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Abstract 

Many natural populations exhibit temporal fluctuations in abundance that are consistent with 

external forcing by a randomly changing environment. As fitness emerges from an interaction 

between the phenotype and the environment, such demographic fluctuations probably include a 

substantial contribution from fluctuating phenotypic selection. We study the stochastic 

population dynamics of a population exposed to random (plus possibly directional) changes in 

the optimum phenotype for a quantitative trait that evolves in response to this moving optimum. 

We derive simple analytical predictions for the distribution of log-population size over time, both 

transiently and at stationarity under Gompertz density regulation. These predictions are well 

matched by population- and individual-based simulations. The log-population size is 

approximately reverse gamma distributed, with a negative skew causing an excess of low relative 

to high population sizes, thus increasing extinction risk relative to a symmetric (e.g. normal) 

distribution with the same mean and variance. Our analysis reveals how the mean and variance 

of log population size change with the variance and autocorrelation of deviations of the evolving 

mean phenotype from the optimum.  We apply our results to the analysis of evolutionary rescue 

in a stochastic environment, and show that random fluctuations in the optimum can substantially 

increase extinction risk, by both reducing the expected growth rate and increasing the variance of 

population size by several orders of magnitude. 

 

Keywords: environmental stochasticity, eco-evolutionary dynamics, fluctuating selection, 

evolutionary rescue, density dependence, environmental autocorrelation. 

 

Short title: Demography under a stochastic optimum 
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Introduction 
Virtually any population dynamic study reveals temporal variation in population size or density, 

which often appears largely erratic and seemingly random  (reviewed by Lande et al. 2003, 

chapter 1), except in well-characterized cases of deterministic oscillations such as predator-prey 

cycles or seasonal dynamics. When random fluctuations in abundance occur in populations large 

enough that demographic stochasticity can be ignored, they are most likely caused by 

stochasticity in environmental factors that jointly affect the demographic vital rates of all 

individuals in the population (environmental forcing). Such environmental stochasticity has 

received increasing attention in the last decades, in particular because of its importance for 

extinction risk and conservation (Beissinger and McCullough 2002; Boyce 1992; Lande 1993; 

Lande et al. 2003; Ruokolainen et al. 2009). Although most of this work is based on the 

assumption that the environmental driver of population dynamics is not autocorrelated through 

time (white noise), it has been shown both theoretically (Johst and Wissel 1997; Ripa and 

Lundberg 1996) and empirically  (Laakso et al. 2003; Pike et al. 2004) that temporal 

autocorrelation in the environment, as commonly reported in time series of environmental 

variables (e.g. Vasseur and Yodzis 2004), may be a strong driver of population dynamics and 

extinction risk. Furthermore, the eco-evolutionary mechanisms relating stochasticity of 

environmental variables to fluctuations in population size are often not addressed explicitly in 

studies of stochastic population dynamics. Here our aim is to address these two issues, by jointly 

modeling evolution and demography in a temporally autocorrelated environment.  

Most classic work in stochastic population dynamics is based on phenomenological models 

where the underlying mechanism causing environmental stochasticity in population growth rates 

is not modeled explicitly (reviewed by Lande et al. 2003; Tuljapurkar 1990).  Yet it is broadly 

accepted in ecology that the influence of the environment on fitness and population growth is 

largely mediated by phenotypic traits, as attested by several recent population dynamic studies in 

the wild or in the laboratory (Ellner et al. 2011; Ozgul et al. 2010; Ozgul et al. 2012; Pelletier et 

al. 2007). Indeed, one major way by which a changing environment may change the fitness of an 

individual (and the mean fitness of a population) is by altering the trait-fitness relationship. In 

other words, environmental fluctuations in population growth are likely to include a substantial 
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contribution from randomly fluctuating phenotypic selection. However, despite an increasing 

number of studies of the interplay between demography and evolution in stochastic environment 

(Coulson and Tuljapurkar 2008; Engen et al. 2014; Engen et al. 2013; Engen et al. 2011; Engen 

and Saether 2014; Sæther et al. 2013), some important aspects of the link between fluctuating 

selection and environmental stochasticity in population dynamics  are still not well incorporated 

in population dynamic theory. One of these features is selection for an optimum phenotype. 

Most evolutionary models of phenotypic evolution in temporally or spatially heterogeneous 

environments assume that one or several quantitative traits are under selection for an optimum 

phenotype that changes with the environment. This is consistent with a number of well-

established empirical facts, from phenotypic stasis in the long run despite the possibility for rapid 

evolution (Estes and Arnold 2007; Uyeda et al. 2011), to variation in the fitness effects of 

mutations across environments (Martin and Lenormand 2006a; Martin and Lenormand 2006b), 

or even direct measurement of fitness and traits across time and environments (Chevin et al. 

2015). When the function relating traits to fitness includes an optimum phenotype that changes 

with the environment, environmental stochasticity causes the optimum to change randomly in 

time, resulting in randomly fluctuating selection. Evolutionary theory has investigated the 

expected load caused by maladaptation under different patterns of fluctuations of the optimum 

phenotype for a quantitative trait. Beyond genetic variance and the strength of stabilizing 

selection towards the optimum phenotype, the temporal variance and autocorrelation in the 

optimum appear to be major determinants of the expected load (Charlesworth 1993; Chevin 

2013; Lande 1976; Lande and Shannon 1996).  Nevertheless, we still lack predictions for how 

these important elements of evolutionary demography affect population dynamics under 

environmental stochasticity. In particular, we need to know how much stochastic variance in 

population size (among replicate evolutionary paths) is generated by random environment-driven 

fluctuations of an optimum phenotype, because this bears on both the predictability of the 

population dynamic process, and on the probability of extinction. More generally, the overall 

shape of the abundance distribution is likely to also be a driver of extinction risk, in particular if 

it is asymmetric towards low population size. 

One situation where the demographic consequences of random fluctuations in an optimum 

phenotype are likely to play an important role is evolutionary rescue in the face of strong 

environmental stress. When an abrupt environmental shift induces strong maladaptation that 
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triggers a population decline, population persistence is only possible if adaptive evolution is 

rapid enough to restore positive Malthusian fitness before the population has gone extinct. This 

scenario, described as evolutionary rescue (Gomulkiewicz and Holt 1995), has attracted 

considerable attention from both theoreticians (Chevin and Lande 2010; Gomulkiewicz and Holt 

1995; Gomulkiewicz et al. 2010; Martin et al. 2013; Orr and Unckless 2008; Uecker and 

Hermisson 2016) and empiricists (Bell and Gonzalez 2009; Ramsayer et al. 2013). Since 

environmental stochasticity is ubiquitous, its potential importance during evolutionary rescue has 

been emphasized (Chevin et al. 2013), and recently addressed in the context of evolving 

plasticity (Ashander et al. 2016 ), but a more complete characterization of how environmental 

fluctuations affect the outcome of evolutionary rescue following a major shift in the average 

environment is still lacking. 

Here we develop and analyze an eco-evolutionary model where environmental stochasticity 

in population dynamics arises from random fluctuations in the optimum phenotype for a 

quantitative trait, which evolves under density- and frequency-independent selection. We 

analytically derive the distribution of population size caused by deviations from the fluctuating 

optimum, first during a transient phase of density-independent population growth – which we use 

to investigate evolutionary rescue –, and then at stationarity around the carrying capacity under 

density-dependent growth (but assuming density-independent selection). We compare our 

analytical predictions to population- and individual-based simulations. We show that in this 

model, which is consistent with a large body of empirical and theoretical work in evolutionary 

ecology, the distribution of population size can differ substantially from that in 

phenomenological models of stochastic population dynamics, with important consequences for 

extinction risk, in particular during evolutionary rescue, but also at stationarity. 

Model 

Evolutionary demography 
We model evolutionary demography in discrete non-overlapping generations for simplicity, but 

our model should be a good approximation for overlapping generations without age structure, 

that is, when vital rates (survival and fecundity) do not vary systematically with age. Age-

structured evolutionary demography in stochastic environments has additional complications 
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introduced by fluctuations in the age structure itself (Engen et al. 2011; Engen et al. 2009; 

Sæther et al. 2013), and thus requires further developments. We will also assume that the 

population is large enough to neglect demographic stochasticity (randomness in the reproductive 

success of individuals with the same phenotype in the same environment), such that all variation 

in population size comes from environmental factors jointly affecting all individuals in the 

population. However, we also use individual-based simulations to examine the robustness of our 

analysis to this assumption. 

Following earlier work in evolutionary genetics (e.g. Arnold et al. 2001; Chevin 2013; 

Lande 1976; Wright 1935) and evolutionary demography (Gomulkiewicz and Holt 1995; 

Gomulkiewicz and Houle 2009; Lande and Shannon 1996; Lynch and Lande 1993), we assume 

that fitness depends on the match between an individual’s phenotype and an optimum phenotype 

set by the environment. We model the fitness peak around this optimum phenotype using a 

Gaussian fitness function, which is the most commonly used function because (i) it has useful 

mathematical properties, (ii) it can approximate many continuous functions with a peak near the 

optimum (by Taylor series on the log scale), and (iii) has proved to provide a better fit to data on 

fitness effects of mutations across environments than other shapes with more abrupt reductions 

of fitness away from the peak (Martin and Lenormand 2006a). Following Chevin & Lande 

(2010), we thus assume the absolute multiplicative fitness (expected number of offspring) of an 

individual with trait value z in a population of size (or density) N is 
2

1 ( )/ ( )
2

( )( , ) exp
2

mg N g Kt
m

zR z N Rθ
ω

− − = − 
  

.    (1)  

The first factor on the right-hand side, which we will denote as W(z), corresponds to stabilizing 

selection on phenotype z through a Gaussian peak of width ω  and optimum phenotype tθ  that 

changes in time because of changing environment (hence the subscript t, which is omitted from 

other variables for simplicity). Note that we assume for simplicity that the shape of the fitness 

function is unchanged by the environment. The second factor on the right-hand side accounts for 

competition-mediated density-dependence of population growth. The form of density 

dependence is specified by g(N), an increasing positive function of N. The parameter Km (where 

m is for maximum) is the equilibrium population size (carrying capacity) of a hypothetical 

population where all individuals have the optimum phenotype at all times. We assume that mK  is 
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large enough that 
0

lim ( ) ( )mN
g N g K

→
<< . Hence the multiplicative growth rate at low densities (or 

intrinsic rate of multiplicative increase) for a population where all individuals have the optimal 

phenotype is mR . 

The mean absolute multiplicative fitness in a population polymorphic for phenotype z is 
1 ( )/ ( )mg N g K
mR R W−= , where ( ) ( )W p z W z dz

∞

−∞
= ∫ , and p(z) is the phenotype distribution 

(probability density function). The relative fitness is thus ( ) / /w z R R W W= = , which depends 

on individual phenotype but not population density. Hence, as noted earlier about this model and 

related ones in continuous time (Case and Taper 2000; Kirkpatrick and Barton 1997; Ronce and 

Kirkpatrick 2001), selection is here density- and frequency-independent, even though population 

growth is density regulated. This allows the evolutionary dynamics to be tracked first without 

reference to population size, and then combined with the demographic model to produce the 

population dynamics. The fitness function in (1) applies best when the two terms on the right 

hand side correspond to two different events in the life cycle, for instance phenotype-

independent density regulation followed by density-independent viability selection, with census 

size measured prior to both events. In the more general case where selection is also density 

dependent, demographic fluctuations caused by stochastic fluctuations in the optimum feed back 

on evolution, and the variance of these fluctuations determines the ESS life history, over a 

continuum from r- to K-strategies (Engen et al. 2013; Lande et al. 2009). 

The evolutionary dynamics can be analyzed most straightforwardly by assuming a normally 

distributed trait, with mean z and phenotypic variance P, as is common practice for polygenic 

quantitative traits (Falconer and MacKay 1996; Lynch and Walsh 1998). The mean 

‘evolutionary’ fitness then is 2 2exp( ( ) / 2)W S S zω θ= − − , with 2 1( )S Pω −= +  the strength of 

stabilizing selection, which is assumed small. The response to selection by the mean phenotype 

over one generation is ( )z GS z θ∆ = − − , with G the additive genetic variance of the trait (Lande 

1976). Such a model has previously yielded analytical results for the expected long-term fitness 

and evolution of a population in a stochastic environment (Bürger and Lynch 1995; Chevin 

2013; Lande and Shannon 1996; Lynch and Lande 1993), assuming a constant additive genetic 

variance. We will use the same assumptions here to derive more general analytical results about 
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the complete distribution of fitness and population size. The robustness of our assumptions will 

then be investigated using individual-based simulations.  

It is convenient to express the demographic recursions on the logarithmic scale (Chevin and 

Lande 2010; Lande et al. 2003). Writing lnn N= , the basic recursion 1t tN RN+ =  leads to 

2 2
1

1[1 ( ) / ( )] ln(1 / ) ( )
2 2t t m t m

Sn n r g N g K P zω θ+ − = − − + − − ,   (2)  

with lnm mr R= . Most of our analytical results rely on an approximation of weak density 

dependence ( ( ) / ( ) 1t mg N g K << ), which is valid for mN K<< at all times. In practice, this will 

be a good approximation when a population colonizes a previously empty patch, or when 

substantial maladaptation causes the population to remain well under the carrying capacity for 

large amounts of time, as in the scenario of evolutionary rescue we analyze below. How well this 

approximation performs also depends on the form of density dependence, as we will also 

investigate.  

Neglecting density dependence, the population dynamics on the log scale becomes 

0 1( )
2t m V t
Sn n r L t Q −= + − − ,     (3)  

where  2

0

t

t k
k

Q x
=

= ∑ , and k k kx z θ= −  is the deviation of the mean phenotype from the optimum at 

time k. The term 2 2ln(1 / ) / 2 / (2 )VL P Pω ω= + ≈  in eq. (3) (where the approximation is under 

weak stabilizing selection) is the variance load, which accounts for the fact that mean fitness is 

always below its maximum in a population with phenotypic variance, because some phenotypes 

deviate from the optimum even when the mean phenotype does not (e.g., Bürger and Lynch 

1995; Lynch and Lande 1993). The third term on the right hand side is the cumulative lag load, 

caused by maladaptation of the mean phenotype (deviations from the optimum) across 

generations. This cumulative lag load will be our main focus here, as it results from the interplay 

between environmentally induced changes in the optimum and tracking of this optimum by the 

mean phenotype through genetic evolution.  
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Environmental fluctuations 
We focus on a stochastic environment that is temporally autocorrelated. More specifically, we 

assume that the optimum follows an autoregressive process of order 1 (AR1), such that the 

environment at a given time step tends to resemble that in the previous time step, with a degree 

of resemblance - and hence of environmental predictability - controlled by a parameter that tunes 

the amount of autocorrelation. Such a model, which was previously investigated in related 

evolutionary models (Charlesworth 1993; Chevin 2013; Lande and Shannon 1996; Tufto 2015), 

causes a geometric decrease with time of autocorrelation in the optimum phenotype. Although 

more complex forms of autocorrelation could also have been considered, and have been 

documented for environmental variables (Halley 1996; Vasseur and Yodzis 2004), they may not 

be empirically detectable for fluctuations of an optimum phenotype, while an AR1 in the 

optimum has already been detected and parameterized (Chevin et al. 2015).  

In this context, it has been shown previously (e.g., Chevin 2013; Lande and Shannon 1996; 

Lynch and Lande 1993) that both the mean phenotype z  and the deviation from the optimum 

( )x z θ= −  follow stationary Gaussian processes. We introduce the vector tx , whose elements 

are deviations from optimum kx  (ordered chronologically) from time 0 to time t (inclusive). 

Vector tx  is thus a multivariate Gaussian random variable of length 1t + , with mean tµ  and 

variance-covariance matrix tΧ . Hence for any 0t ≥ , T
t t tQ = x x  (with T denoting vector or matrix 

transposition) is a quadratic form in Gaussian vectors, a scalar random variable whose 

distribution is well characterized, notably through all its moments (Mathai and Provost 1992). In 

particular, we have for the mean and variance (Mathai and Provost 1992) 

E( ) ( )T
t t t tQ tr= +μ μ X     (4a) 

2V( ) 4 2 ( )T
t t t t tQ tr= +μ X μ X ,    (4b) 

where tr() is the trace of a matrix, the sum of its diagonal elements (or of its eigenvalues).  

Because we assume stationarity for the stochastic component of variation in the optimum 

and for deviations of the mean phenotype from this optimum, the stochastic variance of xt is the 

same for all t, such that all diagonal elements of tΧ  are equal to 2
xσ . We can thus work with the 

scaled vector 1
t x tσ −=y x  , whose covariance matrix 2

t x tσ −=Y Χ  is the autocorrelation matrix of 
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tx . Hence, all diagonal elements of tY  are 1, while any off-diagonal element ( , )tY i j  with i j≠

is the temporal autocorrelation of deviations from the optimum over time lag |i-j|. This entails 

that ( ) 1ttr t= +Y , and hence 

 2( ) ( 1)t xtr tσ= +Χ .     (5a) 

We also have 2 4 2
t x tσ=Χ Y , and denoting as iλ  the ith eigenvalue of tY , it is easily shown by 

diagonalization that 2 2 2( ) ( 1)E( )t itr tλ λ= = +∑Y . Furthermore E( ) 1λ =  (since all diagonal 

elements are 1), so for large enough t (such that 1t t+ ≈ ), we may also write 2
,E( ) 1 V tλλ = + , 

where ,V tλ  is the variance of iλ , leading to  

 2 4
,( ) ( 1)(1 V )t x ttr t λσ= + +Χ .     (5b) 

Furthermore, since the trace of a matrix product is the sum of its term-by-term products, we also 

have 

2 4 2 4 2

0 1,
( ) 1 2 ( 1)[1 2E ( ) ]

t t

t x ij x i j ij
i j i

tr t Y t Y tσ σ ≠
= = +

 
= + + = + + 

 
∑ ∑Χ .  (5c) 

Comparison of eqs (5b) and (5c) shows that the variance in eigenvalues of tY  equals twice the 

mean squared off-diagonal element of tY , multiplied by t. This shows that the larger the 

autocorrelation in maladaptation (in absolute value), the larger squared off-diagonal elements in 

tY , and hence the larger ,V tλ  and 2( )ttr Χ  for a given time t.  

We also consider the situation where a deterministic forcing causes the mean optimum  to 

change over time, but the stochastic component of environmental variation in the optimum 

remains unchanged, that is, deviations of the optimum phenotype from its current mean retain 

their stationary distribution (as in Chevin 2013; Lynch and Lande 1993). This allows us to 

investigate how environmental stochasticity affects the outcome of evolutionary rescue following 

a major environmental change causing an abrupt shift in the average optimum.  

Results 
Our main goal is to find the distribution of population size over time, conditional on knowledge 

of the initial population size N0. This is relevant to any empirical situation (either experimental or 
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in the wild) where the population size/density is censused or estimated at time 0, and the aim is 

to predict the future fate of the population. This means that the initial distribution of population 

size is a spike at N0 (technically speaking, a Dirac delta), and then expands over time because of 

environmental stochasticity causing uncertainty in future population sizes. We compare our 

analytical results to population- and individual-based simulations (see Appendix for details of the 

simulation method). The former allows testing precise predictions of the model with a high level 

of replication, under the assumption that all stochasticity originates from the environment (i.e., 

no genetic drift or demographic stochasticity). The latter allows investigating other sources of 

stochasticity not accounted for in our analytical treatment (genetic drift and demographic 

stochasticity).  

Density independent population dynamics 

Distribution of population size at time t 

Under density independent growth (eq. 3), the expected population size under a fluctuating 

optimum is, from eqs (3-5), 
1

2 2
0

0
E( ) ( ) E[( ) ]

2

t

t m V k x
k

Sn n r L t z tθ σ
−

=

 = + − − − + 
 
∑    (6a) 

Eq. (6a) shows that the expected population size (on the log scale) is reduced (beyond the effect 

of the variance load VL ) by (i) any deterministic forcing (such as a trend or a sudden shift) 

causing non-zero phenotypic maladaptation on average (first term, obtained by expanding the 

quadratic form for the mean of the process); (ii) stochastic fluctuations in the optimum causing 

variance in phenotypic maladaptation (second term). This second effect, which arises because of 

the negative curvature of the fitness landscape close to an optimum phenotype (just like the 

variance load), reiterates findings from previous studies of evolutionary demography (Bürger and 

Lynch 1995; Lande and Shannon 1996; Lynch and Lande 1993).  

An important quantity that was not derived in previous theory is the variance in population 

sizes among replicates, which quantifies the extent to which environmental stochasticity in the 

optimum translates into randomness in population dynamic trajectories. For a given expected 

population size, larger variance makes it more likely that some stochastic paths will lead to 

populations with very low size, and thus high extinction risk. From eqs. (3-5) the variance in log-

population size at time t is  
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, 12 2 4
1 1 1

1 V
V( )

2
tT

t x t t t xn S tλσ σ−
− − −

+ 
= + 

 
μ Y μ ,   (6b)  

where 1t−μ  is the vector of expected (deterministic) deviations from the optimum up to time t – 

1, 1t−Y  is the matrix of autocorrelation of deviations from optimum between different 

generations, and , 1V tλ −  is the variance of eigenvalues of this matrix (when t is not much larger 

than 1, the term , 11 V tλ −+ should be replaced by the more accurate 2E( )λ  in equation 6b and 

others below). Equation (6b) offers several useful insights. First, the expected phenotypic 

maladaptation 1t−μ  has an effect on the variance of population size (first term on right-hand 

side). This implies that a deterministic trend in the optimum may cause the variability in 

population dynamic trajectories to increase. Second, all else being equal, the randomness in 

population dynamics is larger when maladaptation is more autocorrelated in time (second term 

on right-hand side). This occurs because the variance , 1V tλ −  of eigenvalues in eq. (6b) is larger 

when temporal autocorrelation of maladaptation (off-diagonal elements of 1t−Y ) have larger 

absolute values (below eq. 5c).  

All other moments of the distribution of the log-population size n can be retrieved by 

applying the theory of quadratic forms in random vectors (Mathai and Provost 1992) to eq. (3). 

However, rather than providing here the general formula for moments of n, we instead use an 

approximation for the whole distribution. This approximation relies on the fact that, in the 

absence of temporal autocorrelation in phenotypic maladaptation, the quadratic form 1tQ −  in eq. 

(3) is a sum of t squared independent Gaussian variables with same variance 2
xσ  but different 

means. We can thus write 2 2
1 1,t x t qQ σ χ− −= , where 2

,t qχ  is a non-central chi-square variable with t 

degrees of freedom and non-centrality parameter 2
1 1 /T

t t xq σ− −= μ μ . With autocorrelation in 

maladaptation, Y is no longer diagonal but still positive semi-definite, so 1tQ −  is the sum of 

squared non-independent Gaussian variables (again with same variance 2
xσ ). However, there is 

always a transformed space where 1tQ −  can be written as a sum of independent squared Gaussian 

variables but with different variances, i.e., a weighted sum of non-central chi-square variables 

with 1 degree of freedom (Mathai & Provost 1992). Because a chi-square distribution is a special 
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case of gamma distribution, a natural choice to approximate the distribution of 1tQ − (and thus of 

nt) in the general case is a gamma distribution (as used by Martin and Lenormand 2006b in a 

different context that also involved Gaussian stabilizing selection). This distribution has just two 

parameters, a shape parameter κ  and scale parameter ν , and has mean E[ ]Q κν=  and variance 

2V[ ]Q κν= . We can thus define the parameters of the gamma distribution from the first two 

moments, namely 2E[ ] / V[ ]Q Qκ =   and V[ ] / E[ ]Q Qν = .  

Using eqs (4-5), we can then write the probability density function of log population size at 

time t under density-independent population growth as 

, 0( ) ( ( ) )
t tt t m V tf n n r L t nκ nγ= + − −      (7) 

where ,κ νγ  is the probability density of a gamma variable with shape parameter κ  and scale 

parameter ν . Note that the minus sign before tn  in the expression for ( )t tf n  indicates that the 

gamma distribution for tn is reversed. The parameters of this gamma distribution follow from the 

dependence of tn on 1tQ −  (eq. 3), yielding 

2
1

1

E( )
V( )

t
t

t

Q
Q

κ −

−

=       (8a) 

1

1

V( )
2 E( )

t
t

t

QS
Q

ν −

−

=  

where the moments of Q are provided in eqs. (4-5). In particular, under purely stochastic 

variation in the environment (no deterministic change in the optimum, 0t =μ  for all t), the shape 

and scale parameters of the gamma distribution in eq. (7) are simply  

*

, 12(1 V )t
t

t

λ

κ
−

=
+

     (8b)  

* 2
, 1(1 V )t x tS λν σ −= + .   

Equations (7-8) are among our main result. They indicate that, when stochasticity in 

population dynamics is caused by random fluctuations of an optimum phenotype in the form of a 

Gaussian process, the distribution of log population size under density-independent growth can 

be approximated by a displaced and reversed gamma distribution, which is fully characterized by 

its scale and shape parameters. This has several implications, which contrast with the commonly 
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assumed log-normal distribution for multiplicative growth rates, leading to normally distributed 

log-population size under density independent growth (Lande et al. 2003 and references therein). 

First, the distribution in eq. (7) is right-bounded, since no population can grow faster than one 

where the mean phenotype is always at the optimum, for which 0 max( )t Vn n r L t= + − . Second, the 

distribution of tn  is skewed to the left (since it is a reversed gamma), that is, it is asymmetric 

towards lower population sizes. This is particularly important considering that low population 

sizes are what matters most for conservation purposes. In more quantitative terms, the skewness 

parameter (third moment scaled by the standard deviation to the power 3) of a gamma 

distribution is 2 / κ . Under purely stochastic variation in the optimum ( 0=μ ), the skewness of 

the distribution is thus , 18[1 V ] /t tλ −− +  (the minus sign is because the gamma is reversed in eq. 

7). Therefore, the distribution of population size is more skewed when maladaptation is more 

strongly autocorrelated between generations (larger , 1V tλ − ). This asymmetry in the distribution of 

tn  decrease with time, but slowly (as 1/2t− ), implying that population sizes well below the 

expectation are likely to occur over a substantial time, even when starting from a large 

population. Eventually, as time (and thus the shape parameter of the gamma) tends to infinity, 

the distribution of tn  tends to a Gaussian (gamma with large shape parameter), as a consequence 

of the central limit theorem.  

Figure 1 shows how the prediction in eqs (6-8) matches the distribution of the log 

population size under density-independent growth, in population-based simulations under a 

stochastic optimum. As a comparison, we have also plotted the distribution in a 

phenomenological model where the multiplicative growth rate is assumed to be log-normally 

distributed with same mean and variance, leading to a Gaussian distribution of log-population 

size. The distribution of log population size under a fluctuating optimum phenotype (conditional 

on the initial condition n0) is very skewed, and differs markedly from a Gaussian in the early 

generations (upper panels). Furthermore, in this example where autocorrelation in the optimum is 

not negligible ( 0.5ρ = ), the skewness in the population size distribution is maintained even after 

50 generations of eco-evolutionary dynamics (a large time in typical population dynamic 

studies). In particular, the tail on the left remains fatter than for Gaussian, and this increased 



15 
 

probability of low population size is well captured by our gamma approximation (inset in lower 

panel of Figure 1). 

 Stochastic dynamics of maladaptation  

The distribution of population size in eqs (6-7) crucially depends on the temporal variance and 

autocorrelation of deviations of the mean phenotype from the optimum. In the absence of 

additive genetic variance for the trait, these parameters are entirely determined by patterns of 

environmental fluctuations in the optimum, and our model then directly compares to stochastic 

population dynamic models without evolution (as reviewed in Lande et al. 2003). In contrast, 

with additive genetic variance in the trait, maladaptation at any time depends on the interplay 

between environmentally driven changes in the optimum and evolutionary responses to 

fluctuating selection. We can then use results from previous theory of evolution of quantitative 

traits in stochastic environments to retrieve quantities of interest. In particular, Chevin and Haller 

(2014) derived the variance and autocorrelation function of directional selection gradients on a 

quantitative trait under random fluctuations of an optimum phenotype, following different types 

of Gaussian processes (formulas in their Table 1). Since the directional selection gradient is the 

mean deviation from the optimum multiplied by a factor S (the strength of stabilizing selection), 

the variance in maladaptation 2
xσ  is simply obtained by dividing the variance of selection 

gradients by S2, while the autocorrelation in maladaptation that enters matrix Y is the same as the 

autocorrelation of selection gradients. In particular, for an autoregressive optimum (AR1), the 

variance of deviations from the optimum is 
2

2

1x SGT
θσσ =

+
,      (9a) 

where 2
θσ  is the stationary variance of the optimum phenotype, and 1/ lnT ρ= −  is a 

characteristic time scale of autocorrelation in the optimum ( ρ  is the autocorrelation of the 

optimum over one time step). The autocorrelation of deviations from optimum between 

generations i and j is  
| |/ | |

( , )
1

i j T SG i j

t
e SGTeY i j

SGT

− − − −−
=

−
.    (9b) 

As noted by Chevin & Haller (2014), this autocorrelation function can be approximated at small 

times ( | |i j−  smaller than T  and 1/ SG ) by  
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( 1/ )| | | |( , ) SG T i j i j
tY i j e U− + − −≈ ≈ ,     (9c) 

where (1 )U SG ρ= − . Values of 2
xσ  and Y under other forms of fluctuations in the optimum 

(white noise, random walk) can be retrieved similarly from Table 2 in Chevin and Haller (2014). 

Equations (9a,b) show that the environmental variance and autocorrelation in the optimum 

do not directly translate into variance and autocorrelation in maladaptation (which ultimately 

affect population size, eq. 6-7). For instance, stronger positive autocorrelation in the optimum 

allows for better adaptive tracking through genetic evolution (smaller 2
xσ  for larger T ), which 

reduces the variance of deviations from the optimum. This effect may well dominate the effect 

of increased autocorrelation of x at larger T , and thus lead to decreased rather than increased 

variance of nt under stronger autocorrelation in the optimum (eq. 6a).  

Positive autocorrelation in the optimum thus has antagonistic effects on the population 

dynamics. On the one hand, by allowing for better adaptive tracking (in the presence of genetic 

variance), it reduces the variance in mismatch with the optimum, thus decreasing both the mean 

and variance of the cumulative lag load (eq. 6a,b), and hence extinction risk. On the other hand, 

autocorrelation in the optimum generates autocorrelation in deviations from the optimum (more 

so when genetic variance is lower, Chevin and Haller 2014), which increases the variance among 

stochastic population dynamic paths (eq. 6b), thus increasing extinction risk. 

Evolutionary rescue with environmental stochasticity 

We now apply our framework to analyze evolutionary rescue mediated by evolution of a 

polygenic quantitative trait in the face of a major abrupt environmental shift combined with 

stochastic environmental fluctuations in the optimum. This major environmental shift, beyond 

the usual range of random fluctuations, is modeled as a displacement of the mean optimum by an 

amount δ  at time 0. Following classical quantitative genetic results based on recursions, 

assuming constant genetic variance, of the simple evolutionary equation above for z∆  

(Gomulkiewicz and Holt 1995; Lande 1976), the expected deviation from the optimum decays 

geometrically over time, E( ) (1 )t
tx GSδ= − . As the E( )tx  are the components of the vector μ , 

we have   
1

2 2 2
1 1

0
(1 ) [1 (1 ) ]

(2 )

t
T k t
t t

k
GS GS

GS GS
δδ

−

− −
=

= − = − −
−∑μ μ ,   (10) 
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which may be approximated as [1 exp(2 )] / (2 )GSt GSδ −  under weak stabilizing selection (small 

GS). Figure 2A shows the evolutionary dynamics for the expected mean phenotype (red line, 

from eq. 10), and for individual stochastic trajectories of the mean phenotype (black lines), under 

an optimum with a mean that is shifted by 4δ =  at generation 0, and fluctuates around this new 

mean with a given variance an autocorrelation. Combining the expected trajectory in eq. (10) 

with the dynamics of the distribution of population size in eqs (6-7) provides us with the 

distribution of population size during the process of ER in a stochastic environment.  

Figure 2B shows the population dynamics for 500 simulated populations (gray lines), 

together with quantile envelopes (black lines) based on the predicted distribution of log 

population size in eqs. 6-7. This illustrates two detrimental consequences of environmental 

stochasticity for evolutionary rescue. First, random fluctuations in the optimum reduce the 

expected growth rate of the population (eq. 6a), causing the expected population size to be 

smaller than in a model without a fluctuating optimum (compare blue and red lines). And 

second, environmental stochasticity causes variance in population sizes at any time, because of 

chance in the series of environments encountered by each eco-evolutionary path. Importantly, 

because of the exponential nature of population growth, this effect of environmental stochasticity 

can cause population sizes to span several orders of magnitude at any given time (as in our 

example), and in particular at the critical time for evolutionary rescue when population size 

reaches its minimum (towards generation 30 in Figure 2). The variance in population dynamics 

caused by the fluctuating optimum may thus contribute substantially to the probability of 

extinction and ER.  

Our analysis can provide metrics for extinction risk during the process of ER. We cannot 

derive an actual probability of extinction because we neglect demographic stochasticity caused 

by finite population size, and because our quantitative genetic assumptions are not valid at very 

low population size. At any rate, it can be argued that below a critical population size (say, a few 

tens or hundreds of individuals), evolutionary processes such as adaptation to a changing 

environment are not the most crucial determinants of population persistence, and purely 

demographic phenomena such as Allee effects, demographic stochasticity or habitat 

fragmentation become the dominant factors of extinction risk (Lande 1988). Following earlier 

studies (Ashander et al. 2016 ; Chevin and Lande 2010; Gomulkiewicz and Holt 1995), we thus 

focus instead on the probability that the population decays below a critical size Nc, below which 
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extinction risk is assumed to be high because of these purely demographic factors. Using the 

analytical distribution in eq. (7), the critical probability that the population size is below Nc is  

 
1

0( ,[ ( ) ln ] )
( )

m V c
crit

n r L t NP κ n
κ

−Γ + − −
=

Γ
,     (11) 

where ()Γ  and (, )Γ  are Euler’s gamma function and incomplete gamma function, respectively. 

We suggest that max(Pcrit), the maximum critical probability over time, is a good predictor of 

extinction risk; conversely 1 max( )critP−  should be a good predictor of the probability of 

evolutionary rescue. 

Figure 3 shows how Pcrit changes over time in scenarios of evolutionary rescue with a 

stochastic optimum, comparing the analytical prediction in eq. (11) to population-based 

simulations. Figure 3A shows that the variance in the optimum has a dramatic impact on the 

probability of ER. In the context modeled in this figure, Pcrit would remain vanishingly small in 

the absence of fluctuations in the optimum, such that a purely deterministic model would predict 

certain ER (no extinction risk), but changing the variance in the optimum strongly impacts the 

maximum extinction risk Pcrit (and to a lesser extent, the time at which this maximum Pcrit is 

encountered). For instance, the maximum  Pcrit is almost doubled as the variance in optimum 

changes from 1 to 4 (compare green and red lines). Note that the range of fluctuations we 

considered is moderate: the expected load (in Malthusian fitness per generation) caused by the 

random optimum, 2 / 2xSσ , only varied from 0.0047  to 0.0748 .  

Figure 3B shows that the autocorrelation in the optimum has a more moderate impact on 

extinction risk during ER. Higher autocorrelation results in slightly higher maximum Pcrit, but 

mostly increases the duration over which Pcrit remains large. This can increase extinction risk, by 

exposing the populations to hazardous sizes for longer. Both effects of environmental 

autocorrelation on Pcrit during ER result mostly from the higher variance in population size under 

higher autocorrelation in the optimum (and in deviations from the optimum, see eq. 9b). 

Including density dependence 
So far our analysis has assumed density-independent population growth. Density-dependent 

regulation resulting from intraspecific antagonistic interactions (e.g. resource competition) 

further reduces vital rates and population size, beyond the effect of maladaptation. The extent to 

which this effect is mostly restricted to large population sizes near the carrying capacity depends 
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on the shape of the density dependence function g(N) in eqs. (1-2). At one extreme, models of 

ceiling density dependence (as used by e.g. Lande 1993) assume that competition only exists at 

carrying capacity, while population growth is unregulated for any population size below carrying 

capacity (that is, competition strength is a step function of population size/density). At the 

opposite end of the spectrum, competition strength decays only logarithmically with decreasing 

population size (Gompertz model). In between these extremes, a range of situations can be 

explored using the so called theta-logistic model of Gilpin and Ayala (1973), for which 

( )g N N Θ∝  in eq. (2). This model includes the logistic model when 1Θ = , tends to the ceiling 

model when 1Θ >> , and to the Gompertz model when 0Θ →  (for further discussion, see Lande 

et al 2003, or Chevin and Lande 2010 in the context of evolutionary rescue). Note that here, as in 

Chevin and Lande (2010), we use a discrete-time version of the theta-logistic model, which for 

1Θ =  is the Ricker model (discrete-time analog to the logistic model). 

Transient dynamics: stochastic evolutionary rescue with density dependence 

During a transient process such as evolutionary rescue, density dependence reduces the 

population size below what is predicted in a density-independent model (e.g., Chevin and Lande 

2010). Including density dependence substantially complicates the analysis of the transient 

population dynamics analyzed above. However, we can use a heuristic argument to understand 

the impact of density dependence on extinction risk. This argument relies on the fact that the 

lower tail of the distribution of population size consists of stochastic paths that experienced a 

series of bad environments, causing them to decline more rapidly than average. They should thus 

have experienced weaker-than-average density-dependent competition in their demographic 

history. Therefore in populations that undergo density-dependent growth, predictions that assume 

density-independence (as we derived above) should apply better to the lower tail than to the rest 

of the distribution of log population size. This is especially true when the expected population 

size is below carrying capacity because of stress, as occurs during ER. However, the extent to 

which this argument holds should depend on the form of density dependence, which determines 

whether the demographic impact of competition is limited to population sizes near the carrying 

capacity. 

Figure 4 shows how extinction risk during ER, as quantified by the maximum Pcrit over 

time, depends on the form of density dependence. Note that with population dynamics defined by 
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equation (2), the equilibrium population size in a constant environment does not equal mK , since 

it is reduced by the variance load. In a stochastic environment, the expected population size is 

further reduced by the expected stochastic load 2 / 2xSσ . To ensure that the equilibrium 

population size was the same when varying the form of the density dependence, we set the 

equilibrium (and initial) population size to 10000K = , and then rescaled the carrying capacity of 

a well-adapted population to 2 1/[( / 2) / ]m m V x mK K r L S rσ Θ= − − , following Chevin and Lande 

(2010). Consistent with our heuristic argument, extinction risk quantified by the maximum Pcrit, 

increases as the exponent Θ of the density regulation function decreases (Figure 4). Indeed as the 

exponent Θ  increases, density dependence becomes more and more narrowly restricted to 

population sizes near the carrying capacity, and Pcrit thus decreases towards its density-

independent value predicted by our analytical results. In the limit of ceiling regulation, extinction 

risk is very well predicted by our analytical Pcrit. In this case, the distribution of population size 

is similar to ( )tf n  in eq. (7), but truncated at ln(K). Hence this form of density dependence will 

not affect the extinction probability, which concerns the other extremum of the distribution.  

Long-term stationary distribution 

In the long run, if the expected growth rate of a population is positive, population size will reach 

a stationary distribution close to the carrying capacity, with breadth determined by the magnitude 

of environmental fluctuations in population growth rate relative to the strength of density 

dependence. Lande et al. (2003) have derived this distribution analytically under Gompertz 

regulation (linear density dependence on the log scale), in a phenomenological model where the 

distribution of population growth rates is postulated a priori, and assuming no autocorrelation in 

population growth rates. We here extend these results to the situation where stochasticity in 

population growth rate is generated by evolutionary dynamics under a fluctuating optimum 

phenotype, with arbitrary autocorrelation of this optimum. In the Appendix, we show that the 

expected log population size under Gompertz regulation is  

E( ) lnn K= , with 
2 /21 v x

m

L S
r

mK K
σ+

−

=  .   (12a) 

Equation (12a) shows that the equilibrium mean population size under Gompertz regulation is 

reduced by the variance in deviations from the fluctuating optimum, regardless of the 

autocorrelation of these deviations. The stationary variance is shown in the Appendix to be 
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≈
− −

+ − −
,    (12b) 

where / lnm mr Kϕ =  quantifies the strength of density dependence , and (1 )U SG ρ= − , as 

defined below eq. (9c) (recall that ρ is the autocorrelation of the optimum phenotype over one 

generation). The stationary distribution of log population is again well approximated by a 

displaced gamma,  

*
*, *( ) m vr Lf n nκ nγ

ϕ
 − 

= − 
 

     (13a) 

where *, *κ νγ  is the probability density of a gamma variable with shape and scale parameter *κ  

and *ν , with 
2

*
2

[1 ( 1) ](2 )
1 ( 12 )

1 U
U

φ φ φ
φ

κ + − −
− −

= ,    (13b) 

and * 2 */ (2 )xSν σ ϕκ= . Importantly, the shape parameter of the distribution of population size 

does not increase indefinitely over time here, contrary to the case of density-independent growth. 

Instead, it reaches a limit that depends on the strength of density dependence, quantified by φ . 

The distribution of log-population size can therefore remain skewed downwards indefinitely. 

The predicted distribution in eqs (13a,b) is compared to population-based simulations in 

figure 5, showing that the approximation performs well under our assumption of weak stabilizing 

selection. As predicted by eq. (13b), the shape parameter becomes smaller (more skewed 

distribution) as the strength of density dependence increases. This occurs because the extent to 

which the current population size is influenced by past maladaptation now depends on the 

strength of density dependence (weighted sum of x² in eq. A2 of the Appendix). In the limit of 

very weak density dependence ( 0ϕ → ), all squared deviations from optimum weigh equally, 

regardless of when they occurred, and we recover a model similar to the density-independent one 

(eq. 3), where the shape of the gamma distribution increases with time, thus tending towards 

normality for the asymptotic stationary distribution (but this asymptotic distribution is reached 

over a very long time, proportional to 1/ ϕ ). In the opposite limit of very strong density 

dependence ( 1ϕ → ), all memory of past population dynamics is erased in each generation, and 

only maladaptation in the previous generation matters, resulting in a very skewed stationary 
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gamma distribution with small shape parameter (similar to a chi-square with 1 degree of 

freedom). More generally with density-dependent regulation, the asymptotic distribution of 

population size is always under stronger influence from more recent maladaptation, but more so 

under stronger density dependence (larger ϕ ), so all things being equal the distribution is more 

skewed under stronger density dependence.  Furthermore, the distributions in Figure 5 are more 

skewed under higher autocorrelation of the optimum (and deviations from the optimum). The 

reason is that with stronger autocorrelation, maladaptation is more similar across years, so the 

effective number of years that are summed is smaller (in the same way as pseudo-replication 

reduces the effective sample size in statistical analysis), resulting in a gamma distribution with 

smaller shape parameter. 

The autocorrelation of this stationary distribution, which determines the extent to which 

population size variation is predictable across generations, also can be derived in this model. In 

the Appendix, we show that the autocorrelation of n for populations τ generations apart is 
2(1 )( )n

Uτ τξ φ ψρ τ
ξ ψ

− +
=

+
,      (14) 

where 4( 1)( 1)Uξ φ= − −  and 2 ( 2)Uψ φ φ= − . Equation (14) shows that under a fluctuating 

optimum phenotype and Gompertz density regulation, the time scale of autocorrelation in log 

population size is smaller when density dependence is stronger (large φ ), when the 

autocorrelation in the optimum is weak, and/or the potential for responses to selection is large 

(that is, (1 )U SG ρ= − is small). The good correspondence between the prediction in eq. (14) and 

population-based simulations with constant variance is shown in the insets of Fig 5. Note that a 

large number of generations are needed to accurately estimate the temporal autocorrelation. 

Robustness to assumptions and individual-based simulations 
Finally, we used individual-based simulations with explicit genetics (see the Appendix for 

simulation method), to investigate the robustness of some of our results to violations of the 

simplifying assumptions that were made above in order to get analytical results. Specifically, our 

analytical results neglected all sources of stochasticity other than the effect of the randomly 

changing environment, namely: (i) random genetic drift in the mean and variance of the trait 

(Bürger and Lande 1994), and (ii) demographic stochasticity coming from the randomness in 

survival and fecundity not attributable to environmental variation (Lande et al. 2003). Random 
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genetic drift of the mean phenotype, assuming a constant genetic variance, is straightforward to 

include here, simply by replacing formulas for the variance and autocorrelation of deviations 

from the optimum (eqs 9a,b) by their equivalent accounting for drift (see Table 1 in Chevin & 

Haller 2014). In contrast, there is no simple prediction for the variance and autocorrelation of the 

additive genetic variance G under genetic drift and stabilizing selection. This is important to 

investigate, as the variance in G causes stochasticity in responses to selection even in a constant 

environment, which should amplify the variance in fitness, and ultimately in population size, 

relative to our prediction in eq. (6b). 

Figure 6A shows that the mean log-population size across replicate individual-based 

simulations of density-independent growth (far below the ceiling carrying capacity) is well 

predicted by our analytical predictions in eq. (6A), replacing the constant genetic variance by its 

expectation from the house-of-cards approximation, GHC = 0.5. The autocorrelation in the 

optimum phenotype has highly non-linear effects on the expected log population size: curves for 

0.1ρ =  and 0.5ρ =  are barely distinguishable, while they both differ from that for 0.9ρ = . Our 

analytical results also perform well for the variance in lnN, as shown by Fig 6B. This indicates 

that the variance caused by other sources of stochasticity (fluctuations in G, demographic 

stochasticity) does not strongly alter our predictions, in conditions where drift is not prevalent, 

and when the trait is determined by a large number of loci. Comparison of Figure 6B with Fig 

6A further shows that autocorrelation in the optimum phenotype has a much stronger effect on 

the variance than it has on the expectation of lnN.  

We also examined skewness of lnN (Fig. 6C), and found that the quantitative agreement 

with predictions is not as good as for the mean and variance. This was somewhat anticipated, 

because (i) estimation of the third moment requires larger sample size, which were difficult to 

achieve with individual-based simulations; (ii) we did not start from a constant population size 

(as required for our predictions), but from a distribution skewed by the ceiling density 

dependence during the burn-in period; and (iii) the skewnesses from different processes (density-

dependent burn-in versus density-independent simulation) are not additive, so the effect of initial 

conditions is not removed by rescaling by lnN0 (contrary to the mean and variance). 

Nevertheless, the main features we describe analytically (based on the gamma approximation) 

were correctly found, with accuracy increasing in time past a few generations dominated by the 

influence of initial conditions. Specifically, the log-population sizes were skewed negatively, 
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with larger negative skew under higher autocorrelation in the optimum, and an absolute value 

that decreases with time (Fig. 6C).  

Discussion 

Summary of results 

Skewed abundance distribution 

We showed that when environmental stochasticity of population growth is caused by fluctuating 

selection in the form of a randomly changing optimum phenotype (as commonly modeled in 

evolutionary ecology), the distribution of population size on the log scale is well approximated 

by a reverse gamma distribution, with shape and scale that depend on the variance and 

autocorrelation of the optimum, and on genetic responses to selection. This distribution is 

skewed negatively, with an excess of low population sizes relative to a symmetric distribution 

with the same mean and variance. Phenomenological models of population dynamics often 

include environmental stochasticity by means of a normal distribution of Malthusian fitness (or 

correspondingly, a log-normal distribution of multiplicative fitness), which produces a normal 

distribution of the log population size (lognormal abundance distribution) in the contexts we 

investigated here (Lande et al. 2003). As shown in figure 1, the distribution of lnN conditional on 

initial size, describing multiple replicate populations starting from the same size (e.g. in 

laboratory experiments) or probabilistic projections for a single population with known size, can 

depart substantially from this normal prediction.  

The excess of low population sizes is transient under density-independent population 

growth, but may still make a large difference for extinction risk, in contexts where transient 

dynamics matter. One such situation of particular interest is evolutionary rescue, where an abrupt 

environmental stress (beyond the random fluctuations) causes a population to decline, and face 

extinction unless it evolves rapidly enough (Bell and Gonzalez 2009; Gomulkiewicz and Holt 

1995). Furthermore, we show analytically that a skewed stationary distribution is maintained 

asymptotically (in the long run) under Gompertz density dependence, while this form of density 

dependence would lead to a normal distribution of populations size under the phenomenological 

model of environmental stochasticity, and ignoring temporal autocorrelation (Lande et al. 2003). 

We also show that the skewness of the equilibrium distribution of population size increases with 
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increasing temporal autocorrelation in the optimum and strength of density dependence. The 

latter occurs because, under stronger density dependence, current population size is less 

influenced by the past history of maladaptation.  

Dual role of environmental autocorrelation 

Our analysis also highlights a dual role of temporal autocorrelation of the environment in driving 

the eco-evolutionary dynamics. On the one hand, when the optimum phenotype is more 

autocorrelated in time, it is tracked more closely by the evolutionary dynamics of the mean 

phenotype, thus reducing the expected lag load (Charlesworth 1993; Chevin 2013; Lande and 

Shannon 1996), and increasing the expected population size. But on the other hand, larger 

autocorrelation in the optimum causes higher stochastic variance in population dynamic paths 

(eq. 6b), which by itself can strongly increase extinction risk, because some populations may 

experience by chance a long series of bad years. The latter effect of autocorrelation of the 

optimum mirrors effects of autocorrelation of population growth rates previously described in 

phenomenological models of stochastic population dynamics (Johst and Wissel 1997; Laakso et 

al. 2003; Pike et al. 2004). However here, autocorrelation in fitness has a more complex 

dependence on environmental autocorrelation, since maladaptation also depends on evolutionary 

responses to selection.  

Stochasticity in evolutionary rescue 

Our results about evolutionary rescue (ER) following a major environmental shift show that 

environmental stochasticity can have a major detrimental impact on this process. First, random 

fluctuations in the optimum decrease the expected growth rate and population size (compare blue 

and black lines in figure 2B). And second, it causes stochastic variance in population size on the 

log scale, such that the population size can span several orders of magnitude (black quantile lines 

in figure 2B). Importantly, these effects act with equal strength in every generations (under 

stationary fluctuations), while the effect of the deterministic shift from the mean optimum 

decreases geometrically with time (figure 2A). As a consequence, when a deterministic shift in 

the optimum is combined with stochastic fluctuations, variance in the optimum strongly impacts 

extinction risk during ER, by increasing both the probability to reach a critically low population 

size, and the time spent near this low size (figure 3A). Autocorrelation in the optimum has a 

more moderate influence on ER as long as it remains at intermediate values, say, between 0.1 
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and 0.9 as in figure 3B, because this corresponds to moderate variation in the characteristic time 

of autocorrelation T = –ln(ρ)–1, which appears the evolutionary predictions in eqs. (9a,b). 

Overall, as randomness in the environment is probably ubiquitous in the wild (Vasseur and 

Yodzis 2004), and we show here that the stochastic component of fitness strongly impacts the 

outcome of ER (eq. 11, figures 3-5), any biological mechanism that may affect how 

environmental fluctuations translate into stochasticity in maladaptation and fitness, including 

phenotypic plasticity  (Ashander et al. 2016 ; Michel et al. 2014; Reed et al. 2013) and/or bet 

hedging (Tufto 2015), is likely to have a strong impact on evolutionary rescue. 

Robustness and generality  

Alternative sources of skewness 

Although the exact form of the distribution of population size we derive depends on the specific 

shape of the fitness function (Gaussian fitness peak), its most salient aspects are certainly robust 

to these assumptions. In particular, any fitness function with an optimum that changes with the 

environment is likely to lead to a distribution of population size that is bounded above by the 

cumulative growth rate of the optimum phenotype, and skewed negatively towards low 

population sizes. The same holds for tolerance curves representing fitness directly as a function 

of the environment (without measured traits under selection), which are typically concave, with 

an optimum environment where fitness is maximized. In fact, our results readily apply to such 

tolerance curves, as long as they can be approximated as Gaussian (or quadratic for Malthusian 

fitness) near the optimum environment (Chevin et al 2010 ; Lande 2014). It is important to note 

that density regulation can also cause skewness in the distribution of population size, especially 

in non-equilibrium situations where the population is expected to be well below carrying 

capacity, as occurs during evolutionary rescue (scenario underlying Figure 4). Density 

dependence also increases the skewness of the stationary distribution of population size around 

the carrying capacity under a fluctuating optimum (Figure 5). Investigating the relative 

contributions of density dependence versus a fluctuating optimum to skewness in the distribution 

of population size (say, across replicates of experimental evolution) thus requires controlling the 

strength of resource competition and other interactions contributing to density regulation. A 

skewed distribution of population size is more likely to be caused by fluctuations of an optimum 
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phenotype in populations that start at low size, where density-dependent competition can be 

neglected. 

Changes in genetic variance and strength of selection 

Our analytical predictions, despite assuming constant genetic variance, were matched reasonably 

well by individual-based simulations with explicit loci. Chevin & Haller (2014) similarly 

observed that the temporal distribution of selection gradients and deviations from the optimum in 

individual-based simulations are well captured by theory that assumes constant genetic variance. 

One of the reasons why the approximation performs well is because we modeled a rather large 

number of loci, and chose parameter values so as to yield realistic levels of heritability (h²  = 

1/3), mutational variance (Vm = 10-3 Ve), and per-gene mutation rates (10-4). These parameter 

values jointly lead to a moderate coefficient of variation of G over time (Bürger and Lande 

1994). Fewer loci, and/or lower genomic mutation rates, may lead to more stochasticity in 

genetic variance and the responses to selection, thus inflating the stochastic variance in 

population size relative to our predictions. However, this would also involve moving away from 

the context of a polygenic quantitative trait, such that other eco-evolutionary models (e.g. Martin 

et al. 2013) would be more appropriate anyway.  

 We also assumed weak stabilizing selection, consistent with the available data on 

measurements of selection (Chevin et al. 2015; Johnson and Barton 2005; Kingsolver et al. 

2001). Stronger stabilizing selection would not substantially alter our predictions, provided that 

the combination of selection strength with mutation rate and effects is such that the system 

allows for substantial genetic variance to be maintained (Johnson and Barton 2005), thus 

remaining within the realm of quantitative genetic theory. The continuous-time approximation 

underlying eq. (9), which requires weak stabilizing selection, can easily be replaced by a more 

accurate discrete-time version under stronger selection. 

Empirical relevance 
The parameters that enter the model can all be measured empirically, although some of them 

require large datasets. For instance, Chevin et al. (2015) recently showed that the variance and 

autocorrelation of an optimum phenotype in the form that is modeled here can be estimated from 

data on fitness and traits over time, using quadratic (Poisson) regression with a random effect on 

the slope. Estimating the additive genetic variance of a continuous trait based on the resemblance 
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between relatives is the main goal of quantitative genetics, and has been performed an enormous 

number of times in the laboratory and in the wild (reviewed by Charmantier et al. 2014; Falconer 

and MacKay 1996; Kruuk 2004; Lynch and Walsh 1998). The intrinsic rate of increase can be 

estimated from the individual vital rates using the Euler-Lotka equation (Kot 2001; Roff 2002), 

or from times series of population size starting at low density (Kot 2001). Time series of 

population sizes can also be used to measure the strength and functional form of density 

dependence (Coulson et al. 2008; Lebreton and Gimenez 2013).  

Even assuming that these parameters can be estimated accurately, confronting predictions 

based on these measurements to actual population dynamics in a stochastic environment requires 

a large number of replicate populations in controlled environments, making experimental 

evolution with short-lived organisms the ideal system. On the other hand, if most elements of the 

model have been measured with some confidence, they can still be used to make projections for 

the fate of a single population in the wild. The component of uncertainty in these predictions 

caused by the randomness in environmental fluctuations can be included explicitly using the 

stochastic variance of population size predicted by the model (eq. 6b).  

Conclusions 
We have derived a set of predictions for the stochastic population dynamics generated by a 

moving optimum phenotype, which is the most common way of modeling adaptation to a 

changing environment in evolutionary ecology. Our results can serve as a baseline for 

comparison to more phenomenological models, where variation in population growth is 

postulated a priori without an explicit underlying mechanism. Beyond finding results in contexts 

that parallel those from phenomenological models, we also extend them, notably by 

characterizing the stationary distribution under (Gompertz) density dependence with 

environmental autocorrelation. Our hope is that our predictions will stimulate new empirical 

work, notably experimental evolution in the laboratory, towards a better understanding of eco-

evolutionary dynamics in stochastic environments.  

Acknowledgements 
We thank L. Fouqueau for useful discussions and feedback, and R. Lande, S. R. Proulx and two 

anonymous reviewers for comments on this manuscript. L.-M. C and O. C. are supported by the 



29 
 

European Research Council (grant FluctEvol ERC-2015-STG-678140), and J. A. by the NSF 

IGERT program (J.A., DGE-0801430 to P.I. Strauss) and the Center for Population Biology at 

UC Davis.  

APPENDIX 

 Derivation of the moments of n under Gompertz regulation 
Under Gompertz regulation eq. (2) becomes 

( ) 2
1 1

2t t m v t
Sn n r L xϕ+ = − + − − .    (A1) 

The solution to this difference equation is (for 1t ≥ ) 
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which after summing the first geometric series becomes 
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Assuming 1 0ϕ< < , this leads asymptotically to  
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From eq. (A4), the asymptotic mean log population size under Gompertz regulation and a 

fluctuating optimum causing a stationary distribution of maladaptation x is 

( )
2 1

( 1)

0
E( ) lim 1

2

t
t jm v x

t j

r L Sn σ j
j

−
− +

→∞
=

 −
= − − 

 
∑ .   (A5) 

Summing the geometric series and taking the limit for large t leads to  
2 / 2E( ) m v xr L Sn σ

ϕ
− −

= ,      (A6) 

which leads to formula (12a) in the main text after replacing / lnm mr Kϕ = . The stationary 

variance of log population size is  
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which can also be written as 
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where Corr() denotes a correlation and we have used the fact that 2 4V( ) 2 xx σ=  because x is a 

centered normal variable. We also have 2 2 2 2Corr( , ) Corr( , )i j i j ijx x x x Y= = , and using the 

approximation (9c) in the main text, the term in the sum in (A8) becomes ( )
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Summing from 0 to 1t −  and taking the limit for large t yields, after some algebra,  
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Summing with the other term 1/ [ (2 )]ϕ ϕ−  produces the formula for the variance in the main 

text.  

The form of the distribution can be found by noting that, from eq. (A5), the stationary 

distribution of log population size in the long run under Gompertz regulation is proportional to a 

weighted sum of squared deviations from optimum in past generations, which is again well 

approximated by a gamma distribution under a Gaussian process for the optimum. The shape and 

scale of this gamma are found by matching moments of the quadratic form, as done for eq. (7). 

To find the autocorrelation of the stationary distribution, we start by writing, using eq. (A3),  
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where in the last line we have used the approximation (9c) for 2 2Corr( )i jx x . Because of the 

absolute value in (A10), computation of the sum above requires separation into three sums, A, B, 

and C, respectively for i j= , i j<  and i j> . Specifically, we have 
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Summing the geometric series, taking the limit for large t, and dividing by the variance yields, 

after some algebra, the formula in eq. (14) for the autocorrelation of log population size τ 

generations apart. 

Simulation methods 

Population-based simulations 
Population-based simulations consisted of recursions of the eco-evolutionary equations, whereby 

phenotypic change followed the standard ( )z GS z θ∆ = − −  assuming constant genetic variance, 

and population dynamics followed equation (1). We simulated a first-order autoregressive 

process (AR1) for the optimum phenotype with mean 0, variance 2
θσ , and autocorrelation ρ , by 

(i) drawing the optimum in the first generation from a Gaussian with mean 0 and variance 2
θσ , 

and (ii) drawing the optimum in each generation 0t >  as 2
1 1t t tuθ ρθ ρ−= + − , where tu is also 

drawn from a Gaussian with mean 0 and variance 2
θσ . The initial mean phenotype was assumed 

to have reached a stationary response to the randomly changing optimum, such that the 

stochastic variance of the mean phenotype, and its covariance with the optimum, both 

correspond to analytical predictions from earlier theory (Chevin and Haller 2014; Lande and 

Shannon 1996). Specifically, the stochastic variance of the mean phenotype and its covariance 

with the optimum both equal 2 / (1 )SGT SGTθσ + , where 1/ lnT ρ= −  (see also below), so the 

regression slope of z on θ  is , / (1 )zr SGT SGTθ = + . The initial mean phenotype was thus drawn 

as 0 , 0 ,1z zz r rθ θθ υ= + − , where υ  was drawn from a normal distribution with mean 0 and 

variance 2 / (1 )SGT SGTθσ + . 
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Individual-based simulations 
Individual-based simulations were performed with the program Nemo (Guillaume and 

Rougemont 2006). We considered a panmictic population of hermaphroditic individuals (mating 

system 6 in Nemo), with non-overlapping generations. We modeled a single quantitative trait 

under the control of 50=  unlinked and additive diploid loci, such that the phenotype of an 

individual was given by the sum of allelic effects at each locus (genotypic value), plus a random 

environmental component drawn from a standard Gaussian distribution with variance Ve = 1. 

Mutations occurred at rate u = 10-4 per haploid locus, and caused the allelic value to be 

incremented by an amount α  drawn from a Gaussian distribution, with mean zero and variance 

Vα = 0.1. These parameter values were chosen so as to yield realistic values (as reviewed by, 

e.g., Johnson and Barton 2005) for the mutational variance ( 32 10m eV uV Vα
−= = ) and the 

heritability of the trait ( 2 / 1/ 3eh G V= ≈ , see below).   

Viability selection was implemented following equation (1) with Rm = 1.25, ω2 = 25, and 

density regulation of the ceiling form. Specifically, if the number of individuals in the new 

generation following reproduction exceeded the carrying capacity K, the population was culled 

to N = K by removing randomly chosen individuals. We let the simulations run for 7999 

generations with carrying capacity K0 = 3000, to allow the genetic variance to reach an 

equilibrium between mutation, genetic drift, and stabilizing/fluctuating selection (burn-in period; 

we visually verified that this equilibrium had been achieved). Then at generation 8000, we 

increased the ceiling carrying capacity to K = 105 and followed the exponential growth of the 

population. We then computed moments of the distribution of the logarithm of population size 

across replicates at different times. These simulated moments were compared to the analytical 

predictions in eq. (6) below. For the analytical predictions, the additive genetic variance G we 

used was the theoretical prediction for the genetic variance under mutation and stabilizing 

selection in constant environment. Although a general formula exists that accounts for random 

genetic drift and interpolates between different approximations that function in different 

mutational regimes (stochastic house of Gauss, Hermisson and Wagner 2004), with our choice of 

parameters we could reliably use the simpler house-of-card approximation (Bürger and Lande 

1994; Turelli 1984), 4 / 0.5HCG uV Sα= ≈ . Because the initial population size was not constant 

in our simulation, but instead distributed below (and close to) the burn-in ceiling population size 
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(K0 = 3000), the mean and variance were computed for the difference between final and initial 

log population size. Finally, in formulas that use 2( )ttr Y , we used the exact 2E( )λ  rather than the 

approximation 1 Vλ+  (below eq. 5a), because the latter performs less well in early generations, 

which were our focus in the simulations.  

The codes for performing and analyzing the population- and individual-based simulations 

underlying our figures are deposited in the Dryad Digital Repository, doi:10.5061/dryad.101h0 

(Chevin et al 2017). 
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Figure legends 
 

Figure 1: distribution of log population size under density-independent growth. The 

distribution of population size tn  (conditional on initial population 0n ) produced by stochastic 

fluctuations of an optimum phenotype with density-independent growth is shown for population-

based recursions with constant genetic variance (5000 replicate populations, histogram), and the 

predicted gamma approximation (eq. 6-8, continuous line). The dashed line show a normal 

distribution with same mean and variance, as would be produced under the common assumption 

of a log-normally distributed multiplicative growth rates. The inset in the last panel shows a 

zoom on the smallest population sizes. Note that, because of the negative skew, the probability of 

low population sizes under a fluctuating optimum remains higher than under a Gaussian, even at 

relatively large times. Parameters are, height and width of the fitness function: 1.1mR =  and 

5ω = ; additive genetic and phenotypic variance: 0.5G =  and 1P = ; variance and 

autocorrelation of the optimum: 2 2θσ =  and 0.5ρ = ; and initial population size 0 1000N = . 

 

Figure 2. Evolutionary rescue in a stochastic environment. The eco-evolutionary dynamics 

following an abrupt environmental shift combined with stochastic environmental fluctuations of 

an optimum phenotype are shown, combining population-based simulations and analytical 

predictions. Panel A shows the optimum (gray lines) and the mean phenotype (black lines) for 5 

representative simulation repeats, together with the analytical prediction (above eq. 10) for the 

expected mean phenotype over time (red line). Panel B shows the population dynamics. 

Individual paths of population size for each of the 500 simulation repeats are represented in gray, 

and the quantiles (0.01, 0.1, 0.25, 0.5, 0.75, 0.9, 0.99) of the distribution predicted by the 
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analysis (eqs. 6-8) are shown in black lines. The red line shows the expected trajectory with 

environmental stochasticity (from eq. 6a), while the blue line shows this same trajectory without 

any environmental stochasticity, as modeled by Gomulkiewicz & Holt (1995). The shaded zone 

represents a region of high extinction risk, below a critical population size of 100 (chosen 

arbitrarily). The optimum phenotype was shifted by 4δ =  at generation 0, and also undergoes 

autoregressive fluctuations with variance 2 1θσ =   and autocorrelation over one generation 

0.7ρ = . The maximum fitness is 1.15mR = , the initial population size is 0 10000N = , and all 

other parameters are as in Figure 1.  

 

Figure 3. Extinction risk during evolutionary rescue in a stochastic environment. The 

probability Pcrit that the population is below a critical size for extinction risk is represented over 

time for evolutionary rescue trajectories similar to those in Figure 2. Dots represent the 

proportion of simulated trajectories (out of 5000) where the population size is below Nc = 100. 

The continuous curves shows the prediction for this proportion Pcrit (eq. 11). The variance of 

fluctuations in the optimum phenotype is varied in A: 2 0.25θσ =  (blue), 0.5 (cyan), 1 (green), 2 

(orange), and 4 (red), with 0.5ρ = . The autocorrelation of fluctuations in the optimum phenotype 

is varied in B: 0.1ρ =  (blue), 0.5 (green), and 0.9 (red), with 2 1θσ = . The maximum 

multiplicative growth rate is 1.2mR = , the shift in mean optimum is 5δ = , and all other 

parameters are as in figure 2. 

 

Figure 4. Density dependence and evolutionary rescue in a stochastic environment. The 

maximum probability Pcrit that the population is below a critical size for extinction risk is 
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represented for population-based simulations of evolutionary rescue with varying forms of 

density dependence. The shape of the density dependence function was modified by changing the 

exponent Θ of a discrete-time version of Θ-logistic regulation (Θ = 1 is the Ricker model, a 

discrete-time analog of logistic regression). The rightmost point corresponds to ceiling 

regulation, where population growth is unlimited except at carrying capacity, and the dashed line 

shows the corresponding maximum Pcrit under density-independent growth. The variance and 

autocorrelation of the optimum are 2 1θσ =  and 0.5ρ = , respectively, and all other parameters 

are as in figure 3. 

 

Figure 5: Stationary distribution of population size with density dependence. The 

distribution of log-population size after 500 generations of eco-evolutionary dynamics under 

Gompertz density regulation is shown for 500 replicated population-based simulations 

(histograms), and compared to the predicted gamma distribution given by eqs (13a-b) 

(continuous black line). Insets show the autocorrelation of log-population size at different time 

intervals (in generations), for 10 replicate simulations (gray), together with the analytical 

prediction (eq. 14, continuous black line). The autocorrelation of log-population size was 

computed in a sliding window of 200 generations, over the last 9000 out of 10000 generations. 

The autocorrelation in the optimum phenotype was set to ρ = 0.1 (left) or ρ = 0.9 (right), and the 

strength of density dependence ln / lnm mR Kϕ =  is higher in the lower row. We have used 

10000mK = , and all other parameters are as in figure 4.  

Figure 6. Individual-based simulations. The mean (A), variance (B), and skewness (C) of log-

population size lnN (scaled to the initial population size lnN0) are shown for 475 replicate 

individual-based simulations of eco-evolutionary dynamics under a fluctuating optimum. The 
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trait is determined by 50 diploid loci, with mutation rate µ = 10-4 and variance of mutation 

effects Vα = 0.1 per haploid locus, and the width of the fitness function is ω = 5 (see Appendix 2 

for more details). Results from simulations are shown as continuouss lines, while dashed lines 

show analytical predictions from eq. (6a), eq. (6b), and the gamma approximation 

, 18[1 V ] /t tλ −− +  (below eq. 8b), respectively, replacing the constant genetic variance by the 

predicted additive genetic variance from the house-of-cards approximation, GHC = 0.5 (Appendix 

2).  The initial population size is determined by the ceiling carrying capacity during the burn-in 

period, K0 = 3000, which is well below the ceiling during the simulations, K = 105, such that 

population growth is essentially density independent after time 0. Gray levels correspond to 

different values of temporal autocorrelation in the optimum: ρ = 0.1 (light gray), 0.5 (dark gray) 

and 0.9 (black). Other parameters are Ve = 1 (residual phenotypic variance), 2 4θσ =  (variance of 

optimum), 1.25mR =  (fecundity for optimum phenotype). 
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