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Abstract

We consider a structural credit model for a large portfolio of credit risky assets where the

correlation is due to a market factor. By considering the large portfolio limit of this system

we show the existence of a density process for the asset values. This density evolves according

to a stochastic partial differential equation and we establish existence and uniqueness for the

solution taking values in a suitable function space. The loss function of the portfolio is then

a function of the evolution of this density at the default boundary. We develop numerical

methods for pricing and calibration of the model to credit indices and consider its performance

pre and post credit crunch.

1 Introduction

The rapid growth of the credit derivatives market from 2000-2007 led to the development of

increasingly complex credit instruments requiring new mathematical models for pricing and risk

management. The subsequent contraction due to the credit crunch has placed even more emphasis

on the importance of understanding the risks involved in dealing with complex credit products.

Our aim in this paper is to develop the mathematical extension of standard large portfolio credit

models by introducing dynamics and working with the infinite dimensional limit.

The two natural approaches to credit modelling that have been extensively developed are the

structural approach and the reduced form approach, and each has been extended to the portfolio

setting in a variety of ways. We consider a dynamic large portfolio model obtained by taking

the large portfolio limit of a multidimensional structural model. By taking this limit we obtain a

stochastic partial differential equation which models the evolution of the value of a large basket

of underlying assets. The key quantities for multiname credit are then certain functions of the

solution of this stochastic partial differential equation. Although this paper focuses on a simple

version of this model which has shortcomings (as inherent in the underlying structural model),

our aim is to provide a mathematical basis for the development of more realistic extensions.
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Our motivation for the development of our structural evolution model came originally from the

lack of dynamics in the credit market’s standard pricing methodology. A bottom-up approach,

in which the individual entities in a credit basket are modelled, has been widely used, primarily

as a result of the introduction of copulas and the subsequent conditionally independent factor

(CIF) models. These models allow the problem of specifying the marginal distributions and

the market co-movements to be separated and through the choice of specific copulas has led to

simple, easy to implement and computationally efficient techniques for pricing credit products.

However copula and CIF models have no dynamics to speak of; nowhere is it specified how their

parameters or underlyings evolve. Furthermore, they only model expected defaults within one

time period, which for instruments such as collateralised debt obligations (CDO) is not an issue

as they are essentially one period instruments, but for those with stronger timing features this is

not reasonable.

This absence of dynamics made pricing some structured credit instruments very difficult and

credit market developments since mid-2007 have further exposed the limitations of the standard

approaches. There is still a need for a new generation of models to enable a better fitting as

well as understanding of the risks inherent in some of the more complex products. For instance

the existence of 5, 7 and 10-year index and bespoke tranches requires a model that can fit the

entire correlation skew term structure, not just the correlation skew for a given time horizon.

Also forward starting tranches, options on tranches and STCDOs with trigger features requires

information on the dynamics of spreads and information on the timings of default for their pricing.

Thus our purpose is to develop a relatively simple dynamic extension of a CIF to the large

portfolio setting, extending the static work originating with [46], see [43]. This will enable us to

describe the evolution of the loss function in terms of a few parameters. By investigating the

behaviour of our simplified model, it is possible to gain an insight into which aspects of dynamic

models are important for the pricing of more exotic structured credit products. This information

can then be used to help the development of more realistic models within this framework. We

note that other large portfolio analyses have been considered in for instance [45], [11].

Although many of the exotic credit instruments have traded infrequently, especially post the

credit crunch, their introduction was an early indication of the need for a more sophisticated

approach to portfolio credit modelling. There is a large and rapidly growing literature in this area,

so we only mention a few papers [10], [45], [17], [3], [38], [11]. As an alternative to the bottom-up

approach, top-down approaches such as the Markov chain model in [44] and the models of [4], [15]

and [13] have been introduced. Reduced-form approaches have been extended to more than one

issuer via correlated stochastic parameters. A relatively tractable example is the intensity-gamma

model by [29]; another is the affine jump diffusion model of [36]. [37] provides an overview of

some of the main bottom-up approaches.

1.1 Structural models

Our model falls into the class of multi-dimensional structural models and we take the approach

of modelling the empirical measure of the asset prices in the basket when the underlyings have
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dynamics linked through a factor model. The pricing of CDOs is then a function of the limit of

the empirical measure of the large basket.

Structural models are based on the premise that when a company’s asset value falls below a

certain threshold barrier a default is triggered. The first model of this type was introduced by

[34] and then extended by [5]. To date, there are many variants of this model but the basic type

is as follows. Let At be the asset value of a company whose evolution is governed by

dAt
At

= µ dt+ σ dWt,

where µ is the mean rate of return on the assets, σ is the asset volatility and Wt is a standard

Brownian motion. If we denote the default threshold barrier by Bt we define the distance to

default, Xt, as

Xt =
1

σ
( logAt − logBt ) . (1.1)

The event of a default by time t is now expressed as the event that X hits 0 before time t.

Structural models are appealing due to their intuitive economic interpretation and the link they

provide between the equity and credit markets. They introduce spread dynamics and allow market

participants to hedge spread risk with the underlying equity of the reference entity. Defaults are

endogenously generated within the model and recovery rates do not need to be determined until

after a default occurs.

There are however downsides that affect the practical applicability of structural models. Due

to the diffusive nature of the asset process, and the assumption of perfect information regarding

asset values and default thresholds, any credit event generated by the model is predictable. The

immediate consequence is short term credit spreads that are near zero: a fact contradicted by

empirical evidence. Extensions that try to address these issues include CreditGradesTM described

in [18], as well as [14], [47], [48], [22] and [8]. As structural models are extended in these ways their

analytic complexity increases dramatically. Credit spread prices can then no longer be expressed

in closed form and numerical methods must be employed for pricing. Another downside is that

calibration of the model parameters is not a straightforward exercise.

As a result of the popularity enjoyed by CIF and copula models, multidimensional structural

models have typically received less attention; as a result, the literature on this subject is relatively

sparse. The first authors to incorporate default correlation into first passage models were [49] and

[23]. The former extended the Black-Cox framework to include correlated asset value processes,

with hitting times being calculated from a time dependent barrier in closed form for two risky

assets. [23] followed Zhou’s approach and moved to a higher dimensional space but had to sacrifice

the analytic results. In [24] the asset value processes for a multi-dimensional structural model are

correlated via a set of common factors. In this setting piecewise default barriers are calibrated to

match market prices and Monte-Carlo simulation is used to value single tranche CDOs (STCDOs).

Other recent papers using a structural approach include [19], [20], [10] and [9]. We aim to develop

a model which can allow pricing of exotic options on CDO tranches and note that there has been

some discussion of such products in [25], [27]. This application can be found in [7].
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1.2 The SPDE model

The starting point for our model is similar to that used in [24]. We will develop a simple

model in this paper in which all assets have the same constant volatility and are correlated via

a single market factor. A more general version, in which the correlation is a function, can be

found in [28]. Let (ΩN ,FN ,PN ) denote a probability space for a market consisting of N different

companies whose asset values At at time t evolve under the risk neutral measure P
N according

to a diffusion process given by

dAit = rAit dt+ σ
√

1− ρAit dW
i
t + σ

√
ρAit dMt, i = 1, . . . , N (1.2)

up until the hitting time of a barrier Bi or the horizon T . We assume W i
t and Mt are Brownian

motions satisfying

d
[

W i
t ,Mt

]

= 0 ∀i

and

d
[

W i
t ,W

j
t

]

= δij dt,

where we have written [., .] for the quadratic covariation and will use [.] for the quadratic variation,

and σ > 0 is a constant and ρ ∈ [0, 1) is the constant correlation. Note the co-dependence between

the asset processes is provided solely by the Brownian motion Mt which can be thought of as a

market wide factor influencing all of the assets.

Thus we can write (1.2) in terms of the distance to default process Xi
t = (lnAit − lnBi)/σ,

with constant barrier Bi, as

dXi
t = µdt+

√
1− ρdW i

t +
√
ρdMt, t < T i0,

Xi
t = 0, t ≥ T i0,

Xi
0 = xi > 0,

T i0 = inf{t : Xi
t = 0},

(1.3)

for i = 1, 2, ..., N , where µ = (r − 1
2σ

2)/σ.

It does not matter how we label our assets so make the following assumptions. We will assume

that {X1
0 , ..., X

N
0 } is a family of exchangeable, [CB,∞)-valued random variables with E(Xi

0) <∞,

where the constant CB > 0. We assume that this initial distribution is independent of {W i} and

M .

By construction we see that our system extends to an infinite system as N → ∞ and we

will show that there is a limit empirical measure whose density satisfies an SPDE. We will write

(Ω,F ,P) with associated expectation operator E for the limit probability space containing the

full infinite asset value model.

In order to state our main mathematical result we need some further notation. Let (ΩM ,FM ,PM )

be a probability space supporting a one-dimensional Brownian motion (Mt,F t). Let GM de-

note the σ-algebra of predictable sets on ΩM × (0,∞) associated with the filtration FM
t and

H1((0,∞)) = {f : f ∈ L2((0,∞)), f ′ ∈ L2((0,∞))}, where L2((0,∞)) = {f :
∫∞
0
f2dx <∞}. We
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write L2(ΩM×(0, T ),GM , H1((0,∞))) = {f(ω, t, .) : f(ω, t, .) ∈ H1((0,∞)), f(ω, t, .) is FM
t -measurable,

E
M
∫ T

0
‖f(ω, t)‖2H1dt <∞}. We also write δx for a Dirac measure at the point x.

Let ν̄N,t denote the equally weighted empirical measure for the entire portfolio given by

ν̄N,t =
1

N

N
∑

i=1

δXi
t
. (1.4)

Theorem 1.1. The limit empirical measure ν̄t = limN→∞ νN,t exists and is a probability measure

with a natural decomposition into two components, ν̄t = Ltδ0 + νt. The measure νt is a measure

on (0,∞) with density v(t, x), which is the unique solution in L2(ΩM × (0, T ),GM , H1((0,∞)))

of the SPDE






dv = − 1
σ

(

r − 1
2σ

2
)

vx dt+
1
2vxx dt−

√
ρvx dM(t),

v(0, x) = v0(x), v(t, 0) = 0.
(1.5)

The weight of the Dirac mass at 0 is

Lt = 1−
∫ ∞

0

v(t, x)dx.

The prices of typical large portfolio credit products are functions of this proportionate loss

function Lt. There is no analytic solution for this SPDE, though it can be viewed as the Zakai

equation for a filtering problem, and thus we require numerical techniques for its solution. One

natural approach is just to use a Monte Carlo technique to simulate the whole basket, and for small

sizes of basket this would be a reasonable approach. However, as the basket size increases, the

numerical solution of the limit SPDE becomes more computationally efficient and we discuss this

in our simplified setting. It is also natural to ask about the quality of the SPDE approximation to

the original large basket and, provided ρ is not too small, it is a good approximation for N ≥ 50

[6]. However we regard this as a model in its own right and we will see in Section 5 that it can fit

the traded index spreads of the iTraxx well.

Our focus here is on the mathematical development of this simple model and we note that

the model has clear drawbacks for pricing which would need to be addressed before it could be

used in practice. In particular, the fact that it is based on a structural model with diffusion will

mean that it will not fit well for short timescales. As it is based on a single diffusive market

factor it will not fit the prices of the super senior tranches well. The calibration uses only a

single parameter and it would be more difficult to calibrate to multiple tranches. There is also an

underlying assumption of homogeneity, in that all assets have the same volatility and correlation.

Some of these problems are straightforward to address, for instance the extension of the approach

to a model with multiple sectors and, with more work, a more general functional dependence of

the correlation, see [28]. Others, such as addressing the low default probability at short times,

could be tackled using lévy process or stochastic volatility models as drivers, see for example [29],

[17] for their use in other settings to tackle this problem. Despite the issues raised here we believe

that the model has good properties and is a basis for extensions which incorporate more realistic

features.
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An outline of the paper is as follows. We begin with a description of the mechanics and basic

valuation methods of synthetic collateralised debt obligations in Section 2 in order to provide the

necessary background for later sections. The mathematical core of the work is in Section 3 where

we develop our infinite dimensional model for portfolio credit starting from a multidimensional

structural model and prove Theorem 1.1. We make strong assumptions with the aim of delivering

a relatively simple, tractable model that encapsulates the information required to calculate the

loss distribution for a portfolio of risky assets. The aim in Section 4 is to develop a suitable

numerical scheme for solving the SPDE. Section 5 discusses the calibration and performance of

the model when pricing tranches of the iTraxx before and after the credit crunch.

2 Collateralised debt obligations

Collateralised Debt Obligations (CDOs) are securitized interests in pools of credit risky assets.

These assets can include mortgages, bonds, loans and credit derivatives. The CDO repackages the

credit risk of the reference portfolio into multiple tranches that are then passed on to investors.

Prior to the ‘credit crunch’ the synthetic CDO, credit indices and single name Credit Default Swap

(CDS) market together made up the majority of the total traded notional in the credit derivative

market. However the index tranche market is currently the only area that is still active. The

bespoke CDO business has yet to return although there are a few signs of activity.

Although there are many different types of CDO, here we will focus on what is known as a

synthetic CDO i.e. one whose collateral pool consists entirely of credit default swaps. It is possible

to trade single tranches within a synthetic CDO without the entire structure being constructed.

In this case the two parties of the transaction, the protection buyer and protection seller, exchange

payments as if the CDO had been set-up. The performance of this single tranche CDO (STCDO)

is dependent on the number of defaults that occur in the reference portfolio during the lifetime

of the contract.

Each tranche is defined by two points that determine its place within the capital structure:

the attachment point and the higher valued detachment point. These are usually expressed as a

percentage of the total portfolio notional. The tranche notional is defined as the difference between

the attachment and detachment points. When losses are incurred (the loss is the notional of the

defaulted entity corrected for recovery), and the cumulative loss in the collateral pool is between

the attachment and detachment point, the seller pays the buyer an amount equal to the loss

incurred within the tranche. The tranche notional is then reduced by this amount. This means

that when the cumulative loss exceeds the detachment point the tranche notional is zero. In

return for this protection, the buyer pays a quarterly premium based off a fixed spread and the

outstanding tranche notional.

Say we have N entities in our reference credit portfolio each with notional N0. We define the

total loss Lt on the portfolio as

Lt =

N
∑

i=1

Li1{τi≤t}, (2.1)
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where Li = N0(1 − Ri), Ri and τi are the recovery rate and default time of the i-th entity

respectively. If we assume the recovery rate is the same across all credit entities and equal to a

value R then we can write

Lt = N0(1−R)
N
∑

i=1

1{τi≤t}. (2.2)

The outstanding tranche notional, Zt, of a single tranche within a synthetic CDO is given by

Zt = [d− Lt]
+ − [a− Lt]

+, (2.3)

and the tranche loss Yt as

Yt = [Lt − a]+ − [Lt − d]+, (2.4)

where a is the tranche attachment point and d is the tranche detachment point.

As for a Credit Default Swap (CDS) the value of a STCDO is given by the difference between

the fee leg and the protection leg. The protection buyer pays a regular fixed spread on the

outstanding notional of the tranche. We denote the payment dates by Ti, 1 ≤ i ≤ n, the intervals

by δi = Ti − Ti−1 and the value of a bank account at time t by b(t). Then the value of the fee leg

is given by

sV fee = s

n
∑

i=1

δi
b(Ti)

E[ZTi
], (2.5)

where the expectation is with respect to a suitable pricing measure. The protection seller only

makes payments to the buyer when the tranche incurs losses, and the value of this payment is

equal to the change in the tranche loss Yt. However, we can express the value of the protection

leg in terms of the outstanding tranche notional Xt as follows

V prot =

n
∑

i=1

1

b(Ti)
E[ZTi−1

− ZTi
], (2.6)

assuming that the losses are paid at the coupon dates. As in a CDS contract the par spread s of

the tranche is chosen to make the initial value zero hence is calculated as

s =
V prot

V fee
. (2.7)

From (2.5) and (2.6) we see that the key to finding the par spread is obtaining the distribution of

the outstanding tranche notional; from (2.3), this is equivalent to finding the distribution of the

loss Lt. As all portfolio credit derivatives are essentially options on this loss variable the heart of

every multiname credit model is determining its distribution.

3 An infinite dimensional structural model

Our aim in this section is to establish Theorem 1.1. We will begin by describing the system

(1.3) by a measure valued process and showing that there is a limit empirical measure for the
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infinite system. We then proceed to establish its behaviour near 0 before proving that its evolution

can be captured by an SPDE.

3.1 The limit empirical density

Recall the equally weighted empirical measure for the entire portfolio is given by

ν̄N,t =
1

N

N
∑

i=1

δXi
t
.

We can write this as

ν̄N,t = LN,tδ0 + νN,t,

where

νN,t =
1

N

N
∑

i=1

δXi
t
1{t<T 0

i }, LN,t =
1

N

N
∑

i=1

1{t≥T 0
i }.

Note that LN,t is a loss function in that it is the proportion of companies that have defaulted by

time t.

Let R+ = [0,∞). We write P(R+) for the set of probability measures on R+ and P(CR+
[0,∞))

for the set of probability measures on CR+
[0,∞) where the topology is always that of weak

convergence. We write CP(R+)[0,∞) for the continuous P(R+)-valued functions on [0,∞).

Theorem 3.1. There exists a CP(R+)[0,∞)-valued random variable ν̄ such that

ν̄t = lim
N→∞

ν̄N,t = lim
N→∞

1

N

N
∑

i=1

δXi
t
, P- a.s. .

We also have a decomposition for the limit into two subprobability measures

ν̄t = Ltδ0 + νt.

Proof. Let us denote the system with the same dynamics but without default by {X̃i
t}. Then

Xi
t = X̃i

t1{ min
0≤s≤t

X̃i
s>0} := F

(

X̃i
s, 0 ≤ s ≤ t

)

.

Since F is independent of i, exchangeability of {Xi} in CR+
[0,∞) follows from exchangeability of

{X̃i} in CR[0,∞).

Firstly note that {Xi
0} is an exchangeable family and as X̃i

t = Xi
0 + µt+

√
1− ρW i

t +
√
ρMt

for all t, we have {X̃1
t , . . . , X̃

N
t } is exchangeable for any t. It is then easy to see that for any N ,

{X̃1
· , ..., X̃

N
· } is exchangeable in CR[0,∞) using this and exchangeability of the increments. As a

consequence we have {X1
· , ..., X

N
· } is exchangeable in CR+

[0,∞) and for a fixed t, {X1
t , ..., X

N
t }

is exchangeable in R+. As the system (1.3) is easily extended to an infinite particle system, by
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de Finetti’s theorem, see for example, [1],

ν̄· = lim
N→∞

1

N

N
∑

i=1

δXi
·

exists almost surely in P(CR+
[0,∞)).

We now need to show that the {νt, t ∈ [0,∞)} is a continuous process in the space of probability

measures. We define a projection mapping

Pt : CR[0,∞) → R

by setting, Pt(Y·) = Yt, for any Y· ∈ CR[0,∞). Then define ν̄t := ν̄ ◦ P−1
t ∈ P(R). We first show

that

ν̄t = lim
N→∞

1

N

N
∑

i=1

δXi
t
.

To establish this we denote

θN =
1

N

N
∑

i=1

δXi
t
, θ = lim

N→∞

1

N

N
∑

i=1

δXi
t
,

where θN converges weakly to θ and θ exists in P(R) almost surely by the exchangeability of {Xi
t}

at any time t. For any h ∈ Cb(R), the collection of all the bounded and continuous functions on

R, we have
∫

h(x)θ(dx) = lim
N→∞

∫

h(x)θN(dx).

Define

αN =
1

N

N
∑

i=1

δXi
·
∈ P(CR[0,∞)), k = h ◦ Pt ∈ Cb(CR[0,∞)),

then

θN = αN ◦ P−1
t ,

and αN converges weakly to ν̄ in P(CR[0,∞)). Thus

∫

h(x)θ(dx) = lim
N→∞

∫

k ◦ P−1
t (x)(αN ◦ P−1

t )(dx)

=

∫

k ◦ P−1
t (x)ν̄ ◦ P−1

t (dx)

=

∫

h(x)ν̄t(dx).

Therefore ν̄t = θ = limN→∞
1
N

∑N
i=1 δXi

t
∈ P(R). To show that ν̄t ∈ CP(R)[0,∞) it suffices prove

that when tn → t0, we have ν̄tn → ν̄t0 weakly in P(R), i.e., we want to show that for any open

set U ∈ B(R), lim infn→∞ ν̄tn(U) ≥ ν̄t0(U) [[16], Theorem 3.3.1]. By continuity of Y and Fatou’s
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Lemma for sets, we see that

ν̄t0(U) =ν̄ ◦ P−1
t0 (U) = ν̄ ({Y·|Yt0 ∈ U})

=ν̄

( ∞
⋃

n=1

∞
⋂

k=n

{Y·|Ytk ∈ U}
)

≤ lim
n→∞

inf
k≥n

ν̄ ({Y·|Ytk ∈ U}) = lim inf
n→∞

ν̄tn(U).

Therefore, the process {ν̄t : t ∈ [0,∞)} exists almost surely in CP(R)[0,∞).

The decomposition follows from the decomposition for N companies. We then define Lt =

ν̄t({0}) and νt to be ν̄t restricted to (0,∞).

For a measure ζt and integrable function φ we write

〈φ, ζt〉 =
∫

φ(x)ζt(dx). (3.1)

Let C∞
K (0,∞) be the set of infinitely differentiable functions with compact support on (0,∞).

Using the empirical measure (1.4) we define a family of processes FN,φt for φ ∈ C∞
K (0,∞) by

FN,φt = 〈φ, ν̄N,t〉 =
1

N

N
∑

i=1

φ(Xi
t) = 〈φ, νN,t〉 , (3.2)

using the fact that φ(0) = 0, ∀φ ∈ C∞
K (0,∞).

As Xi
t = 0 for t > T i0, and hence φ(Xi

t) = 0 for t > T i0, in order to apply Itô’s formula to FN,φt

we write FN,φt =
1

N

∑N
i=1 φ(X

i
t)1{t<T i

0}. Thus we have

FN,φt − FN,φ0 =
1

N

N
∑

i=1

∫ t

0

1{s≤T i
0}

(

φ′(Xi
s)dX

i
s +

1

2
φ′′(Xi

s)d[X
i
s]

)

=
1

N

N
∑

i=1

∫ t

0

1{s≤T i
0}

[

φ′(Xi
s)µds+ φ′(Xi

s)
√

1− ρdW i
s + φ′(Xi

s)
√
ρdMs +

1

2
φ′′(Xi

s)ds

]

=

∫ t

0

1

N

N
∑

i=1

(µφ′(Xi
s) +

1

2
φ′′(Xi

s))1{s<T i
0}ds+

∫ t

0

1

N

N
∑

i=1

√

1− ρφ′(Xi
s)1{s<T i

0}dW
i
s

+

∫ t

0

1

N

N
∑

i=1

√
ρφ′(Xi

s)1{s<T i
0}dMs

If we define the second order linear operator A by

A = µ
∂

∂x
+

1

2

∂2

∂x2
,
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we have

FN,φt = FN,φ0 +

∫ t

0

〈Aφ, νN,s〉 ds+
∫ t

0

〈√ρφ′, νN,s〉 dMs

+

∫ t

0

1

N

N
∑

i=1

φ′(Xi
s)
√

1− ρ dW i
s . (3.3)

In order to pass to the limit as N → ∞ we first focus on the idiosyncratic term in (3.3)

Iφt,N =

∫ t

0

1

N

N
∑

i=1

√

1− ρφ′(Xi
s)1{s<T i

0} dW
i
s . (3.4)

As φ′ is bounded and Iφt,N is a martingale, by the independence of the W i
t , it has quadratic

variation

[IφN ]t =

∫ t

0

1

N2

N
∑

i=1

(1− ρ) (φ′(Xi
s))

21{s<T i
0} ds.

Writing Kφ for the constant such that |φ′| ≤ Kφ, we have

lim
N→∞

1

N

N
∑

i=1

∫ t

0

(1− ρ) | φ′(Xi
s) |2 1{s<T i

0} ds ≤ K2
φt,

and hence we have for any such φ

lim
N→∞

1

N2

N
∑

i=1

∫ t

0

(1− ρ) | φ′(Xi
s) |2 1{s<T i

0} ds ≤ lim
N→∞

1

N
K2
φt = 0, ∀t ∈ [0, T ], a.s.

As a martingale with 0 quadratic variation must be the constant process the idiosyncratic term

must vanish almost surely in the limit.

We also note that as φ′, φ′′ are bounded and νN,s is a probability measure, we can apply the

dominated convergence theorem to take the limit under the integrals in the other terms in (3.3).

We summarize in the following

Theorem 3.2. The sequence of empirical measures νN,t on (0,∞) satisfies for all φ ∈ C∞
K (0,∞),

FN,φt → Fφt = 〈φ, νt〉 as N → ∞, a.s.

The evolution of the limit empirical measure in the weak sense is given by

〈φ, νt〉 = 〈φ, ν0〉+
∫ t

0

〈Aφ, νs〉 ds+
∫ t

0

〈√ρφ′, νs〉 dMs, ∀φ ∈ C∞
K (0,∞). (3.5)

3.2 The boundary condition

The behaviour of νt, the limit empirical measure on (0,∞), at the boundary zero is given in

the following theorem:
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Theorem 3.3. We have

lim
ε↓0

νt((0, ε))

ε
= 0, a.s..

Proof. By the definition of νt, properties of weak convergence and an application of Fatou’s

Lemma, we have

E[νt((0, ε))] ≤E

[

lim inf
N→∞

1

N

N
∑

i=1

1{0<Xi
t<ε}

]

≤ lim inf
N→∞

1

N

N
∑

i=1

P

{

Xi
t < ε, inf

0≤s≤t
Xi
s > 0

}

. (3.6)

For t < T i0, integrating the system (1.3) from time 0 to t, we have:

Xi
t = xi + µt+

√

1− ρW i
t +

√
ρMt

d
= xi + µt +Bt,

where Bt is a standard Brownian motion on the same probability space. Thus we have

P

{

Xi
t < ε, inf

0≤s≤t
Xi
s > 0

}

=P

{

xi + µt+Bt < ε, inf
0≤s≤t

(xi + µs+Bs) > 0

}

=P
xi {µt+Bt < ε} − P

xi

{

µt+Bt < ε, inf
0≤s≤t

(µs+Bs) ≤ 0

}

=

∫ ε

−∞

1√
2πt

e−(z−µt−xi)2/2tdz −
∫ ε

−∞

1√
2πt

eµ(z−x
i)−µ2t/2−(|z|+xi)2/2tdz

=
1√
2πt

∫ ε

0

(

e−(z−µt−xi)2/2t − eµ(z−x
i)−µ2t/2−(z+xi)2/2t

)

dz

=
1√
2πt

∫ ε

0

e−(z−µt−xi)2/2t
(

1− e−
2zxi

t

)

dz

≤ 1√
2πt

(

1− e−
2εxi

t

)

∫ ε

0

e−(z−µt−xi)2/2tdz

≤ 1√
2πt

2εxi

t

∫ ε

0

e−(z−µt−xi)2/2tdz. (3.7)

Assume ε < 1
2CB. Since we have xi ≥ CB, if t <

CB−ε
|µ| , then |z − µt − xi| > 0, ∀0 < z < ε

and there exists C1
T > 0 only depending on T such that

1

t
3
2

e−(z−µt−xi)2/2t ≤ C1
T , ∀t < CB − ε

|µ| .

If t ≥ CB−ε
|µ| , then

1

t
3
2

e−(z−µt−xi)2/2t ≤ 1
(

CB−ε
|µ|

)
3
2

≤ 1
(

CB

2|µ|

)
3
2

.

12



Letting C ′
T := max

{

C1
T ,

1
(

CB
2|µ|

) 3
2

}

, (3.7) becomes

P

{

Xi
t < ε, inf

0≤s≤t
Xi
s > 0

}

≤ 2√
2π
εxiεC ′

T := xiCT ε
2, (3.8)

where CT is a positive constant only depending on T . Thus by (3.6) and (3.8) we have

E[νt((0, ε))]

ε
≤ CT ε(lim inf

N→∞

1

N

N
∑

i=1

xi) ≤ KCT ε, (3.9)

since {X1
0 , ..., X

N
0 } is an exchangeable family of integrable random variables. By Markov’s in-

equality, for the subsequence ε = 1
n2 ,

P

{

νt((0,
1
n2 ))

1
n2

> λ

}

≤ KCT
λn2

.

Thus by the first Borel-Cantelli Lemma, as λ > 0 is arbitrary and also
νt((0,

1
n2 ))

1
n2

≥ 0, we must

have

lim sup
n→∞

νt((0,
1
n2 ))

1
n2

= 0, a.s..

Now for any ε > 0, there exists a n such that 1
(n+1)2 ≤ ε ≤ 1

n2 and hence

lim sup
ε↓0

νt((0, ε))

ε
≤ lim sup

n→∞

νt((0,
1
n2 ))

1
(n+1)2

= lim sup
n→∞

νt((0,
1
n2 ))

1
n2

1
n2

1
(n+1)2

= 0, a.s..

Since νt((0,ε))
ε ≥ 0, therefore v(t, 0) := limε↓0

νt((0,ε))
ε = 0, a.s.

Therefore, if there is a density for the empirical measure, it will satisfy a Dirichlet boundary

condition.

Next we give an estimate on E[(νt((0, ε)))
2] which will be needed later. In order to do this

we require an estimate for the distribution of the first passage times of two correlated Brownian

motions, and the Brownian motions themselves.

Lemma 3.4. Let B1
t and B2

t be two correlated Brownian motions with constant correlation |̺| < 1,

B1
0 = a1 > 0, B2

0 = a2 > 0 and law PB. Then there exists ε0 = 1
3

√

1−̺
2

√

a21+a
2
2−2̺a1a2
1−̺2 such that

for all ε < ε0,

PB

{

0 < B1
t < ε, inf

0≤s≤t
B1
s > 0, 0 < B2

t < ε, inf
0≤s≤t

B2
s > 0

}

≤ CT ε
2+ π

α ,

where CT = 21−
π
α

(

√

a21+a
2
2−2̺a1a2
1−̺2

)
π
α

KT

(√

2
1−̺

)2+ π
α

and KT is a constant only depending on
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T ; and

α =























π + tan−1

(

−
√

1−̺2
̺

)

, ̺ > 0,

π
2 , ̺ = 0,

tan−1

(

−
√

1−̺2
̺

)

, ̺ < 0.

(3.10)

Therefore, if ̺ ≥ 0, we have π
2 ≤ α < π and 3 < 2 + π

α ≤ 4.

Proof. We begin by making a transformation to obtain a two-dimensional Brownian motion with

independent components. Although initially derived in [26], we follow the setup and statements

in [35]. Let Bt = (B1
t , B

2
t ) and consider the process Z = σ−1B, where

σ =

[

√

1− ̺2 ̺

0 1

]

.

We know that Z has independent components. It is easily seen that the horizontal axis is invariant

under the transformation T : R2 → R
2 defined by T (x) = σ−1x, while the vertical axis is mapped

to the line z1 = − ̺√
1−̺2

z2.

Now the time that the first Brownian motion B1 hits zero is transformed to the time τ1 which

is the first passage time of Zt to the horizontal axis; and the time that the second Brownian

motion B2 hits zero is transformed to the time τ2 which is the first passage time of Zt to the line

z2 = z1 tanα, where 0 < α < π is given in (3.10). Moreover, in polar coordinates Zt = (Rt,Θt)

starts at the point z0 given by

r0 =

√

a21 + a22 − 2̺a1a2
1− ̺2

;

and

θ0 =























π + tan−1

(

a2
√

1−̺2
a1−̺a2

)

, a1 < ̺a2,

π
2 , a1 = ̺a2,

tan−1

(

a2
√

1−̺2
a1−̺a2

)

, a1 > ̺a2.

It is easily verified that 0 < θ0 < α. We denote by τ = min(τ1, τ2) the first exit time of Z from

the wedge

Cα = {(r cos θ, r sin θ) : r > 0, 0 < θ < α} ⊂ R
2.

If z = (r cos θ, r sin θ) is a point in Cα we have, by [26],

P
z0
B {τ > t, Zt ∈ dz} =

2r

tα
e−(r2+r20)/2t

∞
∑

n=1

sin
nπθ

α
sin

nπθ0
α

Inπ/α

(rr0
t

)

drdθ, (3.11)

where Iv denotes the modified Bessel function of the first kind of order v
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Using this transformation and the formula (3.11) we have

PB

{

0 < B1
t < ε, inf

0≤s≤t
B1
s > 0, 0 < B2

t < ε, inf
0≤s≤t

B2
s > 0

}

≤ PB

{

τ > t, 0 < Θt < α, 0 < Rt <

√

2

1− ̺
ε

}

=

∫

√

2
1−̺

ε

0

∫ α

0

2r

tα
e−(r2+r20)/2t

∞
∑

n=1

sin
nπθ

α
sin

nπθ0
α

Inπ/α

(rr0
t

)

drdθ

≤
∫

√

2
1−̺

ε

0

2r

tα
e−(r2+r20)/2t

∫ α

0

∞
∑

n=1

Inπ/α

(rr0
t

)

drdθ. (3.12)

By the definition of the modified Bessel function, we have

Inπ/α

(rr0
t

)

=
∞
∑

m=0

1

m!Γ(m+ nπ
α + 1)

(rr0
2t

)2m+nπ
α

≤ 1
[

nπ
α

]

!

(rr0
2t

)
nπ
α

∞
∑

m=0

1

(m!)2

(rr0
2t

)2m

≤ 1
[

nπ
α

]

!

(rr0
2t

)
nπ
α

[ ∞
∑

m=0

1

m!

(rr0
2t

)m
]2

= err0/t
1

[

nπ
α

]

!

(rr0
2t

)
nπ
α

,

where [x] denotes the integer part of x. Using this in (3.12) we have

PB

{

0 < B1
t < ε, inf

0≤s≤t
B1
s > 0, 0 < B2

t < ε, inf
0≤s≤t

B2
s > 0

}

≤
∫

√

2
1−̺

ε

0

2r

tα
e−(r2+r20)/2t

∫ α

0

err0/t
∞
∑

n=1

1
[

nπ
α

]

!

(rr0
2t

)
nπ
α

drdθ

≤
∫

√

2
1−̺

ε

0

2r

t
e−(r2+r20)/2terr0/t(

rr0
2t

)
π
α err0/2tdr

= 21−
π
α r

π
α

0

∫

√

2
1−̺

ε

0

r1+
π
α

1

t1+
π
α

e−
r2+r20−3rr0

2t dr.

If we choose ε0 =
r0
√

1−̺
2

3 , then for any ε < ε0 we have r2 + r20 − 3rr0 > 0. Therefore we can

find a constant KT only depending on T such that

1

t1+
π
α

e−
r2+r20−3rr0

2t ≤ KT .
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Thus

PB

{

0 < B1
t < ε, inf

0≤s≤t
B1
s > 0, 0 < B2

t < ε, inf
0≤s≤t

B2
s > 0

}

≤ 21−
π
α r

π
α

0

∫

√

2
1−̺

ε

0

r1+
π
αKTdr

≤ 21−
π
α r

π
α

0 KT

(
√

2

1− ̺
ε

)1+ π
α
√

2

1− ̺
ε = CT ε

2+ π
α ,

where CT = 21−
π
α r

π
α

0 KT

(√

2
1−̺

)2+ π
α

is a constant only depending on ̺, a1, a2 and T .

Moreover, it is obvious that 0 < α < π and π
2 ≤ α < π if ̺ ≥ 0. In the latter case we have

3 < 2 + π
α ≤ 4.

Lemma 3.5. There exists ε̃0 > 0 only depending on ρ and the lower bound CB for the {Xi
0},

such that for any η > 0, for all ε < ε̃0 we have

E[(νt((0, ε)))
2] ≤ KT ε

2+ π
α
−η,

where KT is a positive constant depending on T and α is given in (3.2).

Proof. By definition of νt, properties of weak convergence and Fatou’s Lemma

E[(νt((0, ε)))
2] ≤E



lim inf
N→∞

1

N

N
∑

i=1

1{0<Xi
t<ε,inf0≤s≤tXi

s>0} lim inf
M→∞

1

M

M
∑

j=1

1{0<Xj
t<ε,inf0≤s≤tX

j
s>0}





≤ lim inf
N→∞,M→∞

1

NM

N
∑

i=1

M
∑

j=1

E

[

1{0<Xi
t<ε, inf

0≤s≤t
Xi

s>0, 0<Xj
t<ε,inf0≤s≤tX

j
s>0}

]

= lim inf
N→∞,M→∞

1

NM

N
∑

i=1

M
∑

j 6=i,j=1

E

[

1{0<Xi
t<ε, inf

0≤s≤t
Xi

s>0, 0<Xj
t<ε,inf0≤s≤tX

j
s>0}

]

.

(3.13)

Since neither of the firms i or j has defaulted by time t, we have

Xi
t = xi + µt+

√

1− ρW i
t +

√
ρMt

d
= xi + µt+B1

t ;

Xj
t = xj + µt+

√

1− ρW j
t +

√
ρMt

d
= xj + µt+B2

t ,

where B1
t and B2

t are correlated Brownian motions with correlation ρ.

We use the Girsanov theorem (e.g. [42]) to change the measure and set

Zt(µ) = exp

(

− µ

1 + ρ

(

B1
t +B2

t + µt
)

)

,

which is easily seen to be a true martingale by Novikov’s condition. We write P̃ for the probability
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measure on FT given by

P̃(A) := E[1AZT (µ)]; A ∈ FT , (3.14)

and Ẽ for expectation with respect to P̃. Thus for each fixed T ∈ [0,∞), the process

{(B̃1
t , B̃

2
t ) := (B1

t + µt,B2
t + µt),Ft, 0 ≤ t ≤ T}

is a two-dimensional Brownian motion on (Ω,FT , P̃), where B̃1
t and B̃2

t have correlation ρ.

We now calculate the term E

[

1{0<Xi
t<ε,inf0≤s≤tXi

s>0, 0<Xj
t<ε,inf0≤s≤tX

j
s>0}

]

in (3.13). We have

E

[

1{0<Xi
t<ε,inf0≤s≤tXi

s>0, 0<Xj
t<ε,inf0≤s≤tX

j
s>0}

]

= Ẽ

[

1{0<Xi
t<ε,inf0≤s≤tXi

s>0, 0<Xj
t<ε,inf0≤s≤tX

j
s>0}

1

ZT (µ)

]

≤
{

Ẽ

[

1{0<Xi
t<ε,inf0≤s≤tXi

s>0, 0<Xj
t<ε,inf0≤s≤tX

j
s>0}

]}1/a

·
{

Ẽ

[

(

1

ZT (µ)

)b
]}1/b

= J1 · J2,

by Hölder’s inequality, with 1/a+ 1/b = 1, a > 1, b > 1, and

J1 =
{

Ẽ

[

1{0<Xi
t<ε,inf0≤s≤tXi

s>0, 0<Xj
t<ε,inf0≤s≤tX

j
s>0}

]}1/a

,

J2 =

{

Ẽ

[

(

1

ZT (µ)

)b
]}1/b

.

For J1, we have

J1 =

(

P̃

{

0 < Xi
t < ε, inf

0≤s≤t
Xi
s > 0, 0 < Xj

t < ε, inf
0≤s≤t

Xj
s > 0

})1/a

=

(

P̃

{

0 < xi + B̃1
t < ε, inf

0≤s≤t
xi + B̃1

s > 0, 0 < xj + B̃2
t < ε, inf

0≤s≤t
xj + B̃2

s > 0

})1/a

.

By Lemma 3.4 with ̺ = ρ, a1 = xi, a2 = xj we know that there exists ε0 = 1
3

√

1−ρ
2

√
(xi)2+(xj)2−2ρxixj√

1−ρ2

and α as in (3.2), such that for all ε < ε0 we have

P̃

{

0 < xi + B̃1
t < ε, inf

0≤s≤t
xi + B̃1

s > 0, 0 < xj + B̃2
t ≤<, inf

0≤s≤t
xj + B̃2

s > 0

}

≤ CT ε
2+ π

α .

As xi ≥ CB and xj ≥ CB, we have

√

(xi)2 + (xj)2 − 2ρxixj ≥
√

2(1− ρ)CB.

Thus we can choose a new ε̃0 := 1
3

√

1−ρ
1+ρCB ≤ CB, such that for all ε < ε̃0 we have, for all i, j,

J1 ≤ CT ε
2+ π

α
a .
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For J2 we have

J2 =

{

Ẽ

[

(

1

ZT (µ)

)b
]}1/b

=

{

Ẽ

[

exp

(

bµ

1 + ρ

(

B̃1
T + B̃2

T − µT
)

)]}1/b

=exp

(

− µ2T

1 + ρ

){

Ẽ

[

exp

(

bµ

1 + ρ

(

B̃1
T + B̃2

T

)

)]}1/b

=exp

(

(b− 1)µ2T

1 + ρ

)

:= JT <∞, ∀b > 1.

Thus we have

E[νt((0, ε))
2] ≤ J1 · J2 ≤ CTJT ε

2+ π
α

a , ∀ε < ε̃0.

To conclude we note that for any 0 < η < π
α − 1 we can choose 1 < a = (2 + π

α )/(2 +
π
α − η) <

(2 + π
α )/3 and hence

E[νt((0, ε))
2] ≤ KT ε

2+ π
α
−η, ∀ε < ε̃0,

where KT is a positive constant only depending on T .

We will write β = π
α − η − 1 > 0 so that 2 + π

α − η = 3 + β.

3.3 The existence and uniqueness of the density

In order to prove our main Theorem we need to recharacterise the evolution obtain in (3.5)

as the stochastic PDE. Thus we need the measure νt to be absolutely continuous with respect to

Lebesgue measure to write νt(dx) = v(t, x)dx for some density v.

We introduce some notation first. Let H0 = L2((0,∞)) be the usual Hilbert space with L2-

norm || · ||0 and inner product 〈·, ·〉0 given by ||φ||20 =
∫∞
0

|φ(x)|2dx and 〈φ, ψ〉0 =
∫∞
0
φ(x)ψ(x)dx.

In the following we adapt the approach in [32] to our setting. The idea to prove the existence of

an L2((0,∞))-density is to transform our M((0,∞))-valued process to an H0-valued process, by

convolving the measure with the absorbing heat kernel, where M((0,∞)) denotes the set of finite

Borel measures on (0,∞).

For any ̺ ∈ M((0,∞)) and δ > 0, we write

(Tδ̺)(x) =

∫ ∞

0

Gδ(x, y)̺(dy), (3.15)

where Gδ is the absorbing heat kernel in R
+ given by

Gδ(x, y) =
1√
2πδ

(

e−
(x−y)2

2δ − e−
(x+y)2

2δ

)

, ∀x, y > 0.

We use the same notation for the Brownian semigroup on Cb(R+), the bounded and continuous
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functions on R+, i.e.,

Ttφ(x) =

∫ ∞

0

Gt(x, y)φ(y)dy, ∀φ ∈ Cb(R+).

We will also need to consider the reflecting heat kernel Grδ(x, y), defined by

Grδ(x, y) =
1√
2πδ

(

e−
(x−y)2

2δ + e−
(x+y)2

2δ

)

, ∀x, y > 0.

We write the associated semigroup as

T rδ νt(x) =

∫ ∞

0

Grδ(x, y)νt(dy).

It is an easy calculation to see that

∂xGδ(x, y) = −∂yGrδ(x, y). (3.16)

It is not difficult to prove the following lemma.

Lemma 3.6. If ̺ ∈ M((0,∞)) and δ > 0, then Tδ̺ ∈ H0.

We will write νt ∈ H0 if the measure νt has a density which is in H0. Let Zδ(s) = Tδνs, where

ν is an M((0,∞))-valued solution to (3.5). Our aim is to obtain an estimate for the H0-norm of

the process Zδ.

It is easy to see that Tδφ ∈ C∞
K (0,∞) for any φ ∈ C∞

K (0,∞). Thus, replacing φ ∈ C∞
K (0,∞)

by Tδφ in (3.5) and using Fubini, we have

〈Zδ(t), φ〉0 =〈Tδφ, νt〉

=〈Tδφ, ν0〉+
∫ t

0

〈µ(Tδφ)′(x) +
1

2
(Tδφ)

′′(x), νs〉ds+
∫ t

0

〈√ρ(Tδφ)′(x), νs〉dMs. (3.17)

The integrands can be rewritten as

〈µ(Tδφ)′(x), νs〉 =µ
∫ ∞

0

(Tδφ)
′(x)νs(dx)

=µ

∫ ∞

0

∂x

(
∫ ∞

0

Gδ(x, y)φ(y)dy

)

νs(dx)

=µ

∫ ∞

0

(
∫ ∞

0

(∂xGδ(x, y))φ(y)dy

)

νs(dx)

Applying (3.16) and Fubini we have

〈µ(Tδφ)′(x), νs〉 =µ
∫ ∞

0

(
∫ ∞

0

(−∂yGrδ(x, y))φ(y)dy
)

νs(dx)

=µ

∫ ∞

0

(
∫ ∞

0

Grδ(x, y)φ
′(y)dy

)

νs(dx)
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=µ

∫ ∞

0

(T rδ νs)(y)φ
′(y)dy

=− µ

∫ ∞

0

φ(y)∂y(T
r
δ νs(y))dy

=− µ〈φ, ∂xT rδ (νs)〉0.

Similarly, for the term 〈√ρ(Tδφ)′(x), νs〉 we have

〈√ρ(Tδφ)′(x), νs〉 = −√
ρ〈φ, ∂xT rδ (νs)〉0.

For the term 〈 12 (Tδφ)′′(x), νs〉 we can perform the same type of calculation to see

〈1
2
(Tδφ)

′′(x), νs〉 =
1

2
〈φ, ∂2xTδ(νs)〉0.

Therefore (3.17) becomes

〈Zδ(t), φ〉0 =〈Tδν0, φ〉0 − µ

∫ t

0

〈φ, ∂xT rδ (νs)〉0ds+
1

2

∫ t

0

〈φ, ∂2xTδ(νs)〉0ds−
√
ρ

∫ t

0

〈φ, ∂xT rδ (νs)〉0dMs.

(3.18)

By using Itô’s formula on 〈Zδ(s), φ〉20 we have

〈Zδ(t), φ〉20 =〈Zδ(0), φ〉20 +
∫ t

0

d〈Zδ(s), φ〉20

=〈Zδ(0), φ〉20 +
∫ t

0

2〈Zδ(s), φ〉0d〈Zδ(s), φ〉0 +
∫ t

0

d
〈

〈Zδ(s), φ〉0, 〈Zδ(s), φ〉0
〉

=〈Zδ(0), φ〉20 − 2µ

∫ t

0

〈Zδ(s), φ〉0〈φ, ∂xT rδ (νs)〉0ds+
∫ t

0

〈Zδ(s), φ〉0〈φ, ∂2xTδ(νs)〉0ds

− 2
√
ρ

∫ t

0

〈Zδ(s), φ〉0〈φ, ∂xT rδ (νs)〉0dMs + ρ

∫ t

0

|〈φ, ∂xT rδ (νs)〉0|2ds.

We can choose a set of φ ∈ C∞
K (0,∞) to be a complete, orthonormal basis of H0 and taking

expectations, we have

E||Zδ(t)||20 =||Zδ(0)||20 − 2µE

∫ t

0

〈Zδ(s), ∂xT rδ (νs)〉0ds+ E

∫ t

0

〈Zδ(s), ∂2xTδ(νs)〉0ds

+ ρE

∫ t

0

||∂xT rδ (νs)||20ds

=||Zδ(0)||20 − 2µE

∫ t

0

〈Tδ(νs), ∂xT rδ (νs)〉0ds+ E

∫ t

0

〈Tδ(νs), ∂2xTδ(νs)〉0ds

+ ρE

∫ t

0

||∂xT rδ (νs)||20ds. (3.19)

We now control the integral terms on the right-hand side of (3.19) in terms of the integral of

E||Tδ(νs)||20 plus some constant which goes to 0 as δ → 0.
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Lemma 3.7. There exist constants C1
T , C2 such that for δ < ε̃20/2 we have

E[| − 2µ〈Tδ(νs), ∂xT rδ (νs)〉0|] ≤ |µ| · E[||Tδ(νs)||20] + C1
T δ

β
2 +

C2ε̃0
δ2

e−ε̃
2
0/2δ. (3.20)

Proof.

〈Tδ(νs), ∂xT rδ (νs)〉0 =

∫ ∞

0

Tδ(νs)(x)∂xT
r
δ (νs)(x)dx

=

∫ ∞

0

Tδ(νs)(x)

(
∫ ∞

0

∂xG
r
δ(x, y)νs(dy)

)

dx

=

∫ ∞

0

Tδ(νs)(x)

(
∫ ∞

0

(∂xGδ(x, y)−
2√
2πδ

e−
(x+y)2

2δ
x+ y

δ
)νs(dy)

)

dx

=

∫ ∞

0

Tδ(νs)(x)

∫ ∞

0

∂xGδ(x, y)νs(dy)dx

−
∫ ∞

0

Tδ(νs)(x)

∫ ∞

0

2√
2πδ

e−
(x+y)2

2δ
x+ y

δ
νs(dy)dx

=

∫ ∞

0

Tδ(νs)(x)∂xTδ(νs)(x)dx−
∫ ∞

0

Tδ(νs)(x)

∫ ∞

0

2√
2πδ

e−
(x+y)2

2δ
x+ y

δ
νs(dy)dx

=
1

2

∫ ∞

0

∂x[(Tδ(νs)(x))
2]dx−

∫ ∞

0

Tδ(νs)(x)

∫ ∞

0

2√
2πδ

e−
(x+y)2

2δ
x+ y

δ
νs(dy)dx

=−
∫ ∞

0

Tδ(νs)(x)

(
∫ ∞

0

2√
2πδ

e−
(x+y)2

2δ
x+ y

δ
νs(dy)

)

dx.

Therefore,

| − 2µ〈Tδ(νs), ∂xT rδ (νs)〉0| =
∣

∣

∣

∣

2µ

∫ ∞

0

Tδ(νs)(x)

(
∫ ∞

0

2√
2πδ

e−
(x+y)2

2δ
x+ y

δ
νs(dy)

)

dx

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

µ

∫ ∞

0

(Tδ(νs)(x))
2dx+ µ

∫ ∞

0

(
∫ ∞

0

2√
2πδ

e−
(x+y)2

2δ
x+ y

δ
νs(dy)

)2

dx

∣

∣

∣

∣

∣

≤|µ| · ||Tδ(νs)||20 + |µ|
∫ ∞

0

(
∫ ∞

0

2√
2πδ

e−
(x+y)2

2δ
x+ y

δ
νs(dy)

)2

dx.

Now let us denote

P1 :=

∫ ∞

0

(
∫ ∞

0

2√
2πδ

e−
(x+y)2

2δ
x+ y

δ
νs(dy)

)2

dx

and derive a bound for P1.

P1 =

∫ ∞

0

(
∫ ∞

0

2√
2πδ

e−
(x+y)2

2δ
x+ y

δ
νs(dy)

)2

dx

=

∫ ∞

0

∫ ∞

0

∫ ∞

0

(
2√
2πδ

)2e−
(x+y1)2+(x+y2)2

2δ
(x+ y1)(x+ y2)

δ2
νs(dy1)νs(dy2)dx

=

∫ ∞

0

∫ ∞

0

νs(dy1)νs(dy2)

∫ ∞

0

(
2√
2πδ

)2e−
(x+y1)2+(x+y2)2

2δ
(x+ y1)(x+ y2)

δ2
dx

=

∫ ∞

0

∫ ∞

0

νs(dy1)νs(dy2)

∫ ∞

0

(
2√
2πδ

)2e−
1
δ [(x+

y1+y2
2 )2+(

y1−y2
2 )2] (x+ y1+y2

2 )2 − ( y1−y22 )2

δ2
dx.
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By changing variables using

z2 = (x+
y1 + y2

2
)2 + (

y1 − y2
2

)2,

we have

P1 =

∫ ∞

0

∫ ∞

0

νs(dy1)νs(dy2)

∫ ∞
√

y2
1+y2

2
2

(
2√
2πδ

)2e−
z2

δ
z2 − (y1−y2)2

2

δ2
z

√

z2 −
(

y1−y2
2

)2
dz.

Now, since

1 ≤ z
√

z2 −
(

y1−y2
2

)2
≤

√
2

when z ≥
√

y21+y
2
2

2 , we have

P1 ≤
∫ ∞

0

∫ ∞

0

νs(dy1)νs(dy2)

∫ ∞
√

y2
1+y2

2
2

√
2(

2√
2πδ

)2e−
z2

δ
z2 − (y1−y2)2

2

δ2
dz

=

∫ ∞

0

∫ ∞

0

νs(dy1)νs(dy2)

∫ ∞

0

1{y21+y22<2z2}
√
2(

2√
2πδ

)2e−
z2

δ
z2 − (y1−y2)2

2

δ2
dz

=

∫ ∞

0

√
2(

2√
2πδ

)2e−
z2

δ dz

∫ ∞

0

∫ ∞

0

z2 − (y1−y2)2
2

δ2
1{y21+y22<2z2}νs(dy1)νs(dy2)

≤
∫ ∞

0

√
2(

2√
2πδ

)2e−
z2

δ
z2

δ2
dz

∫ ∞

0

∫ ∞

0

1{y21+y22<2z2}νs(dy1)νs(dy2)

≤
∫ ∞

0

√
2(

2√
2πδ

)2e−
z2

δ
z2

δ2
dz

∫ ∞

0

∫ ∞

0

1{y1<
√
2z,y2<

√
2z}νs(dy1)νs(dy2)

≤
∫ ∞

0

√
2(

2√
2πδ

)2e−
z2

δ
z2

δ2
(νs((0,

√
2z)))2dz

=

∫ ∞

0

2

πδ
e−

z2

2δ
z2

2δ2
(νs((0, z)))

2dz.

Therefore,

E[| − 2µ〈Tδ(νs), ∂xT rδ (νs)〉0|]
≤ |µ| · E[||Tδ(νs)||20] + |µ|E[P1]

≤ |µ| · E[||Tδ(νs)||20] + |µ|E
[
∫ ∞

0

2

πδ
e−

z2

2δ
z2

2δ2
(νs((0, z)))

2dz

]

= |µ| · E[||Tδ(νs)||20] + |µ|
∫ ∞

0

2

πδ
e−

z2

2δ
z2

2δ2
E[νs((0, z))

2]dz.

By Lemma 3.5 in the last section we know that for the measure-valued solution νs of (3.5), there

exists ε̃0 > 0 and a β > 0 such that for all z < ε̃0 we have

E[ν+s ((0, z))
2] ≤ KT z

3+β .
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Hence we have

E[| − 2µ〈Tδ(νs), ∂xT rδ (νs)〉0|]

≤|µ| · E[||Tδ(νs)||20] + |µ|
∫ ε̃0

0

2

πδ
e−

z2

2δ
z2

2δ2
E[νs((0, z))

2]dz + |µ|
∫ ∞

ε̃0

2

πδ
e−

z2

2δ
z2

2δ2
E[(νs((0, z]))

2]dz

≤|µ| · E[||Tδ(νs)||20] + |µ|
∫ ε̃0

0

2

πδ
e−

z2

2δ
z2

2δ2
KT z

3+βdz + 4|µ|
∫ ∞

ε̃0

2

πδ
e−

z2

2δ
z2

2δ2
dz

≤|µ| · E[||Tδ(νs)||20] + |µ|
∫ ∞

0

2

πδ
e−

z2

2δ
z2

2δ2
KT z

3+βdz + 4|µ|
∫ ∞

ε̃0

2

πδ
e−

z2

2δ
z2

2δ2
dz

=|µ| · E[||Tδ(νs)||20] + |µ|KT
23+

β
2

π
δ

β
2

∫ ∞

0

e−x
2

x5+βdx+ 4|µ|2
√
2

πδ
3
2

∫ ∞

ε̃0√
2δ

e−x
2

x2dx

Finally we observe that for η > 0

∫ ∞

η

x2e−x
2

dx ≤ 1

2
(η +

1

η
)e−η

2

,

and hence setting η = ε̃0√
2δ
, so that by assumption η > 1, we have

E[| − 2µ〈Tδ(νs), ∂xT rδ (νs)〉0|] ≤ |µ| · E[||Tδ(νs)||20] + C1
T δ

β
2 +

C2ε̃0
δ2

e−ε̃
2
0/2δ

where

C1
T = |µ|KT

23+
β
2

π

∫ ∞

0

e−x
2

x5+βdx and C2 = |µ|8
√
2

π
.

Lemma 3.8. For δ < ε̃20/2 we have

E[〈Tδ(νs), ∂2xTδ(νs)〉0 + ρ||∂xT rδ (νs)||20] ≤
ρ

1− ρ

(

C1
T δ

β
2 +

C2ε̃0
δ2

e−ε̃
2
0/2δ

)

, (3.21)

where C1
T , C2 and ε̃0 are the same as in Lemma 3.7.

Proof. Integrating by parts gives 〈Tδ(νs), ∂2xTδ(νs)〉0 = −||∂xTδνs||20. We also have

||∂xT rδ (νs)||20 =

∫ ∞

0

(∂xT
r
δ (νs)(x))

2dx

=

∫ ∞

0

(

∂xTδνs(x)−
∫ ∞

0

2√
2πδ

e−
(x+y)2

2δ
x+ y

δ
νs(dy)

)2

dx

=||∂xTδνs||20 − 2

∫ ∞

0

∂xTδνs(x)

∫ ∞

0

2√
2πδ

e−
(x+y)2

2δ
x+ y

δ
νs(dy)dx

+

∫ ∞

0

(
∫ ∞

0

2√
2πδ

e−
(x+y)2

2δ
x+ y

δ
νs(dy)

)2

dx.
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Putting these together

〈Tδ(νs), ∂2xTδ(νs)〉0 + ρ||∂xT rδ (νs)||20
= −2ρ

∫ ∞

0

∂xTδνs(x)

∫ ∞

0

2√
2πδ

e−
(x+y)2

2δ
x+ y

δ
νs(dy)dx

+ρ

∫ ∞

0

(
∫ ∞

0

2√
2πδ

e−
(x+y)2

2δ
x+ y

δ
νs(dy)

)2

dx− (1− ρ)

∫ ∞

0

(∂xTδ(νs)(x))
2dx

≤
∣

∣

∣

∣

2ρ

∫ ∞

0

√

1− ρ

ρ
∂xTδνs(x)

∫ ∞

0

√

ρ

1− ρ

2√
2πδ

e−
(x+y)2

2δ
x+ y

δ
νs(dy)dx

∣

∣

∣

∣

+ρ

∫ ∞

0

(
∫ ∞

0

2√
2πδ

e−
(x+y)2

2δ
x+ y

δ
νs(dy)

)2

dx− (1− ρ)

∫ ∞

0

(∂xTδ(νs)(x))
2dx

≤ ρ

∫ ∞

0

(
√

1− ρ

ρ
∂xTδνs(x)

)2

dx+ ρ

∫ ∞

0

(
∫ ∞

0

√

ρ

1− ρ

2√
2πδ

e−
(x+y)2

2δ
x+ y

δ
νs(dy)

)2

dx

+ρ

∫ ∞

0

(
∫ ∞

0

2√
2πδ

e−
(x+y)2

2δ
x+ y

δ
νs(dy)

)2

dx− (1− ρ)

∫ ∞

0

(∂xTδ(νs)(x))
2dx

=
ρ

1− ρ

∫ ∞

0

(
∫ ∞

0

2√
2πδ

e−
(x+y)2

2δ
x+ y

δ
νs(dy)

)2

dx.

By the estimate for P1 obtained in Lemma 3.7 we have

E[〈Tδ(νs), ∂2xTδ(νs)〉0 + ρ||∂xT rδ (νs)||20] ≤
ρ

1− ρ
E[P1] ≤

ρ

1− ρ

(

C1
T δ

β
2 +

C2ε̃0
δ2

e−ε̃
2
0/2δ

)

,

where C1
T , C2 and ε̃0 are the same as in Lemma 3.7.

Now, combining Lemma 3.7 and 3.8 gives the following

Theorem 3.9. If νt is an M(R+)-valued solution of (3.5) and Zδ(t) = Tδνt, we have for δ < ε̃20/2,

E||Zδ(t)||20 ≤ ||Zδ(0)||20 + |µ|
∫ t

0

E||Tδ(νs)||20ds+
1

1− ρ
C1
T δ

β
2 t+

C2tε̃0
(1− ρ)δ2

e−ε̃
2
0/2δ. (3.22)

Corollary 3.10. If νt is a measure-valued solution of (3.5) and ν0 ∈ H0, then νt ∈ H0, a.s. and

E||νt||20 <∞, ∀t ≥ 0.

Proof. By (3.22) we have for small δ that

E||Zδ(t)||20 ≤ ||Zδ(0)||20 + |µ|
∫ t

0

E||Tδ(νs)||20ds+
1

1− ρ
C1
T δ

β
2 T +

C2T ε̃0
(1− ρ)δ2

e−ε̃
2
0/2δ

:= ||Zδ(0)||20 + |µ|
∫ t

0

E||Zδ(s)||20ds+ f(δ, T ),

where

f(δ, T ) =
1

1− ρ
C1
T δ

β
2 T +

C2T ε̃0
(1− ρ)δ2

e−ε̃
2
0/2δ.
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Applying Gronwall’s inequality we have

E||Zδ(t)||20 ≤ (||Zδ(0)||20 + f(δ, T ))e|µ|t.

It is clear that limδ→0 f(δ, T ) = 0. Now let {φj} be a complete, orthonormal system for H0 such

that φj ∈ Cb(R
+). Then by Fatou’s lemma,

E





∑

j

〈φj , νt〉2


 = E





∑

j

lim
δ→0

〈φj , Tδνt〉2


 ≤ lim inf
δ→0

E||Zδ(t)||20 ≤ ||ν0||20e|µ|t,

Therefore νt ∈ H0 and E||νt||20 <∞, ∀t ≥ 0.

Now we have proved the existence of an L2-density for the limit empirical measure νt, given

that ν0 has an L2-density.

Theorem 3.11. Suppose that ν0 ∈ H0. Then (3.5) has at most one measure-valued solution.

Proof. Let ν1t and ν2t be two measure-valued solutions with the same initial value ν0, and both of

them satisfy the boundary condition stated in Lemma 3.5. By Corollary 3.10, ν1t , ν
2
t ∈ H0 a.s..

Let νt = ν1t − ν2t . Then νt ∈ H0 and also νt is a signed measure-valued solution to the equation

(3.5). It is straightforward to extend all the estimates we have obtained to the case of the difference

of two solutions as |νt| ≤ ν1t + ν2t and the equations are linear.

Therefore by the appropriate extension of Theorem 3.9 we have for δ < ε̃20/2

E||Tδνt||20 ≤ |µ|
∫ t

0

E||Tδ(|νs|)||20ds+
2

1− ρ
C1
T δ

β
2 T +

2C2T ε̃0
(1− ρ)δ2

e−ε̃
2
0/2δ.

As before, taking δ → 0, we have

E||νt||20 ≤ |µ|
∫ t

0

E|||νs|||20ds = |µ|
∫ t

0

E||νs||20ds,

and by Gronwall’s inequality, we have νt ≡ 0.

This completes the proof of the uniqueness of the L2-valued solution to the equation (3.5).

3.4 The limit SPDE

Substituting the Lebesgue representation for the empirical measure into (3.5), integrating by

parts and writing A† for the adjoint operator of A, we get

∫

φ(x)v(t, x) dx =

∫

φ(x)v(0, x) dx+

∫ t

0

∫

Aφ(x)v(s, x) dx ds+
∫ t

0

∫ √
ρφ′(x)v(s, x) dx dMs

=

∫

φ(x)

(

v(0, x) +

∫ t

0

A†v(s, x) ds−
∫ t

0

∂

∂x
(
√
ρv(s, x)) dMs

)

dx.
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As this holds ∀φ ∈ C∞
K (0,∞) we have shown that we have a weak solution to the SPDE given by

v(t, x) = v(0, x) +

∫ t

0

A†v(s, x) ds−
∫ t

0

∂

∂x
(
√
ρv(s, x)) dMs, (3.23)

with v(t, 0) = 0 for all t ∈ [0, T ]. Alternatively, we can write this in differential form

dv(t, x) = −µ∂v
∂x

(t, x)dt+
1

2

∂2v

∂x2
(t, x)dt−√

ρ
∂v

∂x
(t, x)dMt, (3.24)

with v(t, 0) = 0 for all t ∈ [0, T ] and v(0, x) = v0(x). This is a stochastic PDE that describes the

evolution of the distance to default of an infinite portfolio of assets whose dynamics are given by

(1.2). However note that the derivatives are only defined in the weak sense.

We can now use the limiting empirical measure νt to approximate the loss distribution for

a portfolio of fixed size N whose assets also follow (1.2). We do this by matching the initial

conditions, thus setting

v(0, x) =
1

N

N
∑

i=1

δXi
0
(x), (3.25)

where the Xi
0 > 0, i = 1, . . . , N are the initial values for the distance to default of the assets in

our fixed portfolio of size N .

3.5 Solving the SPDE

The SPDE (1.5) without the boundary condition is easily solved. A simple check with the Ito

formula shows that

v(t, x) = u(t, x−√
ρMt), ∀x ∈ R, t > 0, (3.26)

where u(t, x) is the solution to the deterministic PDE

ut =
1

2
(1− ρ)uxx −

1

σ
(r − 1

2
σ2)ux, (3.27)

with u(0, x) = v0(x).

The SPDE with the boundary condition has been treated in [31]. This allows us to complete

the proof of our existence and uniqueness theorem.

Theorem 3.12. Let v0(x) ∈ H1((0,∞)). The SPDE (1.5) has a unique solution u ∈ L2(Ω ×
(0, T ),G, H1((0,∞))) and is such that xuxx ∈ L2(Ω× (0, T ),G, L2((0,∞))).

Proof. The result follows from Theorem 2.1 of [31]. Thus all we have to do is ensure that the

conditions of that Theorem hold in our setting. The boundary of the domain (0,∞) is the single

point 0 and hence we can take the function ψ(x) = min(x, 1) in the Theorem. The single point

boundary trivially satisfies the Hypothesis 2.1 of [31]. The coefficients of our SPDE are constants

and hence satisfy the measurability requirement of Hypothesis 2.2 and the Lipschitz condition

of Hypothesis 2.4. Hypothesis 2.3 also follows as the coefficients are constants and the initial

condition is in H1.
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Proof. (of Theorem 1.1): Our previous work has shown that the empirical measure satisfies (3.5)

and has a unique density in L2((0,∞)). By Theorem 3.12 the SPDE with boundary condition has

a unique solution in H1((0,∞)). As this solution satisfies (3.5), by the uniqueness of solutions, it

must be the density for our empirical measure. Thus our density satisfies the SPDE.

We can derive a formal expression for Lt in terms of the density after integrating by parts.

Lt =1−
∫ ∞

0

v(t, x)dx

=1−
∫ ∞

0

(

v(0, x)−
∫ t

0

µvx(s, x)ds+

∫ t

0

1

2
vxx(s, x)ds−

∫ t

0

√
ρvx(s, x)dMs

)

dx

=1−
∫ ∞

0

v(0, x)dx+ µ

∫ t

0

v(s, x)|x=∞
x=0 ds−

∫ t

0

1

2
vx(s, x)|x=∞

x=0 ds+
√
ρ

∫ t

0

v(s, x)|x=∞
x=0 dMs.

Since xi > 0, ∀i and Xi
t is a continuous process, we can conclude that T i0 > 0, ∀i and L0 = 0.

Therefore

ν̄(R+ ∪ {0}) = 1 =

∫ ∞

0

v(0, x)dx.

Moreover we have v(s, x) → 0, vx(s, x) → 0, as x → ∞ and v(s, 0) = 0, ∀s. Therefore, provided

that vx(s, 0), the right derivative of v(s, x) with respect to x at the point x = 0, exists we would

have

Lt =
1

2

∫ t

0

vx(s, 0)ds.

One issue that has not been addressed is the existence of C2 solutions to this equation. We

note that the work of Lototsky [33] shows that there is a classical C2 solution to this SPDE over a

bounded domain (0,K), with Dirichlet boundary conditions at 0 and K, provided that the initial

condition is smooth enough.

3.6 The portfolio loss

We would like to price portfolio credit derivatives whose values depend on the cumulative

defaults occurring within a reference basket of risky assets. The key to pricing these instruments

is determining the joint loss distribution. We have just derived an equation that describes the

evolution of the empirical measure of the limiting large portfolio of assets. At any future value

in time, we can determine the loss in the portfolio by calculating the total mass of the empirical

measure of assets that have not defaulted. Thus the portfolio loss LNt can be approximated by

LNt = NLt,

where N is the number of assets in the portfolio. We note that given the initial condition (3.25)

we have LN0 = 0. Also, due to the way in which defaults are incorporated into the model, we have

0 ≤ Lt ≤ 1, for t ≥ 0

P (Ls ≥ K) ≤ P (Lt ≥ K), for s ≤ t,
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which ensures that there is no arbitrage in the loss distribution.

3.7 A connection with filtering

We note that the SPDE can be viewed as a PDE with a Brownian drift. This is easily

seen through an interpretation as the Zakai equation for a filtering problem. Let (Ω̃, F̃ , P̃) be a

probability space. Under P̃ we define the signal process X to be a stochastic process satisfying

dX = µdt−√
ρdM +

√

1− ρdW, t ≤ τ0

Xt = 0, t > τ0

where τ0 = inf{t : Xt = 0}, where µ, ρ are constants and M and W are independent Brownian

motions and X0 = x. The observation process Y is taken to be just the market noise,

dYt = dMt,

then the Zakai equation (see for example [2]) for the conditional distribution of the signal given

the observations is exactly our SPDE.

Thus, by standard filtering theory, if we want to compute a functional of the signal we need

to calculate

mψ(t) = Ẽ(ψ(Xt)|FM
t ) =

∫

ψ(y)u(t, x)dx.

This means that the probability distribution for the position of a company given the market noise

has a density u(t, x) satisfying

du(t, x) = (−µux(t, x) +
1

2
uxx(t, x))dt−

√
ρux(t, x)dMt,

with u(0, x) = u0(x), that is the initial guess at X0 is the density u0(x) and u(t, 0) = 0. Thus for

the loss function we are interested in computing the proportion of companies that have defaulted

by time t and this can be found by computing mψ(t) for ψ(t) = I{τ0<t}. If we start from a given

fixed point so that u0(x) is a delta function at x. Then

Lt = mψ(t) = P̃
x
(inf
s≤t

Xs < 0|FM
t ).

Now the process X can be written as a Brownian motion with drift

Xt = x+ µt−√
ρMt +

√

1− ρWt,

and if we are given M , this can be expressed as

Xt =
√

1− ρ

(

x+ f(t)√
1− ρ

+Wt

)

,

where f(t) = µt−√
ρMt is a deterministic time dependent drift function, a fixed random path.
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To compute the random loss function we set x′ = x/
√
1− ρ, g(t) = f(t)/

√
1− ρ, giving

Lt = P̃
x
(inf
s≤t

Xs < 0|FM
t ) = P̃(inf

s≤t
g(s) +Ws < −x′|FM

t ).

In the case where we have a general initial distribution u0(x), the loss function is then

Lt =

∫ ∞

0

u0(x)P̃(inf
s≤t

g(s) +Ws < −x/
√

1− ρ|FM
t )dx.

Thus we can try to compute this by solving the hitting time problem for Brownian motion

with time dependent drift for a fixed realization of the market noise. It is straightforward to use

this to simulate a realization of the loss function.

To derive this SPDE we made some simplifying assumptions. The first of these arose when

specifying the asset processes in (1.2). We had to set the drift and volatility of all the assets to

some common value. For the drift this is not a problem, because under the risk neutral measure it

will be transformed to a value that excludes arbitrage. The fact that there is only one yield curve

means that this value will be the same for all assets. If our reference portfolio contained entities

denominated in more than one currency this would not be the case and some approximation would

have to be made.

This argument cannot be used for the volatility as it is not affected by a change of measure.

Therefore, it would seem that giving the assets one common value of volatility is a very restrictive

assumption. However, for any given value of the volatility we still have the freedom to choose the

default barrier specific to any one asset. Via the distance-to-default transformation this freedom

manifests itself in our particular choice of starting value for each process. The effect of changing

the barrier and changing the volatility is very similar. To see this note that default risk is measured

by how many standard deviations away from the barrier our process is. To increase the default

risk we need to reduce this distance which can be done by either increasing the standard deviation

or moving the barrier closer. Although these are clearly not equivalent transformations they have

a very similar effect and so the single volatility assumption is not as restrictive as it initially

appears.

Having a single volatility number also eases calibration as we do not have to estimate the

volatilities of all of the entities within our portfolio. Instead, we will have to replace it by some

‘average’ market volatility. Not only will this help day-to-day calibration stability but it means

that credit derivative prices will be a function of one volatility parameter only. This is usually

a desirable property from a practitioner’s point of view as it allows one to take a view on that

parameter; this cannot be done if there were a single parameter for each entity within our portfolio.

The major simplification that allowed us to derive our SPDE came when we moved to an

infinite dimensional limit. In this limit, the idiosyncratic noise of the individual assets is averaged

out. In fact, we could have any number of idiosyncratic components, provided they are indepen-

dent and uncorrelated, and they would average out to zero. It is only the correlated components

between the assets that remain i.e. the market risk. Note that this means that if the limiting

portfolio was fully diversified, that is had no correlation, there would be no noise in the limit and
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the limit portfolio would evolve deterministically!

4 Numerical solution

We outline in the following a numerical method for approximating the solution to the SPDE,

which we use in the market pricing examples in the next section. We start with the SPDE (3.5)

in weak form, repeated here for convenience,

〈φ, νt〉 = 〈φ, ν0〉+
∫ t

0

〈Aφ, νs〉 ds+
∫ t

0

〈√ρφ′, νs〉 dMs

for almost all t and all smooth test functions φ ∈ C∞
K (0,∞). It follows from Theorem 1.1 that νt

has as one component the density v (describing the non-absorbed element) satisfying

(φ, v(t, ·)) = (φ, v(0, ·)) +
∫ t

0

(Aφ, v(s, ·)) ds+√
ρ

∫ t

0

(φ′, v(s, ·)) dMs, (4.1)

where here we write (·, ·) for the L2 inner product. Integrating by parts, noting from Theorem

3.12 that v(t, ·) ∈ H1
0 with dense subspace C∞

K (0,∞),

(φ, v(t, ·)) +
∫ t

0

a(φ, v(s, ·))ds = (φ, v(0, ·)) +√
ρ

∫ t

0

(φ′, v(s, ·)) dMs

for all φ ∈ H1
0 , where

a(φ, v) =
1

2
(φ′, v′)−√

ρ(φ′, v).

4.1 Finite element approximation

Let Vh ⊂ H1
0 ([x0, xN ]) be the space of piecewise linear functions on a grid x1 < . . . < xN ,

which are zero at x1 = 0 and xN a sufficiently large value (see 4.3). Denote further by {φn :

1 ≤ n ≤ N} the standard finite element basis (see e.g. [40] for standard finite element theory and

approximations to PDEs). Restricting both the solution and test functions to Vh,

(φn, vh(t, ·)) +
∫ t

0

a(φn, vh(s, ·))ds = (φn, vh(0, ·)) +
√
ρ

∫ t

0

(φ′n, vh(s, ·)) dMs

(for all 1 ≤ n ≤ N) defines a semi-discrete finite element approximation.

Using the stochastic θ-scheme (see [21]) for the time discretisation of the resulting SDE system,

(

φn, v
m+1
h

)

+ θ∆t a(φn, v
m+1
h ) = (φn, v

m
h )− (1− θ)∆t a(φn, v

m
h ) +

√
ρ (φ′n, v

m
h )

√
∆tΦm, (4.2)

where Φm∼N(0, 1), ∆t = tm+1 − tm is assumed constant and vmh =
∑N
n=1 v

m
n φn. Thus one gets

a linear system

(M + θ∆tA)vm+1 = (M − (1− θ)∆tA)vm +
√
ρ
√
∆tΦmDv

m, (4.3)
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where vm = (vm1 , . . . , v
m
N ) and the standard finite element matrices are given by

Mij = (φi, φj), 1 ≤ i, j ≤ N,

Aij = a(φi, φj), 1 ≤ i, j ≤ N,

Dij = (φ′i, φj), 1 ≤ i, j ≤ N.

This gives a pathwise (inM , the market factor) approximation to the SPDE solution via timestep-

ping from an initial density vh(0, ·), which is found by L2 projection of ν̄Nf ,t from (1.4) with Nf

firms onto the finite element space (see e.g. [39], [41]).

4.2 Simulating tranche spreads

For a given (numerical) realisation of the market factor, we can approximate the loss functional

LTk
at time Tk by

LhTk
= 1−

∫ xN

0

vh(Tk, x) dx ≈ 1− h
N−1
∑

n=1

vmn (4.4)

where m = Tk/∆t. If we explicitly include the dependence on the Monte Carlo samples Φ =

(Φi)1≤i≤I in LhTk
(Φ), where Φi as in (4.2) are drawn independently from a standard normal

distribution, then for Nsims simulations with samples Φl = (Φli)1≤i≤I , 1 ≤ l ≤ Nsims, we simulate

the outstanding tranche notional (2.3) as

E
Q[ZTk

] ≈ E
Q[max(d− LhTk

, 0)−max(a− LhTk
, 0)]

≈ 1

Nsims

Nsims
∑

l=1

(

max(d− LhTk
(Φl), 0)−max(a− LhTk

(Φl), 0)
)

.

This gives simulated tranche spreads via (2.5), (2.6) and (2.7).

4.3 Accuracy and further approximations

We now discuss the approximations made previously and further simplifications made in the

numerical implementation of the examples in the next section.

It is necessary for the finite element discretisation to approximate the semi-infinite boundary

value problem for the SPDE by one on a finite domain. It is expected that if the upper bound-

ary is sufficiently large, dependent on the initial distances-to-default and model parameters, the

probability of crossing this boundary can be made negligible and zero boundary conditions are

appropriate. We have checked this to be the case for the following numerical simulations but do

not have a theoretical justification at this point.

The derivation of the SPDE and finite element solution assume H1 initial data, however in

practice we want to use a sum of atomic measures (3.25) corresponding to the distance-to-default

of individual firms, as backed out from CDS spreads. We deal with this by projecting these data

onto the finite element basis (see e.g. [39], [41]).

The majority of the literature on stochastic finite element methods deals with stochastic
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diffusion coefficients (see e.g. [12] and subsequent work) and we are not aware of results which

cover our setting with stochastic drift. From standard finite element approximation results for

PDEs (see e.g. [40]), one would expect (pathwise) convergence order two in h for solutions in H2,

but Theorem 3.12 suggests weaker regularity at the absorbing boundary, which we also observe

in the numerical solutions. This does not show a measurable impact on the numerical accuracy

in practice. The weak approximation order of the Euler scheme for SDEs, and that for the chosen

fully implicit scheme for PDEs (θ = 1 in (4.2)), is one (in ∆t). In this case, the scheme is stable

in the mean-square sense of [21]. This is confirmed by numerical experiments, but a rigorous

numerical analysis is beyond the scope of this paper.

A common approximation to the finite element system is to ‘lump’M in (4.3) in diagonal form,

interpretable as application of a quadrature rule, and ultimately results in M being replaced by

a multiple of the identity matrix. With this approximation, the finite element scheme becomes

identical to a central finite difference approximation.

A further simplification is suggested by the solution (3.26) of the SPDE without absorbing

boundary condition, which decouples the solution into the PDE solution (3.27) on a doubly-

infinite domain, and a random (normal) offset. This is easy to implement if we apply boundary

conditions only at a discrete set of times. In analogy to discretely sampled barrier options, this

corresponds to a situation where we observe default not continuously, but only at discrete dates.

The numerical results in the next section were obtained in this way with default monitoring at

payment dates for computational convenience. This introduces a small shift in the calibrated

parameters compared to the SPDE with continuously absorbing barrier but the reported results

on tranche spreads are almost identical.

The Monte Carlo estimates of outstanding tranche notionals and subsequently tranche spreads

converge per N
−1/2
sims . The variance relative to the spread is larger for senior tranches due to the

rarity of losses in these tranches, as illustrated by Figure 1. Importance sampling could cure this
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Figure 1: Monte Carlo estimators with standard error bars for expected losses (2.4) in tranches
[0, 3%], [6%, 9%], [12%, 22%], for Nsims = 16 · 4k−1, k = 1, ..., 10, and a typical set of parameters,
maturity T = 5.

problem but was not found necessary for the purposes of this study.

Numerical parameters were in the following adjusted such that the (heuristically) estimated

approximation error was sufficiently small compared to the effects observed by varying model

parameters.
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5 Market pricing examples

In this section, we analyse our model’s ability to price regular index tranches for all maturities

and investigate the implied correlation skew. We consider performance pre and post the onset

of the credit crunch, illustrating the model’s inherent ability to cope with a variety of credit

environments. We refer to [7] for more extensive examples of the use of the model to price

forward index tranches.

Throughout the analysis, we infer the initial condition from market spreads for the underlying

index constituents, rather than allowing it to be a free parameter to be fixed by calibration to

index tranches. This is to be consistent with CDS spreads for the individual constituents. We

do this by backing out the distance-to-default for each constituent from its five-year CDS spread

and then aggregating these. Note that as we model the distance-to-default as in (1.1), different

volatilities of the underlying firms can be taken into account by rescaling. As a consequence, the

initial condition is driven by both the level of constituent spreads and their dispersion.

We study the ability of our model to price index tranches on two dates: February 22, 2007 and

December 5, 2008. These dates are chosen specifically to investigate the flexibility of the model

to cope with different market and spread environments. February 22, 2007 was pre-crisis when

spreads were tight and curves upward sloping; December 5, 2008 was at the height of market

volatility, when spreads were at their widest and curves frequently inverted.

We set R = 40%, the level typically assumed by the market for investment grade names, and

for each date, calibrate the model to 5, 7 and 10-year index spreads using the volatility, σ. r is

the risk-free rate obtained from the Euro swap curve. (N.B. the correlation parameter, ρ, does

not come into this calibration since index spreads depend only on the expected losses, which are

identical to the sum of default probabilities and hence correlation-independent.)

Table 1 shows the traded and model index spreads for Feb 22, 2007. Since we derive the

initial condition from constituent spreads, we only have one free parameter, the volatility σ, for

calibrating all three index spreads. Increasing σ to increase model spreads also causes the initial

distance-to-default for each constituent to increase (since CDS spreads are fixed), so index and

tranche spreads are less sensitive to changes in volatility than they would be if the initial condition

was specified independently.

Maturity Date Fixed Coupon (bp) Traded Spread (bp) Model Spread (bp)
20/12/2011 30 21 19.6
20/12/2013 40 30 30.7
20/12/2016 50 41 41.0

Table 1: The fixed coupons, traded spreads and model spreads for the iTraxx Main Series 6 index
on February 22, 2007. Parameters used for the model spreads are r = 0.042, σ = 0.22, R = 0.4.

Table 3 shows the same results for Dec 5, 2008. In this highly distressed state, we notice that

spreads are dramatically wider and the curve is inverted with 5-year > 7-year > 10-year spreads.

Our simple model again does a good job of calibrating all three spreads. This is achieved by a

smaller distance-to-default for the initial positions in combination with a lower volatility, triggering
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more defaults in the near future. The 5-year point is a little low, which is a shortcoming of using

a purely diffusive driving process: it can be hard to generate sufficient short-term losses. We refer

to Section 6 for a discussion of extensions to jump and stochastic volatility driven processes.

For the parameters from the calibration in Table 1, Table 2 illustrates the correlation sensitivity

of the 5, 7 and 10-year index tranches in the pre-crunch environment. We note that model spreads

illustrate the behaviour we would anticipate:

• Equity tranche spreads decline with increasing correlation whilst spreads for other tranches

generally increase with correlation. As correlation increases, there are less likely to be a

few defaults, and so the equity tranche becomes less risky and its spread decreases. The

probability of a greater number of defaults increases with increasing correlation and so

spreads on the more senior tranches increase with correlation.

• A notable exception is the 10-year junior mezzanine tranche (3%−6%) which behaves more

like an equity tranche and has declining spreads with increasing correlation. This is because,

for the parameters used, the expected index loss is between 3% and 6%. The risk of this

tranche therefore decreases, along with the spread, as correlation increases, making losses

in this tranche less likely.

• The 7-year junior mezzanine tranche (3%−6%) spreads indicate the transition, as maturity

increases, from positive to negative correlation sensitivity by exhibiting a humped shape.

• For the 5 and 7-year junior mezzanine and 10-year senior mezzanine tranches, spreads decline

with increasing correlation for high values of correlation.

Figure 2: Implied Correlation Skew for iTraxx Main Series 6 Tranches, Feb 22, 2007.
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The implied correlation for each tranche is the value of correlation that gives a model tranche spread

equal to the market tranche spread given in Table 2. Model parameters are r = 0.042, σ = 0.22, R = 0.4.
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5 Year

Tranche Market ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.4 ρ = 0.5 ρ = 0.6 ρ = 0.7

0%-3% 7.19 % 7.55 % 4.99 % 2.14 % -0.71 % -3.48 % -6.17 % -8.78 %

3%-6% 41 15.6 55.6 86.4 106.1 116.2 119.5 117.4

6%-9% 10.8 0.7 9.1 25 40.3 54.5 65.2 71.7

9%-12% 5 0 2.2 8.2 18.8 28.6 37.2 45.4

12%-22% 1.8 0 0.2 1.7 4.9 9.8 16.1 22.5

22%-100% 0.9 0 0 0 0.1 0.3 0.7 1.5

7 Year

Tranche Market ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.4 ρ = 0.5 ρ = 0.6 ρ = 0.7

0%-3% 22.1 % 27.45 % 19.97 % 13.79 % 8.31 % 3.27 % -1.47 % -6.04 %

3%-6% 110 130.6 183.3 202.2 206 201.5 191.6 177.8

6%-9% 32.5 15.3 52.4 80.5 99.1 110.6 116.1 116.9

9%-12% 15 1.8 17.4 37.1 54.3 67.1 76.5 82.7

12%-22% 4.9 0.1 2.3 8.9 19 29.9 39.5 47.9

22%-100% 2 0 0 0.1 0.4 1.1 2.3 4.1

10 Year

Tranche Market ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.4 ρ = 0.5 ρ = 0.6 ρ = 0.7

0%-3% 38 % 42.51 % 32.51 % 24.13 % 16.65 % 9.71 % 3.11 % -3.33 %

3%-6% 302.5 375.8 354.9 331.9 308.1 283.5 258.3 231.9

6%-9% 83 101.4 147.3 166.2 173.6 174.4 170.8 163.8

9%-12% 37 24.3 64.1 90.9 107.7 117.8 122.9 124.1

12%-22% 12.5 2 13.5 29.1 44.4 57.5 68.2 76.5

22%-100% 3.6 0 0.1 0.6 1.5 3 5.1 7.7

Table 2: Model tranche spreads (bp) for varying values of the correlation parameter. The equity
tranches are quoted as an upfront assuming a 500bp running spread. The model is calibrated to
the iTraxx Main Series 6 index for Feb 22, 2007. Market levels shown are for this date; model
parameters are r = 0.042, σ = 0.22, R = 0.4.

Figure 2 illustrates the 5, 7 and 10-year implied correlation skew – the value of correlation

that gives a model spread equal to the market spread for each tranche and maturity.

• With the exception of the 0% − 3% tranche, we see similar behaviour and levels for all

three maturities. This consistency across the term-structure suggests that the dynamics

underlying the model are realistic, even in its simple form.

• 5-year implied correlations are generally high relative to the others and 10-year values rela-

tively low. To achieve consistency of the correlation parameter across maturities, a driving

process with the ability to generate more default events in the short-term would be required.

This could be a more general Levy process for the market factor or one incorporating stochas-

tic volatility.

• An anomaly is revealed by the 3%−6% implied correlations and the corresponding row data

in Table 2, where it is seen that the correlation dependence of model tranche spreads flips

from increasing to hump-shaped to decreasing for maturities running from 5 to 10 years. This

has the following effect: for 5 years, there is a unique implied correlation for this tranche;

for 7 years, a second, higher, correlation (just under 1) also fits this tranche; for 10 years,
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only a single high correlation can fit the market spread. Essentially, the implied correlation

curves in Figure 2 are shifted downwards with increasing maturity. The alternative higher

branches, where applicable, are not included in the Figure. When a curve crosses zero (in

the case of the 10-year 3%−6% tranche), we have set the implied correlation to zero (instead

of the value of around 0.42 from the higher branch which exactly reproduces the market

quote). For pricing and (especially) hedging purposes, continuous dependence of implied

correlations with respect to maturity and market data is clearly desirable. The lack of a

calibration which is both stable and exact underlines the need for a richer model.

Maturity Date Fixed Coupon (bp) Traded Spread (bp) Model Spread (bp)
20/12/2013 120 215 207
20/12/2015 125 195 195
20/12/2018 130 175 176

Table 3: The fixed coupons, traded spreads and model spreads for the iTraxx Main Series 10
index on December 5, 2008. Parameters used for the model spreads are r = 0.033, σ = 0.136,
R = 0.4.

Table 4 shows the correlation sensitivity of the Dec 5, 2008 index tranches with parameters

from the calibration in Table 3. We notice that relative to Table 2, spreads are highly distressed,

the index is inverted and tranche spreads are flat to inverted across maturities. As a result,

the tranches exhibit very different sensitivity to correlation than before, however there are some

common themes and extensions to earlier behaviour:

• Default probabilities for the index and its constituents are very high. The index expected

loss is therefore much greater than before, illustrated by the fact the first three 5-year

tranches and the first four 7 and 10-year tranches have declining spreads with increasing

correlation. This contrasts with just the equity and 10-year junior mezzanine tranches in

Feb 2007.

• Much higher levels of ρ are needed to replicate market prices than in pre-crunch times,

consistent with the fact that systematic risk is a much greater concern at this time.

• Too much of our model’s portfolio loss distribution lies in the middle tranches: 6%− 22%;

more weight needs to be in the tail to be able to replicate 22% − 100% tranche values.

The same model shortcoming holds for all maturities and reflects the need for a more

sophisticated driving process.

6 Conclusions

We have illustrated the ability of our simple model to crudely calibrate to the index term-

structure in wildly different market environments, and have shown that the correlation sensitivity

of tranche spreads demonstrates the behaviour expected. More importantly, using just two param-

eters and without making them time-dependent, we have shown that our very simple structural
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5 Year

Tranche Market ρ = 0.3 ρ = 0.4 ρ = 0.5 ρ = 0.6 ρ = 0.7 ρ = 0.8 ρ = 0.9

0%-3% 71.5 % 81.88 % 75.9 % 69.56 % 63.02 % 56.25 % 49.16 % 41.65 %

3%-6% 1576.3 2275.2 1978.5 1743.2 1546.8 1374.6 1222.8 1090.1

6%-9% 811.5 1273.1 1168.2 1079.7 1001.4 931.3 864.6 796.3

9%-12% 506.1 775.7 765.8 748.6 724.7 695.8 663.2 629.1

12%-22% 180.3 307.8 353.3 384.7 405.5 418.1 423.4 420.5

22%-100% 77.9 9.2 16.5 25 34.3 44.5 55.7 68.1

7 Year

Tranche Market ρ = 0.3 ρ = 0.4 ρ = 0.5 ρ = 0.6 ρ = 0.7 ρ = 0.8 ρ = 0.9

0%-3% 72.9 % 84.03 % 78.98 % 73.26 % 66.93 % 60 % 52.41 % 44.13 %

3%-6% 1473.2 2327.3 1985.7 1715.2 1493.4 1308 1147.8 1001.3

6%-9% 804.2 1344.2 1199 1085.2 988.2 900.7 820.9 747.9

9%-12% 512.4 855.4 808.4 765.3 725.3 684.8 643 600.4

12%-22% 182.6 375.4 401.7 417.6 425.6 427.4 423.1 411.8

22%-100% 75.8 14 22 30.6 39.6 49.3 59.7 71.2

10 Year

Tranche Market ρ = 0.3 ρ = 0.4 ρ = 0.5 ρ = 0.6 ρ = 0.7 ρ = 0.8 ρ = 0.9

0%-3% 73.8 % 85.13 % 80.57 % 74.99 % 68.51 % 61.31 % 53.31 % 44.22 %

3%-6% 1385.5 2270.8 1895.7 1611.1 1385.8 1195.3 1032 889.6

6%-9% 824.7 1332.2 1164.2 1033.7 925.5 833.5 749.8 669.7

9%-12% 526.1 870.8 798.8 740.7 689.3 640.5 592.1 543.1

12%-22% 174.1 406.1 414.9 417.5 415.6 409.8 400.2 385.3

22%-100% 76.3 18.3 26.1 34 42.1 50.6 59.7 69.8

Table 4: Model tranche spreads (bp) for varying values of the correlation parameter. The equity
tranches are quoted as an upfront assuming a 500bp running spread. The model is calibrated to
the iTraxx Main Series 10 index for Dec 5, 2008. Market levels shown are for this date; model
parameters are r = 0.033, σ = 0.136, R = 0.4.

evolution model displays realistic term-structure dynamics. Using just the volatility parameter,

it is able to calibrate well to all three index spreads and correlation sensitivities of the various

tranches are fairly stable across maturities. This is an improvement on the majority of pricing

models which lack a coherent means of incorporating dynamics.

The next stage, which has not been the focus here, is to extend the framework so that it

can calibrate to all tranches with a single set of parameters. This would involve replacing the

simple Brownian Motion driving the process with a more general stochastic volatility or Levy or

jump-diffusion process. Jumps in the market factor are conceptually easy to include and result in

a jump process driving the SPDE drift. Similarly, a single stochastic volatility factor affecting all

firms will result in a stochastic term driving the SPDE diffusion. Contagion may be incorporated

by making model parameters, notably the correlation, loss dependent. These extensions would

allow the loss distribution process to become more skewed, allocating more weight to the tail and

increasing super senior tranche spreads, as well as generally allowing more flexibility to match

observed data.
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