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Abstract. Stochastic seismic analysis of long-span bridges with Carbon fibre
reinforced polymer (CFRP) cables are presented in this study through combina-
tion of the advantages of the perturbation based stochastic finite element method
(SFEM) and Monte Carlo simulation (MCS) method. Jindo cable-stayed and Fatih
Sultan Mehmet (Second Bosporus) suspension bridges are chosen as an example.
Carbon fibre reinforced polymer cable (CFRP) and steel cables are used separately,
in which the cable’s cross sectional area is determined by the principle equivalent
axial stiffness. Geometric nonlinear effects are considered in the analysis. Uncer-
tainties in the material are taken into account and Kocaeli earthquake in 1999 is
chosen as a ground motion. The efficiency and accuracy of the proposed algorithm
are validated by comparing with results of MCS method. It can be stated that using
of CFRP cables in long-span bridges subjected to earthquake forces is feasible.

Keywords. Cable-supported bridges; suspension bridges; carbon fibre rein-
forced polymer (CFRP) cable; stochastic finite element method (SFEM); random
variable; Monte Carlo simulation (MCS) method.

1. Introduction

The stay cables for cable-stayed bridges, and main cables and hangers for suspension bridges
are the main structural elements and they have significant influences on structural performance
and appearance. The cables in long-span bridges are subjected to tension induced by the dead
and live loads. The tensile strength of the cables is one of the most important mechanical
properties of the long-span bridges (Kremmidas 2004). Unlike many other bridge types, these
components are completely exposed to environmental conditions. It is thus of general interest
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to make such cables as corrosion resistant as possible. Continuous attempts are being made to
improve the traditional cable’s materials, at the same time engineers and researchers are trying
to develop new engineering materials. Among them, more attentions are given to the CFRP
material. Advanced composites such as CFRP offer properties like high specific strength,
stiffness, high fatigue and excellent chemical resistance. These outstanding properties make
them prime candidates for bridge applications such as cable, hanger or conventional box
girder structures (Almansour 2006).

The first application of CFRP as cables in a real long-span bridge is in a road bridge, which
crosses several railway tracks in Winterthur, Switzerland in 1996, among the twenty-four
cables, two are made of CFRP, while the rest are the conventional steel cables (Cheng 1999).
The feasibility of using CFRP cables in long-span bridges attracts increasing attentions from
civil engineers. The slender and flexible characteristics of the long-span bridge make it sensi-
tive to the dynamic loads. The adoption of CFRP cables, which has different properties from
the conventional steel cables, may significantly affect the dynamic response of the bridges.
Researches on the impact of using CFRP cables in bridges have been conducted (Zhang &
Ying 2007; Khalifa 1992; Meirer 1999; Noisternig 2000; Zhang & Chai 2007; Aparicio &
Casas 1997). These studies were based on the assumption of complete determinacy of struc-
tural parameters. This is usually referred to as deterministic analysis. In reality, however,
there are uncertainties in design variables. These uncertainties include geometric properties,
material mechanical properties, load magnitude and distribution, etc. Therefore, determini-
stic analysis cannot provide complete information regarding dynamic responses of long-span
bridges with cables.

To identify changes in the material and geometrical properties of a bridge, stochastic
finite element method (SFEM) is required (Kleiber & Hien 1992; Falsone & Impollonia
2002; Çavdar et al 2008; Adhikari & Friswell 2007; Zhu & Wu 1992; Adhikari & Manohar
2000).Very few researchers (Cheng & Xiao 2005; Liu et al 1999) studied the SFEM with ran-
dom variable material and geometrical properties of long-span bridges having steel cables.
Cheng & Xiao (2005), proposed a stochastic finite-element-based algorithm for the proba-
bilistic free vibration and flutter analyses of suspension bridges. Liu et al (1999) investigated
large-flexible structures, such as suspension bridges, actually possess stochastic material pro-
perties and these random properties unavoidably affect the dynamic system parameters.

The focus of the present paper is to perform the stochastic seismic analysis of long-span
cable-stayed and suspension bridges using either steel or CFRP cables. In this work, Jindo
Bridge, a cable-stayed bridge using CFRP stay cables, and Fatih Sultan Mehmet (Second
Bosporus) Bridge, a suspension bridge using CFRP cables and hangers, are chosen as numer-
ical examples. During stochastic analysis, modal frequencies, displacements and internal
forces of the long-span bridges are obtained from perturbation-based SFEM by using different
uncertainties of material characteristics. Elastic modulus is chosen as random variable mate-
rial properties. The analysis results obtained from using either CFRP or steel cables according
to perturbation based SFEM are compared with each other. In addition, the efficiency and
accuracy of the proposed algorithm are validated by comparing with displacement results of
MCS method.

2. Stochastic formulation

There are two fundamental ways to solve the stochastic problem; (i) analytical approach
and (ii) numerical approach. Among analytical approaches, the perturbation-based SFEM is
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widely used because of its simplicity. Numerical method such as Monte Carlo Simulation
(MCS) is generally applicable to all types of stochastic problems and is often used to verify the
results obtained from analytical methods. A detailed discussion of these methods is presented
below.

2.1 Perturbation-based SFEM formulation

The perturbation method is the most widely used technique for analysing uncertain system.
The basic idea behind the perturbation method is to express the stiffness and mass matrices
and the responses in terms of Taylor series expansion with respect to the parameters centered
at the mean values (Kleiber & Hien 1992).

Let us consider a deterministic equation of motion in the form of

Mαβq̈β + Cαβq̇β + Kαβqβ = Qα, (1)

where Kαβ, Mαβ, Cαβ denote the stiffness matrix, mass matrix and damping matrix, q̈β, q̇β, qβ

denote the acceleration, velocity, displacement, respectively.
The stochastic perturbation-based approach usually consists of up to the second order

equations obtained starting from the deterministic ones. The perturbation stochastic finite
element equations describing dynamic response of random variable system for the zeroth,
first and second order are given below:
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where b0
� is the vector of nodal random variables, qα is the vector of nodal displacement-type

variables, τ is forward time variable, N̄ is the number of nodal random variables. M0
αβ, C0

αβ

and K0
αβ are system mass matrix, damping matrix and system stiffness matrix, respectively.

Q0
α, q0

β and Cov(br , bs) are load vector, displacement and the covariance matrix of the nodal
random variable, respectively. N is the number of degrees of freedom in the system. (.)0 is
zeroth-order quantities, taken at means of random variables, (.),ρ is first partial derivatives



344 Özlem Çavdar et al

with respect to nodal random variables, (.),ρσ is second partial derivatives with respect to
nodal random variables.

The first two statistical moments for the random fields br(xk), r = 1, 2, . . . , R, are defined
as (Kleiber & Hien 1992)

E[br ] = b0
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brp1(br)dbr (5)
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The latter definition can be replaced by [1],
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where,E[br ], Cov(br , bs), V ar(br) are the spatial expectation value, covariance and variance,
respectively; μbrbs

, αbr
, p1(br) are correlation functions, the coefficients of variation and

probability density function (PDF), respectively. p2(br , bs) is the joint PDF. R is the random
fields, which can represent randomness elastic modulus, and mass density of the material, etc.

All the equations, solved consequently for zeroth, first and second order displacements,
velocities and accelerations, make it possible to compute the first two probabilistic moments
of the output in the form of expected values and cross-covariances of the structural response.

2.2 Monte carlo simulation (MCS) method

The Monte Carlo Simulation generates a set of random values of X according to its proba-
bility distribution function. The set can be written as X = {x1, x2, . . . , xN }, where N is
the number of simulation. For each values of X, the stiffness and mass matrices are com-
puted. At the end of N simulations, we have a random set of displacement and stress values
{{qβ}1, {qβ}2, {qβ}3, . . . , {qβ}N }, {{σ }1, {σ }2, {σ }3, . . . , {σ }N } for Xi . From this finite set of
solutions, the expected values of displacement and stress are computed using the following
formulas (Shinozuka 1972; Zhang & Ellingwood 1996; Melchers 1999):

E{qβ } = 1

N

N∑
i=1

{qβ}i , (9)

E{σ } = 1

N

N∑
i=1

{σ }i . (10)

3. Numerical applications

A cable-stayed bridge and a suspension bridge with steel and CFRP cables are considered as
examples. The elastic modulus was chosen as random variable for both examples. Coefficients
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Figure 1. Acceleration time
history of Kocaeli earthquake
(YPT330) in 1999 (Peer 2007).

of variation (COV) of two materials differ from each other. This value for steel is about 10%
[3, 20], on the other hand, for CFRP, this value is about 15% (Brunner 2000).

The cross-section areas of CFRP stay cables for the bridge examples are determined by the
equivalent axial stiffness, and calculated by the following equation (Cheng 1999):

ECFRPACFRP = ESTEELASTEEL, (11)

where ECFRP, ESTEEL are the elastic modulus of CFRP and steel, respectively; ACFRP, ASTEEL

are the cross-sectional areas of CFRP and steel cables, respectively.
For stochastic dynamic analyses of the bridge models, the YPT330 component of the

August 17, 1999, Kocaeli, Turkey earthquake is chosen as shown in figure 1. The earthquake
motion continued up to 35·0 s is applied to the cable-supported bridges in a vertical direction.
The dynamic responses of the cable-supported bridges are obtained for a time interval of
0·005 s using the mode superposition method considering Wilson-θ algorithm.

3.1 Example 1. Cable-stayed bridge

Jindo Bridge built in South Korea is chosen as a practical example to investigate stochastic
response of a cable-stayed bridge using either CFRP or steel stay cables. Jindo Bridge has
three spans, the main span of 344 m and two side spans of 70 m, as shown in figure 2. The
stays are arranged in a fan configuration and converged at the top of the A-frame towers.
The diameters of the stays are 56 mm, 67 mm, 76 mm and 87 mm. Each carries 24 stays and
the towers are 69 m height above the piers on which they are supported. The chosen finite
element model is represented by 420 degrees of freedom. As the stiffening girder and towers
are represented by 139 beam elements, the cable stays are modelled with 30 truss elements.
The stiffening girder and the towers of the Jindo Bridge were made of steel (Tappin & Clark
1985). For the purpose of discussion, a same span length of cable-stayed bridge with CFRP
stay cables is schemed. Except for the material and sectional properties of the cables, other
design parameters of the Jindo Bridges are remained the same. The cable’s cross sectional area
is determined by the principle equivalent axial stiffness in equation (11). Structural material
and sectional properties of the steel and CFRP cables are presented in table 1.

Damping coefficients of CFRP composite structures are higher than those for typical steel
structures (Almansour 2006). Therefore, a damping ratio of 2% is adopted for the response
calculations of cable-stayed bridge consist of steel cables. Damping ratio 5% of is utilized
for the CFRP composite bridge model through the stochastic dynamic analysis. The number



346 Özlem Çavdar et al

Figure 2. General arrangements of Jindo Bridge (Tappin & Clark 1985).

Table 1. Structural material and sectional properties for Jindo Bridge.

Elastic modulus Mass density Cables sectional Damping
Members (kN/m2) (kg/m3) area (m2) ratio

Deck Steel 2·1 × 108 8800 ∼ 15700 0·416 ∼ 0·827 2%

Cables

Steel 1·5 × 108 7850

0·02010

2%
0·01004
0·00756
0·00556
0·00428

CFRP 1·125 × 108 1600

0·0268

5%
0·0134
0·0101
0·0074
0·0057



Stochastic analysis of long-span bridges with CFRP cables 347

of modes play a very important role in obtaining the results with acceptable accuracy. So, the
first 15 modes of vibration are adopted for the response calculations.

To investigate the dynamic responses of the Jindo Bridge, two-dimensional mathematical
model is used for calculations in figure 2. It has been shown that a two-dimensional analysis
of the cable-stayed bridge provides natural frequencies and mode shapes which are in close
agreement with those obtained by three-dimensional analysis (Garevski et al 1988). The
nonlinearity of the inclined cable stays is considered with equivalent modulus of elasticity.
The nonlinearity of the cable stays originates with an increase in the loading followed by
a decrease in the cable sag. To overcome this nonlinear effect of the proposed equivalent
modulus of elasticity, which includes the normal modulus of elasticity, the effect of sag and
tension load, is employed. The equivalent modulus of elasticity was given by (Troitsky 1988):

Ei = E

1 + (γ 2L2E/12σ 3)
, (12)

where, E is the modulus of elasticity of the straight cable, L is the horizontal length of the
cable, γ is specific weight of the cable and σ is the tensile stress in the cable.

The respective expectation and correlation function for the elastic modulus Eρ are assumed
as follows:

ESTEEL[Eρ] = 1·5 × 108 λ = 10,

ECFRP[Eρ] = 1·125 × 108

αSteel = 0·10 and αCFRP = 0·15, (13)

μ(Eρ, Eσ ) = exp

(
−|xρ − xσ |

λl

)
, (14)

where xρ, l and λ are ordinates of the element midpoints, structural member length and decay
factor. The cable-stayed bridge is modelled by 169 stochastic finite elements with different
lengths. MCS method is simulated for 10000 simulations.

Natural frequencies, the mean of maximum displacements and internal forces of the Jindo
Bridge using either CFRP or steel stay cables are calculated according to perturbation-based
SFEM, in which geometrical nonlinearity is considered. The efficiency and accuracy of the
proposed algorithm are validated by comparison with results of MCS method.

The first 15 modes of the bridge using either CFRP or steel stay cables are computed by
the perturbation-based SFEM analysis. Table 2 shows the modal properties of the bridge.
As CFRP cables are used, the natural frequencies of all modes are increased by less than 3%
as compared to the case of steel cables. The fact can be mainly attributed to the decreasing
of structural mass. Because the CFRP cable is designed by the principle of equivalent axial
stiffness, structural stiffness under the two cases is almost the same, but the mass density
CFRP stay cables is only 0·204 times that of the steel stay cables as shown in table 1. With
the same stiffness and much lower mass, the natural frequencies are therefore increased. The
adoption of CFRP stay cables has the effect of stiffening the structure by increasing its natural
frequencies.

Firstly, the accuracy of perturbation-based SFEM is tested with MCS method. For this
aim, these two methods are compared with each other for the mean of maximum vertical
displacement values in figure 3 and table 3. By comparing perturbation-based SFEM and
MCS methods, for both CFRP and steel stay cables, these two methods gives closer results
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Table 2. Effects of cable materials on structural natural
frequencies (Hz) for Jindo Bridge.

Frequencies (Hz)

Mode No. Steel CFRP

1 0·4441 0·4471
2 0·6422 0·6482
3 0·9486 0·9556
4 1·2672 1·2778
5 1·5928 1·6041
6 1·8273 1·8405
7 1·9618 1·9822
8 2·0316 2·0501
9 2·3723 2·3874

10 2·7694 2·7977
11 2·9026 2·9225
12 2·9450 2·9614
13 3·6545 3·6743
14 4·3131 4·4717
15 4·4601 4·6068

to each other. The average absolute differences between these two methods for vertical dis-
placement values using steel stay cables are about 4·65%, however, average differences using
CFRP stay cables are about 4·54%. It is also seen from figure 3 that in the case of CFRP stay
cables, the vertical displacements are increased as compared to the case of steel stay cables.
The average difference between these two materials for the vertical displacement value is
about 0·95%.

The mean of maximum shear forces and bending moments for deck of the Jindo Bridge are
presented in figure 4. It is seen from figure 4 that values obtained from using either steel or
CFRP stay cables is closed to each other. The minimum differences between the shear forces
and bending moments of these two materials are 0·14% and 0·59%, respectively. The average

Figure 3. The mean of maximum vertical displacements at the deck of Jindo Bridge for random
elastic module.
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Table 3. Structural material and sectional properties for Fatih Sultan Mehmet Bridge.

Elastic modulus Mass density Cables sectional Damping
Members (kN/m2) (kg/m3) area (m2) ratio

Deck Steel 2·05 × 108 9980 1·26 ∼ 2·68 2%

Hanger Steel 1·93 × 108 7985 0·7376 2%
CFRP 1·45 × 108 1653 1·043 5%

Cable
Steel 1·93 × 108 7850 ∼ 7994 0·6904 2%0·0088

CFRP 1·45 × 108 1544 ∼ 1661 0·976 5%0·0241

Figure 4. The mean of maximum shear forces (a) and bending moment (b) for deck of Jindo Bridge
for random elastic module.
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differences for these internal forces are about 0·7% and 1·01%, respectively. The mean of
maximum values acquired by steel stay cables are generally smaller than those calculated by
the CFRP stay cables. It is concluded from the above analysis that the using of CFRP cables
in long-span cable-supported bridges is feasible.

3.2 Example 2. Suspension bridge

The Fatih Sultan Mehmet (Second Bosporus) Suspension Bridge is chosen as second example
to demonstrate the response variation of CFRP and steel cables bridges. The bridge connect-
ing the Europe and Asia Continents in Istanbul, Turkey has a box girder deck with 39·4 m wide
overall and 1090 m long. There are no side spans and the steel towers 110 m above ground
level. The hangers are vertical and connect to the deck and cable with singly hinged bearing.
The horizontal distance between the cables is 33·8 m and the roadway is 28 m wide, accommo-
dating two four-lane highways. The roadway at the mid-span of the bridge is approximately
64 m above the sea level. General arrangement of the bridge is shown in figure 5. To investi-
gate stochastic dynamic responses of the bridge model, 2D mathematical model is considered
as shown in figure 5. Dumanoglu & Severn (1990) verified that 2D analysis provide natu-
ral frequencies and mode shapes which are in close agreement with those obtained by 3D
analysis in the vertical direction for suspension bridges. As the deck, towers, and cables of
the selected bridge are modelled by beam elements; the hangers are modelled by truss ele-
ments. A finite element model of the bridge with 128 nodal points, 142 beam elements and
44 truss elements are used in the analyses. This model has three degrees of freedom at each
nodal point, namely, two translational degrees of freedom in vertical and longitudinal axes
and one rotational degree of freedom in lateral axis. So, the finite element model of the bridge
is decreased to 382 degrees of freedom and therefore a 2D analysis is adopted in the vertical
plane of the bridge. In addition, structural material and sectional properties of the steel and
CFRP cables are presented in table 3.

The suspension bridge is modelled by 186 stochastic finite elements of different length.
The respective expectation and correlation function for the elastic modulus Eρ are assumed
as follows:

ESTEEL[Eρ] = 2·05 × 108 λ = 10

ECFRP[Eρ] = 1·45 × 108 (15)

μ(Eρ, Eσ ) = exp

(
−|xρ − xσ |

λl

)
. (16)

Damping ratio 2% is used for the steel bridge model, 5% damping ratio is utilized for the
CFRP composite bridge model through the stochastic dynamic analysis. The first 20 modes
of vibration are adopted for the response calculations.

Figure 5. 2D finite element model of Fatih Sultan Mehmet suspension bridge.
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Table 4. Effects of cable materials on structural natural
frequencies (Hz) for Fatih Sultan Mehmet bridge.

Frequencies (Hz)

Mode No. Steel CFRP

1 0·1194 0·1250
2 0·1539 0·1667
3 0·2076 0·2453
4 0·2395 0·2532
5 0·3127 0·3371
6 0·3867 0·4203
7 0·4717 0·5199
8 0·5376 0·5995
9 0·5635 0·6289

10 0·6653 0·7511
11 0·7757 0·8850
12 0·8966 1·0322
13 1·0268 1·1921
14 1·1682 1·3355
15 1·2250 1·4221

For the geometrical nonlinearity in forming the stiffness matrix ([K0
αβ]), geometric stiffness

matrix ([Kg]) is added to the elastic stiffness matrix ([Ke]) (Przemieniecki 1968).

[K0
αβ] = [Ke] + [Kg]. (17)

Stochastic dynamic response of the suspension bridge using either CFRP or steel cables
is computed by perturbation-based SFEM for random elastic module, which the structural
geometrical nonlinearity is also considered.

As CFRP cables are used, the natural frequencies of all modes are increased by less than
15% according to the steel cables as given in table 4. The fact can be mainly attributed
to the decreasing of structural mass. Because the CFRP cable is designed by the principle
of equivalent axial stiffness, structural stiffness for the two cases is almost the same. With
the same stiffness and much lower mass density, structural natural frequencies are therefore
increased. The adoption of CFRP cables in the Fatih Sultan Mehmet Bridge has the effect of
stiffening the structure by increasing its natural frequencies.

The accuracy of perturbation-based SFEM is tested with MCS method for the mean of
maximum vertical displacement values as shown in figure 6. If comparing perturbation-based
SFEM and MCS method, for both CFRP and steel cables, these two methods gives closer
results to each other. The average absolute differences between these two methods for vertical
displacement values using steel stay cables are about 3·37%, however, average differences
using CFRP cables are about 9·01%. It is also can be seen from figure 6 that in the case of
CFRP cables, as compared to the case of steel cables the vertical displacements on the deck
for Fatih Sultan Mehmet Bridge increase. The average difference between these two materials
for the vertical displacement value is about 8%.

The mean of maximum shear forces and bending moments for the bridge deck calculated
using perturbation-based SFEM dynamic analyses are shown in figure 7. It is seen from
figure 7 that stochastic values acquired from using CFRP cables are closed to the ones using
steel cables. The average differences between the shear forces and bending moments of these
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Figure 6. The mean of maximum vertical displacements at the deck of Fatih Sultan Mehmet Bridge
for random elastic module.

Figure 7. The mean of maximum shear forces (a) and bending moment (b) for deck of Fatih Sultan
Mehmet Bridge for random elastic module.
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two materials are 12·23% and 10·36%, respectively. The mean of maximum values of internal
forces obtained from using steel cables are generally higher than the maximum values obtained
using CFRP cables.

In addition to the results obtained from these two examples; for the analysis of Jindo Bridge
(figure 2), it needs about 2 minutes for perturbation based stochastic analysis. However, it
needs about 8 hours for MCS analysis with the PC which have Intel Pentium (R) 2·40 GHz
CPU and 768 MB RAM. On the other hand, it needs about 3 minutes for perturbation based
stochastic analysis, using either CFRP or steel cables and needs about 11 hours for MCS
analysis for Fatih Sultan Mehmet Bridge (figure 5).

4. Conclusions

In this paper, a cable-stayed bridge using CFRP stay cables and a suspension bridge using
CFRP cables and hangers are schemed, in which the cable’s cross sectional area is determined
by the principle equivalent axial stiffness. The stochastic seismic behaviours of two bridges
using either CFRP or steel cables are investigated by perturbation-based SFEM and MCS
methods. Some conclusions drawn from this study are:

• It is seen that the results obtained from SFEM and MCS methods for CFRP and steel
cables are close to each other.

• The fundamental frequencies of the bridges with CFRP cables are relatively high due to
its light weight and high strength.

• The mean of maximum values of displacements and internal forces acquired by steel
cables are generally smaller than those calculated by the CFRP cables.

• Based on the stochastic seismic analyses results, it seems that the proposed CFRP cables
and hangers cross-sections are adequate for the serviceability of long-span bridges.

• For long-span bridges having the same span length and the same cable arrangement type,
the replacement of the conventional steel cables with the light weight, high strength
CFRP cables and hanger helps to enhance the rigidity of the structures.

• The SFEM, based on the perturbation technique, offers an efficient alternative to the
MCS method.
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