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Stochastic dynamics of intermittent pore-scale

particle motion in three-dimensional porous

media: Experiments and theory
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1Department Civil and Environmental Engineering, Ghausi Hall, University of California, Davis, California, USA, 2Institute of

Environmental Engineering, ETH Zürich, Zürich, Switzerland, 3Spanish National Research Council (IDAEA-CSIC),

Barcelona, Spain

Abstract We study the evolution of velocity in time, which fundamentally controls the way dissolved

substances are transported and spread in porous media. Experiments are conducted that use tracer particles

to track the motion of substances in water, as it flows through transparent, 3-D synthetic sandstones.

Particle velocities along streamlines are found to be intermittent and strongly correlated, while their

probability density functions are lognormal and nonstationary. We demonstrate that these particle velocity

characteristics can be explained and modeled as a continuous time random walk that is both Markovian

and mean reverting toward the stationary state. Our model accurately captures the fine-scale velocity

fluctuations observed in each tested sandstone, as well as their respective dispersion regime progression

from initially ballistic, to superdiffusive, and finally Fickian. Model parameterization is based on the

correlation length and mean and standard deviation of the velocity distribution, thus linking pore-scale

attributes with macroscale transport behavior for both short and long time scales.

Plain Language Summary Transport of dissolved substances in rocks and soils are controlled

by the intricacies of the pore space. In short time scales, brief bursts of fast flow in otherwise slow-moving

water lead to intense spreading. In long time scales and/or distances, this burst effect is drowned out

and spreading behavior becomes weak and constant. The long time behavior is well understood and

predictable, but not the short time behavior and their transition. We study the processes responsible for

this transition from intense to weak spreading behavior. In the laboratory, we track how small particles in

water move through the pore spaces of a transparent, synthetic soil. These measurements show us how

long the fast flow bursts last, how fast they are, and how frequently they occur. Statistical analysis of the

particle behavior reveals that flow has a short term memory, and we build a predictive model that

captures this effect. Our novel model allows predictions of the changeover from intense to weak spreading,

and demonstrates that it captures fundamental transport processes in naturally-occurring porous media.

Therefore, this new model can be used to make better predictions for important applications such as

groundwater contamination assessments or oil recovery.

1. Introduction

Understanding how flow and transport through porous media are regulated by structural features of the

pore space is a problem of central concern for many environmental matters not limited to the following:

reactive transport in groundwater [Neuman, 1990; Willmann et al., 2010; Dentz et al., 2011], environmen-

tal remediation [Freedman and Gossett, 1989; Zhang, 2003], nuclear waste disposal [McCarthy et al., 1978;

Helton, 1993], and oil recovery [Hiorth et al., 2010; Armstrong and Wildenschild, 2012]. Predicting flow behav-

ior in heterogeneous porous media from measurable structural properties remains a challenge, given that

the relationship between structure and function is tenuously understood. Transport even in homogeneous

porous media tends to display tailing in breakthrough curves, nonlinear evolution of mean square displace-

ment, and non-Gaussian spatial density profiles, which are signature features of anomalous (non-Fickian)

behavior. As a result, advection-dispersion formulations are unsuitable for capturing preasymptotic transport

[Lester et al., 2014]. Modeling approaches typically assume diffusion in porous media to be Gaussian at the

Darcy scale [KochandBrady, 1985] and attribute anomalous features to larger-scale heterogeneities. However,

recent studies have drawn attention to the interplay between persistent pore-scale velocity heterogeneity
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and anomalous transport [Bijeljic et al., 2004; Datta et al., 2013; de Anna et al., 2013; Clotet et al., 2014; de Anna

et al., 2014; Kang et al., 2014; Siena et al., 2014;Holzner et al., 2015], thus highlighting themutiscale complexity

of transport processes in porous media.

It is well accepted that large-scale processes are fundamentally controlled by the collective interactions

between the fluid and the pore space structure. A major challenge for modeling pore-scale transport is to

determine how much detail of the pore geometry is needed to make accurate predictions of macroscopic

processes. Various pore-scale upscalingmodels have been proposed to extract the relevantmechanisms that

control transport in porousmedia, albeitwith a trade-offbetween computational efficiency and faithful repre-

sentation of the real pore geometry. Take, for instance, the geometric simplification of the pore space through

use of sinusoidal wavy channels in theoretical studies of pore-scale reactive transport [Bolster et al., 2009; Le

Borgne et al., 2011; Sundet al., 2015]. Such idealized pore approaches approximate the transit timedistribution

and spatial correlation properties ofmore complexmedia,which permitsmodeling sizable sampleswith ease.

Networkmodels are a step-up in realismbut still reduce thepore system to amultidimensional lattice of edges

and nodes that must be tuned to match the pore size correlation and topological disorder of the real system

they represent [Fatt, 1956; Blunt, 2001; Dong and Blunt, 2009]. Direct numerical models on pore-scale images

honor the geometry of the pore space to the limit of the image resolution but are highly computationally

demanding and avert simulations on large samples [Blunt et al., 2013; Bijeljic et al., 2013].

The continuous time randomwalk (CTRW) model has become a growingly popular framework for predicting

anomalous transport in heterogeneousmedia [Dentz and Berkowitz, 2003; Berkowitz et al., 2006; deAnna et al.,

2013;Kangetal., 2014; LeBorgneetal., 2011;Holzneretal., 2015; LeBorgneetal., 2008; Sundetal., 2015; Tyukhova

et al., 2016]. At its core, CTRWmodels describe effective transport by discretizing the solute into a large num-

ber of particles that move as a sequence of transitions in space and time. Space increments are typically fixed

to match the characteristic length of the porous medium, while time increments are randomly sampled from

agiven transition timedistribution. The basicmodel assumes that time increments between successive jumps

are independent and identically distributed. Yet numerous studies have conclusively demonstrated that cor-

relation between successive steps is required to correctly reproduce certain transport features [Kang et al.,

2014, 2015; de Anna et al., 2013; Le Borgne et al., 2008;Meyer and Bijeljic, 2016]. Several approaches have been

proposed to enforce correlation in the Lagrangian velocity along a particle trajectory. Holzner et al. [2015]

implement correlation through a persistence of particle velocity parameter that allows a particle to change

velocities at turning points based on a probabilistic value. The work by Le Borgne et al. [2008] and the various

others that follow it [Kang et al., 2014, 2015; Le Borgne et al., 2011; Sund et al., 2015; de Anna et al., 2013] effects

a conditional correlation via velocity transitionmatrices, which condition the probability density of transition

time on the observed value in the previous step. Meyer and Bijeljic [2016] more recently account for velocity

correlations through a velocity-direction-angle process that reflects the recurrent focusing and defocusing of

flow at the pore scale. While the aboveMarkovian approaches reproduce some aspects of transport behavior

relatively well, the former two do not accurately simulate subpore velocity fluctuations and the latter requires

a great detail of particle dynamics as input.

In this work, we study the stochastic dynamics of Lagrangian velocity in porousmedia with particular empha-

sis on the velocity evolution process. First, transport is studied experimentally by tracking tracer particles

along streamlines in three different porous structures. Then, a new simple predictive model that follows an

Ornstein-Uhlenbeck process is proposed to recover the progression of Lagrangian velocities. In section 2 we

present the experimental procedure and statistical methods for empirical data analysis. In section 3 we ana-

lyze and interpret the experimental data in terms of particle displacement, as well as velocity correlation,

distributions, and increments. In section 4 we introduce the new model and introduce the values needed

for its parameterization. Lastly, we demonstrate the model capabilities to faithfully reproduce the pore-scale

statistics and general transport behavior and discuss its sensitivity to input parameter uncertainty.

2. Methods

In the following, we outline the methods for experimentation and analysis of the particle position and

velocity data.

2.1. Experimental Materials and Methods

A transparent porous medium is created by matching the refractive index of the working solution with that

of the granular material. Nafion grains are used as the porous medium, and the working solution is a mixture
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of isopropanol with deionized water (42 vol/vol %). A cubic flow-through cell (L = 3.8 × 10−2 m per side

with 4 mm diameter inlet/outlet connections at the center of the top/bottom sides) is wet packed with the

granules and the pore space maintained fully saturated with solution throughout the experiment duration.

Mixtures of two classes of Nafion grains of diameter d1 = 3.6 mm and d2 = 0.5 mm are used to create three

different realizations of heterogeneous structures, labeled A, B, and C. Respectively, the mean grain diameter

(d50) and characteristic pore size are 3.60 × 10−3 and 1.07 × 10−3 for sample A, 2.57 × 10−3 and 5.46 × 10−4

for sample B, and 2.05 × 10−3 and 2.92 × 10−4 for sample C. Imposed volumetric flow rates, Q, in the range

of 1.25 × 10−7 − 2.50 × 10−7 m3/s give Reynolds numbers (Re = vavd50∕𝜈 < 1), ruling out the occurrence

of recirculation zones. The average flow speed is calculated as vav = Q∕(L2𝜖), where 𝜖 ∼ 0.35 is porosity.

d50 is the mean grain size and 𝜈 = 1.84 × 10−6 m2/s is the kinematic viscosity of the isopropanol solution.

Neutrally buoyant fluorescentparticles of 1g/cm3 density and68μmdiameter (volume fraction concentration

∼0.01%) are used to seed the solution with flow tracers. Manufacturer details of thematerials are provided in

the supporting information.

To trace flow particles in the transparent porous medium, a three-dimensional particle tracking velocime-

try (3D-PTV) technique is used to record the position of approximately 400 individual particles in x, y, and

z coordinates per frame. The setup consists of a 20 W Ar-Ion laser as the light source for exciting the fluo-

rescent particles, a Photron high speed camera with a resolution of 1024 × 1024 pixels operated at a frame

rate of 50 Hz, and a four-way image splitter for stereoscopic viewing of the sample. For additional details of

3D-PTV the reader is referred to Holzner et al. [2015] and Hoyer et al. [2005]. The setup used here permits par-

ticle positions to be determined with an accuracy of∼ 10 μm (see Figure S1 for a 3-D view of the trajectories).

The average recording period per experiment is 4 min, during which new particles constantly enter the inter-

rogation volume at the inlet and exit through the outlet. Individual particle tracks tend to be fragmented

due to temporary loss of view in pores with high particle density. To address this, postprocessing as per the

method proposed by Xu [2008] is used to rejoin interrupted trajectories, reduce the particle position noise,

and increase the quality of Lagrangian velocities along trajectories. Strict maximum gap tolerances in space

(180 μm) and time (0.04 s) are set for joining candidate trajectories, which were verified to have no influence

on the outcomes or intermittentcy (see supporting information, section S3 for more details). Lastly, postpro-

cessed particles tracked for less than 0.01 s are discarded, leaving each experiment with (104) trajectories
to work with, spanning a maximum length of ∼10 pores.

2.2. Data Analysis

Particle velocities are analyzed both isochronally and equidistantly along trajectories. To define these parti-

cle velocities, we first consider the evolution of the particle position x(t; a), which is given by the advection

equation

dx(t; a)

dt
= v(t; a). (1)

The initial position is x(t = 0; a) = a. The particle velocity v(t; a) is related to the flow velocity u(x) as v(t; a) =

u[x(t; a)]. The coordinate vector is x = (x, y, z)⊤; the velocity vectors are v = (vx , vy, vz)
⊤ and u = (ux , uy, uz)

⊤.

The distance s(t; a) traveled along a streamline is given by

ds(t; a)

dt
= vt(t; a) (2)

with vt(t; a) = |v(t; a)|. The travel time along a trajectory is given by

dt(s; a)

ds
=

1
vs(s; a)

(3)

with vs(s; a) = vt[t(s; a); a], see also Dentz et al. [2016]. The data consist of an ensemble of position time

series {x(t; a)}. In the following, the initial position a in the arguments of particle positions, displace-

ments, and velocities is omitted for compactness of notation. The average over the ensemble of particles is

denoted by angular brackets ⟨⋅⟩. Velocity is sampled isochronally from the data according to equation (2)

and equidistantly according to equation (3). In the following section, we provide a statistical analysis of

the particle displacement s(t) and velocity data, referring to vt(t) as t-Lagrangian velocity and vs(s) as

s-Lagrangian velocity.
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3. Statistical Analysis of Displacement and Velocity Data

In this section, we analyze the displacement and velocity data to identify and quantify the stochastic dynam-

ics of particle motion. To this end, we first consider the first and second centered displacement moments and

their temporal evolution. Then, we quantify the correlation of particle velocities along trajectories. Finally, we

analyze the distribution of particle velocities and velocity increments and their evolution in time. The infor-

mation obtained in this section provides the basis for the stochastic model of particle motion derived in the

next section.

3.1. Displacement Statistics

We consider here particle displacement s(t) along streamlines. The data are analyzed in terms of the mean

m(t) and centered mean square 𝜎2(t) displacements. These quantities provide information on the statistical

moments of the pore-scale velocity distribution.

Early and late times are here definedwith respect to the characteristic advection time scale, which is given by

𝜏v =
𝜆v

vc
. (4)

Here the average over all velocity data is vc, and the characteristic length 𝜆v is of the order of the size of a pore

throat and defined below in terms of the velocity correlation along trajectories. The displacement data cover

a time range of about 10𝜏v .

3.1.1. Mean Displacement

Particles are released in a small volume at the center of the inlet boundary. Thus, particles cannot in general

sample the full velocity variability and, as a result, the velocity statistics are not stationary. This is observed

for the mean displacements in all three medium samples, as illustrated in Figures 1a–1c. It is evident that the

average particle velocity

va(t) =
dm(t)

dt
(5)

is variable for all samples.

The largest velocity is observed at early times t ≪ 𝜏v (denoted by the subscript “0”), for which va(t) = ⟨v0⟩. We

find average short time velocity values of ⟨v0⟩ = 1.5×10−3, 2.4×10−3, and 1.1×10−3 m/s for samples A, B, and

C, respectively. For late times t>𝜏v (denoted by the subscript “𝓁”), the average particle velocities then relax

toward a constant late time value ⟨v
𝓁
⟩, which we identify to be equivalent to the Eulerian mean velocity. We

find these values to be ⟨v
𝓁
⟩ = 1.0 × 10−3, 1.7 × 10−3, and 9.3 × 10−4 m/s for samples A, B, and C, respectively.

3.1.2. Displacement Variance

The displacement variance 𝜎2(t) characterizes the spreading of the particle plume. Its evolution for the differ-

ent samples is shown in Figures 1d–1f. It exhibits two distinct displacement regimes. At early times t ≪ 𝜏v the

behavior is ballistic. We obtain for the variance of the initial velocities the values 𝜎2
v0
= 2.0 × 10−6, 6.2 × 10−6,

and 9.6 × 10−7 m2/s2 for samples A, B, and C, respectively.

At t ≈ 𝜏v∕3 the behavior crosses over from ballistic to a superlinear evolution. From the recording window of

∼10𝜏v , it is not possible to identify a crossover to diffusive regimes for long times, i.e., linear Fickian regime is

not reached during the recording time of any experimental run. We clearly observe that 𝜎2(t) evolves faster

than linear. It is worth noting that the range of superlinear behavior observed is in good agreement with

observations from direct numerical simulations in images from Berea and Bentheimer sandstone samples

[Kang et al., 2014;Meyer and Bijeljic, 2016]. Differences in the evolution of 𝜎2(t) between the three samples for

t>𝜏v reflect the respective flow field heterogeneity. The displacement variances for the relatively homoge-

neous samples A and B evolve as∼ t1.3, while themore heterogeneous sample C evolves faster as∼ t1.5. While

the above noted particle dynamics results from interactionswith the structural heterogeneity of themedium,

their elucidation remains the subject of ongoing work.

3.2. Velocity Autocorrelation

We consider here the correlation properties of subsequent particle velocities. Figure 2 illustrates representa-

tive velocity time series recorded along single trajectories for each sample. We observe intermittent behavior

that is characterized by long correlated periods of low-velocity interrupted by short bursts of high velocity.

This canbeexplainedby theexistenceof a characteristic velocity correlation length scale𝜆v [Dentzetal., 2016].

MORALES ET AL. PARTICLE MOTION DYNAMICS IN POROUS MEDIA 4
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Figure 1. Symbols are (a–c) normalized mean displacement or (d–f ) mean square displacement of tracer particles over
normalized time for samples A (Figures 1a and 1d), B (Figures 1b and 1e), and C (Figures 1c and 1f ). Dashed and dotted
lines are the linear fits for the early and late times, respectively. Solid lines are predictions of the CTRW model.

The persistence time is given by 𝜆v∕vs where vs is the s-Lagrangian velocity. The duration of high-velocity

episodes is thus much smaller than for low velocities.

𝜆v is estimated from the integral of the covariance function of s-Lagrangian velocities (refer to supporting

information, for quantitative details), giving 𝜆v = 1.4 × 10−3, 2.4 × 10−3, and 7.0 × 10−4 m for samples A, B,

and C, respectively. These values correspondwell to the characteristic pore lengths of each sample, which are

𝓁p = 1.0×10−3, 5.5×10−4, and 2.9×10−4 m for samples A, B, and C, respectively. Thus, the velocity correlation

scale is ∼ 1–4 times the characteristic pore length. The existence of a constant correlation distance for the

s-Lagrangian velocities suggests that the velocity series follows a Markov process [Dentz et al., 2016].

3.3. Distributions of Lagrangian Velocities

To understand the particle dynamics, we quantify the distribution of particle velocities, which, together with

the correlation length, gives information on particle residence and transition times in the porous medium.

Thus, in this section, we study the distributions of t-Lagrangian particle velocities vt(t) to gain insight into the

evolution of velocity distribution. The global t-Lagrangian velocity probability density function (PDF) (v) is

obtained by sampling of all velocity data as

(v) =
1
Np

Np∑
i=1

1
Ti

Ti

∫
0

dt
I[v ≤ vt(t; ai) < v + Δv]

Δv
, (6)

where Δv is the sampling interval, Np the number of sampled trajectories, and Ti the duration of trajectory i.

As pointed out above, the velocity statistics here are nonstationary due to the nonstationary initial velocity

distribution. Thus, (v) can be seen as a mixture of the velocity PDFs at early and late times.

As discussed in Dentz et al. [2016] under ergodic conditions, particles can sample the full velocity spectrum

along streamlines. In doing so, the velocity PDF evolves from its initial velocity distribution toward the steady

MORALES ET AL. PARTICLE MOTION DYNAMICS IN POROUS MEDIA 5
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Figure 2. Symbols are time series of exemplary t-Lagrangian particle velocities for structures (a) A, (b) B, and (c) C. Gray
lines correspond to simulated isochrone trajectories from the CTRW model.

state distribution. The steady state distribution then is equal to the Eulerian velocity distribution because of

volume conservation. At times smaller than the advection time scale 𝜏v , the particle velocities reflect the initial

velocity statistics. This is indicated by the mean displacements in Figures 1a–1c, which display a constant

slope for t < 𝜏v . Details about the early and late time velocity sampling are in the supporting information.

The bulk of the distribution as well as the decay at high velocities can be approximated by the lognormal

distribution

pi(v) =

exp

{
−

[ln(v)−Mi]
2

2Σ2
i

}

v
√

2𝜋Σ2
i

, (7)

where i = 0,𝓁. MeanMi and variance Σ2
i
are related to the mean and variance of the early v0 and late time v

𝓁

velocities as

Mi = ln

⎛⎜⎜⎜⎝

⟨vi⟩2√
𝜎2
i
+ ⟨vi⟩2

⎞⎟⎟⎟⎠
Σi =

√√√√ln

(
𝜎2
i
+ ⟨vi⟩2
⟨vi⟩2

)
. (8)

Figure 3 shows the velocity distribution at early (t = 0), late times (t ≥ 𝜏v), and global (i.e., all measured times)

for sample A. Equivalent plots for samples B and C are found in the supporting information. Parameters refer-

ring to these early and late time instances are labeled by the subscripts 0 and 𝓁, respectively. Noteworthy

observations of the different velocity distributions include the higher probability for faster velocities at early

times, and the similarity between the late time andglobal distributions. Like theglobal PDF, early and late time

velocity PDFs can be well approximated by a lognormal distribution. Of particular importance is the veloc-

ity distribution at early times, which controls preasymptotic particle motion, and is due to the experimental

injection conditions. The similarity of the global and late time velocity PDFs indicates that the sample of all

trajectories may be considered stationary. For the prediction of preasymptotic particle transport, however, it

is important to characterize the initial velocity distribution as observed in section 3.1.

MORALES ET AL. PARTICLE MOTION DYNAMICS IN POROUS MEDIA 6
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Figure 3. Probability density functions of t-Lagrangian velocities of
structure A corresponding to early time (t = 0, diamonds), late time
(t ≥ 𝜏v , arrows), and all times (pentagons). Lines indicate the lognormal
fit to each distribution with their corresponding M and Σ parameters.

3.4. PDF of Velocity Increments

To study and characterize the fluctuations

in particle velocities along streamlines,

and specifically their intermittent charac-

ter, we examine the statistical properties

of t-Lagrangian velocity increments for

various time delays 𝜏 ,

Δ𝜏vt(t) = vt(t + 𝜏) − vt(t), (9)

where 𝜏 is the lag time between par-

ticle velocities. The behavior of Δ𝜏vt(t)

gives insight into the stochastic nature of

particle transport [de Anna et al., 2013].

For example, classical Langevin models

for particle velocities assume that vt(t)

follows an Ornstein-Uhlenbeck process

[Pope, 2000], which predict that the veloc-

ity increment obeys Gaussian statistics for

time increments larger than a characteris-

tic correlation time. Deviations from such

a behavior indicate intermittent proper-

ties, which may be due to strong correlation of particle velocities or strong tails in the velocity distributions.

The velocity time series illustrated in Figure 2 indicate intermittent behaviors because of the strong temporal

correlation in low-velocity periods and rapid fluctuations at high velocities.

In the following, we study how these behaviors manifest in the PDF of the velocity increments defined in (9),

as normalized by its variance 𝜎2
Δ
(𝜏) = ⟨Δ𝜏v

2
t
⟩. To this end, we sample velocity increments over all particle

trajectories and times. Figure 4 shows the measured distributions of normalized velocity increments for the

three structures investigated. The shortest time lag captures the acceleration distribution. At short time lags

the distributions are similar and symmetric, with exponential tails that reflect large-velocity jumps and a sharp

peak at Δv∕𝜎Δv = 0 that indicates trapping in stagnant low-velocity zones. At longer lags the distributions

progressively evolve toward an exponential shape but remain far from Gaussian. Structure B sustains heavier

exponential tails and sharper peaks at longer time lags than structuresA andC. This corroborates the intermit-

tency and intensity variability across the different samples already observed in analyses prior. Intermittency

is due to spatial persistence of particle velocities on a characteristic length scale (see also section 3.2). High

temporal correlation of low velocities is reflected in the peak at 0 of pΔ(𝜂) in Figure 4, while correlation and

variability of velocities is echoed in the heavy tails.
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-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10
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Figure 4. Probability distribution of velocity increments from normalized t-Lagrangian velocities (symbols) and their
respective CTRW model simulations (gray lines) for samples (a) A, (b) B, and (c) C. Increments are determined at time lags
of 𝜏 = 0.05𝜏v , 0.1𝜏v , 0.33𝜏v , 0.5𝜏v , 𝜏v , and 2𝜏v , arranged from top to bottom. Dashed black line is a reference Gaussian
distribution.
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4. Stochastic Particle Motion

As pointed out in section 3.2, particle motion in steady flow fields is characterized by the correlation scale

𝜆v of particle velocities along trajectories. This property can explain the signatures of intermittency that are

observed in the velocity time series in Figure 2, and the distributions of velocity increments in Figure 4. The

persistence of particle velocities in space causes strong temporal correlation of slowparticlemotion and rapid

variability of high velocities. These features can be quantified systematically by the continuous time random

walk framework [de Anna et al., 2013; Holzner et al., 2015], which captures particle motion by a space time

random walk. The particle motion is described by a characteristic transition length, the correlation scale 𝜆v ,

and a random transition time determined by the particle velocity vs(s). The velocity statistics are obtained

by equidistant sampling of particle velocities along trajectories. The PDF ps(v) of the s-Lagrangian PDF is

related to the t-Lagrangian velocity through flux weighting [Dentz et al., 2016]. Thus, we set here the steady

s-Lagrangian velocity PDF equal to the flux-weighted late time t-Lagrangian velocity PDF, p
𝓁
(v)

ps(v) =
vp

𝓁
(v)

⟨v
𝓁
⟩ . (10)

We consider that under ergodic conditions, the late time t-Lagrangian velocity PDF is equal to the Eulerian

velocity PDF. The evolution of the particle velocity PDF from early to late times, as discussed in section 3.3,

can be quantifiedwith the CTRW approach bymodeling the series of s-Lagrangian velocities vs(s) as aMarkov

process in s [Dentz et al., 2016]. In the following, we present a CTRWmodel based on a velocityMarkov process

that explains the evolution of the mean and centered mean square displacement and the distributions of

velocity increments in terms of the pore-scale velocity distribution and its spatial organization.

4.1. Velocity Markov Process

We observe in section 3.3 that the bulk of the distributions of particle velocities can be modeled by a log-

normal function. This implies that the distribution of the log-velocity ws(s) = ln[vs(s)] is Gaussian. Hence, to

model the evolution of ws(s), we use the Ornstein-Uhlenbeck process [Gardiner, 2010], whose steady state

distribution is given by a Gaussian. As pointed out in section 3.4, the Ornstein-Uhlenbeck process has been

used in the literature to model the evolution of temporal particle velocity series. Here we use it to model the

evolution of the s-Lagrangian velocity in distance s along streamlines. The evolution ofws(s) then is given by

dws(s)

ds
= −𝜆−1

v

[
ws(s) −Ms

]
+

√
2Σ2

s

𝜆v
𝜉(s), (11)

where 𝜉(s) is a Gaussian white noise with zero mean and covariance ⟨𝜉(s)𝜉(s′)⟩ = 𝛿(s − s′). The covariance of

ws(s) decays exponentially as exp(−s∕𝜆v) and thus reflects the correlation of vs(s) on the scale 𝜆v discussed in

section 3.2. As given by equation (10) the corresponding steady state velocity PDF ps(v) is obtained from p
𝓁
(v)

through flux weighting. Thus, themeanMs and variance Σ2
s
are related toM

𝓁
and Σ2

𝓁
given by equation (8) as

Ms = M
𝓁
+ Σ2

𝓁
, Σ2

s
= Σ2

𝓁
. (12)

The PDF pw(w, s = 0) is Gaussian as well and corresponds to the early time lognormal velocity PDF pe(v) such

that its mean and variance are equal toM0 and Σ2
0
given by equation (8). The particle time, equation (3), at a

given distance s along the trajectory is given by

dt(s)

ds
= exp[−ws(s)]. (13)

The particle velocity vt(t) is given in terms of ws(s) as

vt(t) = exp{ws[s(t)]}, s(t) = sup[s|t(s) ≤ t]. (14)

Mean andmean square displacements, as well as the PDF of velocity increments, are determined in the same

way as the experimental data. It is interesting to note that the process for wt(t) = ws[s(t)] = ln[vt(t)] is

given by

dwt(t)

dt
= −𝜆−1

v

[
wt(t) −Ms

]
exp[wt(t)] +

√
2Σ2

s
exp[wt(t)]

𝜆v
𝜉(t). (15)
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Thismeans that the time evolution of the lognormal velocity process is characterized by amultiplicative noise

as expressed by the exponential dependence on the right side of equation (15). A similar observation has

been made in the analysis of numerical pore-scale velocity data [Meyer and Bijeljic, 2016].

The current approach differs from the previous model proposed by the authors [Holzner et al., 2015] in the

scale of the velocity evolution process simulated. The older model simulates the longitudinal velocity com-

ponent on a coarse scale by use of a persistence term that allows a particle to maintain its velocity with a

given probability. Such resolution cannot capture subpore fluctuations, as is reflected in the overestimation

of the ballistic displacement behavior and inadequate distribution of particle accelerations. In contrast, the

new model simulates the fluctuations of velocity magnitude on a fine scale by a white noise. This produces

highly resolved subpore fluctuations and vastly improves model performance for displacements and accel-

eration distributions. In the following, we report on the numerical implementation of the velocity model (11)

and its application to the experimental data.

4.2. Simulations and Application to Data

The numerical simulations are based on a simple Euler scheme for equation (11), which gives

wn+1 = wn −
Δs

𝜆v
(wn −Ms) +

√
2Σ2

s
Δs

𝜆v
𝜂n (16)

where we set wn = ws(sn) with sn = nΔs. 𝜂n is a Gaussian random variable characterized by 0 mean and unit

variance. The particle time is given by

tn+1 = tn + Δs exp(−wn). (17)

The particle velocity is now given by

vt(t) = exp(wnt
), nt = sup(n|tn ≤ t). (18)

The particle displacement is given by s(t) = snt . We use a discretization ofΔs = 10−5 m. Note that the scheme

(16) is characterized by a constant velocity on the scaleΔs. Thus, to properly quantify the velocity increment

statistics it is necessary to choose aΔs ≪ 𝜆v .

Figures 1a–1c show the experimental data and the simulation results based on equation (16) for the mean

displacement. The velocity Markov model captures the early time evolution of m(t) as well as the transition

to the late time behavior. We observe a similar performance of the centered mean square displacement in

Figures 1d–1f. Both the ballistic short time behavior as well as the transition to sub-ballistic are well rep-

resented by the space Markovian velocity model (11). Accurate representation of preasymptotic behavior

sanctions long-term simulations to identify the time to reach a Fickian regime. We find this transition to occur

at t = 28𝜏v , 71𝜏v , and 54𝜏v for structures A, B, and C, respectively (refer to the supporting information for

more details).

A qualitative comparison between measured and simulated velocity series in Figure 2 shows that the model

reproduces the intermittent characteristics remarkably well in terms of frequency, duration, and magnitude

of high-velocity bursts. The collective performance of all simulated path lines is reflected in the global velocity

distributions of Figure S7. The initial, late time, and global velocity distributions are captured by the Markov

model. More critically, the distributions of Lagrangian velocity increments are in excellent agreement with

the experimental distributions, see Figures 4 and S8, capturing even subtle differences in the tails of pΔ(𝜂; 𝜏)

between the three structures.

The model is lastly evaluated for sensitivity to variations of the input values by carrying out bootstrap sam-

pling of the trajectories. We randomly sample 1/3 of the recorded trajectories and use those data to compute

new velocity PDFs and correlation lengths to run the model with. The process is repeated 50 times for each

experiment. Figures J1, J3 and J5 illustrate the sensitivity of themodel with variability of the input parameters

(see distributions in Figures J2, J4 and J6). The small spread in the results demonstrates the robustness of the

model even when considering input parameter uncertainty.

5. Conclusions

In summary, we have collected three-dimensional information of Lagrangian velocity experimentally using a

novel imaging technique forheterogeneousporousmedia samples. A velocitymagnitudeprocess is proposed
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and implemented in a correlated CTRWmodel that uses the spatial discretization of Lagrangian velocities. We

show that our simple model can be directly parameterized from velocity distributions to capture transport

behavior and intermittent dynamics. In particular, the model faithfully reproduces the preasymptotic mean

andmean squared displacement in the ballistic and superdiffusive regimes. Themodel is also able to quantify

the nonstationarity of velocity statistics. We expect that our approach can be used in a variety of applications

in nature where flow behaviors are inherently nonstationary and intermittent over a range of scales leading

to anomalous transport behaviors and incomplete mixing.
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