 

For this probability distribution function Pp , we get 

ap
p =~(Lp +_1_H3/2~H3/2 P ) + 3(H(m) - <H»P 

at arp 3H p 871"2 oep P ." P • 
(2·16) 

The 3rd and the 4th term on the right-hand side of this equation represent the 

difference of expansion rates among each h-region. If every h-region has the same 

expansion rate, then this equation reduces to the original FP equation (2·4). 

§ 3. Chaotic inflation and stochastic approach 

In this section, we treat a chaotic inflationary model by stochastic approach. 

First we briefly review the scenario of a chaotic model using ..lrp4 model.17l Potential 

of a scalar field is V(rp)=..l/4ep4 and the equation of motion of the scalar field and the 

Einstein equation are 

ip+3Hrp=-..lrp3, 

H2+~=~(l .2+ V( )) 
a2 3 m~l 2 ep rp, (3·1) 

where k= + 1,0, -1. By solving these equations, we can get purely classical scenario 
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1042 y. Nambu 

of a chaotic inflationary model but this scenario is changed if we consider the 

quantum effect of the scalar field and treat this system by the stochastic approach. 

If the initial value of a scalar field is sufficiently large and is in the region rp'2>mpl, 

the solution for the above equations approaches the following asymptotic form within 

one Hubble time t ~ H- l
• 

rp( t) ~ rpoexp( -/limPl t ) " 

aU) ~ aoexp(-4:-( rp02- rp2U))) . 
mpl 

And at this time, the field satisfies the conditions 

I cPl~3HI ¢I , 

iI~H2 . 

(3·2) 

(3·3) 

Therefore the slow rolling condition is achieved and the background space-time 

undergoes quasi-de Sitter expansion. When the value of the scalar field comes down 

to near mpl, the field begins to oscillate rapidly and entropy is produced by particle 

creation and inflationary era ends. 

In the following, we pay attention to the region rp'2>mpl and investigate time 

evolution of the scalar field using the modified FP equation. First we pay attention to 

the dynamics of the scalar field in a single h-region and see how the classical be­

havior described above changes. Our basic equations'are the FP equation (2·4) and 

the Einstein equation (2·5) and we consider the ;lrp4 model. Substituting Eq. (2·5) into 

Eq.(2·4) and introducing dimensionless variables x= rp/mpl and u=mpd27r2(27rA/3)3/2 t, 

we get the· following FP equation, 

(3·4) 

Range of x is 1S:::xS:::;l-1/4. The lower bound corresponds to the end of inflationary 

stage and the upper bomid to the Planck energy scale (i.e., V(rp)=m~l), beyond which 

quantum gravitational effects will be dominant. In spite of the complicated struc­

ture, we can solve Eq. (3·4) by changing the variables, 

(3·5) 

Then our FP equation becomes 

(3·6) 

This equation is with a linear force and the diffusion coefficient is constant. There­

fore its solution is given by a Gaussian function. As we are interested in the time 

evolution of the scalar field in a single h-region now, we consider a delta function 

. P(y; u=O)= 8(y-Yo) for the initial distribution. As the value of y is constrained to 

be positive, the probability current J(y) of P must be zero at y=O. The solution that 
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Stochastic Dynamics ,Of an Inflationary Model 1043 

satisfies this boundary condition is 

ij(y; u) = N[ e-«Y-Yc(U»2)/(2cf(u)2) + e-«Y+Yc(U»2)/(2cf(U)2) ] ' 

where 

N = [ JrA( e12~1A -1) T'2 , 

YC(u)=e
6U

/
A
yo, (J(U)2= ~(eI2U/A_1) • (3·8) 

If necessary, we can form a wave packet from the above solution to obtain the time 

evolution of a general initial distribution. 

- Characteristic time scale that the location of the center of the wave packet (3·7) 

changes is given by Llu ~ ..1/12. And within this time scale, the shape of the solution 

changes as follows: 

Llpeak(change of center of the wave packet) ~ Yo , 

Lld!SP( change of dispersion of the wave packet) ~;,:r . 

Returning to the original variable x, we get 

I 
Llpeak.1 ~{<{1 
Lld!SP ~1 

for xo~A-1!4 , 

for xo<{A- 1
/
4 

• 

(3·9) 

(3·10) 

If this ratio is greater than unity, dispersion of the wave packet does not spread so 

much and the center of the wave packet rolls down the hill of potential obeying the 

classical equation of motion. We can call this situation "classical". On the other 

hand, if this ratio is smaller than unity, the wave packet spreads rapidly. In this case 

the quantum fluctuation (stochastic noise) dominates the classical rolling force, and 

the scalar field behaves as Brownian particles. In this situation, we can say the 

system is "quantum". The boundary of quantum and classical regions is determined 

by the balance of quantum and classical forces. If the system starts from the 

quantum region (xo~A-1!4), quantum noise dominates the system. But potential force 

becomes dominant gradually, and in final the system completely behaves classically 

and rolls down into the bottom of the potential. 

But the situation completely changes if the observer looks the inflationary 

universe globally. Due to the exponential expansion, number of h-regions in a 

physical volume increases in time and each h-region has a different value of Hubble 

expansion rate. Therefore to get information of the global structure of the 

inflationary universe, we must investigate the physical volume distribution function. 

From now on, we investigate the FP equation (2 ·16) which is for a physical volume. 

For the moment, we assume that the contribution of the volume effect is small 

compared to other terms in the modified FP equation. Setting the initial distribution 

as the delta function and within the time in which dispersion of the wave packet does 

not spread so much, we can replace <H(cp» by <H(cpc» in Eq. (2·16). Then an 
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1044 Y Nambu 

approximate solution of FP equation (2°16) is given by 

Pp(cp, t);:::;;Pe(CP, t)e3t (H(IjI)-H(ljIc» , 

where Pc is a solution of the original FP equation. 

N ow consider a potential of the following general form: 

(n=l 2 3 00.) , , , 

(3°11) 

(3°12) 

Substituting Eq.(3 °12) and Einstein equation (2 ° 5) into FP equation (2 ° 4) and introduc­

ing dimensionless variables: 

_ mpl (471",1 )3/2 . 
u- 871"2 3n t, (3 °13) 

we obtain 

ape _~( 3n
2 

n-1p' + 3n12~ 3nI2p.) 
au - ax 2,1 x e X ax x e. (3°14) 

Since the potential (classical) force and diffusion (quantum) force as well as the terms 

representing the volume effect are all x·dependent, qualitative behavior of Pp(x, u) 

changes with variation of the initial value Xo of o(x - xo). This FP equation can be 

tranformed to FP equation with constant diffusion coefficient by using the following 

variables: 

Y=X-(3n-2)/2, _(3n-2)2 v- 2 u. (3°15) 

Under the above tranformation, -the conservation of probability implies that the 

distribution function transforms as 

(3°16) 

Then our FP equation becomes 

aft =~( _2(~) (n+2)/(3n-2) ft + aft) 
av ay A 3n-2 y ay . (3°17) 

In the case n=2, the force term becomes linear and we already know the exact 

solution (3 ° 7). So we start with this case. The approximate solution (3 °11) becomes 

.( ) [(y-Ye(u»2] [3Llu(1 1)] 
Pp y, U ~exp - 20"(u)2 exp -,1- -y- Ye(U) . (3°18) 

Within the characteristic time scale .Llu:S ,1/12, we can approximately replace Ye by yo. 

Then for Llu ~ ,1/12, 

Pp~exp[ -24Yf(~ -1 r + 4;0 ((~rI/2 -1)]. (3°19) 

From the above expression, it is easily observed that the qualitative feature of the 

region under consideration varies, depending on whether initial value Yo is greater or 
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Stochastic Dynamics of an Inflationary Model 1045 

smaller than the following critical value: 

(3·20) 

This value corresponds to x* ~ ,,-1/6 in the variable x and larger than the scale given 

by Eq. (3'10), i.e., x ~ ,,1/4. From this, if one observes that a scalar field evolves 

classically (Le., X:s,,-1/
4
) in a single h-region, there necessarily exist some h-regions 

which are in the "quantum state" (i.e., X<,,-1/6) and noise is dominant. If xo<x*, the 

distribution dose not spread so much and the center of wave packet moves obeying the 

classical equation of motion. Hence those h-regions which happened to have the 

values of x smaller than x* would become large classical universes like our universe. 

On the other hand, if Xo > x*, the shape of the wave packet deviates from the Gaussian 

form and the center of the wave packet does not roll down the potential hill but 

actually goes up and the dispersion increases rapidly. Thus, as long as there is at 

least one h-region in which Xo > x*, the universe viewed on a global scale will be 

eventually dominated by exponentially expanding h-regions and inflation never ends. 

We can easily generalize the above discussion for any value of n.. We first solve 

the FP equation (3'17) approximately. Following Goncharov et al.,3),6) let us intro­

duce .new variables as 

s=v, 

(3'21) 

where Yc(u) is a classical solution which satisfies the classical equation of motion of 

the scalar field, 

3n
2 

(n+2)/(3n-Z) 
,,(3n-2)Yc (3'22) 

Then the FP equation (3'17) becomes 

ap =-..L((_ 3n
2 

(- + )(n+Z)/(3n-Z) 3n
2 

(n+Z)/(3n-2»)p+ ap) (3'23) 
as ay ,,(3n-2) Y Yc ,,(3n-2)Yc ay . 

As we are searching for an approximate solution for a delta function initial condition 

and investigate how the shape of the wave packet deviates from the Gaussian form, 

it is enough to take leading terms of y in this FP equation. Therefore 

ap 3n
2
(4-2n) (4-2n)/(3n-Z)-..L( -p)+Lp ---as ,,(3n - 2)2 Yc ay Y ayz. 

In this equation, the potential force is linear and the diffusion coefficient is constant. 

So its solution for a delta function initial condition is given by the Gaussian form, 

(3·24) 

Dispersion (J( u) is given by 

(J(U) (3n - 2)" (2n+4)/(3n-2)( (-8)/(3n-Z) _ (-8)/(3n-2») 
24nz Yc Yo Yc . (3'25) 
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1046 Y. Nambu 

Now we estimate the probability Pp. From Eq. (3-11), Pp has the following 

approximate form: 

(3-26) 

where h(y) = y-2n/(3n-2) IA. In the present case, the solution of the classical equation of 

motion (3 -22) is 

_ (1 + 3n
2 

-(2n-4)/(3n-2») 
Yc-Yo A(3n-2)Yo . U, (3-27) 

and the characteristic time scale that the center of the wave packet changes is given 

by 

A _ 3n - 2 1 (in-4)/(3n-2) 
LJU 3n2 IlYO • (3-28) 

Within this characteristic time, we can replace Yc as yo. After all, the shape of the 

wave packet after Llu is approximately given by 

[ 
24 2 ()2 1 ((. )-2/(3n-2) )] 

Pp-exp - A(3n~2)Yo4n/(3n-2) ~-1 +-;ZZYO-4/(3n-2) ~ -1 .(3-29) 

From this expression, it is easily observed that the qualitative feature of the region 

under consideration varies, depending on whether the initial value Yo is greater or 

smaller than the following critical value: 

y* _ A(3n-2)/(4n+4) . (3-30) 

Returning to the original variable x, this critical value corresponds to 

(3-31) 

We will see in the next section that this scale is closely related to the form of potential 

in the modified FP equation. 

§ 4_ Stationary solution of the modified FP equation 

One question about chaotic inflation is its initial condition. At Planck energy 

scale, quantum gravitational effects dominate and space-time foams are created and 

annihilated as Hawking stated.16) Classical universe appears from these quantum 

gravitational regions by quantum tunneling or quantum diffusion. Therefore the 

distribution of classical universes carries some information about a process of Planck 

energy scale. In stochastic approach, the FP equation includes the effect of back­

reaction to the geometry through the <p-dependence of H. If we assume that a 

process of classical universe creation is stationary, the corresponding solution which 

represents this process is stationary. This assumption is not so unreasonable because 

it is a possible view that the inflationary universe has no end and no beginning on a 

global scale;19) In this section, we investigate the stationary solution of the modified 

FP equation which includes the volume effect. Naive thinking suggests that the 

volume effect term in the FP equation due to large fluctuation of the scalar field 
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Stochastic Dynamics of an Inflationary Model 1047 

balances the classical rolling force, and the normalizable stationary solution will 

exist. 

We first consider a stationary solution of the original FP equation of Pc for n=2· 

case; which is the probability for a single h-region. FP equation is 

(4·1) 

Solution of this equation is easily obtained, 

(4·2) 

where CI and Cz are integral constants. This solution becomes singular as x -4 0 and 

is not normalizable. This is because after a sufficienttime, a scalar field ina single 

h-region rolls down into x=o and accumulates there. We study this feature using a 

time dependent exact solution of the previous section (Eq. (3·7». The range of 

variable y is constrained in the region y:S 1. Therefore we must set cutoff at y = 1 

and this equivalent to put the reflecting boundary condition at y:S1 for P(y, u). We 

do this by adding €y3 term to the force term in FP equation, and taking €-40 in the end. 

By the original variable x, this corresponds to putting a reflecting barrier near x~o. 

Then FP describes the system, of the potential -(3/2A)yz+(e/4)y4 with a constant 

diffusion, and it is well known that the solution of this FP equation for Pc(Y) is given 

by the scaling solution. IS) Starting from an initial delta function distribution, this 

solution evolves keeping its Gaussian form until the effect of non-linear force (€y3) 

becomes dominant. After that the distribution function forms double peaks and these 

peaks roll down into minima of the double well potential. Although the scaling 

solution does not approach the stationary solution at U-4oo, after a sufficient lapse of 

time, dispersion of this solution is known to give the correct answer for the stationary 

solution which is given by 

(4·3) 

where C is a normalization constant. In variable x, this probability distribution is 

Pslx)=x-3exp(3/(2A)X-4-€/4x-S
) and its value becomes zero at x=O, +00 and has 

peak at x=A€/3. In €-40 limit, this peak approaches x=o and its height becomes 

infinite; Pst=x-
3
exp(3/(2A)X-4). This is the same form as the stationary solution 

Eq. (4·2) with the boundary condition Jlx=+",=o, which corresponds to Cz=O. 

We can interpret the behavior of the above statio~~ry solution as follows. For 

any given initial distribution, P(x) approaches this stationary solution after sufficient 

long time provided the value of € keeps finite. Therefore the observer who can only 

view the value of the scalar field in one h-region observes that the probability of 

finding the scalar field near x~O, which is the bottom of the potential, is very high. 

For general n, the stationary solution of FP equation (3·14) can be obtained, 

[ ( 
3n 

)
I/Zn-3/4 (( 3 )-I/Zn )] Pc(x)=x-3nIZe3nI4Ax-2n C I + Cz 4"J F 4~ x, 
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1048 Y Nambu 

(4°4) 

and the physical situation is the same as n = 2 case. 

What is the modified FP equation for Pp which is for a physical volume? We 

investigate the modified FP equation (2 °16) for a physical volume in which there exist 

many h-regions. From the structure of this equation, we can observe the following 

behavior of Pp: If the value of rp is sufficiently large, terms which represent the 

volume effect enhance the probability and will balance the classical rolling force. So 

we can expect the existence of a stationary solution. 

Using potential of the form (3 °12) and the Einstein equation (2 ° 5) and the 

dimensionless variables (3 °13), the modified FP equation becomes 

app =~( 3n
z 

n-1p' + 3n/z~ 3n/zp )'+ 187m ( n_< n»p 
au ax 2A x p x ax x p A x ,x p • (4°5) 

This is an integro-differential equation and cannot be solved in general. However, by 

further transforming it into a Schrodinger-type equation, we can obtain sufficient 

qualitative information about the stationary solution for Pp • We use the dimension­

less variables y, v introduced in Eq. (3°15). Note that for n~l, which one generally 

assumes, x-HXJ corresponds to y--+O. Then by defining ¢(y, v) as 

[ 
3n ] -¢(y, v)=exp -&ry4n/(3n-Z) P(y, v), (4°6) 

we get a Schrodinger equation of the form,*) 

(4°7) 

where 

Uo(y) 3n
Z
(n+2) (-Zn+4)/(3n-Z)+ 9n

4
' (Zn+4)/(3n-Z) 

2A(3n-2)2Y 4A2(3n-2)2y 

72TCn -Zn/(3n-Z) 
A(3n-2)zY , 

E= 72TCn < -zn/(3n-Z» 
A(3n-2)Z Y . . (4°8) 

A normalizable stationary solution shQuld correspond to a "negative" energy 

bound state solution of Eq. (4 ° 7), i.e., E= - < Uo(Y»= - f dy¢Uo¢ < 0, and the existence 

of the latter is expected from the behavior of potential Uo(y) (see Fig. 1). If there 

were no volume effect, the stationary solution corresponds to "zero" energy bound 

state; i.e., E = - < Uo> = O. But Uo would be positive everywhere and no zero energy 

bound state would exist. However, due to the volume effect, Uo(y) goes to -(X) as 

y--+O and a negative energy solution may exist. However, the existence of a negative 

energy bound state solution does not directly imply that of a normalizable stationary 

solution, since E is not just an eigenvalue but is an expectation value which must be 

*) We use the opposite sign convention for the definition of the energy E used in the previous paper:16
) 

In this paper, the value of E is always negative. 
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Stochastic Dynamics of an Inflationary Model 1049 

Uo 
2000~------------------~ 

1000 

O+-=F~~~~~-r~~-r~y 
1.0 2.0 3.0 

-1000 

-2000~------------------~ 

Fig. 1. Shape of the FP potentials for n=2 case 

and ,1=0.1. (a) The potential of the original 

FP equation. At y=O, its value is positive and 

zero energy state which corresponds to the 

stationary solution 'cannot exist. (b) The 

potential of the modified FP equation. Owing 

to the volume effect term, the potential 

becomes -00 at y=O and a negative energy 

state corresponds to the stationary solution 

exists. 

T T ( ) ~ _ 187rn ( __ 2_)2 -2n/(3n-2) 
vo y "t 3n-2 y . 

consistent with certain eigenvalue. 

Observing the form of Uo(y), we can 

get one charcacteristic scale of y, which 

comes to appear due to the volume 

effect. One readily sees that the second 

term of Uo(Y) determines the behavior of 

if! at y -+ 00 and the third term at y -+ O. 

By equating these tWQ terms, we find the 

critical value of y as 

(4'9) 

The second term of the potential repre­

sents the classical rolling force, and the 

third one represents the volume effect. 

Therefore this scale characterizes the 

boundary of the classical region and the 

quantum region, and coincides with the 

critical value obtained in Eq. (3'31) in 

terms of the variable x. 

N ow, we first analyze the behavior 

of if! in the region y~O. For y<y*, 

Uo(y) is given approximately by 

(4'10) 

For n:2: 2, Uo(Y) goes to - 00 slower than - y-2, so it is known from quantum 

mechanics that a regular eigenfunction can exist. But for n=l, the potential behaves 

as - y-2 and eigenfunctions become singular at y=O. Therefore without some cutoff 

of.the value of y near y~O, a normalizable stationary solution does not exist. By 

tracing back the origin of this singularity in Eq. (4'5), one finds that it is due to the· 

weakness of the potential force for n=l at energy greater than the Planck scale. 

The effect of quantum fluctuations dominates and almost all physical volumes of the 

universe are blown away beyond Planck energy; V(<p»m~l (y<"tl/2). Since we 

cannot say much about the physics beyond the Planck energy, we do not go into 

discussion further for the n = 1 case. 

We start with the case n=2. For the moment we ignore the consistency condi­

tion for E and regard it as a free parameter. Near y~O, potential Uo(Y) becomes 

() 
97r 3 

Uo y ~-lY+U' (4·11) 

This is just a Coulomb potential and its solution IS already known. As probability 

distribution is non-negative, a desirable solution is the ground state eigenfunction 

because it has no nodes. It is given by 
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1050 y. Nambu 

(4°12) 

where No is a constant. Hence for ;1~1, the negativity of E which is necessary by its 

definition is guaranteed and it is possible that the above solution is the consistent 

stationary solution. 

Given the value of E, the behavior of ¢ at Y~OO can be determined by the 

standard WKB method. An inspection of Eq. (4°7) shows that the WKB method is 

applicable for y~;1 (turning point). It is easy to see that the WKB solution in the 

range ;1~y;:S;1l/3 coincides with Eq. (4°12). For y~;1l/3, the solution takes the form, 

¢::::: (y2 + 9 ;r2)-1/4(y + (y2 + 9 ;r2)1/2)-271r2/4Aexp[ - 3y(y2 t;19 ;r2)1/2] . (4°13) 

Therefore; 

for l;:Sy , (4°14) 

where the subscript E denotes that the solution is obtained by regarding E as a 

pamameter, i. e., ignoring the consistency condition. 

We next investigate n:23. Let Yt be the turning point which satisfies Uo(Yt)=E. 

Then in the region Y<Yt, a WKB solution which becomes zero at y=O is given by 

¢(y)= J;ty)sin[l
Y

dYp(y)] , 

;p(y)2=E- Uo(Y) , (4°15) 

where A is some constant. On the other hand in the region Y > Yt, a WKB solution 

which becomes zero at Y~OO is 

¢(y) . 4 exp[ -1: dy;r(y)] , 

;;r(y)2= Uo(y)- E , (4 0 16) 

where B is some constant. The condition that the above two solutions are connected 

smoothly at turning point Y = Yt is 

(Y' 3;r 
)0 dyp(y)=m;r+T' (4°17) 

where m is integer, and to obtain the ground state solution, we must set m=O whose 

solution has no nodes. Using this condition, we can obtain the value of energy E and 

asymptotic behavior of ¢ at Y > Yt. By evaluating the above integral, we get the 

approximate value of ground state energy E and Yt, 

E~ - ;1(-2n+2)/(n-2) , 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/8

1
/5

/1
0
3
7
/1

8
5
4
0
6
0
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Stochastic Dynamics of an Inflationary Model 1051 

Yt;:::: A(3n-2)/2(n-2) . (4 ·18) 

The turning point Yt is smaller than the Planck energy scale YPI = X3n- 2)/4n provided 

that A is much smaller than 1. Near y~O, Eq. (4·15) gives 

¢(y) ~ y(3n-4)/2(3n-2) . (4·19) 

On the other hand, in the region Y~Yt, the potential is approximated by 

T T ('y) ~ 9n
4 

y(2n+4)/(3n-2) 
UO ~ 4A2(3n-2)2 , 

and Eq. (4 ·16) gives 

¢ ~ y-(n+2)/2(3n-2)( 1 _ ! y-(2n+4)/(3n-2») 

x exp( 3n 4n/(3n-2) + A(3n - 2)2 E (2n-4)/(3n-2») 
2(3n-2)Y 6n2(n-2) Y . (4·20) 

The expression is correct in the region y:C 1 and in this region, inflation has already 

ended (at y ~ 1, inflation ends). After all for n ~ 3, P(y) is given by 

y(3n-4)/2(3n-2) for y<A-4(n+2)/(n-2)(3n-2) , 

-(n+2)/2(3n-2) ' (_ (3n - 2)2 1-2n/ui-2) (2n-4)/(3n-2») 
y exp 6n2(n-2)1I. y 

for y:C1 . (4·21) 

N ow as we have got the WKB solution for n ~ 2, we must check if it is a consistent 

solution of Eq. (4·5), i.e., whether it satisfies 

J ( 3n
2 

(n+2)/(3n-2)p+JP)+( 72Jfn -2/(3n-2)+E)F=0 
ay A(3n-2)y , Jy A(3n-2)2Y , 

E - - 72Jfn < -2n/(3n-2» 
- A(3n-2)2 y . (4·22) 

By estimating the probability current J =( -3n2jA(3n-2))y(n+2)/(3n-2) F+(JjJy)P ofthe 

solution, we see that JIY~o*o and JIY~oo=o for n=2 and JIY~o=O and JIY~oo=O for 

n~3. Therefore for n=2, if we regard the range of definition for y as [0, 00), Eq. (4'14) 

cannot be a consistent solution. However, Eq. (4·22) would not be quite meaningful 

far beyond the Planck energy scale. Because in this scale, quantum gravitational 

effect becomes very dominant and space-time fluctuates too much and our formulation 

cannot apply. Hence it is not unnatural to introduce a cutoff at some non-zero value, 

y=O'>O. Fortunately, it turns out that the probability current has a zero at y~A, 

which is well beyond the Planck energy scale. This suggests that we should choose 

a such that JIY=8=0. With this choice, it can be shown that a consistent solution does 

exist and given by Eq. (4·14). The proof is as follows. 

Using the solution FE, we construct a new probability distribution function 

defined in the range AS; y < 00 as 
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1052 Y Nambu 

(8::::;;y<oo) 

where N is the normalization constant given by 

N= 1°OdyFE. 

(4 '23) 

(4'24) 

Now, since FE is the solution which yields J =0 at both ends of y, it follows from the 

integration of Eq. (4'22) aI).d from Eqs. (4'23) and (4'24) that 

A 100 

dy --E=- -P(y). 9Jr 8 y. 

Thus we have shown that F does satisfy the consistency condition. 

(4'25) 

For n:?::3, J becomes zero at y=O, and a consistent solution can exist without 

cutoff. But because ¢(y) is a ground state wa~e function, it has no node and has a 

maximum value near the turning point Yt which is far beyond Planck energy scale. 

At this point the current J becomes zero similar to n=2 case. Therefore we may set 

a cutoff even for n:?:: 3 if it is more natural. As we are interested in the region below 

the Planck energy scale, the behavior of the distribution does not so much depend on 

the cutoff at beyond the Planck energy scale. 

Let us consider the physical meaning of the stationary solution. Transforming 

back to the original variable x and taking account of the normalization factor 

approximately, the probability distribution Pp(x) takes the form for n=2, 

A
lI3 [9Jr 3] ---xaexp - 2AX2 + 4AX4 

A 1/3 X -2+(1/3)(9,,/2)2(1/ A) 

for A- lI6 ;:S x , 

for 1;:S x;:s A-1
/
6 

, 

for x;:Sl , (4'26) 

with the upper cutoff at X~A-1/2 (we assume A<{::l throughout the paper). And for 

n:?::3, 

{ 

e-A-2c/(n-21 x(-7n/4)-(lI2) 

Pp(x) ~ (-5n/4)+(1/2) [_ (3n - 2)2 l-n/(n-2) -n+2] 
X exp 6n2(n-2) II x. for x;:Sl , 

(4'27) 

where c is a numerical factor of order unity. It is then readily observed that Pp is a 

monotonically increasing function of x up to the cutoff or to the turning point and 

vanishes rapidly as x ~ 0 and this behavior is completely different from the stationary 

sohition of Pc(x). This implies that the most physical volume of the entire universe 

is in a highly chaotic quantum gravitational state. The regions having the values of 

x in the range l;:Sx;:Sx* are undergoing classical slow rolling inflation and those in 

the range x;:S 1 are large classical universes which have gone through inflation 

already. Although our analysis cannot apply to x;:Sl where the exponential expan­

sion is no longer on, we expect the form of Pp given in Eq. (4 '26) and Eq. (4·27) is still 
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Stochastic Dynamics of an Inflationary Model 1053 

qualitively correct. This follows from the fact that the expansion rate is extremely 

small in regions with x ~ 1 as compared with the dominant part of the universe and as 

a result no serious error arises from the incorrectly assumed de Sitter expansion, i.e., 

it does not matter whether those regions with x ~ 1 are exponentially exp'anding or 

not. 

It is worthwhile to mention the power-law behavior of Pp for n=2 at x~1. This 

means that the distribution has no characteristic scale. However, this is a special 

feature for the n=2 case. Let us see what is happening in the FP equation. In the 

variable y, consider our FP equation (4·22). We search for the condition that P 

obeys power-law as y-H)(), i.e., 

P(y)cx.yp. (y -H)(), P < 0) (4'28) 

Substituting Eq. (4' 28) into Eq. (4' 22), we compare the degree of power of each term. 

For the case n*"2, the 1st term on the right-hand side dominates over the last term as 

y~()(). The 1st term is the classical rolling force and the last term is the volume 

effect due to the fluctuations of the field. In the region y ~ ()() the classical force 

dominates and the probability function could not have the power-law behavior. In 

contrast, for n=2, the 1st term and the last term give the same contribution when 

y ~ ()() and balances with each other, therefore the probability obeys power-law. This 

power-law behavior is related to the scale invariance of A9'4-theory. As we have seen 

above, the existence of a power-law solution is guaranteed by the balance between the 

volume effect term and the potential force term. But A9'4-theory is invariant in the 

level of the classical equation of motion under the following scale transformation: 

{
9' ~ C9', 

t ~ c- 1 t (4'29) 

with c being a constant. Therefore the balance is preserved under this transfor­

mation. Thus as long as one is interested in the stationary distribution function, 

there appears no characteristic scale of 9'. For n*"2, Pp(x) has an exponential part 

and a characteristic scale appears. 

As each h-region of the universe evolves effectively independently, we may regard 

each h-region as an independent universe. Then transforming the variable x (or 9') 

to V = H-3
, we can study the distribution of volumes of larg~ classical universes 

which have gone through inflation. For V greater than A-3/2 IJ" corresponding to 

x ~ 1, one finds 

n=2; P( V) ~ V< -1/18.)(9"/2)2 , 

(4'30) 

where c is a numerical factor. For n=2, various sizes of universes are distributed in 

the way that they form a fractal structure, i.e., the probability to find an arbitrarily 

large universe is not exponentially suppressed. In Fig. 2, we visualized this fractal 

structure given by the probability distribution function (4'30). The size of universes 

is expressed in terms of the sizes of squares. We must be careful that this figure is 
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1054 y. Nambu 

Fig. 2. Fractal distribution of universes. The size 

of each square reresents the size of each h-

region. As the distribution function has no 

characteristic scale, the size of universes also 

has no characteristic scale. 

idealized one and does not necessarily 

represent the shape of real universes. 

This is because we treat each h-region 

which is spatially distributed as statis­

tically independent, and do not know by 

what way they are connected spatially. 

For n~3, the probability to find the 

large univeres is exponentially suppres­

sed. The characteristic scale is V 

~ A3/2lJI and much smaller than Planck 

scale size. Therefore we expect that 

creation of large classical universes like 

ours by quantum fluctuation is a very 

rare event for n ~ 3. 

N ow an interpretation of the distri­

bution (4·30) in the picture of creation­

from-nothing22
) would be as follows. 

On scales smaller than the Planck 

volume VPI= lJI, quantum gravitational 

fluctuations play a dominant role and 

one can hardly say that universes (h-

regions) do exist in the classical sense; 

spontaneous creation and annihilation of them must be occurring violently. In 

addition, since the probability current vanishes at x ~ Xt (turning point corresponds to 

Yt), one can regard them as created from "nothing". 

It is important to note that this process is stationary; One can estimate the rate 

of creation of classically behaving universes like ours provided that the obtained 

solutions can be used in the region x:Sl. For n=2, 

~exp(- ~), (4·31) 

per unit time LJu=l, where c is a constant of order unity. On the other hand, for 

n~3, 

J= 3n2 n-Ip' + 3n12~ 3n12p.1 
2..1 x c x ax x c x-I 

(4·32) 

As one can see from the expression of J at x ~ 1, creation rate of the classical universe 

for n~3 is much suppressed compared with n=2 case. 
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§ 5. Conclusions 

In this paper, we investigated the global structure of an inflationary model. 

Using the modified FP equation which represents the probability distribution of the 

scalar field for a physical volume, we found that a normalizable stationary solution 

can exist. Existence of the stationary solution is guaranteed by the volume effect 

term due to large fluctuation of a scalar field which balances classical rolling force. 

As the inflationary process becomes stationary on a global scale, the stationary 

solution represents the initial distribution of classical universes. We interpret that 

the stationary solution gives the probability of creation of classical universes which 

was produced from the chaotic quantum gravitational regime to the classical regime by 

quantum tunneling or quantum diffusion. From the behavior of the solution, it is 

found that below the scale at which inflation ends, the probability distribution obeys 

power-law for a IIcp4 model. This means universes which begin classical evolution 

have a fractal distribution in space. This result is originated from the scale invari­

ance of the IIcp4 model. It is very interesting that the microscopic symmetry results in 

the macroscopic order; fractal distribution of classical universes. 

In spite of our lack of knowledge about Planck energy scale physics, our result 

may reflect quantum gravitational effect implicitly. Several people suggested 

the relation between the stationary solution for Pc and Hartle-Hawking cosmological 

wave function 7JfHH .21),22) But it is considered that this relation depends on how one 

includes the dependence of a scalar field cp in the FP equation, i.e., it depends on the 

way of ordering "Hubble constant" in FP equation, in other words, the way to include 

the effect of back-reaction to the geometry. From the start, stochastic approach to 

inflation is some approximate method of quantum field theory on curved space-time 

and it is unclear what relation it has to canonical quantum gravity on mini-super 

space. Stochastic approach is based on the Heisenberg picture and treat mainly 

flnctuations of a scalar field. On the other hand, canonical qnantum gravity 

(Wheeler-Dewitt equation) on mini-super space isbased on Schrodinger picture and 

treat fluctuations of a scale factor. We do not know by what way quantum 

gravitational effect comes into the stochastic approach. Therefore to clarify the 

relation between stochastic approach and canonical quantum gravity, we must inves­

tigate how the information of the state of a qunatum field is included in stochastic 

approach. This is one important problem left to us. 

There is another important problem. Stochastic approach treats each h-region 

independently and this makes treatment of the system very simple. But real universes 

are different. Due to the spatial degrees of freedom of the field, h-regions interact 

with each other. In addition, background geometry receives these effects and will 

have very inhomogeneous space-time structure and this affects the evolution of a 

scalar field on it. Especially in the chaotic inflation, the fluctuation of the metric 

becomes very large at the Planck energy scale, and mini-universes are created 

continuously and space-time forms "self~reproducing" structure.19
) To observe these 

complicated and non-trivial space-time structure more precisely and dynamically, we 

must include many degrees of freedom of space-time metric into the stochastic 
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approach and solve the geometrical evolution in a general relativistic way. Or we 

must develop some approximate method which describes stochastically (dynamically) 

evolving h-regions (space-times) interacting with each other. This is our future 

problem. 
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