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Abstract—This paper proposes a condition-based maintenance
policy for a deteriorating system whose state is monitored by
a degraded sensor. In the literature of condition-based mainte-
nance, it is commonly assumed that inspection of system state
is perfect or subject to measurement error. The health condition
of the sensor, which is dedicated to inspect the system state,
is completely ignored during system operation. Yet due to the
varying operation environment and aging effect, the sensor itself
will suffer a degradation process and its performance deteriorates
with time. In presence of sensor degradation, Kalman filter is
employed in this paper to progressively estimate the system and
the sensor state. Since estimation of system state is subject to
uncertainty, maintenance solely based on the estimated state will
lead to a sub-optimal solution. Instead predictive reliability is
used as a criterion for maintenance decision-making, which is
able to incorporate the effect of estimation uncertainty. Preventive
replacement is implemented when the estimated system reliability
at inspection hits a specific threshold, which is obtained by
minimizing the long run maintenance cost rate. An example of
wastewater treatment plant is used to illustrate the effectiveness
of the proposed maintenance policy. It can be concluded through
our research that (i) disregarding the sensor degradation while
it exists will significantly increase the maintenance cost; (ii) the
negative impact of sensor degradation can be diminished via
proper inspection and filtering methods.

Note to Practitioners—This paper was motivated by the ob-
servation of sensor degradation in wastewater treatment plants
but the developed approach also applies to other systems such
as manufacturing systems, chemical plants, and pharmaceutical
factories, where sensors are dedicated to a long-time operation in
harsh environment. This paper investigates the impact of sensor
degradation on condition-based maintenance and suggests that
the effect of sensor degradation should be carefully addressed
while making maintenance decisions. Otherwise, it will lead to
a sub-optimal maintenance decision and increase the operating
cost. An optimal maintenance decision, which contains the opti-
mal inspection interval and reliability threshold, is achieved via
minimizing the long run cost rate. In presence of measurement
noise and intrinsic uncertainty from degradation, a stochastic
filtering approach is employed to estimate the system and sensor
state. Based on the estimated states and the calculated reliability,
a dynamic maintenance decision is obtained at each inspection.
This study can be further extended considering non-Gaussian
noise and alternative degradation processes.
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I. INTRODUCTION

NOWADAYS, with the increasing requirement of high

reliability and safety for modern systems, advanced data-

collecting techniques are widely used to monitor system health

condition, either continuously or periodically. The ability to

gather system health information significantly prompts the

development of condition-based maintenance (CBM). In the

past few decades, CBM has received an increasing attention,

due to its capability to intervene system performance in time.

As opposite to traditional time-based maintenance policies,

CBM has shown its advances in preventing system failure and

reducing operating cost from both the academic and practical

point of view [1]–[3].

The effectiveness of CBM policy highly depends on the

appropriateness of system degradation modeling and the in-

spection/monitoring accuracy. In terms of the inspection ac-

curacy, CBM can be classified into two categories: CBM

with perfect inspection and with imperfect inspection [4]–[9].

The assumption of perfect information eliminates the effect

of measurement noise and allows the CBM more focused on

the development of optimal maintenance policy. In literature,

numerous CBM models have been proposed assuming perfect

inspection (e.g., [10]–[13]).

In practical applications, however, sensor is often subject

to noise and perfect inspection cannot be achieved [14],

[15]. For this reason, the assumption of perfect inspection is

relaxed to establish a more realistic model, which leads to

the development of CBM with imperfect inspection. Actually,

the existing CBM policies with imperfect inspection primarily

follow two streams. One stream formulates the maintenance

issue into the framework of partially observable Markov deci-

sion process (POMDP) or its variants [16]–[20]. For example,

[21] developed a CBM policy for a deteriorating system with

partially observable environment, where the degradation rate is

determined by the operating environment. POMDP model was

formulated to achieve the optimal maintenance decision. [22]

investigated the CBM issue for a machine subject to imperfect

continuous monitoring. A continuous-observation partially ob-

servable semi-Markov decision process was presented to select

various maintenance actions.

The other stream embeds a CBM policy with system state

estimation and degradation parameter updating [23]–[25]. [25]

developed a maintenance model with a sensor-based updating

scheme, where the optimal maintenance routine was scheduled

based on the updated degradation parameters and estimated re-

maining useful life distribution. [26] developed a maintenance

model under indirect condition monitoring, where the value
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of condition monitoring and impact of measurement error are

investigated in detail. [27] presented a risk sensitive particle

filter for prognostic, which was further applied in maintenance

scheduling. [28] proposed a CBM policy using real-time

remaining useful life prediction for a multi-component system

with stochastic dependence. Although imperfect monitoring

is considered, an implicit assumption of the previous studies

is that the sensor performance remains steady within its life

cycle, implying constant measurement noise or inspection

error.

However, due to the varying operating environment and cu-

mulative damage to the equipment and the dedicated sensors,

the assumption of constant inspection quality during the life

cycle is increasingly challenged. In real-life application, the

performance of sensor usually deteriorates over a long period

of operating time [29]–[31]. [32] investigated the impact of

sensor degradation on control system and developed an ap-

proach to optimally improve the system reliability. One of the

most serious impairment is sensor drift, which has plagued the

research community for decades. In general, sensor drift can

be attributed primarily to two sources [33], [34]. One is due to

the internal degradation as a result of chemical and physical

interaction during the operation period. The other derives from

external and uncontrollable operating environment, such as

variations of temperature and humidity. Existence of sensor

degradation will significantly influence the effectiveness of

system health prognostic and the associated CBM policies

[35], which will lead to increased maintenance and operating

cost if no counteracting measures are implemented to deal with

the sensor degradation.

The impact of sensor degradation lies in the distortion

of measurements, which makes the observations biased and

severely deviate from the true values [36]. Without proper

approaches or measures to diminish the negative effect of

sensor degradation, estimation of system state and the asso-

ciated maintenance policy will have to be conducted based

on the fraudulent information provided by the sensors. As a

result, the maintenance decisions will deviate from the optimal

one and maintenance actions will be ineffectively performed,

which endangers the operating system and causes huge e-

conomic losses. Our case study shows that the maintenance

cost without addressing the sensor degradation is much higher

than the maintenance cost that has properly handled the sensor

degradation, which indicates that the sensor degradation exerts

a significant impact on maintenance decision.

To the best of our knowledge, no previous studies have

covered the issue of CBM with sensor degradation, despite its

prevalence and criticality in industrial applications. Motivated

by the practical need of CBM models considering sensor

degradation, in this paper, we investigate the effect of sensor

degradation on CBM decision-making. A system is subject

to a continuous degradation, described by Wiener process,

along with a sensor to inspect the system state. However, the

inspection is imperfect in the sense of measurement noise and

time-varying drift as a result of sensor degradation. To face

with this issue, stochastic filtering is employed to estimate the

drift level and system state as a first step, followed by the

CBM model. The optimal maintenance policy is achieved by

minimizing the long run cost rate.

The remainder of this paper is organized as follows. Section

II describes the degradation process of the system and sensor,

and the measurement process. In Section III, the proposed

maintenance policy is firstly presented. Then, a maintenance

cost model is formulated based on the imperfect observation.

An initial guess based on perfect inspection is herein proposed

to serve for optimization algorithm. Section IV describes the

estimation process and impact of sensor failure on mainte-

nance action at inspection, where Kalman filter is employed

to estimate the system and sensor states. In Section V, an

example of wastewater treatment plant is used to illustrate

the effectiveness of the proposed maintenance policy. Finally,

conclusions and future research directions are provided in

Section VI.

II. SYSTEM & SENSOR DEGRADATION PROCESS

Consider a system subject to a continuous-time degradation

process. Wiener process is employed to describe the underly-

ing degradation progression. Wiener process exhibits a non-

monotone degradation path, which has successfully captured

the degradation characteristics of many real-life systems [37],

[38]. Let stochastic process X(t), t ≥ 0 denote the associated

degradation process over the operating time t, which is ex-

pressed as

X(t) = X (0)+λ t +σB(t) (1)

where λ is the drift coefficient, σ is the diffusion coefficient,

and B(t) is the standard Brownian motion. X(0) is the initial

degradation level, and σB(t) ∼ N(0,σ2t) stands for the ran-

domness of the degradation process. Without loss of generality,

it is assumed X(0) = 0.

Sensor is dedicated to inspecting the system state. However,

due to the varying environmental factor and cumulative dam-

age, the dedicated sensor is subject to a degradation process. It

is assumed that the degradation of sensor can be characterized

by increase of drift and measurement inaccuracy, which is

modeled as Wiener process, i.e.,

S(t) = S (0)+ηt +δB(t) (2)

where S(t) is the sensor degradation level at time t, η and δ
are the drift and diffusion coefficients respectively. Note that

η can be positive or negative, denoting the positive or negative

drift. It is also assumed that the system and sensor degrade

independently and the degradation parameters are known in

advance. Actually the parameters can be estimated with offline

historical failure/degradation data. Numerous existing methods

serve for the estimation purpose, e.g., maximum likelihood

estimation and moment estimation [39], [40]. We do not

present the parameter estimation procedure since is out of the

scope of this paper.

Let {Y (t), t ≥ 0} denote the measurement process, which

relates the uncertain observation with the underlying system

and sensor degradation state at time t. Combining the influence

of sensor and system degradation, the measurement at time t

is given as

Y (t) = X(t)+S(t)+ ε (3)
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Fig. 1: Sketch of observation, system & sensor degradation

where ε is the statistically independent and identically dis-

tributed measurement error, following normal distribution ε ∼
N(0,γ2) at any time point.

Fig. 1 depicts the system & sensor degradation and mea-

surements at inspection. If there exists sensor degradation, the

measurements at inspection deviate from the system degrada-

tion. If no sensor degradation is considered, the measurement

at time t is reduced to Y (t) = X(t)+ ε , which is identical as

the measurement process in traditional works.

Following the tradition of first-passage-time (FPT), system

failure time is defined as the epoch when the system degrada-

tion level hits the pre-specified threshold ζ for the first time.

System lifetime T is interpreted as the FPT to the pre-specified

failure threshold, i.e.,

T = inf{t : X(t)≥ ζ} (4)

The probability density function (pdf) and cumulative distri-

bution function (cdf) of system lifetime T are given as [38]

fT (t) =
ζ√

2πt3σ2
exp

(

−ζ −λ t

2σ2t

)

(5)

FT (t) = 1−Φ

(

ζ−λ t

σ
√

t

)

+exp
(

2λζ

σ2

)

Φ

(

−ζ−λ t

σ
√

t

) (6)

Remark 2.1: In this study we use Wiener process to illus-

trate our approach. Actually, sensors in different industries

will exhibit different degradation processes. The sensor can

be subject to various degradation processes, such as Gamma

process, inverse Gaussian process, etc., depending on the

application and the environmental influence. But our method

can be applied as well. In addition, the error could be a linear

or non-linear function with respect to the sensor degradation

level. In this study, a linear form is used. It should be noted

that if the system is subject to a non-linear degradation, we

may need to resort to other filtering approach such as extended

Kalman filter or particle filter.

III. FRAMEWORK OF CONDITION-BASED MAINTENANCE

MODEL

In this section, we will describe the maintenance policy and

formulate the associated maintenance cost model. Long-run

maintenance cost rate is employed as the criterion to evaluate

the proposed policy. The optimal maintenance decision is

achieved via an optimization procedure with a near-optimal

initial guess.

A. Description of the maintenance policy

The system under consideration is subject to discrete in-

spection. Let {tk,k = 0,1,2, ...} denote the inspection time,

0 = t0 < t1... < tk. Denote yk = Y (tk) as the observation at

time tk. The set of degradation measurements is denoted

Y1:k = {y1,y2, ...,yk}. Let xk = X(tk) represent the system

degradation state at time tk.

Based on the Kalman filter, the system state is updated when

new observation arrives, which leads to a nonstationary degra-

dation process. Therefore, we resort to a dynamic maintenance

policy to effectively prevent system failure, which determines

the optimal maintenance action at each inspection epoch, given

the inspection history Y1:k.

It is assumed that the system failure is not self-announcing,

i.e, system failure can only be detected at inspection, which is

referred to as soft failure [37], [41]. Note that soft failure may

not necessarily indicate physical failure (catastrophic failure),

but can be the performance of a system that fails to satisfy the

demands. Soft failure is commonly assumed in maintenance

literatures and industrial applications [38]. Particularly, for

safety-critical systems, a system is deemed failed when its

safety or reliability drops to a certain level. Following the

industrial practice, periodic inspection is used to monitor the

system state. Let ∆T be the inspection interval which is the

first decision variable in our model. In the remaining context,

we will use tk (tk = k∆T ) and k∆T interchangeably. Inspection

cost ci is incurred at each inspection epoch. Compared with

the operation horizon of the system, inspection is assumed to

be instantaneous and non-destructive.

Two maintenance actions are considered in this paper: cor-

rective replacement and preventive replacement. At inspection

epoch tk, if the system functions, the decision maker may

decide whether to replace the system preventively or wait

till the next inspection. Preventive replacement is carried out

when the system is anticipated to approach the failure state,

with preventive replacement cost cp. Otherwise, the system

is left as it be. If the system is found failed at inspection,

then it is correctively replaced, with corrective replacement

cost cr. A replacement can either be a physical replacement

or an overhaul that restores the system to the as-good-as-new

state. Although both corrective replacement and preventive

replacement bring the system to the as-good-as-new state, their

cost may differ because corrective replacement is unplanned,

which requires more logistic support and disturbs the operation

schedule. In addition, failure may incur additional costs such

as damage to the environment, which is included in the

corrective replacement cost. It is therefore anticipated cr > cp.

Since the system is operating with unsatisfied performance

during the interval from system failure to the next inspection,

a downtime cost is charged per unit time, denoted as cd . The

sensor is replaced along with system replacement.

If the inspection is perfect, then the optimal maintenance

policy turns out as a control limit policy, which states that

the system is preventively replaced when the observed system

state exceeds the optimal preventive replacement threshold.

However, the control limit policy based on perfect inspection

may not remain optimal in presence of measurement errors.
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This is due to the fact the true system state cannot be fully

captured at inspection, rather, what can be obtained is a nor-

mally distributed random estimate, whose behavior depends on

two parameters: mean and variance. A maintenance decision

solely based on the mean of system state may lead to a sub-

optimal solution. It is well noted that under perfect inspec-

tion, the optimal replacement policy is to replace the system

when its degradation level hits a constant threshold. However,

under imperfect inspection, as the underlying degradation is

estimated rather than directly observed, maintenance decision

has to take into account the effect of mean and variance of

the estimated system state. Fig. 2 describes the difference of

preventive replacement under perfect inspection and imperfect

inspection. Under imperfect inspection, a more conservative

maintenance policy is warranted to balance the influence of

estimation uncertainty.

Let Rtk (t|Y1:k) be the system reliability function given the

observation history Y1:k. In the case of perfect inspection, due

to the memoryless property of Wiener process, Rtk (t|Y1:k) is

identical to the reliability function given the current system

state, Rtk (t|Y1:k) = Rtk (t|xk). However, in the present case

where inspection contains noise and reliability estimation has

to rely on the whole observation history, the Markov property

no longer holds.

The maintenance policy works as follows: at the kth in-

spection, if the system has failed, corrective replacement is

implemented. If the system is still functioning, a preventive

replacement is carried out if the system reliability at the

next inspection epoch Rtk (tk +∆T |Y1:k) falls below a critical

threshold Rs (Rtk (tk +∆T |Y1:k) < Rs < 1). Otherwise, it is

left unattained. The reliability threshold Rs is the second

decision variable of maintenance optimization. For safety-

critical systems where a high reliability level is warranted, the

reliability threshold is given as a constraint in optimization.

B. Maintenance cost model

Following the tradition of existing maintenance policies, in

this paper long run cost rate is employed as the criterion to

evaluate the effectiveness of the proposed maintenance policy.

The long run cost rate is given as

C∞(∆T,Rs) = lim
t→∞

C(t)

t
(7)

Based on the proposed maintenance policy, it follows

C(t) = ciNI(t)+ cpNP(t)+ ccNC(t)+ cdW (t) (8)

where NI(t), NP(t), and NC(t) are respectively the number of

inspection, preventive replacement and corrective replacement

in the time interval [0, t], W (t) is the cumulative downtime. The

objective of the maintenance optimization is to minimize the

long run cost rate by searching the optimal inspection interval

∆T and reliability threshold Rs.

Since both preventive replacement and corrective replace-

ment restore the system to the as-good-as-new state, the

degradation process {X (t) ; t ≥ 0} is a regenerative process. A

renewal cycle occurs when the system is replaced. A renewal

cycle is defined as the time interval between two consecutive

replacements or the time period to the first replacement since

system installation. The classical renewal-reward theorem can

be applied to calculate the long run maintenance cost rate of

(7) [26], [42], which is given as

C∞(∆T,Rs) =
E [C(Z)]

E [Z]

=
ciE [NI(Z)]+ cpE [NP(Z)]+ ccE [NC(Z)]+ cdE [W (Z)]

E [Z]
(9)

where Z is the length of a renewal cycle, and C(Z) is the

total maintenance cost of a renewal cycle, NI(Z), NP(Z), and

NC(Z) are respectively the number of inspection, preventive

replacement and corrective replacement in a renewal cycle,

W (Z) is the cumulative downtime of a renewal cycle.

Let pc(k) be the probability that the renewal cycle ends

with corrective replacement at the kth inspection, and pp(k)
the probability that the renewal cycle ends with preventive

replacement at the kth inspection. By simple algebra, we can

rewrite the long run cost rate as

C∞ (∆T,Rs) =
ci

∆T
+ cd

∞

∑
k=1

pc (k)

+

cp

∞

∑
k=1

pp (k)+ cc

∞

∑
k=1

pc (k)− cd

∞

∑
k=1

pc (k)
∫ k∆T
(k−1)∆T tdFT (t)

∆T
∞

∑
k=1

k (pc (k)+ pp (k))

Denote Ak as the event that corrective replacement is carried

out at the kth inspection and Bk the event that preventive

replacement is performed at the kth inspection. pc(k) and

pp(k) can be expressed as

pc(k) = P(Ak

k−1
⋂

i=1

ĀiB̄i)

and

pp(k) = P(Bk

k−1
⋂

i=1

ĀiB̄i)

Since preventive replacement is performed when the one-

inspection-ahead reliability at inspection exceeds the threshold

Rs, one first has to calculate Rtk (tk +∆T ) at kth inspection

before reaching pc(k) and pp(k), which is denoted as

Rtk (tk +∆T ) = EY1:k

[

Rtk (tk +∆T |Y1:k)
]

=
∫

y1

∫

y2

...

∫

yk

Rtk(tk +∆T |y1,y2, ...yk)·

f (y1,y2, ...yk)dy1dy2...dyk

where f (y1,y2, ...yk) is the joint distribution of y1,y2, ...yk. For

the system subject to imperfect inspection, Kalman filter is

used to progressively estimate the system state and reliability.

In the following, we will present the procedure for state esti-

mation and reliability prediction given the observation history.

However, since state estimation via Kalman filter depends on

the measurement history, computation of the one-inspection-

ahead reliability has to integrate all possible measurements

Y1:k. It is extremely difficult to obtain the analytical expression

of Rtk (tk +∆T ), let alone the long run cost rate of (9).
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Fig. 2: Comparison of preventive replacement under perfect

and imperfect inspection

Therefore, we resort to Monte Carlo simulation to evaluate

the maintenance policy. An optimal policy is achieved by

minimizing the long run cost rate in (9), i.e.,

{∆T ∗
,R∗

s}= arg min
(∆T,Rs)

{C∞ (∆T,Rs) ;0 < Rs < 1} (10)

Note that for some systems the inspection interval is given

as a constraint due to industrial standards. With respect to

the case where the inspection interval is given in advance,

the decision variable is reduced to the reliability threshold.

The optimal maintenance decision {∆T ∗,R∗
s} can be obtained

via two-directional search. A near-optimal initial guess of

{∆T ∗,R∗
s} contributes to facilitating the search algorithm. The

near-optimal initial guess of the optimal maintenance decision

is presented in Appendix A.

Remark 3.1: In the current work, periodic inspection is

used to observe the system state. In some applications, the

system may be subject to continuous monitoring, where a

dedicated sensor is installed along with the system to monitor

its health condition [24], [25]. In this scenario, the observations

are presented at every basic time unit, which implies ∆T = ω
for a small value ω (e.g., ω = 0.01). In addition, the inspection

cost will be suppressed, ci = 0. But we need to incorporate

the one-time sensor installation cost during the formulation of

maintenance cost. It should be noticed that this is a special case

of our proposed maintenance policy which can be obtained by

setting the inspection cost ci = 0 and ∆T = ω . In the case of

continuous monitoring, the maintenance cost of (8) is reduced

to

C(t) = cpNP(t)+ ccNC(t)+ c0

where c0 is the one-time installation cost of the sensor. For

continuous monitoring, it should be noted that the one-step-

ahead reliability would approach to 1, Rs → 1, since the

inspection interval ∆T → 0. On the other hand, for continuous

monitoring, the maintenance lead time (i.e., the time inter-

val between the maintenance alarm triggered and the actual

maintenance time) should be taken into account. Therefore,

the reliability criterion is modified based on the lead time. Let

Rc be the system reliability evaluated ahead of the lead time

TL. The long run cost rate is then given as

C∞(Rc) =
cpE [NP(Z)]+ ccE [NC(Z)]+ c0

E [Z]

IV. ONLINE STATE ESTIMATION

Now that we have calculated the optimal maintenance

decision variables, we are now arriving at implementing the

maintenance actions based on the observation history. As a first

step we need to estimate the degradation state of the system

and sensor. Kalman filter serves for the estimation purpose.

Let sk = S(tk) represent the sensor state at time tk. The set

of system degradation and sensor degradation are expressed

as X1:k = {x1,x2, ...,xk} and S1:k = {s1,s2, ...,sk}. With the

aforementioned notations, we can have the state-space model

as






xk = xk−1 +λ (tk − tk−1)+uk

sk = sk−1 +η(tk − tk−1)+ vk

yk = xk + sk + εk

(11)

where uk = σ [B(k)−B(k−1)] and vk = δ [B(k)−B(k−1)].
{uk,k ≥ 0}, {vk,k ≥ 0} and {εk,k ≥ 0} follow statistical-

ly independent and identically normal distribution, i.e.,

uk ∼ N
(

0,σ2(tk − tk−1)
)

, vk ∼ N
(

0,δ 2(tk − tk−1)
)

and εk ∼
N(0,γ2).

The underlying system degradation state is casted by the

sensor degradation variability and measurement uncertainty

and can only be estimated based on the observations up to

time t, Y1:k. Since (4) exhibits dynamic linear property and the

degradation variability, uk and vk, and measurement noise εk,

follow Gaussian distribution, Kalman filter can be employed

to estimate the system and sensor degradation states. Kalman

filter is known as linear quadratic estimation and has shown

its effectiveness in various applications [12], [43]–[45]. Under

the framework of Kalman filter, we reorganize the state-space

model as
{

zk = Azk−1 +Bk +wk

yk = Hzk + εk
(12)

where zk =

[

xk

sk

]

, A =

[

1 0

0 1

]

, Bk =

[

λ (tk − tk−1)
η(tk − tk−1)

]

,

H =
[

1 1
]

, wk ∈ R2×1, wk ∼ N(0,Qk), Qk =
[

σ2(tk − tk−1) 0

0 δ 2(tk − tk−1)

]

.

As the first step, we define the expectation and variance of

the estimators zk conditional on the observation history Y1:k,

which is given as

ẑk|k =

[

x̂k|k
ŝk|k

]

= E(zk|Y1:k)

Pk|k =

[

χ2
x,k χ2

xs,k

χ2
xs,k χ2

s,k

]

= cov(zk|Y1:k)

where x̂k|k = E(xk|Y1:k), ŝk|k = E(sk|Y1:k), χ2
x,k = var(xk|Y1:k),

χ2
s,k = var(sk|Y1:k), and χ2

xs,k = cov(xksk|Y1:k). In addition, the

one-step-ahead predicted estimation and variance of zk are

denoted as

ẑk|k−1 =

[

x̂k|k−1

ŝk|k−1

]

= E(zk|Y1:k−1)
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Pk|k−1 =

[

χ2
x,k|k−1

χ2
xs,k|k−1

χ2
xs,k|k−1

χ2
s,k|k−1

]

At the kth inspection time tk, we can have the following

Kalman filter procedure:

1) State estimation

State prediction:

ẑk|k−1 = Aẑk−1|k−1 +Bk (13)

Updated state estimate:

ẑk|k = ẑk|k−1 +K(k)(yk −Hẑk|k−1) (14)

2) State covariance estimation

Covariance prediction:

Pk|k−1 = APk−1|k−1AT +Qk (15)

Filter gain:

K(k) = Pk|k−1HT [HPk|k−1HT + γ2]−1 (16)

Updated state covariance:

Pk|k = Pk|k−1 −K(k)HPk|k−1 (17)

The initial values of the degradation states are given as

ẑ0|0 =

[

0

0

]

,Pk|k =

[

0 0

0 0

]

Since the degradation variability and measurement noise are

normally distributed, it can be concluded the posterior estima-

tion of the system and sensor degradation state conditional

on measurement history Y1:k follows a bivariate Gaussian

distribution, zk|Y1:k ∼ N(ẑk|k,Pk|k). In particular, we have

xk|Y1:k ∼ N(x̂k|k,χ
2
x,k) (18)

sk|Y1:k ∼ N(ŝk|k,χ
2
s,k) (19)

Without assuming a deterministic sensor drift parameter η ,

in the case where η is random in nature, state estimation

procedure has to incorporate the random effect of η . If η
is normally distributed, η ∼ N(µη ,ση), Kalman filter can be

applied as well. The detailed Kalman filter procedure is shown

in Appendix B.

Remark 4.1: For some systems, the system degradation

may exert influence on the sensor degradation process due to

the specific inspection mechanism and environment. However,

the underlying physical mechanism may be very complicated

to prohibit an accurate modeling. For illustrative purpose,

we present the procedure of state estimation under the case

where the system degradation has an additive impact on sensor

degradation. Details are presented in Appendix C.

Following the concept of FPT, the remaining useful time

(RUL) of the system at the kth inspection time tk, Lk, is defined

as

Lk = inf{lk : X(lk + tk)≥ ζ} (20)

By use of Kalman filter, given the measurement history Y1:k,

the distribution of RUL can be obtained as

fLk|Y1:k
(t) = Exk

[

fLk
(t|xk)

]

=
(ζ − x̂k|k)σ

2 +χ2
x,kλ

√

2π(χ2
x,k +σ2t)

3
exp

(

−
(ζ − x̂k|k −λ t)2

2(χ2
x,k +σ2t)

)

(21)

and

FLk|Y1:k
(t) =

∫

FLk
(t|xk) fφ (xk)dxk

= 1−Φ





ζ − x̂k|k −λ t
√

χ2
x,k +σ2t





+ exp





2λ (ζ − x̂k|k)

σ2
+

(√
2λ χx,k

σ2

)2


 ·

Φ





−ζ + x̂k|k −λ t −2λ
χ2

x,k

σ2
√

χ2
x,k +σ2t





(22)

where fLk|Y1:k
(t) and FLk|Y1:k

(t) are the conditional pdf and cdf

of the RUL of the system, fφ (xk) is the pdf of system state at

the kth inspection,

fφ (xk) =
1

√

2πχ2
x,k

exp

(
(

x− x̂k|k
)2

2χ2
x,k

)

(23)

The dynamic maintenance is implemented by comparing the

estimated one-inspection-ahead system reliability with the cal-

culated threshold R∗
s . However, if the sensor fails, the mainte-

nance decision has to be made based the previous observations.

Details of the impact of sensor failure on maintenance decision

making is provided in Appendix D.

In the previous discussion, we assume that the parameters of

both the system and sensor degradation processes are known

in advance. In practice, the degradation parameters can be esti-

mated from historical degradation data. To estimate the Wiener

process parameters based on real data, which has to include

both S(t) and X(t), we need to have two sensors, one with

degradation and the other without any degradation. The one

without degradation is used to estimate the parameters of the

sensor degradation. Based on the estimated sensor degradation

parameters, the signals from the degraded sensor are then used

to estimate the parameters of system degradation. One single

sensor fails to simultaneously estimate the system and sensor

degradation parameters, as the degradation information of the

system and sensor is mixed. With two sensors we can estimate

the parameters. In Appendix E, we present the procedure to

estimate the sensor degradation parameters in presence of a

new sensor (without any degradation).

V. APPLICATION IN WASTEWATER TREATMENT PLANTS

In this section, a wastewater treatment plant is used to

illustrate the proposed maintenance policy and parameter esti-

mation. Activated sludge process is a widely adopted to handle

pollutants in wastewater treatment plants. However, scheduled

operation of activated sludge process is often impeded in

presence of filamentous bulking. Sludge bulking occurs largely

due to the growth of filamentous bacteria, which can be

modeled as a degradation process [46], [47]. In practice,

an empirical measurement, Sludge Volume Index (SVI), is

commonly used to characterize the degradation of filamentous

sludge bulking. Unfortunately the real data is not available.

The example we use is a real problem that serves the purpose

of illustration.
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Fig. 3: Sketch of oxidation ditch process

A. Case study setting

It is assumed that the SVI follows a Wiener process with

linear drift, where λ = 1 and σ = 0.5. The active sludge

process is considered failed when the SVI exceeds a pre-

specified level. Note that determination of an accurate failure

threshold to indicate serious filamentous sludge bulking is still

an open issue. For illustrative purpose, an arbitrary value of

SVI is used as failure threshold in this paper, ζ = 15. Among

various active sludge processes, oxidation ditch process is a

biological treatment process that utilizes long solids retention

time to achieve satisfactory nitrogen removal performance.

Fig. 3 shows a schematic of the oxidation ditch process [47].

On the other hand, due to the existence of filamentous bacteria

and corrosive materials in the wastewater, the sensor dedicated

to inspecting the degradation level of sludge bulking is subject

to degradation. The sensor itself is assumed to suffer a Wiener

degradation process with η = 0.2 and δ = 0.1. Observation at

inspection is not only influenced by the system degradation

and sensor degradation, but also contaminated by noise with

γ = 0.5.

The wastewater is periodically inspected to determine the

degradation level (SVI), with inspection cost ci = 1. When the

SVI hits the preventive replacement threshold, the wastewater

is intervened preventively with cost cp = 20. If the SVI is

found to exceed the failure threshold, which implies a serious

filamentous sludge bulking, the wastewater is treated with

large effort, at the cost cr = 50. In addition, during the period

from system failure to the next inspection, the oxidation ditch

process is operating under serious sludge bulking, which incurs

cost cd = 200 per unit time.

B. Key results

1) Numerical results: In the presence of sensor degradation

and imperfect observation, the optimal reliability threshold

cannot be analytically calculated. Monte Carlo simulation is

therefore employed. The number of Monte Carlo simulation is

5000. The optimal maintenance policy is achieved at ∆T ∗ = 3

and R∗
s = 0.999, with the long run cost rate C∞∗ = 2.72. Fig.

4 and Fig. 5 show how the one-inspection-ahead reliability

Rs varies with respect to the estimated system state x̂ and the

associated variance χ2. It is clearly observed that Rs shows a

decreasing trend with x̂ and χ2.

0.975
8

0.98

0.985

7.5 3

0.99

2.5

0.995

7
2

1

6.5
1.5

6 1

Fig. 4: One-inspection-ahead system reliability
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Fig. 5: Variation of Rtk with x̂ and χ2 respectively
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Fig. 6: Maintenance action in terms of x̂ and χ2

As can be observed though the numerical example, the long

run cost rate under perfect inspection is 2.62 (C(0)∞ = 2.62),

which is close to the optimal maintenance cost under sen-

sor degradation (C∞∗ = 2.72). This indicates that with the

proposed state estimation method and the condition-based

maintenance, the negative impact of sensor degradation can

be effectively addressed.

Since preventive maintenance action depends on the pre-

dicted system reliability, which, however, is determined by

the mean and variance of the estimated system state. To

facilitate maintenance decisions at inspection, Fig. 6 depicts

the boundary for preventive replacement in terms of the mean

and variance of the estimated system state.

According to the reliability threshold for preventive re-

placement, the maintenance action at each inspection can be

obtained by comparing the estimated one-inspection-ahead

system reliability with the threshold. Table I presents the main-

tenance actions and associated quantities at each inspection,

where the inspection interval is ∆T = 3. Note that the measure-
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TABLE I: Illustration of maintenance decisions at inspection

k yk x̂k|k χ2
k|k Rtk Decision

1 4 3 0.2039 1 Do nothing
2 6 6 0.2414 1 Do nothing
3 13 9 0.2706 0.9981 Preventive replacement

ment history Yk is randomly generated for illustration purpose.

As can be observed, at the third inspection, the estimated

system reliability drops below the threshold R∗
s = 0.999, and

preventive replacement is carried out to prevent the system

from failure.

2) Key findings: To illustrate the impact of sensor degra-

dation, we compare the proposed maintenance policy with

the one that disregards the sensor degradation in spite of

its existence. For the maintenance policy that simply com-

pares the measurement value with the preventive replacement

threshold under perfect inspection, the long run cost rate turns

out as C(1)∞ = 4.27. This is due to the fact that preventive

replacement solely based on the observation leads to a far more

conservative policy and unnecessary intervention increases the

maintenance cost. By comparison, the long run cost rate of

the maintenance policy considering the sensor degradation is

C∞ = 2.72, which indicates that the sensor degradation has

a significant impact on the optimal maintenance policy and

should be taken into account for maintenance decision-making.

Additionally, we plot in Fig. 7 the variation of maintenance

cost with respect to the sensor degradation rate η . It can

be found that our policy provides a stable maintenance cost

(around 2.7) in spite of the variation of sensor degradation rate,

while the maintenance cost under the policy (Policy I) that

disregards the sensor degradation exhibits an increasing trend

with η . Comparison from Fig. 7 implies that our approach

is more effective in cases where the sensor exhibits a serious

degradation process. Obviously if the sensor degradation is

negligible compared with the system degradation, then our

model will not be encouraged. We would suggest adopting

our model for maintenance decision-making if the systems and

the dedicated sensors are operating under extreme conditions

(e.g., high temperature, high humidity, corrosive surroundings,

etc.) where the sensor degradation exerts a significant impact.

However, it should be noted a system may fail due to various

mechanisms, which may not exhibit the degradation pattern.

For example, external shocks may lead to sudden failure of

an operating system. In this case, we have to resort to other

models, since our model is applicable to model the gradual

degradation process, while fails to capture the influence of

external shock.

In addition, we compare the proposed approach with the

existing methods to show the impact of sensor degradation on

maintenance cost. In particular, we compare with a filtering

approach which is adopted to address time-varying noise

variance [48]. The maintenance cost with the approach in

[48] is C(2)∞ = 4.35, which is close to the maintenance

policy that simply compares measurements with the thresh-

old under perfect inspection (C(1)∞ = 4.27). Admittedly, the

approach can effectively deal with the measurement noise,

which, however, fails to distinguish the sensor degradation and
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Fig. 7: Variation of C∞ on sensor degradation rate

TABLE II: Initial guess of optimal T (0) and M

T (0)

3.2 3.4 3.6 3.8 4 4.2

M

2.5 5.94 5.79 2.95 5.29 5.08 4.88
3 5.31 5.21 2.85 5.01 4.90 4.71

3.5 4.53 4.56 2.72 4.57 4.60 4.45
4 3.93 3.99 2.67 4.14 4.18 4.16

4.5 3.56 3.70 2.62* 3.91 4.08 4.14
5 3.62 3.59 3.08 3.90 4.24 4.25

5.5 3.72 3.71 3.48 4.46 4.44 4.97
6 3.89 3.98 3.97 5.12 5.57 5.74

6.5 4.57 4.56 5.34 6.16 6.87 7.13
7 5.53 5.52 6.03 7.05 8.36 9.23

system degradation in presence of sensor drift. The existing

filtering methods are applicable to 0-mean measurement noise.

However, in our case, the measurement is a mixture of system

degradation, sensor degradation, and the measurement noise.

Existing methods can handle the unbiased measurement noise.

However, in presence of the sensor drift, the measurement is

biased. Therefore, we have to estimate sensor drift as a first

step so as to provide an accurate estimation of the system sate.

C. Discussion

1) Initial guess of the inspection interval and preventive

replacement threshold: To achieve the optimal maintenance

decision under imperfect inspection, the initial guess of the

inspection interval and one-inspection-ahead reliability is ob-

tained as a first step. Table II presents how the long-run

cost rate under perfect inspection C(0)∞ varies with different

inspection interval T (0) and preventive replacement thresh-

old M. It can be observed that without sensor degradation

and measurement noise, the optimal maintenance policy is

achieved at ∆T (0) = 3.6 and M = 4.5, with the long run cost

rate C(0)∞ = 2.62. The one-inspection-ahead reliability under

this scenario R
(0)
s is close to 1.

2) Sensitivity analyses: Compared with perfect inspection,

the influence of imperfect inspection lies in the uncertainty

of the degradation and measurement process. Therefore, it is

interesting to investigate how the optimal long run cost rate

varies with the variance parameters. Fig. 8 shows the variation

of C∞ with respect to the variance parameters: σ , δ and γ .

Since a larger σ leads to more uncertainty of the degradation

process, the long run cost rate C∞ increases with the diffusion

parameter σ . In addition, C∞ is largely affected by σ , while δ



9

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

C

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2.6

2.8

3

C

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2.6

2.8

3

C

Fig. 8: Variation of C∞ on variance parameters

0 0.5 1 1.5 2

c
i

2.4

2.6

2.8

3

C

10 15 20 25 30

c
p

1

2

3

4

C

20 40 60 80

c
r

2.6

2.65

2.7

2.75

2.8

C

100 150 200 250 300

c
d

2.6

2.65

2.7

2.75

2.8

C

Fig. 9: Variation of C∞ on cost parameters

and γ have little impact on C∞. This is due to the fact that σ
determines the variation of the degradation process. A large σ
significantly increases the randomness of system failure time

and system state at inspection. On the other hand, the effect

of δ and γ is diminished by Kalman filter, which, to some

extent, indicates the effectiveness of Kalman filter.

In addition, we are interested to investigate the effect of

cost parameters on the long run cost rate C∞. Fig. 9 shows

how C∞ varies with the cost parameters: ci, cp, cr and cd .

Clearly C∞ increases with the cost parameters. In addition, ci

and cp exert more impact on the long run cost rate than cr

and cd . The underlying logic of the influence can be observed

from the reliability threshold for preventive replacement. The

system is preventively replaced at high reliability R∗
s = 0.999,

which leads to a tiny probability of system failure. In other

words, under most circumstances, a renewal cycle ends with

preventive replacement rather than corrective replacement.

3) Extension to continuous monitoring: The proposed

approach can also be extended to continuous monitoring.

It should be noted that the one-inspection-head reliability

threshold is not applicable for continuous monitoring since

the inspection interval is close to 0. On the other hand,

the maintenance lead time will influence the maintenance

efficiency and should be taken into account in presence of

continuous monitoring. For illustration purpose, we let the

lead time TL = 2. In addition, the inspection cost is set as

ci = 0, and the inspection interval is given as ∆T = 0.1.

With our method, the minimal maintenance cost C∞ = 2.45

is achieved at the reliability threshold Rc = 0.9998, which is

evaluated ahead of the lead time TL. We also compare with

the maintenance policy that neglects the sensor degradation in

spite of its existence, where the associated maintenance cost

is 2.68. Comparison between our approach and the policy that

disregards the sensor degradation leads to the conclusion that

sensor degradation exerts an influential effect on maintenance

policy under continuous monitoring.

VI. CONCLUSION

This paper develops a condition-based maintenance policy

for systems with degraded sensors. Inspection of system state

is influenced not only by the system and sensor degradation

process, but also the measurement noise. Kalman filter is used

to deal with the degradation and measurement uncertainty.

Degradation level of the system and sensor is updated at the

arrival of a new measurement. A maintenance cost model

is constructed as a first step and the optimal maintenance

policy is achieved by minimizing the long run cost rate.

Under the proposed maintenance policy, optimal inspection

interval and reliability threshold are obtained to implement

maintenance actions. At each inspection, the maintenance

actions are carried out by comparing the estimated system

reliability with the corresponding threshold. Application in

wastewater treatment plants illustrates the effectiveness of the

proposed policy.

It is revealed through the numerical example that if we

ignore the sensor degradation while it exists, the maintenance

would severely deviate from the optimal one. On the other

hand, if we realize the existence of sensor degradation and use

appropriate methods to estimate the system state, its negative

impact can be effectively diminished.

There are several interesting issues embedded with the

maintenance policy subject to sensor degradation that warrant

future research. First, in this paper Wiener process is employed

to characterize the degradation process of the system and the

sensor. For systems that exhibit monotonic degradation pro-

cesses, alternative degradation models such as Gamma process

and inverse Gaussian process can be used instead. Second, the

measurement noise is assumed to follow Gaussian distribution

and Kalman filter is used thereafter. For the measurement noise

that is not normally distributed, we need to seek other filtering

approaches such as particle filtering to deal with the non-

Gaussian noise.

Another perspective should be the investigation on the appli-

cability of the proposed methodology for a real case study with

true data. In addition, sensor-related actions (e.g.,sensor repair)

can be incorporated into the maintenance policy if the system

state cannot be accurately estimated under sensor degradation

and the associated maintenance decisions severely deviate

from the optimal one. For safety-critical systems (e.g., nuclear

power plants), sensor-related actions are warranted since the

system reliability has to be estimated in high accuracy.
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APPENDIX

A. Initial guess of the optimal maintenance decision

A near-optimal initial guess is achieved by minimizing the

long run maintenance cost rate under the condition of perfect

inspection. Since a renewal cycle ends with either preventive

replacement or corrective replacement, optimization of the

long run cost rate can be expressed as

min C(0)∞
(

∆T (0)
,R

(0)
s

)

=
ciE
[

N
(0)
I (Z(0))

]

+ cpE
[

1{PR}
]

E
[

Z(0)
]

+
ccE

[

1{CR}
]

+ cdE
[

W (0)(Z(0))
]

E
[

Z(0)
]

subject to R
(0)
s ∈ (0,1)

(A1)

where 1{CR} denotes the event that the renewal cycle ends with

corrective replacement, and 1{PR} stands for the event that

the renewal cycle ends with preventive replacement. Note that

we use the superscript (0) to distinguish from the imperfect

inspection case. In the case where inspection can accurately

observe the system state, due to the Markov property of Wiener

process, the one-inspection-ahead reliability conditioned on

the observation history Y
(0)
1:k is identical as that conditioned

on the current system state xk,

R(0)(tk +∆T (0)|Y(0)
1:k) = R(0)(tk +∆T (0)|xk) (A2)

According to the independent increment property of Wiener

process, the one-inspection-ahead conditional reliability can

be obtained as

R(0)(tk +∆T (0)|xk) = Φ

(

ζ − xk −λ∆T (0)

σ
√

∆T (0)

)

−exp

(

2λ (ζ − xk)

σ2

)

Φ

(

−(ζ − xk)−λ∆T (0)

σ
√

∆T (0)

) (A3)

It is clearly shown that R(0)(tk +∆T |xk) is continuous and

shows a monotone decreasing trend with respect to the system

statexk. The problem of finding the reliability threshold R
(0)
s

is identical to obtaining the state threshold M such that the

system is preventively replaced when its state exceeds M.

Optimization of (A1) equals to

min C(0)∞
(

∆T (0)
,M
)

subject to M ∈ (0,ζ )
(A4)

Let TM be the first passage time to the state threshold M, TM =
inf{t : X (t)≥ M}. Based on how the regenerative process

{X (t) , t ≥ 0} ends in a renewal cycle, it can be classified into

two types: ending with corrective replacement or preventive

replacement.

At the kth inspection, corrective replacement is performed

if the system state exceeds the failure threshold ζ (Xk > ζ )

while it remains below the preventive replacement threshold

M at the previous inspection (Xk−1 < M). The probability for

such an event is given as

P(Xk > ζ ∩Xk−1 < M) =
(

1−FTM

(

(k−1)∆T (0)
))

·
∫ M

0
Fζ−x

(

∆T (0);x
)

fX

(

x;(k−1)∆T (0)
)

dx

(A5)

where

fX (x; t) =
1√

2πσ2t
exp

(

(x−λ t)2

2σ2t

)

Fζ−x (t;x) = 1−Φ

(

ζ − x−λ t

σ
√

t

)

+ exp

(

2λ (ζ − x)

σ2

)

Φ

(−(ζ − x)−λ t

σ
√

t

)

FTM
(t) = P(TM < t) = 1−Φ

(

M−λ t

σ
√

t

)

+ exp

(

2λM

σ2

)

Φ

(−M−λ t

σ
√

t

)

Preventive replacement is carried out when the system

state at inspection satisfies ζ > Xk > M and Xk−1 < M. The

associated probability is expressed as

P(ζ > Xk > M∩Xk−1 < M) =
(

1−FTM

(

(k−1)∆T (0)
))

·
∫ M

0

(

FM−x

(

∆T (0);x
)

−Fζ−x

(

∆T (0);x
))

fX

(

x;(k−1)∆T (0)
)

dx

(A6)

where

FM−x (t;x) = 1−Φ

(

M− x−λ t

σ
√

t

)

+ exp

(

2λ (M− x)

σ2

)

Φ

(−(M− x)−λ t

σ
√

t

)
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The long run cost rate can be obtained as

C(0)∞
(

∆T (0)
,M
)

=
ci

∆T (0)
+ cd

∞

∑
k=1

pc (k)

+

cp

∞

∑
k=1

pp (k)+ cc

∞

∑
k=1

pc (k)− cd

∞

∑
k=1

pc (k)
∫ k∆T (0)

(k−1)∆T (0) tdFT (t)

∆T (0)
∞

∑
k=1

k (pc (k)+ pp (k))

(A7)

where pc(k) = P(Xk > ζ ∩Xk−1 < M), and pp(k) =
P(ζ > Xk > M∩Xk−1 < M). By minimizing (A7), the

optimal maintenance decision is achieved as
{

∆T (0)∗
,M∗

}

= argminC(0)∞
(

∆T (0)
,M
)

The initial guess of the optimal decision is given as
{

∆T (0)∗,R(0)
s

∗}
, where

R
(0)∗
s = Φ

(

ζ −M∗−λ∆T

σ
√

∆T

)

− exp

(

2λ (ζ −M∗)
σ2

)

Φ

(−(ζ −M∗)−λ∆T

σ
√

∆T

)

B. State estimation with unknown sensor degradation rate

For the case where the sensor degradation rate η is un-

known, but follows a Gaussian distribution, the state-space

equation can be obtained as














xk = xk−1 +λ (tk − tk−1)+uk

ηk = ηk−1

sk = sk−1 +ηk−1(tk − tk−1)+ vk

yk = xk + sk + εk

which can be rewritten as

{

zk = Akzk−1 +Bk +wk

yk = Hzk + εk

where

Ak =





1 0 0

0 1 0

0 tk − tk−1 1



 ,Bk =





λ (tk − tk−1)
0

0



 ,

zk =





xk

ηk

sk



 ,H =
[

1 0 1
]

wk ∈ R3×1 follows a 3-variante Gaussian distribution, wk ∼
N(0,Qk), where

Qk =





σ2(tk − tk−1) 0 0

0 0 0

0 0 δ 2(tk − tk−1)





The expectation and variance of zk till the kth inspection is

given as

ẑk|k =





x̂k|k
η̂k

ŝk|k



= E(zk|Y1:k),

Pk|k =





χ2
x,k χ2

xη ,k χ2
xs,k

χ2
xη ,k χ2

η ,k χ2
ηs,k

χ2
xs,k χ2

ηs,k χ2
s,k



= cov(zk|Y1:k)

where χ2
x,k = var(xk|Y1:k), χ2

η ,k = var(ηk|Y1:k), χ2
s,k =

var(sk|Y1:k), χ2
xη ,k = cov(xkηk|Y1:k), χ2

xs,k = cov(xksk|Y1:k),

χ2
ηs,k = cov(ηksk|Y1:k). Similarly, the one-step-ahead predic-

tion is expressed as

ẑk|k−1 =





x̂k|k−1

η̂k|k−1

ŝk|k−1



= E(zk|Y1:k−1),

Pk|k−1 =







χ2
x,k|k−1

χ2
xη ,k|k−1

χ2
xs,k|k−1

χ2
xη ,k|k−1

χ2
η ,k|k−1

χ2
ηs,k|k−1

χ2
xs,k|k−1

χ2
ηs,k|k−1

χ2
s,k|k−1






= cov(zk|Y1:k−1)

Estimation and update of the state and variance can be im-

plemented as that in Section IV. The details are suppressed to

avoid repetition. The initial expectation and variance is given

as

ẑ0|0 =





0

µη

0



 ,Pk|k =





0 0 0

0 σ2
η 0

0 0 0





C. State estimation with dependent system and sensor degra-

dation

With the assumption that the system degradation has an

additive impact on the sensor degradation, the state-space

equation is given as







xk = xk−1 +λ (tk − tk−1)+uk

sk = sk−1 +ηk−1(tk − tk−1)+αxk + vk

yk = xk + sk + εk

where α is the parameter scaling the influence of system

degradation on the sensor degradation. Similarly, the state-

space equation can be rewritten as

{

zk = Akzk−1 +Bk +wk

yk = Hzk + εk

where

A =

[

1 0

α 1

]

,Bk =

[

λ (tk − tk−1)
η(tk − tk−1)+αλ (tk − tk−1)

]

H =
[

1 1
]

, wk ∈ R2×1, wk ∼ N(0,Qk),

Qk =

[

σ2(tk − tk−1) 0

0 δ 2(tk − tk−1)+α2σ2(tk − tk−1)

]

With the above expressions, Kalman filter can be employed to

estimate the system and sensor state. The details are similar

to those in Section IV.
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D. Impact of sensor failure

The previous analysis assumes that the dedicated sensor

is replaced together with the system and no sensor failure

is taken into account. In this section we will investigate the

impact of sensor failures on the maintenance actions. The

sensor is replaced when it is found failed or along with system

replacement. Note that since a sensor is usually far cheaper

than the system, we do not incorporate the cost of sensor

replacement in the evaluation of long run cost rate. When the

system state is estimated by Kalman filter, we can have the

conditional reliability at the next inspection as

R(tk +∆T ∗|Y1:k) =Φ





ζ − x̂k|k −λ∆T ∗
√

χ2
x,k +σ2∆T ∗





− exp





2λ (ζ − x̂k|k)

σ2
+

(√
2λ χx,k

σ2

)2


 ·

Φ





−ζ + x̂k|k −λ∆T ∗−2λ
χ2

x,k

σ2
√

χ2
x,k +σ2∆T ∗





Let πk ∈ {0,1,2} be the maintenance actions at the kth

inspection: πk = 2 stands for corrective replacement, πk = 1

indicates preventive replacement and πk = 0 represents do

nothing. If the sensor functions at the kth inspection, we have

πk =







2, if system fails

1, if R(tk +∆T ∗|Y1:k)< R∗
s

0, otherwise

However, if the sensor fails at inspection, the system state

cannot be detected and the maintenance decision has to be

made based on the previous inspection information. It follows

πk =







2, if system fails & R(tk−1 +2∆T ∗|Y1:k−1)< R∗
s

1, if system functions & R(tk−1 +2∆T ∗|Y1:k−1)< R∗
s

0, otherwise

where R(tk−1 +2∆T ∗|Y1:k−1) is the two-inspections-ahead

conditional reliability at the (k−1)th inspection,

R(tk−1 +2∆T ∗|Y1:k−1) = Φ





ζ − x̂k−1|k−1 −2λ∆T ∗
√

χ2
x,k−1 +2σ2∆T ∗





− exp





2λ (ζ − x̂k−1|k−1)

σ2
+

(√
2λ χx,k−1

σ2

)2


 ·

Φ





−ζ + x̂k−1|k−1 −λ2∆T ∗−2λ
χ2

x,k−1

σ2
√

χ2
x,k−1 +σ2∆T ∗





E. Estimation of sensor degradation parameters

The degradation parameters of the sensor can be estimated

by maximum likelihood estimation (MLE). Let Q(t) denote the

measurements of the new sensor, Q(t) = S(t)+ϖ , where ϖ is

the measurement noise of the new sensor, following a Gaussian

distribution, ϖ ∼ N(0,ϑ 2). With the sensor degradation pro-

cess of (2), the parameters under estimation are (η ,δ ,ϑ). For

notational convenience, let θ be the collection of the parame-

ters under estimation, θ = (η ,δ ,ϑ). Since the sensor suffers a

Wiener degradation process, to take advantage of the identical

independent increment property of Wiener process, we will

use the degradation increments to estimate the parameters.

The sensor is inspected at time {t j, j = 1,2,3, ...,n} and the

associated measurements are denoted as {Q(t j), j = 1,2, ...,n}.

Denote ∆t j = t j − t j−1 as the inspection intervals and κ j as

the measurement increments, κ j = Q(t j)− Q(t j−1). It can

be obtained that the set of measurement increments, κ =
(κ1,κ2, . . . ,κn), follow a multivariate Gaussian distribution,

κ ∼ N (η∆t,Σ)

where ∆t = (∆t1,∆t2, . . . ,∆tn), and Σ is the variance-covariance

matrix, denoted as

Σ j,k = cov(κ j,κk|θ) =















δ 2∆t j +ϑ 2, j = k = 1

δ 2∆t j +2ϑ 2, j = k > 1

−ϑ 2, | j− k|= 1

0, otherwise

Suppose that the degradation data can be collected from N

items. Let i be the item index and j the index of inspection

epochs. For item i, the jth inspection interval is denoted

as ∆ti, j = ti, j − ti, j−1 and the jth measurement increment is

denoted as κi, j = Q(ti, j)−Q(ti, j−1). Similarly, we can have

κi = (κi,1,κi,2, . . . ,κi,n) and ∆ti = (∆ti,1,∆ti,2, , . . . ,∆ti,n). Since

the degradation observations of each item follow a multivariate

Gaussian distribution, given the sensor degradation data, we

can have the log-likelihood function (up to a constant) as

follows,

l(κ1,κ2, ...,κN) =
N

∑
i=1

(

ln |Σi|+(κi −η∆ti)
′Σ−1

i (κi −η∆ti)
)

where Σi is similarly defined as previous discussion. Esti-

mates of θ can be obtained by maximizing the log-likelihood

function l (θ |κ1,κ2, ...,κN).
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