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We investigate thoroughly the dynamics of an inflation· driving scalar field in terms of an 
extended version of the stochastic approach proposed by Starobinsky and discuss the spacetime 
structure of the inflationary universe. To avoid any complications which might arise due to quantum 
gravity, we concentrate our discussion on the new inflationary universe scenario in which all the 
energy scales involved are well below the Planck mass. The investigation is done both analytically 
and numerically. In particular, we present a full numerical analysis of the stochastic scalar field 
dynamics on the phase space. Then implications of the results are discussed. 

§ 1. Introduction 

The inflationary universe scenario has been successful in explaining the funda

mental problems of the standard model (e.g., the horizon and flatness problems). In 

this scenario a scalar field plays an essential role. It is generally assumed that the 

scalar field has a sufficiently flat potential and there exists an era in which the field 

slowly rolls down the potential hill toward a minimum of the potential. During that 

era, the potential energy acts as an effective cosmologiCal constant and the universe 

expands exponentially. 

However the above picture is essentially classical and our understanding of 

quantitative, quantum mechanical features of inflation is far from complete. One of 

the early papers which demonstrated the inaccuracy of the classical picture was 

Mazenko et al./) in which it was pointed out that the use of the effective potential and 

the expectation value of the scalar field in discussing the dynamics of inflation can 

lead to a very erroneous result. The reason is that the effdctive potential is a global 

notion which is valid for an equilibrium state in the strict sense, while inflation is 

intrinsically a dynamical, non-equilibrium process. 

The stochastic approach recently developed by many authors2)-9) seems to be 

particularly suited for investigations of the scalar field dynamics during the 

inflationary phase of the universe. The idea was first advocated by Vilenkin.2) 

Then under the assumption of slow rolling motion, the basic stochastic equation was 

derived by Starobinsky.3) The derivation is based on the fact that the inflation is a 

macroscopic phenomenon and the spacetime structure of the universe is determined 

by the behavior of the scalar field on large spatial scales. Thus one divides the modes 

of the scalar field into two parts in the momentum space; the long wavelength part and 

the short wavelength part, and focuses on the former. Then the short wavelength 

modes can be regarded as a quantum noise to the equation of motion for the long 

wavelength modes, yielding a quantum Langevin equation for the scalar field on large 

spatial scales. Further if the wavelength which divides the modes of the scalar field 
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1042 K. Nakao, Y. Nambu and M. Sasaki 

is larger than the Hubble horizon scale, the equation reduces essentially to a classical 

Langevin equation. The stochastic approach makes it relatively easy to calculate 

various physical quantities and investigate the quantum effect on the evolution of the 

large-scale scalar field compared with the conventional field theoretic method. In our 

recent papers, we have elaborated the stochastic approach7
) and investigated various 

issues of inflation in the context of the new inflationary universe scenario.7)-9) Our 

formulation does not assume the slow rolling motion. Consequently, the basic equa

tions turn out to be coupled Langevin equations for the phase space variables (cp, v), 

where v is the velocity variable corresponding to ¢;, contrary to Starobinsky's 

original equation which involves only cp. Thus it has an advantage that it can deal 

with more general situations such as the very initial stage of inflation or the final stage 

at which the scalar field undergoes damped oscillations. The main isslles studied in 

Refs. 7)~9) are: 

(a) To derive Starobinsky's stochastic equation from the first principle and to exam

ine its range of applicability. 

(b) Relation to the conventional field theoretic method. 

(c) Evolution of the scalar field at the early stage when the slow rolling assumption 

fails. 

(d) Condition for the realization of classical slow roll-over phase at which the 

quantum noise due to the short wavelength modes ceases to dominate the evolu

tion of the scalar field. 

Issues (a) and (b) were investigated in Ref. 7), (c) in Ref. 8), and (d) in Ref. 9). In 

this paper, we shall briefly review our formulation of the stochastic approach to 

inflation and e:;ttend our analyses done in Refs. 8) and 9) in more details. In particu

lar, we shall present a detailed analysis on the behavior of the large-scale scalar field 

by integrating numerically the coupled Langevin equations. 

The paper is organized as follows. In § 2, a review on our formulation of the 

stochastic approach to inflation is given. In § 3, we take up a simple double-well 

potential model as a typical example and analyze the behavior of the scalar field at 

the early stage of inflation. In § 4, we investigate the behavior of the scalar field at 

the intermediate stage of inflation and discuss its implications to the spacetime 

structure of the inflationary universe. In § 5, the results of numerical simulation of 

the stochastic scalar field are presented. The simulation is done for the double-well 

potential model by means of the Monte Carlo method. Finally, § 6 is devoted to 

conclusions. 

§ 2. Formulation 

We consider the dynamics of a scalar field in de-Sitter background. The Lagran

gian of the scalar fields is 

(2·1) 

The background metric is assumed to have the form, 
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Stochastic Dynamics of New Inflation 1043 

(2·2) 

where 

a( t) = eHt and H ~ const. 

Then taking the Heisenberg picture, the equation for the scalar field operator ¢(x, t) 

on this background is 

(2'3) 

As we have mentioned in the Introduction, the long wavelength part of the scalar 

field is what weare interested in. Therefore we split the field operator ¢(x, t) and 

its time derivative ¢(x, t) into the long wavelength modes and the short wavelength 

modes as 

¢(x, t)=rp(x, t)+ffirps(x, t), 

¢(x, t)=v(x, t)+ffivs(x, t), 

where rps and Vs are defined by 

rps(x, t)=f(2d;~/2 8(k-€aCt)H)¢kCt)e ik .x , 

vs(x, t)= f(2d;~/2 8(k-€a(t)H)¢k(t)e ik .x ; 

¢k(t)=akrpk(t) + ak t rp* -kCt) . 

In the above, rpkCt) is a positive frequency mode function which satisfies 

(hCt)+3Hrh (t)+( aZ:? + M2
)rpk(t)=0, 

(2'4) 

(2·5) 

(2·6) 

where M2= < V" ( rp» and ak and ak t are the annihilation and creation operators, 

respectively, with respect to a suitably chosen vacuum state. In what follows, we 

assume the so-called Bunch-Davies vacuum/O),ll) which is the de Sitter invariant 

Euclidean vacuum if M2 > 0. 12
) In Eq. (2· 4), we inserted ffi in front of rps and Vs in 

order to exhibit the quantum effect explicitly. The parameter € in Eq. (2'5) is a 

constant smaller than unity and determines a scale at which we split the scalar field 

into the two parts. The expectation value <V"(rp», which plays the role of mass 

square for the short wavelength components, should be determined self-consistently 

when we solve the dynamics of the large-scale stochastic scalar field rp. However, for 

a reason we shall argue at the end of § 3, it seems more reasonable to replace M2 by 

V"(rp) itself without taking the expectation value of it, though unfortunately we do 

not know any logical justification of the procedure at the moment. In any case, it is 

enough to assume that M2 varies sufficiently slowly in time compared with the 

expansion time H- 1 and IM21<H2 for the present purpose. 

Now we expand Eq. (2·3) around rp and v and keep the terms up to the lowest 

order with respect to ffi. Then we obtain 
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1044 K. Nakao, Y. Nambu and M. Sasaki 

¢=v+/fi (J, 

iJ = - 3Hv +~L1CP- V'( cp) + /fi r , 
a 

where (J and r are given by 

(J(X, t)=€aH2f(t:~/2 o(k-€aH)¢k(t)e ik .x , 

rex, t)=€aH2f(2d:~/2 o(k-wH)¢k(t)eik .x 
.. 

(2·7) 

(2·8) 

Obviously these equations show that cps and Vs act as sources for generating nonvan

ishing values of cp and v. This follows from the fact that the short wavelength modes 

are continuously redshifted and their wavelerrgths become eventually greater than the 

size (€H)-I, hence generate the large-scale components of the scalar field. We note 

that because we have kept the terms up to the lowest order in /fi, the above prescrip

tion essentially corresponds to one-loop approximation.7) We also note that cp and v 

are not classical variables, but they are quantum quantities. The quantum nature of 

cp and v arises from the fact that (J and r are quantum operators. In this sense, 

'regarding (J and r as quantum noises, Eq. (2·7) can be called quantum Langevin 

equations. 

In order to solve Eq. (2·7), we need to know the correlations of the noises (J and 

r. For the Bunch-Davies vacuum 10>, we find 

<01(J(Xl)(J(X2)10>~ €(2M 2/3H 2) :;: jo(wHlxl- X2I)O(tl- t2) , 

( 
M2 )2 H 5 

<01 r(Xl) r(x2)10> ~ €(2M2/3H 2) 3H2 + €2 47[2 joe wHlxl - X21)O(t1 - t2) , 

<01 (J(Xl) r(X2) + r(X2)(J(Xl)10> 

~ ~2€(2M2/3H2)( :;;2 + €2) :;:jo(wHlxl-X2I)O(tl- t2) , (2·9) 

where jo is the O-th order spherical Bessel function and we have assumed IM21~H2 and 

€2~1. 

The quantum nature of the noises (J and r shows up in the commutation relations, 

[6(Xl), (J(x2)]=[r(xl), r(X2)] =0 , 

[O'(Xl), r(x2)]=i€3 :;:jo(€aHlxl-x2I)O(tl-t2). (2·10) 

From Eqs. (2·,9) and (2·10), one finds that for the parameter € in the range, 

( 
3H2) 2 IM21 

exp -IM2 1 ~€ ~ 3H2 , 
(2·11) 

not only the quantum nature of (J and r becomes negligible but also the explicit 

€-dependence disappears from Eq. (2·9). Moreover we have 
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Stochastic Dynamics of New Inflation 1045 

(2·12) 

Hence Eq. (2·7) reduces to a set of coupled classical Langevin equations, 

(2·13) 

with 

(2·14) 

where one should keep in mind that" classical" merely means that these equations can 

be treated as ordinary Langevin equations, in spite of the fact that they intrinsically 

describe quantum processes. 

This completes a review on our formulation of the stochastic approach.7) 

Quantum effects on the large-scale scalar field are determined solely by the property 

of the "classical" noise 6. This noise is Gaussian because the short wavelength part 

of the field is treated essentially as a free field. The Markov property is a result of 

splitting the modes of the scalar field sharply by the step function at a fixed physical 

wavelength. 

§ 3. The early stage of inflation 

For definiteness, let us consider a Higgs type double-well potential for V(c/», 

which is a typical example in the new inflationary universe scenario, 

(3·1) 

We require the parameters A and m of this model to satisfy 

(3·2) 

where mpi is the Planck mass. The above condition is necessary for our approach to 

be successfuFl 

Following our previous papers,7)-9l we introduce the non-dimensional quantities, 

m 
ip= !Xx, 

3H 
t=-2-U 

m ' 

m3 

v= 3!XH Y ' 

3H 
r= m2Z. 

Then Eqs. (2·13) and (2·14) are rewritten as 

(3·3) 
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1046 

and 

d 
dux=y+f, 

K. Nakao, Y Nambu and M, Sasaki 

where the parameters a and r are given by 

3A (H2)2 
a= 871'2 m2 n, 

(3,4) 

(3'5) 

(3,6) 

Using the fact that H2~871'V(0)/3m~l, the requirement (3·2) IS equivalent to the 

following conditions on a and r, 

and r::}>l, (3,7) 

N ow we are in a position to study the behavior of the large-scale scalar field rp. 

Starobinsky3) derived the Langevin equation from the equation of motion for the 

scalar field, neglecting the acceleration term ;P', i.e., taking the slow rolling approx

imation .. However to study the effect of the initial value of the velocity ¢(O) on the 

later evolution of the scalar field, it is necessary to retain the term ;P'. Thus our 

formulation makes it possible to investigate the early stage behavior of rp and its 

connection to the dynamics at the intermediate stage of inflation. 

Assuming the universe was in a thermal equilibrium before inflation, as common

ly regarded so in the new inflationary universe scenario, one expects that <rp2>-;::;<¢h 
~Tc2~m2/1X and <¢2>-;::;<¢2>~Tc4. Or in terms of the dimensionless variables x 

and y, 

and (3,8) 

at the initial stage of inflation. Thus, in particular, we may neglect the terms 

non-linear in x in Eq, (3,4) during the early stage of inflation, since A<1. Further, for 

simplicity, let us only consider the behavior of x and y averaged over a spatial volume 

of radius L-;::;(€H)-l, Then Eqs. (3'4) and (3,5) reduce to 

d 
. du x=y+ f(u) , 

d 
-d y=-3r(Y-x)+ f(u) 

u ' 
(3·9) 

and 

(3·10) 

The process described by the above equations is known as an Orstein-Uhlenbeck 

processl3
) and can be solved exactly, The solution is 
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Stochastic Dynamics of New Inflation 1047 

(3·11) 

where 

(3·12) 

After a lapse of time Llu ?:-l/y, the above solution reduces approximately, in the 

leading order of y, to 

(3·13) 

Thus independent of initial conditions, the solution approaches that Of the slow 

roll-over version of the stochastic equation, 

d -x=x+f(u) . 
du ' 

y=x, (3·14) 

within the timescale Llu = D(l/y), i.e., the Hubble expansion timescale, which is 

apparently due to the large friction force (the term proportional to 3y in Eq. (3·9)). 

Further from Eq. (3·13), one finds that the range of initial conditions which are 

consistent with the realization of inflation is given by 

Ix(o)I<1 and ly(0)1<3y. (3·15) 

Comparing this with Eq. (3·8), we see that an inflationary stage of sufficient duration 

is realized in our model. Therefore if the quantum effect, i.e., the noise f( u) could be 

neglected, the slow roll-over phase would be realized within a few expansion times for 

the parameters of our model in the assumed range.14
),15) However, as it is apparent 

from Eq. (3·13), the realization of the stage described by the slow rolling approxima

tion does not imply the realization of the actual slow roll-over phase in which the 

motion of x can be described by the classical slow roll-over equation of motion; 

rather, the noise feu) plays an important role and the motion of x is quite stochastic 

at u?:-l/y. Thus one may call this era the stochastic inflationary stage. The stage at 

which x undergoes the actual classical slow rolling and the condition for the realiza

tion of such a stage will be discussed in the next section. 

To understand the quantitative behavior of the scalar field, it is sometimes more 
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1048 K. Nakao, Y. Nambu and M. Sasaki 

convenient to consider the probability distribution function than to deal directly with 

the solution of stochastic Langevin "equations. Formally, the probability distribution 

function W(x, y; u) can be expressed as16) 

W(x, Y; u)=<8(x-xAu»8(Y-Yf(U») , (3'16) 

where xAu) and YAu) are the solutions of Langevin equation (3'9) and < ... ) is the 

average with respect to the distribution of the noise f determined by Eq. (3'10). 

Then using the method of Kubo's stochastic Liouville equations,16) one can derive the 

Fokker-Planck equation corresponding to the stochastic process (3'9). In the present 

case, because Eq. (3'9) is linear in x and y, it is straightforward to solve for the 

probability distribution function W(x, Y; U).13) For u "<;l/r, and retaining the terms 

up to the next leading order of r this time, we findS) 

(3'17) 

where we have assumed x(O)=y(O)=O for simplicity. This manifestly shows that the 

dispersion perpendicular to the y=x line stays at a very small value ~a/(3r)3 

independent of time, while that in the direction of x-axis grows as ~ a(e2U -1). Note 

that in the limit of perfect slow rolling (r--+ oo), Eq. (3'17) reduces to 

W(x, y; u)--+ 8(y-x)P(x; u), (3'18) 

where 

P(x; u)= J27ra(~2U-1) exp[ - 2a(e~:-1) ] . (3'19) 

From the distribution function P(x; u) (or equivalently the dispersion <x2)=a(e2
\ 

-1), which determines the form of P(x; u) completely), one can gain an insight into 

an important feature of the stochastic inflationary stage. At the stage u~l, the 

behavior of <x2
) is identical to the case of a free Brownian partic1e.2),17) In terms of 

the original variable cp, one has 

(3'20) 

which is the well-known result for a massless minimally coupled scalar field in de 

Sitter space.l1),12) Thus cp, which is the mean value of the scalar field in a region of 

size L~(€H>-l, changes by ±H/27r in a time step H-1.2),17) However there is one 

important difference between the present case and a simple Brownian motion. 

Consider a region of size L~(€H>-l in the universe at t=O in which the mean value 

of the scalar field is cpo. In every time interval H-I, the universe expands e times and 

the number of regions of size L increases e3 times. In each of these regions, the 

scalar field takes either of the values cpo±H/27r randomly.5),6) Thus the process is 

much more similar to the multiplication of cells having certain genic information: 

When the fission of a cell occurs, a part of the genic information would be varied 

randomly due to external disturbances and transmitted to daughter cells. In this 

sense, the probability distribution function P (or W ill general), initially having a 
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Stochastic Dynamics of New Inflation 1049 

delta function peak at a certain value of rp (or at a certain point in the phase space 

(rp, v», can be interpreted as representing the spatial structure of a comoving region 

of initial size L, and the expectation value <Q> can be regarded as the spatial average 

of a quantity Q over this comoving region; the ensemble consists of regions of size L 

filling out this comoving volume. 

In principle, we should analyze the original equations which involve the spatial 

dependence of rp (Le., Eqs. (3·4) and (3'5» in order to investigate the spatial structure 

of the inflationary universe. However, an approximate but quite accurate descrip

tion of the spatial structure can be obtained from the spatially averaged, slow 

roll-over version of them (Le., Eqs. (3'14) and (3'10», if one takes into account the 

picture of cellular fission mentioned above. Let us show why this seemingly rough 

approximation turns out to be so good. Since the following arguments apply to 

general models of inflation, equations will be expressed in terms of the original 

variables with dimensions: 

The picture that the universe consists of mutually independent regions of size L 

:::; (€H)-1 corresponds to approximating the noise correlation function (2 '14) by 

(3·21) 

that is, replacing the O-th order spherical Bessel function jo by the step function e with 

€H being replaced by L -1 at the same time. On the other hand, the spatially aver

aged, slow roll-over version of the basic stochastic equation (2 '13) is 

V'( ) . 
¢=- 3;: +6. (3'22) 

Now assuming V'(rp):::::M2rp, where M2 is nearly constant in time, it is straightforward 

to derive the spatial correlation function of rp from Eqs. (3· 21) and (3' 22).' The result 

is 

<rp(x+ r, t)rp(x, t» 

(3'23) 

Here rp=a(t)r is the physical separation length and the length L plays the role of a 

regularization scale; the f:lhort distance singularity is removed since we have smeared 

the field rp over the scale L. In addition, there arises the over-all factor e(a(t)L- rp) 

which plays the role of an infra-red cutoff at a constant comoving scale. However, 

since what we are interested in is the dynamics within a fixed comoving scale, this 

factor plays no essential role. Hence it will be ignored hereafter. Interestingly 

enough, in the limit t~co, Eq. (3'23) agrees with the behavior of the exact two-point 

function for Bunch-Davies vacuum at large rp/2) provided that one chooses L=H-1
• 

One can also see that Eq. (3·23) with L=H-1 yields the correct form in the limit 
M2~0, 
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1050 K. Nakao, Y Nambu and M. Sasaki 

H2 
<cp(x+r, t)cp(x, t»= 47[2 

X [Ht- e(rp- H-1)ln(Hrp)] . (3·24) 

This IS in agreement with the result 

obtained in Refs. 12) and 18). 

Thus, at least at a stage when one 

can neglect the time variations of Hand 

M due to that of cp (i.e., at the early stage 

of inflation at which IM21cp2~ V(O) and 

IM21~H2 are valid), the spacetime struc

ture of the inflationary universe is accu-

Fig. 1. A characteristic spatial pattern of the rately described by the approximation 
scalar field at the early stage of the inflationary. expressed in Eqs. (3·21) and (3·22). 
universe. The black regions are where the 

absolute value of the scalar field is greater than 

J<cp2> ""O.6H. See § 5 for details. 

Then we may naturally expect the same 

approximation to be valid' even under. 

situations such that the non-linearity of 

V(cp) and/or the cp-dependence of H could not be neglected. This implies that one 

can visualize the actual spacetime structure by dividing a fixed comoving region into 

regions of horizon size and carrying out a simple numerical simulation of stochastic 

solutions to Eq. (3·22) in each of these regions. Such a simulation has been done by 

Aryal and Vilenkin6
) recently. Following them, we call these regions of horizon size 

"h-regions" in the rest of the paper. We have also carried out a similar but more 

elaborate numerical simulation. A typical spatial structure at the early stage of 

inflation is depicted in Fig. I. Details about our numerical simulation will be present

ed in § 5. 

Finally, we mention a bit delicate problem which one encounters if one attempts 

to extend the above picture to situations in which the slow rolling approximation 

fails. In such cases, we must return to the original equation (2·13) defined on the 

phase space (cp, v). Then we find that the noise term for v involves M2=< V"(cp». 

However, if each h-region of a given comoving region should be regarded as indepen

dent of the other h-regions, it is quite unnatural that the expectation value, which is 

interpreted as the spatial average over the comoving region, should play any role. 

Hence it seems more natural to think M2= V"(cp), i.e., to regard M2 as determined 

locally in each h-region. Nevertheless, it seems that results would not depend too 

much on the choice of M2. This is because the situations in which the slow rolling 

approximation is invalid are either the stage right after the beginning of inflation 

when M2~ V"(O)=const is a good approximation or the final stage of inflation at 

which the scalar field should be coherent over a large number of h-regions so that 

< V"(cp»~ V"(cp) holds. Hence, the present issue is probably inessential in practice. 

§ 4. Universe in the midst of inflation 

In this section, we consider the universe in the midst of inflation at which both the 

potential force V'(cp) and the cp-dependence of the Hubble parameter Hare non-
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Stochastic Dynamics of New Inflation 1051 

negligible but actually play important roles. In order to avoid inessential complica

tions, we adapt the slow rolling approximation. Thus our starting point would be 

Eqs. (3-21) and (3-22). However, as discussed in the previous section, the probability 

distribution of rp at a fixed spatial point may be interpreted as the probability 

distribution of the number of h-regions characterized by the value rp in a given 

comoving region of the universe. Therefore, we can gain a good knowledge of 

spatial features of the inflationary universe by putting Xl=X2 in Eq. (3-21) and 

ignoring the spatial dependence of rp in Eq. (3-22). On the other hand, we take into 

account the rp-dependence of H in Eqs. (3-21) and (3-22). Hence the basic equations 

for the following discussions are 

. _ V'(rp) 
rp-- 3H(rp) +7), 

_ H(rp)3 
<7)(t1)7)(t2»- 47r2 O(tl- t2) , 

(4-1) 

(4-2) 

where and in the rest of this section, we use the symbol 7) for the noise originally 

denoted by 6, since the symbol 6 will be used for a measure of dispersion of the scalar 

field below. 

We focus on a comoving region in which the scalar field had a certain value rpo 

and whose size was H- 1 initially. In particular, we are interested in the condition for 

the region to enter the actual slow roll-over phase (i.e., the stage at which the time 

evolution of the scalar field is well approximated by the classical equation of motion 

under the slow rolling approximation) through which the region would eventually 

develop into a domain of the universe which is sufficiently large and homogeneous, 

like the universe observed today. Note that "initially" here does not mean the 

beginning of inflation: At the beginning of inflation, the dispersion of the scalar field 

would have grown as Eq. (3-20) and after a while there would be a number of h

regions having various values of rp. We are focusing on one of such h-regions and 

reset the time to zero, which is what we mean by "initial". 

Before analyzing the stochastic process given by Eqs. (4 -I) and (4 -2), we must 

realize an important effect of the rp-dependence of H to the spacetime structure of the 

inflationary universe. In the case of the double-well potential model, Eq. (3 -I), H is 

·expressed in the form, 

H2~H 2(1_~m2)2 * m2 r , (4-3) 

where H * corresponds to the Hubble parameter appeared in the previous discussions 

(i.e., H * 2=87r yeO) /3m~l) and the slow rolling approximation has been employed to 

neglect the V-dependence of H. It is apparent that the expansion is faster for a 

region with a smaller value of rp, which is generally. true for all models of new 

inflation. Therefore the physical volume of a comoving region would be eventually 

dominated by those h-regions with smaller values of rp and taking this effect into 

account is crucial for a correct understanding of the spacetime structure of the 

inflationary universe.S
),9) 
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1052 K. Nakao, Y. Nambu and M. Sasaki 

The above comment implies that the probability distribution function P consider

ed in the previous section would not be as useful as one might have originally 

expected. Consider, for example, the mean value of rp2 in a comoving region of the 

universe in which there are N('2> 1) h-regions at time t. Following our interpretation 

of P, we would calculate <rp2(t) as 

(4°4) 

where the index i is the number assigned to each h-region and rpi is the value of the 

scalar field in the i-th h-region. Obviously, however, if H varies appreciably from 

h-regions to h-regions due to differences in the values of rp, Eq. (4°4) does not describe 

the true spatial average over the region under consideration. Instead, the correct 

spatial average should be given in the form, 

(4°5) 

where the suffix P indicates that the average takes into account the weight of proper 

(physical) volume and the weight factor a3[rp(t)] is given by 

(4°6) 

As it is apparent from this expression, the weight factor a
3 depends not only on the 

value of the scalar field at time t but also on the evolutionary history of it. 

Comparing the expression (4°4) with (4°5) and recalling the formal expression of 

a conventional probability distribution function as given in Eq. (3 0 16), one can easily 

guess the corresponding form of a new probability distribution, function Pp which 

yields the average such as Eq. (4 0 5). It is 

<o( rp- rp7](t))exp[31tdt' H( rp7](t'))]) 

<expp ltdt'H(rp7](t'))]) 
(4°7) 

where rp7] is the solution of Eq. (4°1). Then following the standard method/6
) a 

modified Fokker-Planck equation for Pp(rp; t) is obtained to beg) 

a P ( ) a ( V'(rp) P + 1 H( )3/2 a H( )3/2p) at p rp; t = arp 3H(rp) p 871"2 rp aq; rp p 

+3(H(rp)-<H(t)p)Pp, (4°8) 

where 

The above equation is both non-linear in Pp and non-local in rp. Hence it is almost 

impossible to solve it analytically in general. However, in the case of the double-well 

potential model, Eq. (3°1), it can be solved approximately by an iterative method and 

the solution turns out to describe characteristk features of the inflationary universe 
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Stochastic Dynamics of New Inflation 1053 

quite accurately. 

For convenience, let us rewrite Eq. (4·8) in terms of the dimensionless variables 

introduced in the previous section. Noting the expression (4·3) for the Hubble 

parameter and regarding H appeared in the definitions (3·3) and (3·6) of the dimen

sionless variables and parameters as H*, Eq. (4·8) becomes 

where 

a:Pp(x; u)= a:( -xPp+a(1-x2)3/2 a: (1_X2)3/2pp) 

-3Y(X2_<X2(U»p)Pp, (4·9) 

This equation for Pp can be further simplified by noting that Ixl must be sufficiently 

smaller than unity during the phase in which the slow rolling approximation is valid. 

This is because the points x = ± 1 are the absolute minima of the potential and x 

approaching one of the minima would start rolling down the potential slope rapidly 

(and eventually undergo damped oscillations around the minimum~ to invalidate the 

slow rolling approximation. Hence in accordance with our basic assumption, we can 

replace the factor (1-x2)3/2 in Eq. (4·9) by 1. In other words, we consider only those 

distribution functions that have their supports at x2~1, hence are meaningful under 

the slow rolling approximation. Further, we restrict our discussion to distribution 

functions which have a delta function peak at u=O; Pp(x; O)=o(x-xo), since we are 

interested in the time evolution of a comoving region which has a particular value of 

the scalar field initially. 

With the simplification mentioned above, Eq. (4·9) now involves only terms up to 

quadratic order in x. Hence we may expect the solution to have a Gaussian form. 

Note that if the terms proportional to y in Eq. (4·9), which represents the proper 

volume effect, were absent, the solution would have the form,13) 

P(x; U)=(27n10(U»-1/2exp[ - (~;;:(:x::r ] ' (4·10) 

where xc=xoeu is the classical solution of the slow roll-over equation of motion and 

60 is given by 

(4·11) 

Thus the mean value and dispersion of x would be 

and (4·12) 

In reality, the presence of the terms proportional to y makes the values of <x> and 

<:li2> deviate from the above. In order to take this effect into account, we postulate 

the following form for Pp , 

(X-XC(U»2 
26(U) 
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1054 K. Nakao, Y. Nambu and M. Sasaki 

where N(u), 6(U) and g(u) are some unknown functions. This form has been guessed 

since the probability should be smaller for larger values of x 2
• Note that, from the 

normalization condition, Eq. (4·13) can be rewritten in the form, 

< (1 + (J )"2 [ 
Pp(x; u)= 2TC~ exp (1 +g6)( _~)2J 

26 x 1 + g6 . (4·14) 

This implies that <x)p and <x2)p are expressed as 

<x
2
)p= 1 :g6 +<x)/ . (4·15) 

Hence the ansatz (4 ·13) corresponds to the parametrization of <x)p and <x2)p in terms 

of two unknown functions 6 and g. 

Substituting Eq. (4·13) into Eq. (4·9) and equating the coefficients of equal powers 

of x on both sides of the equation, we find 

Xl: o-xc-6,ic=(2a+6+2ag6)Xc, 

x 2; 0-- g62=2a+6+4a6g+62(2g~6y+ag2). 

(4·16) 

(4·17) 

In addition, there is an equation for the coefficients of the O-th power of x. However 

it is redundant if the Gaussian postulate is valid. Actually we found it is consistent 

with the above equations. Hence we leave it aside from the argument. Recalling 

that a is a very small parameter, we can solve the above equations by the perturbation 

expansion with respect to a. First note that 6 is at most of order a. -Then Eq. (4 ·16) 

implies that 6 takes the form, 

(4·18) 

where 6o(U) has been given in Eq. (4·11) and s(u) is a function independent of a. 

Inserting Eq. (4·18) into Eqs. (4·16) and (4·17), we obtain the equations for g and s: 

g= 

s =2s+2(e2U -1)g. 

These equations can be readily solved. Then 6 and g are found to be 

6(u)=a[(1-6ay)(e2U -1)+6ayu(e2u + 1)+ O(ff)] , 

g(U)=3 Y[(1 e2~~1)+O(a)J. 

(4·19) 

(4·20) 

Thus the solution fOf Pp is given by Eq. (4·14) with 6 and g given by Eq.(4·20). 

As discussed in the previous section, most of h-regions in the universe would have 

been in the stochastic inflationary phase and the scalar field would have been random 

walking during the early stage of inflation. Then soon or later there would appear 

such h-regions as those having a sufficiently large value of the scalar field. In such 
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Stochastic Dynamics of New Inflation 1055 

regions, the scalar field would begin to roll down the potential slope slowly, following 

the classical equation of motion. Let us call this stage classical slow roll-over phase. 

We note that, since the quantum noise force would be negligible, the value of rp would 

evolve coherently over a comoving region of the universe which entered this phase. 

This implies that the region would have a potentiality to become sufficiently 

homogeneous and isotropic. Thus it is at least necessary that this stage should last 

long enough in order to solve the horizon problem. 

Hence, we would like to know a critical value of rp beyond which the classical 

slow roll-over phase is realized. That is, we consider the probability distribution 

function Pp(x; 0)=8(x-xo) and derive the condition for the initial value Xo such that 

the peak of Pp(x; u) remains sufficiently close to the classical trajectory Xe=Xoe u and 

the dispersion of x around it remains sufficiently small for all times until x reaches 

one of the absolute minima where inflation ends. These requirements are expressed 

as 

(4·21) 

From Eq. (4·15) or (4·14), they simply imply g6~1. From Eq. (4·20), one can readily 

observe that it is satisfied if 

for u:2>l . (4·22) 

Then, since the inflation ends at IXel ~ 1, the condition for a comoving region of the 

universe to enter the classical slow roll-over phase as a whole is finally expressed 
as7).9) 

(4·23) 

or in terms of the original parameters, 

2 m
2 

( 3H * 2 )3 _ 7[m
8 

rpo :2>-8 2 -. -2- -l3-s. 
7[ m /\ mpl 

(4·24) 

Incidentally, since xo2 must be much smaller than unity, the condition (4·23) also 

implies that the parameters of a successful inflationary universe model must satisfy 

the additional condition, 

A (3H*2)3 
3 ay = 87[2 ----:;;:r- ~ 1 . (4·25) 

We mentioned before that the realization of the classical slow roll-over phase in 

a comoving region of the universe should be necessary for that region to become a 

Friedmann-like homogeneous and isotropic domain. It is then natural to ask what 

the exact relation between the classical slow rolling condition and the degree of 

homogeneity and isotropy is. To answer this question, let us recall that the gauge

invariant amplitude of inhomogeneity of a universe is characterized by the amplitude 

of density perturbations on the Hubble horizon scale.19
) In an inflationary universe 

model, the conventional argument yields20
) 
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1056 K. Nakao, Y. Nambu and M. Sasaki 

(4'26) 

where (8p/ph is the amplitude of a density perturbation with comoving wavenumber 

k at the horizon crossing time in the Friedmann era and the subscript H on the 

right-hand side denotes the value evaluated at the time at which the wavelength leaves 

the horizon during the inflationary stage. Using the slow roll-over equation of 

motion for rp and rewriting Eq. (4'26) in terms of a, r and x, we find 

(4'27) 

Comparing Eqs. (4'23) and (4'27) and noting that XH~XO, one immediately sees that 

(8p/ph<l is always satisfied in domains of the universe which went through the 

classical slow roll-over phase. Taking another point of view, this fact implies that 

the requirement on the parameters of the model, Eq. (4'25), is a necessary condition 

for (8p/ph<l (if one requires (8p/p)k-:S10- 4 as to be consistent with observations of 

the cosmic microwave anisotropies,21) Eq. (4'25) should be correspondingly modified). 

Although we have discussed a particular model of inflation here, it can be shown that 

the present conclusion applies also to more general models.9
) 

We now consider the dynamics of a comoving region with Xo smaller than the 

critical value x*=O(!ai). In such a case, g6 would become eventually greater than 

unity and <x)p would tend to zero, since xccceu while g6cc e2U
; see Eq. (4'15). Thus 

one expects the probability distribution to become independent of the initial condition 

and approaches the one with xo=O asymptotically at large u. Hence let us put xo=O 

for simplicity. Note that this initial condition would de~cribe the global feature of 

the inflationary universe, since at the very beginning of inflation the probability 

distribution of x over the whole universe would have been narrowly peaked at x=o 

(seeEq. (3'8». In this case, in the limit u-HXJ , the dispersion of x approaches a 

constant value, 

(4·28) 

This implies that the dominant physical volume of the universe would continue to 

expand exponentially forever and the inflation would never end as a whole. That is, 

there is continuous generation of mini-universe which would eventually turn into 

Friedmann-like universes out of the highly stochastic, quantum fluctuation-dominated, 

never-.ending inflationary universe. 'This feature of the inflationary universes has 

been found by Linde22) in the context of chaotic inflation. "However, we note that the 

feature has been originally found in the old scenario.23) Thus it seems to be a 

common feature of all inflationary universe scenarios. 

Returning to the new inflationary universe scenario, the fact that inflating regions 

in the whole universe form a sel~-similar fractal structure has been pointed out by 

Aryal and Vilenkin.6
) Using the asymptotic solution for Pp considered above, we can 

gain more information about the nature of inflating regions. The physical volume 

fraction of the universe occupied by regions in which the scalar field is in the stochas-
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Stochastic Dynamics of New Inflation 1057 

tic inflationary stage is estimated as 

2 (ca l12r 

= Iii Jo exp[ - t
2
]dt , (4'29) 

where the critical value x* is set equal to Cjzay/3 with C being a constant of order 

unity. Thus the dominant volume fraction of the universe is in the stochastic 

inflationary phase if ar~ 1, while that is in the classical slow roll-over phase if ar~1. 

Finally let us estimate the duration of the classical slow roll-over phase in a 

comoving region which entered that phase. Since the scalar field would start rolling 

down classically once it passed over the critical value x*, it can be regarded as the 

initial value of x which undergoes the classical slow roll-over phase. Hence we may 

put x(u)=x*eu
-

u
, where Ui is the (dimensionless) time a region of size H-1 entered the 

slow roll-over phase. On the other hand, since the slow roll-over phase would end 

when H2~ m2
, the final time Uf can be estimated from the equation, 

(4'30) 

Thus, apart from an inessential logarithmic ambiguity, the duration of the slow 

roll-over phase is estimated as 

N-= l,tf H(t)dt ~ 3i:n*z2 In[ 8~2 ( 3;;> rJ ' (4'31) 

where N is the number of e-folds of the classical slow roll-over phase a domain of the 

universe would undergo. Moreover, if one requires that the density perturbation 

amplitude on the comoving scale corresponding to the initialh-region at U=Ui should 

be equal to a specified value lOki, we should rather set x(U)=IOkl-1x*e U
-

U
, and the 

corresponding number of e-folds is expressed as 

(4'32) 

In order to solve the homogeneity problem of the presently observed universe, the 

number N(Ok) is required to be greater than ~65 for IOkI 2 ::S10-8 (see Ref. 20) lor 

further details on the required number of e-folds). 

§ 5. Numericalresults 

In this section, we present the results of numerical simulation of the stochastic 

scalar field for the double-well potential model. For convenience, we use the dimen

sionless variables and parameters exclusively in what follows. Following the argu

ments in § 3, we adapt the picture of cellular fission. Thus we focus on the behavior 

of the scalar field averaged over an h-region and investigate the spacetime structure 

of a comoving region of initial size H-1
• 

The stochastic equations we have solved are 
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1058 K. Nakao, Y. Nambu and M. Sasaki 

~~ =y+f(u) , 

7u =-3y[yj(1-x2)2+ }y y2 -X(1-x2)]+f(u) (5·1) 

with 

(5·2) 

In addition to the neglect of the spatial dependence, these equations differ from the 

ones given in § 3 (Eqs. (3·4) and (3·5)) in the two respects: First, the (rp, v)-depend

ence of the Hubble parameter H, 

(5·3) 

has been taken into account in the friction term of the equation of motion. Thus 

Eq. (5 ·1) would yield the exact solution of the classical equation of motion for the 

scalar field if the noise f were absent. Second, the term <X2> in the coefficient of f on 

the second line of.Eq. (3·4) has been put equal to zero. This approximation should 

be valid since <x2>~1 at the stochastic inflationary stage (i.e., when the quantum noise 

dominates over the potential force) while the potential force dominates when <X2> 

becomes large. The only possible failure of the approximation would occur at the 

final stage of inflation when the scalar field is close to one of the potential minima, if 
reheating processes were so efficient that a huge friction force would suppress the 

potential force and the noise term would become important again. However, since 

we take no account of any reheating processes, the <X2> term can be consistently 

neglected. 

Strictly speaking, corresponding to the first point mentioned above we should 

take into account the (rp, v)-dependence of f through that of H in Eq. (5 ·1) (see e.g., 

Eq. (4·2) or (4·9)). However, by a reasoning similar to the second point above, it has 

been neglected. 

The algorithm by which we have solved Eq. (5 ·1) is based on the method proposed 

by Helfand.24
) It is a Monte Carlo method combined with a Runge-Kutta method for 

integrations of ordinary differential equations. As for the latter, we have incorporat

ed the second order Runge-Kutta method. We have chosen a time step for numerical 

integration to be Llu=O.OOl. In most cases, the number of samples for an individual 

simulation was chosen to be 3 x 103
• However, in some cases it was increased up to 

104 in order to obtain a result with a better accuracy. Although these numbers are 

not satisfactorily large enough, we are forced to adopt them due to the limitations of 

the computation time and the size of the memory. For each run, the volume factor 

a3 has been calculated at each time step and stored in the memory for the evaluation 

of distribution functions and expectation values < ... >p of various quantities. 

In order to understand the effect of the (x, Y)-dependence of physical volume of an 

h-region, we have evaluated conventional distribution functions in several cases as 

well, in addition to "proper" distribution functions which take into account the 

volume factor. The conventional distribution function is evaluated by the formula, 
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Stochastic Dynamics of New Inflation 1059 

J.V(N)(X, Y, U)= 1~ 8(X-Xi(U))8(Y-Yi(U)), (5·4) 

while the proper distribution function, by 

N 

~ 8(x - x;(u)) 8(y-Yi(u))ai3(u) 
i=1 . (5·5) N 

~a/(u) 
j=l 

where 

with h being the dimensionless expansion rate defined in Eq. (5·3), Xi and Yi are the 

values associated with the i-th sample, N is the number of samples, and 8 is a 

smeared delta function over a small phase space volume. The distribution functions 

J.V(N) and Wp(N) would approach the exact distribution functions Wand Wp, re

spectively, as N goes to infinity. 

In order to confirm, as well as to improve the analytical estimate of the critical 

value X* for realization of the classical slow roll-over phase, we have calculated <X2>p 

in various models under various initial values of X (in accordance with the discussions 

of §§ 3 and 4, in each case the initial condition is chosen as (x, y)=(xo, 0) for all the 

samples). A typical example of the two different temporal behaviors of <X2>p is 

<X2 > 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

(b) 

1.0 2.0 3.0 

(a) 

4.0 

u 
5.0 

Fig. 2. The temporal behavior of <X2>p in the two 

typically different cases of the initial data; (a) 

(xo; Yo)=(O, 0) and (b) (xo, Yo)=(O.l, 0). The 

model parameters are a=5X10-5 and y=10, 

which imply the critical initial value of x to be 

somewhere around 0.03. The number of sam

ples for each simulation is 10·. 

.fo.Y 
-2 

(XI0 ) 
1.0 0.8 

5 

4 

3 

2 

1 

ill 1 1./ 1 " ..... 
-*-*-*-*-*- 0,"'--

I I I 1"",0'" I ".,,""l' 0.6 
-* - * -* - * -,0"- 0.,..L 

1 1 I"" 1 ...... I .. 1"" 

= + =+7'~.::"··'· t:::.· ... ,~ .. ~' ~ = 
-*-*L.,.'D.-;;>·o- 0 - 0-

[ ,,1"" [,.", [ [ [ 

-*~*'~'o-o-o-o-
[,0' .... [, .... [ [ [ [ 

- *:4 0 - 0 - 0 - 0 - 0-

,,/;:::::1.'····· 1 1 1 1 1 

1 2 3 4 5 6 
-2 

(X 10 ) 

Fig. 3. Classification of various models and initial 

data. The cases in which the classical slow 

roll-over phase was realized are denoted by the 

circle 0 and those in which it was not, by the 

star *. The cases denoted by the triangle L,. 

are ambiguous ones due to the limited number 

of samples and the limited computation time. 

The dotted lines denoted by 1.0, 0.8 and 0.6 are 

the lines ra:; = Alxol with the respective values 

of A. 
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1060 K. Nakao, Y. Nambu and M. Sasaki 

shown in Fig. 2 for a model with the parameters a=5X10-5 and r=10. For this 

model, the analytical estimate of the critical value is x*~j3ar~0.039. Figure 2(a) 

shows the case the initial value Xo is smaller than x*. The variance of the scalar field 

approaches asymptotically the value (3r)-1~0.033, which agrees with our analytical 

estimate. On the other hand, Fig. 2(b) shows the case the initial value Xo is larger 

than x*. The variance of the scalar field increases monotonically up to <x2>p~1 and 

then oscillates around the potential minimum. Thus the classical slow roll-over 

phase is realized in this example. 

In Fig. 3, the classification of various models with various initial values of x is 

shown according to whether the classical slow roll-over phase is realized or not. 

w w 

1.0 1.0 

O.s O.S 

1.0 Y O.S 1.0 
1.0 Y O.S 1.0 

O.S 

0.0 0.0 
x x 

(a) (b) 

w w 

1.0 1.0 

O.s O.s 

1.0 rY __ ..".O'_S _----,1_.0-,. 

0.0 0.0 

(c) (d) 

Fig. 4. The probability distribution function W(x, y; u) with the initial distribution W(x, y; 0) 

=8(x)8(y); W at (a)=u=1.0, (b) u=2.5, (c) u=5.0 and (d) u=7.5 are shown. Because of the 

symmetry W( -;x, -y; u)= W(x, y; u), only a half of the phase space (x~O) is shown .. The model 

parameters are a=5XIO-5 and r=lO and the number of samples is 5XI0
3

• 
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1.0 1.0 

0.5 0.5 

1.0 Y 0.5 1.0 Y 0.5 1.0 

0.5 

0.0 0.0 

x x 

(a) (b) 

Wp Wp 

1.0 1.0 

0.5 0.5 

y 0.5 1.0 
1.0r-_---,.0._5 _---,1._0-,. 

(c) (d) 

Fig. 5. The same as Fig. 4, but for the probability distribution function Wp(x, Y; u), which takes into 

account the volume effect. 

Specifically, the circle 0 denotes the case when the value of the ratio <X2>p/ <X2> at 

time u=5 is larger than 0.7 (Le., the classical slow roll-over phase has been or is about 

to be realized; see Figs. 6 and 7 and discussions associated with it for a justification 

of this criterion), the star * when smaller than 0.1 (Le., the never-ending inflation is 

undergoing) and the triangle £:"., otherwise. Due to the presence of the ambiguous 

cases marked by £:"., we were unable to determine the precise numerical factor for the 

critical value x*. In principle, one could run the simulation as far as one wishes and 

eventually all the cases would fall into either of the class 0 or *. However, due to 

the limited number of samples (3 X 103 in the present case) and the exponential growth 

of the volume factor a, the time u=5 is approximately the furthest one could go with 

a sufficient numerical reliability. Nevertheless, one may conclude from Fig. 3 that 
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w 

1.0 

0.5 

Y 0.5 1.0 
1.0 

0.5 

0.0 

x 

(a) 

W 

1.0 

0.5 

y 0.5 1.0 
1.0 ~----;>-----r--;7 

0.5 r-~--;"--~'-7 

0.0 

(c) 

Fig: 6. The probability distribution function W(x, 

y; u) with the initial condition W(x, y; 0) 

=8(x-0.l)8(y), which corresponds to the case 

the classical slow roll·over phase is realized; W 

at (a) u=l.O, (b) u=2.5 and (c) u=5.0 are 

shown. The model parameters and the num· 

ber of samples are the same as in Fig. 4. 

w 

1.0 

0.5 

1.0 /Y __ 70._5 -=----:;1~.0-;7 

0.0 

(b) 

x* ~(1.3±0.3) X;a:; 

(¢=:::} ~*~(0.5±0.1) X ~~). (5·6) 

To demonstrate manifestly the 

importance of the effect due to the vol

ume factor a, the conventionally defined 

probability distribution (5·4) and the 

properly defined one (5· 5) are shown in 

Figs. 4 and 5, respectivery, f6r the same 

parameters as in the case of Fig. 2 (a=5 

x 10-5 and r=10), under the initial condi

tion x=y=O for all the samples. In 

both figures, the respective distribution 

functions at four different epochs are 

shown chronologically from (a) to (d). 

The characteristic difference between 

the distribution functions with and with

out the volume effect can be seen by 

comparing those at a late time, Figs. 4(d) 

and 5(d) (u=7.5). In Fig. 4(d), the peak of the distribution is well away from the 

origin; the calculated variance <x2
) turns out to be about 0.95. On the other hand, the 

peak of the distribution shown in Fig. 5(d) is still rather close to the origin; actually 

for this distribution we found <x2
)p ~ 0.033, i.e., the universe is already in the stationary 

never-ending inflationary state. 

On the other hand, in the case Xo > x*, the difference between WtN) and Wp(N) is 

negligible. Such a circumstance is depicted in Figs. 6 and 7. One can also see that 

the dispersion is kept small and all the samples fall into the bottom of the potential 
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1.0 

0.5 

1.0 Y 0.5 1.0 

0.5 

0.0 

x 

(a) 

Wp 

1.0 

0.5 

0.5 1.0 

0.5>..--L----I7~-_r_,.-;/ 

0.0 

(c) 

Fig. 7. The same as Fig. 6, but for the probability 

distribution function Wp(x, Y; u). 

1.0 

0.5 

1.0 

0.0 
~--L-..--L---7x 

(b) 

valley together. 

Up until now, we have not dealt with 

cases with non-zero initial values of Y in 

our numerical simulation, since y is 

expected to become vanishingly small 

within a couple of expansion times as 

discussed in § 3. To examine this is 

indeed the case, we have investigated a 

case with non-zero initial values of y 

numerically. Specifically, we have con

sidered a case with the same model 

parameters as those in Fig. 2, 4, 5, 6 or 7, 

but with Yo distributed over an interval 

[ -0.5, +0.5] uniformly while Xo being set 

equal to zero. The resulting probability 

distributions WP{N) at several different 

epochs are depicted in Fig. 8. One can 

clearly see that the memory of non-zero yo is erased within one expansion time (u 

=0.1 in the present case) before the dispersion in the direction of x grows. 

We have also simulated an actual spatial feature of the scalar field by following 

essentially the prescription given by Aryal and Vilenkin.6) The simulation has been 

done in the following manner. For simplicity, the spatial dimension is restricted to 

two. Initially, the whole region of the simulated space corresponds to one h-region 

and we evolve one sample of the stochastic scalar field with certain initial data (X{I,O), 

Y{l,O» for an interval of time L/*u=}n 2/r(HL/*t=ln 2) according to Eq. (5·1). At this 

time UI=L/*U, the universe is twice as big as it was initially. Hence we divide the 

space into 2 X 2 cells, each of which is regarded as a new h-region, assign the number 

i(=l, 2, 3,4) and the values (XU,I)' YU,I» = (X{I,I)' Y{l,I»to the i-th cell, where (X{l,I)' Y{I,I» 

are the values obtained for the original sample at UI. Then the scalar field in each 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/8

0
/6

/1
0
4
1
/1

9
4
4
0
0
4
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



1064 K. Nakao, Y. Nambu and M. Sasaki 

1.0 1.0 

0.5 0.5 

1.0 Y 0.5 1.0 
1.0 Y 

0.5 1.0 

0.5 

0.0 
X X 

(a) (b) 

Wp Wp 

1.0 1.0 

0.5 0.5 

1.0 Y 0.5 1.0 1.0 Y 0.5 1.0 

0.5 0.5 

0.0 0.0 

X X 

(c) (d) 

Fig. 8. The probability distribution function Wp(x, y; u) in the case of non-zero initial dispersion in 

the velocity, y; Wp at (a) u=O, (b) u=O.05, (c)=O.l and (d) u=l.O are shown. The model param

eters and the number of samples are the same as in Fig. 4. 

cell is evolved independently for another interval LI*u, each cell is divided further into 

2x2 cells at u2=2LI*u and the new number j=i+i'(i'=O, 1, 2, 3) and the values 

(X(i,2), Y(i,2») are assigned to every new cell in the old i-th cell where (X(i,2), Y(i,2») are the 

values in the old cell at U2. Then the same procedure is repeated at every time step 

uk=kLI*u(k=3, 4, "'). 

As for this simulation, we have chosen the model parameters as a=5 x 10-5 and 

y=10, the initial data as (X(l,O)' Y(l,O») =(0, 0) and a time step for the stochastic numer

ical integration of Eq. (5 ·1) as LIu = (In 2) /103~ 6.93 x 10-4
• The simulation has been 

stopped at time just before u=u9=(In 512)/10, i.e., the final number of independent 

cells is 28 x28 =65,536. The resulting spatial feature of the universe has been shown 

in Fig. 1. In this simulation, all the h-regions are forced to have the same size. 
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Stochastic Dynamics of New Inflation 1065 

Hence the volume effect discussed before is neglected. However, the neglect of the 

volume effect is justified since the total lapse of time for the simulation is still rather 

small; Ug ~ 0.62 (Le., Ht ~ 6.2). In other words, it would be very difficult to visualize 

the spatial feature of the inflationary universe on its global scale by this kind of 

simulation, since the number of h-regions increases exponentially and the volume 

effect becomes increasingly important as time goes on. Nevertheless, one can gain 

some feeling about how inflation proceeds. Here we would like to examine the power 

spectrum of the spatial fluctuations of rp, which would clarify the limit of applicability 

of this kind of numerical simulation. 

Since the initial data for the above simulation are x = y = 0 and it is run for only 

a few expansion times, the slow rolling approximation must be valid. Hence we can 

analytically evaluate the fluctuation spectrum from Eqs. (3'21) and (3'22) with L 

=H-1
• In 2-dimensional space, the Fourier spectrum is evaluated to be 

=_7r._ dz h(z)zZm2/3H2 8(Z)(k - k') 2 H z ( k )-zm2/3H21k'H 
~ a(t)H kla(t)H ' 

(5'7) 

where 

(5'8) 

and JI(Z) is the first order Bessel function. Hence the power of fluctuations with 

respect to the logarithmic interval of k is given by 

2;rkZ HZ ( k )-Zm2/3H2 (klH 
18rp(k, t)IZ (2;r)2 = (2;r)Z a(t)H Jkla(t)Hdz h(z)zZm

2/3H
2 . (5'9) 

We note that, in the massless limit mZ~O, the last integral can be done explicitly to 

yield 

Z 2;rk
z 

HZ [( k ) ( k )] 18rp(k, t)l. (2;r)Z --> (2;r)Z Jo a(t)H - Jo H ; (5'10) 

where Jo(z) is the O-th order Bessel function. On the other hand, in the realistic 3-

dimensional case, one obtains from Eqs. (2'13) and (2'14), 

<Mp(k, t)Mjj*(k', t»=18rp(k, t)IZ(2;r)38(3)(k-k') 

4 3H Z ( k )-Zm s
/
3H2 

;rk3 w(t)H· 8(€a(t)H - k)8(k- €H)8(3)(k- k') , (5'11) 

and the power in the logarithmic interval of kis given by 

4;rk3 HZ ( k )-Zm2/3H2 
18rp(k, t)IZ (2;r)3 = (2;r)2 €a(t)H 8(€a(t)H -k)8(k-€H). (5'12) 

As mentioned previously, the factor 8(k- €H) in the above serves as an infra-red 

cutoff at a fixed comoving scale and is not of much importance for us. In the 

massless 2-dimensional case, this factor is replaced by the term Jo(k/H), which gives 
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(Io<p(k, tll'2r.k'jH') 1 

10' ,----------------, 

10' 

10-' 

10-2 +------1----+-----1 kjaH 

0.5 1.0 1.5 

Fig. 9. The power spectrum of spatial fluctuations 

of the scalar field shown in Fig. 1. The real 

line denotes the analytic power spectrum in the 

corresponding 2·dimensional model. 

rise to an unnatural oscillatory behavior 

on large scales k/aH <1. Although im-

plicit in Eq. (5·9), a similar oscillatory 

behavior appears also for the massive 

case. However, in any case, the am

plitude becomes negligibly small for t 
..... 00. Thus on scales of our interest 

H/a<k/a<H, thespectrumofthe2-dimen

sional model, Eq. (5·9), agrees well with 

the realistic 3-dimensional case, Eq. 

(5 ·12). This implies that a 2-dimen

sional simulation as depicted in Fig. 1 

reproduces the actual pattern of the 

scalar field fairly accurately, provided 

that a good numerical accuracy is guar

anteed. 

It should be mentioned, however, that the spectrum given by Eq. (5·9) does not 

correspond exactly to the true spectrum which would result. from our numerical 

simulation, mainly because there exist two special directions in the numerical case 

which would lead to a direction-dependent Fourier amplitude in k-space, While the 

analytic answer does not depend on the direction of k. Nevertheless, this disagree

ment would be inessential if the final number of h-regions is sufficiently large. 

For an examination of the numerical accuracy, we have calculated the power 

spectrum from our numerical data and compared it with Eq. (5·9). The result is 

shown in Fig. 9. One can see that the spectrum calculated from the nurherical data 

agrees quite well with the analytical one on scales k/a~H. Although we do not 

know how to evaluate quantitatively the numerical accuracy of our simulation from 

this result, we can at least say that Fig. 1 represents a O-th on:ier approximation to the 

actual spatial feature of the inflationary universe. 

§ 6. Conclusions 

In this paper, we have investigated the dynamics and the spatial feature of the 

new inflationary universe both analytically and numerically by using the stochastic 

approach to inflation. The stochastic approach used in the present paper is an 

extended version of the original one formulated by Starobinsky.3) In our extended 

version, the basic equations are defined on the phase space of the scalar field so that 

there is no need to appeal to the slow rolling approximation and a unified treatment 

of inflation throughout its whole stage became possible. For definiteness, we have 

analyzed a model of a single component real scalar field with a double-well potential. 

For this model, we have found the following. 

The initial velocity (i.e., the time derivative) of the scalar field v does not affect 

the later evolution of the scalar field as long as the kinetic energy is comparable to or 

less than the potential energy; v would almost vanish within about an expansion time 

H- 1 if v2/V(0)~1<247rA-l(m2/m~l) (see Eqs. (3·2) and (3·15» and the validity of the 
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slow rolling approximation is recovered. However it is important to keep in mind 

that the validity of the slow rolling approximation does not mean the realization of 

the actual slow roll-over phase in which the scalar field evolves according to the slow 

roll-over version of the classical equation of motion. 

The condition for the realization of the actual slow roll-over phases is determined 

by competition between the quantum noise force and the potential force. However, 

a naive comparison of these two forces does not give the correct criterion. To obtain 

the correct criterion for the slow roll-over phase, one must take into account the 

difference in physical volume of an h-region (i.e., a region of horizon size) due to the 

(cp, v)-dependence of the expansion rate H. In particular, a region having a smaller 

value of the scalar field has a larger expansion rate and hence eventually dominates 

the physical volume of the whole universe. 

Thus, as a result of the volume effect, the universe on its global scale would stay 

in the inflationary stage forever.· However if the value of the scalar field in some 

h-region becomes larger than some critical value CP*, the scalar field begins to evolve 

toward one of the potential minima and the region enters the classical slow roll-over 

phase. Then that region would inflate to a size large enough to become a 

homogeneous and isotropic domain of the universe which resembles the universe we 

observe today. 

We have found this critical value by solving for probability distribution functions 

of the scalar field both analytically and numerically with the volume effect taken into 

account. In particular, the numerical simulation has been done for various cases in 

the parameter space of the model to fix the numerical factor to the critical value 

which could not be determined analytically. It is given by cp* ~ (0.5 ± 0.1) x H31m2 (see 

Eq. (5·6». This value is to be regarded as the initial value for the classical slow 

roll-over phase. An important point to be mentioned here. is that the density pertur

bation amplitude at the horizon crossing time in the later Friedmann era is 

automatically suppressed to be smaller than unity if a comoving region under consid

eration went through the classical slow roll-over phase. 

We have also visualized the spatial feature of the scalar field in a comoving 

region which undergoes the never-ending inflation by solving the stochastic scalar 

field equations in the 2-dimensional space. By analyzing the spectrum of spatial 

fluctuations, we have found that the 2-dimensional simulation is a fairly good repre

sentative of an actual spatial pattern of the scalar field. 

However, of course, there exist many unsatisfactory points in the present numer

ical simulation which should be improved in future work. One direction of future 

work we are planning to pursue is to include the spatial derivative term (Le., a-2L1cp) 

. of the basic stochastic equation in numerical simulation. This term has a tendency 

to make the spatial distribution of the scalar field uniform on the horizon scale and 

would affect the evolution of the scalar field in the early stage. It would be also 

necessary to include the volume effect in a simulation of the spatial feature of the 

inflationary universe. However, this implies that we have to do a general relativistic 

simulation in which the metric degrees of freedom are properly taken into account. 

Therefore an accurate simulation of the spacetime structure of the inflationary 

universe may not be easy. 
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