STOCHASTIC DYNAMICS OF MARINE STRUCTURES

This book is meant to serve as a text for students and a reference for professionals on the basic theory and methods used for stochastic modeling and analysis of marine structures subjected to environmental loads. The first part of the book provides a detailed introduction to the basic dynamic analysis of structures, which serves as a foundation for later chapters on stochastic response analysis. This includes an extensive chapter on the finite element method. A careful introduction to stochastic modeling is provided, which includes the concepts of stochastic process, variance spectrum, random environmental processes, response spectrum, response statistics, and short- and long-term extreme value models. The second part of the book offers detailed discussions of limit state design approaches, fatigue design methods, equations of motion for dynamic structures, and numerical solution techniques. The final chapter highlights methods for prediction of extreme values from measured data or data obtained by Monte Carlo simulation.

Arvid Naess has been a professor of structural engineering since 1987 and a professor of mathematical statistics since 2001 at the Norwegian University of Science and Technology. He works on a wide range of problems related to stochastic dynamics of structures and structural safety and reliability. Professor Naess has published more than 250 scientific papers and lectured at conferences and universities worldwide. He is the associate editor of several international engineering journals. Professor Naess is a recipient of the Alfred M. Freudenthal Medal from ASCE and is an elected Fellow of the ASME and ASCE.

Torgeir Moan has been a professor of marine structures at the Norwegian University of Science and Technology since 1977. He was the first (adjunct) Keppel professor at the National University of Singapore (2002–2007) and Director of the Centre for Ships and Ocean Structures (CeSOS), a Norwegian Centre of Excellence since 2002. Professor Moan's work focuses on structural analysis and design of marine structures, with an emphasis on structural risk and reliability analysis, as well as probabilistic analysis of wave- and wind-induced stochastic dynamic load effects. He has published more than 450 refereed journal and conference papers. He is an editor of the *Journal of Marine Structures* and serves on the boards of several other journals. Professor Moan received various awards for his research, including the Statoil and the ASME James W. Rice Awards. He is an elected Foreign Member of the Royal Academy of Engineering in the UK and Fellow of ASCE, IABSE, and The Offshore Energy Center Hall of Fame. Cambridge University Press 978-0-521-88155-5 - Stochastic Dynamics of Marine Structures Arvid Naess and Torgeir Moan Frontmatter More information Cambridge University Press 978-0-521-88155-5 - Stochastic Dynamics of Marine Structures Arvid Naess and Torgeir Moan Frontmatter <u>More information</u>

Stochastic Dynamics of Marine Structures

Arvid Naess

Norwegian University of Science and Technology

Torgeir Moan Norwegian University of Science and Technology

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press 32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org Information on this title: www.cambridge.org/9780521881555

© Arvid Naess and Torgeir Moan 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Naess, Arvid.
Stochastic dynamics of marine structures / Naess, Norwegian University of Science and Technology, Moan, Norwegian University of Science and Technology. pages cm.
Includes bibliographical references and index.
ISBN 978-0-521-88155-5 (hardback)
1. Offshore structures. 2. Structural dynamics. 3. Stochastic processes – Congresses. I. Moan, Torgeir. II. Title.
TC1665.N34 2012
627'.980151923-dc23 2012024936

ISBN 978-0-521-88155-5 Hardback

Additional resources for this publication at www.cambridge.org/naess

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

D	c
Pre	etace
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

page	X111

1	Pre	limina	ries	1
-			duction	1
				3
			tions of Motion	
			astic Models	4
	1.4	Orgai	nization of the Book	5
2	Dyı	namics	of Single-Degree-of-Freedom Linear Systems	6
	2.1	Intro	duction	6
	2.2	Harm	onic Oscillator – Free Vibrations	6
		2.2.1	Motions of Marine Structures	6
		2.2.2	Translational Oscillations	7
		2.2.3	Example – Amplitude and Phase of a Free Oscillation	9
		2.2.4	Example – Heave Oscillations of a Spar Buoy	10
		2.2.5	Example – Heave and Surge Oscillations of a TLP	11
		2.2.6	Rotational Oscillations	13
		2.2.7	Example – Ideal Pendulum	14
		2.2.8	Example – Tilting Oscillations of an ALP	14
		2.2.9	Example – Pitch and Roll Oscillations of a	
			Semisubmersible	16
		2.2.10	Example – Yaw Oscillations of a TLP	17
	2.3	Free l	Damped Oscillations	17
		2.3.1	Example – Critical Damping	19
		2.3.2	Example – Logarithmic Decrement	22
		2.3.3	Example – Vibrating Tower	23
		2.3.4	Example – Coulomb Damping	27
	2.4	Force	d Vibrations by Harmonic Excitation	30
		2.4.1	Example – Harmonic Force	34
		2.4.2	Example – Damping Ratio from Half-Value Width	37
	2.5	Force	d Vibration – Complex Analysis	38
		2.5.1	Example – Transfer Function	39

vi

		Contents	
		2.5.2 Example – Structure on a Vibrating Foundation	40
		2.5.3 Example – Vibrating Beam	41
	2.6	Forced Vibrations by Periodic Excitation	42
		2.6.1 Example – Periodic Excitation	44
	2.7	Forced Vibrations by Arbitrary Excitation	46
		Impulse Response Function and Duhamel Integral	47
		2.8.1 Example – Suddenly Applied Force	51
	2.9	Maximum Response to Various Force Time Histories	51
		2.9.1 Example – Torsional Rotation of a Suspension Bridge	52
		2.9.2 Example – Response to Collision Load	55
3	Dy	namics of Multi-Degree-of-Freedom Linear Systems	57
	3.1	Introduction	57
	3.2	Discrete Systems	59
		3.2.1 Discrete Systems of Rigid Bodies	59
		3.2.2 Other Examples	60
		3.2.3 Vibrating Bars and Strings	63
	3.3	Beams Under Axial and Lateral Loads	66
		3.3.1 Basic Principles of Structural Mechanics	66
		3.3.2 Differential Equation for Dynamic Behavior	76
		3.3.3 Approximate Solution of Dynamic Response Based on Discretization	81
			81
		3.3.4 Example – Simple Estimates of Lowest Eigenfrequency of Complex Structures	82
		3.3.5 Example – Cantilever Beam	86
		3.3.6 Example – Wind Turbines	88
		3.3.7 The Rayleigh-Ritz Method for Determining Mode Shapes	00
		and Natural Frequencies	90
		3.3.8 Example – Guyed Tower	92
		3.3.9 Example – Ship Vibration	93
		3.3.10 Modal Superposition	93
		3.3.11 Discussion of Forced Vibration of a Slender Beam	95
		3.3.12 Formulations for Moving Loads	97
4	Fin	ite Element Method	98
	4.1	Introduction	98
	4.2	Discretization	99
	4.3	Element Stiffness Relationship for a Bar Element	100
		4.3.1 Matrix Method	100
		4.3.2 Finite Element Method Based on Virtual Work	
		(Galerkin's Method) and Assumed Displacement	101
		4.3.3 Further Considerations on the Assumed Displacement for	
		the Truss Element	103
		4.3.4 Load Vector	104
		4.3.5 Assumed Displacement by Generalized Coordinates	105

CAMBRIDGE

Contents

	4.4	Element Stiffness Relationship for a Beam with Uniform	
		Lateral Load	106
		4.4.1 Finite Element Formulation Based on Virtual Work and	
		Assumed Displacement	106
		4.4.2 Application of Beam Element with Cubic Displacement	
		Function	109
		4.4.3 Final Remarks	110
	4.5	Stiffness Relationship for Bar Element – Beam with Axial Force	111
		4.5.1 General	111
		4.5.2 Beam Under Axial Loads	112
		4.5.3 Beam Under Axial and Lateral Loads	113
	4.6	Stiffness Relationship for Beam with Bending and Shear	
		Deformation	116
		4.6.1 Matrix Method	116
		4.6.2 Finite Element Model Based on Timoshenko Beam	
		Theory	117
	4.7	Coordinate Transformations	119
		4.7.1 General	119
		4.7.2 Translation	119
	4.8	Finite Elements for Linear, Static Structural Analysis	120
	4.9	System Stiffness Relationship for Static Problems	122
		4.9.1 General	122
		4.9.2 Global Interpolation Functions	122
		4.9.3 Principle of Virtual Displacements for System	123
		4.9.4 Finite Element Model for System	124
		4.9.5 Example – One-Element Model	125
		4.9.6 Example – Three-Element Model	126
		4.9.7 Buckling Analysis of a Structural System	127
	4.10	Dynamic Structural Analysis Models	129
		4.10.1 Dynamic Equilibrium for a Structure with Concentrated	
		Masses and Damping	129
		4.10.2 Dynamic Equilibrium Based on Virtual Work with	
		Consistent Mass and Damping Matrix Formulations	130
		4.10.3 Example – Bar with Free Harmonic Axial Vibrations	132
		4.10.4 Example – Slender Beam with Free Harmonic Bending	
		Vibrations	133
	4.11	Modal Analysis	136
		4.11.1 General	136
		4.11.2 Reduction of Modes	137
	4.12	Other Approaches for Reducing the Number of DOFs in	
		Elastic Structures	139
5	Sto	chastic Processes	142
	5.1	Introduction	142
	5.2	Examples of Stochastic Modeling	142

5.3 Random Variable, Mean Value, and Variance146

vii

	5.4	Definition of a Stochastic Process	147
		5.4.1 Example – An Elementary Stochastic Process	148
		5.4.2 Example – A Harmonic Stochastic Process	148
	5.5	Joint Probability Distributions	149
	5.6	Correlation	150
	5.7	Stationary Processes	152
		5.7.1 Example – A Stationary Harmonic Process	154
		5.7.2 Example – A Stationary Process	155
	5.8	Ergodic Processes	156
		5.8.1 Example – An Ergodic Harmonic Process	157
		5.8.2 Example – An Ergodic Process	158
	5.9	Realizations of Stochastic Processes	159
6	Va	riance Spectrum	. 161
	6.1	Introduction	161
	6.2	Variance Spectrum	161
		Units of Variance Spectra	163
		6.3.1 Example – A Realization of a Wave Process	164
	6.4	Examples of Variance Spectra and Autocovariances	167
		6.4.1 Constant Autocovariance	167
		6.4.2 Harmonic Process	169
		6.4.3 Periodic Process	170
		6.4.4 Rectangular Spectrum	170
	6.5	The Variance Spectrum Directly from the Realizations	173
7	Env	vironmental Loads	. 175
	7.1	Introduction	175
		Hydrodynamic Loads, Added Mass, and Damping	176
		7.2.1 Nonlinear Features of Morison Type Loads	178
		7.2.2 Nonlinear Loads on Large Volume Structures	179
		7.2.3 Effect of Phase Angle on Wave Forces	181
		7.2.4 Mass, Damping, and Stiffness	181
	7.3	Wind Loads	183
	7.4	Ice Loads	186
	7.5	Seismic Loads	189
8	Rai	ndom Environmental Processes	. 191
	8.1	Introduction	191
	8.2	Ocean Waves	191
		8.2.1 Wave Process	191
		8.2.2 Wave Spectra	194
		8.2.3 The Distribution of the Wave Surface Elevation	197
		8.2.4 The Distribution of Wave Crests	198
		8.2.5 The Distribution of Wave Heights	201

	8.3	Wind	203
		8.3.1 Wind Speed	203
		8.3.2 Wind Shear and Turbulence	204
		8.3.3 Wind Spectra	206
9	Res	ponse Spectrum	209
	9.1	Introduction	209
	9.2	Representation of the Response Process	209
	9.3	Mean Value of the Response Process	210
	9.4	Autocovariance of the Response Process	211
	9.5	Response Spectrum	212
		9.5.1 Example – Response Spectra for a Crane Vessel	213
	9.6	Cross-Covariance	216
	9.7	Cross-Spectrum	217
	9.8	Cross-Spectrum Directly from Realizations	219
	9.9	Spectra and Cross-Spectra of Differentiated Processes	219
	9.10	Coherence Function	222
	9.11	Response to "White Noise"	222
	9.12	Response to a Narrow-Banded Load Process	224
	9.13	Response to Random Wave Loads	227
		9.13.1 Example (Continuation of Example 9.5.1)	227
	9.14	Response Spectra of MDOF Linear Systems	228
		9.14.1 Transfer Function Matrix of an MDOF Response Process	228
		9.14.2 Covariance Spectral Matrix	229
		9.14.3 Example – Response Spectra of a 2DOF System	230
10	Res	ponse Statistics	233
	10.1	Introduction	233
	10.2	Average Rate of Level Crossings	233
	10.3	Statistical Distribution of Peaks of a Narrow-Banded Process	237
	10.4	Average Upcrossing Frequency and Statistical	
		Distribution of Peaks of a Gaussian Process	238
	10.5	Extreme Values	240
	10.6	Classical Extreme Value Theory	242
	10.7	Extreme Values of Gaussian Processes	244
		10.7.1 Example – (Continuation of Examples 9.5.1 and 9.13.1)	247
		10.7.2 Example – The Crossing Rate of Transformed Processes	248
	10.8	Return Period	249
	10.9	Basic Notions of Fatigue Damage	250
11	Stati	istics for Nonlinear Problems	252
	11.1	Introduction	252
	11.2	Hydrodynamic Forces on Slender Structures	252
		11.2.1 Morison Equation	252
		11.2.2 Statistics of Morison-Type Wave Forces	253

x	Contents	
	11.3 Nonlinear, Second-Order Forces and Motions	258
	11.3.1 Slow-Drift Response	258
	11.3.2 Springing Response	265
	11.3.3 Ship Hull Vibrations	269
	11.4 Statistics of Wind Load and Response	273
1	2 Short-Term and Long-Term Extremes	275
	12.1 Introduction	275
	12.2 Design Wave Approach	275
	12.3 Short-Term Design Approach	276
	12.3.1 Short-Term Extreme Values	277
	12.4 Long-Term Design Approach	278
	12.4.1 All Peak Values	278
	12.4.2 All Short-Term Extremes	281
	12.4.3 Long-Term Extreme Value	281
	12.5 Extreme Values for a Combination of Multiple Stochastic	
	Load Effects in a Short-Term Period	284
1	3 Dynamic Load Effects for Design Checks	287
	13.1 Introduction	287
	13.2 Limit State Design Approaches	288
	13.2.1 Ultimate Limit State	288
	13.2.2 Fatigue Limit State	290
	13.3 Reliability Framework	292
	13.3.1 Elementary Case	292
	13.3.2 Example – Implicit Failure Probability in Design	20.4
	Equations	294 204
	13.3.3 Generalization of Reliability Analysis	294 295
	13.4 ULS Design Check 13.4.1 Introduction	293 295
	13.4.2 Short-Term Reliability for a Single Load Effect	295 296
	13.4.3 Long-Term Reliability for a Single Load Effect	299
	13.4.4 Outcrossing Rate Formulations for Two Load Processes	300
	13.5 Fatigue Design	302
	13.5.1 Introduction	302
	13.5.2 SN Approach	302
	13.5.3 Fracture Mechanics	303
	13.5.4 Fatigue Loading	306
	13.5.5 Fatigue Damage	311
	13.5.6 Stress Ranges from Short-Term Time Histories	312
	13.5.7 Stress Ranges from Frequency Domain Approaches in	
	Short-Term Periods	314
	13.5.8 Fatigue Damage Caused by Non-Gaussian Response in	- · -
	Short-Term Periods	317
	13.5.9 Long-Term Fatigue Analysis	319

CAMBRIDGE

14	Equations of Motion	320		
	14.1 Introduction	320		
	14.2 Solution of Equations of Motion	320		
	14.2.1 General	320		
	14.2.2 Eigenvalue Problem	322		
	14.2.3 Frequency Response Method	323		
	14.2.4 Formulation and Solution of Frequency-Domain			
	Equations	325		
	14.2.5 Hybrid Frequency- and Time-Domain Models	326		
	14.2.6 State-Space Formulation	329		
15	Numerical Solution Techniques	331		
	15.1 Introduction	331		
	15.2 Newmark Methods for SDOF Models	332		
	15.2.1 Linear Models	332		
	15.2.2 Nonlinear Models	334		
	15.3 Newmark Methods for MDOF Models	336		
	15.3.1 Linear Models	336		
	15.3.2 Nonlinear Models	338		
	15.4 Runge-Kutta Methods	339		
16	Monte Carlo Methods and Extreme Value Estimation	341		
	16.1 Introduction	341		
	16.2 Simulation of Stationary Stochastic Processes	341		
	16.3 Monte Carlo Simulation of Load and Response	342		
	16.4 Sample Statistics of Simulated Response	342		
	16.5 Latin Hypercube Sampling	344		
	16.6 Estimation of Extreme Response	345		
	16.6.1 Peaks-Over-Threshold Method	345		
	16.6.2 Gumbel Method	349		
	16.6.3 Naess-Gaidai Method	350		
	16.6.4 The Average Conditional Exceedance Rate Method	353		
	16.6.5 A Comparison of Methods	356		
	16.6.6 Combination of Multiple Stochastic Load Effects 16.6.7 Total Surge Response of a TLP	364 373		
	10.0.7 Total Surge Response of a TLF	515		
А	Integrals	385		
В	Poisson Process	386		
С	Statistical Moments and Cumulants	388		
Ref	erences	391		
v				
inde	index 405			

Cambridge University Press 978-0-521-88155-5 - Stochastic Dynamics of Marine Structures Arvid Naess and Torgeir Moan Frontmatter More information

Preface

This textbook provides the material for both basic and intermediate modern courses in dynamic analysis of ships and offshore structures. The word "modern" is used to signify that both deterministic and stochastic dynamics are covered. Because the main goal is to provide an introduction to dynamic analysis, the basic elements are described in some detail. A consequence of this is that the majority of the book deals with structures or structural elements that can be modeled or reduced to a single-degree-of-freedom (SDOF) system. However, realizing that multi-degree-offreedom (MDOF) systems are unavoidable in many practical situations the engineer is likely to meet, and, consequently, that the basic principles for their analysis should be understood, a chapter on linear MDOF systems is included. This is also done to clearly demonstrate the principle of modal decomposition whereby an MDOF system is reduced to a set of uncoupled SDOF systems.

Broadly speaking, a dynamic analysis is carried out in two different ways according to how the loading is specified. If the time-variant loading is given in such a way that we may consider it to be exactly known as a function of time, the same will apply to the response. In such a case, the dynamic analysis is called deterministic. This is in contrast to a stochastic analysis, where the loading is specified using probabilistic concepts. This implies that the corresponding displacements and tensions can only be described in the same way. Even if naturally occurring loading to which a structure is subjected, such as wind and waves, can be claimed to be deterministic, its specification in terms of fundamental physical laws will remain beyond reach for any foreseeable length of time. For such types of loading, a stochastic description has proven to be exceedingly useful.

The first part of the book (Chapters 2–4) describes fundamental aspects of a deterministic dynamic analysis, with emphasis on simple but important dynamic problems relevant for marine structures. The second part (Chapters 5–16) provides a rather extensive introduction to stochastic dynamics of marine structures. Even though the book is focused on marine structures, with a suitable selection of material, it may also serve as a textbook for a more general course in the deterministic and stochastic dynamics of structures.

This book is supported by a Web site (www.cambridge.org/naess) containing numerous problems, many related to ships and offshore structures, that will make it useful not only for students, but also for professional engineers.

CAMBRIDGE

xiv

Preface

Many colleagues and friends offered their comments and suggestions for improving the book manuscript. In particular, the authors want to thank Professors K. M. Mathisen, E. Hjorth-Hansen, G. Moe, L. V. S. Sagrilo, B. J. Leira, S. Haver, N. Saha, and Z. Gao. The help rendered by Huirong Jia, Biao Su, and Mahmoud Etemaddar is also greatly appreciated.

Figures and illustrations are an important ingredient in a book like this. Most of these were done by Ole Erik Brandrud Naess and Gaute Halvorsen. Their expert assistance is much appreciated.

The authors gratefully acknowledge the support of the Norwegian Research Council through the Centre for Ships and Ocean Structures (CeSOS) at the Norwegian University of Science and Technology. The first author would also like to thank the Norwegian Non-Fiction Writers and Translators Association (NFF) for its support.