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Abstract—We develop a simple stochastic fluid model that seeks
to expose the fundamental characteristics and limitationsof P2P
streaming systems. This model accounts for many of the essential
features of a P2P streaming system, including the peers’ real-
time demand for content, peer churn (peers joining and leaving),
peers with heterogeneous upload capacity, limited infrastructure
capacity, and peer buffering and playback delay. The model is
tractable, providing closed-form expressions which can beused
to shed insight on the fundamental behavior of P2P streaming
systems.

The model shows that performance is largely determined by
a critical value. When the system is of moderate-to-large size,
if a certain ratio of traffic loads exceeds the critical value, the
system performs well; otherwise, the system performs poorly.
Furthermore, large systems have better performance than small
systems since they are more resilient to bandwidth fluctuations
caused by peer churn. Finally, buffering can dramatically im-
prove performance in the critical region, for both small and large
systems. In particular, buffering can bring more improvement
than can additional infrastructure bandwidth.

I. I NTRODUCTION

With the widespread adoption of broadband residential
access, live video streaming may be the next disruptive IP
communication technology. As an indication of the potential
of live video streaming, recently a commercial P2P streaming
system broadcasted the 2006 Chinese New Year’s celebration
to over 200,000 users over the Internet at bit rate in the
400-800 kbps range [9], generating an aggregate bit rate in
the vicinity of 100 gigabits/sec. In the future, we expect to
see thousands of live video streaming channels available on
the Internet, each with a bit rate of 500 kbps or more, each
supporting tens of users to hundreds of thousands of users.

There are several classes of delivery architecture for live
video streaming, including native IP multicast [6], application-
level infrastructure overlays such as those provided by CDN
companies [1], [7], and P2P architectures. Requiring minimal
infrastructure, the P2P architectures offer the possibility of
rapid deployment at lowest cost. P2P streaming architectures
roughly fall into two categories:(i) multicast trees such as in
end-system multicast [3];(ii) and pull-driven P2P streaming
such as CoolStreaming [18], PPLive [13] and PPStream [14].

Bearing strong similarities to BitTorrent [5], pull-driven P2P
streaming architectures have the following characteristics:

• A video (live or stored) is divided into media chunks of
about one second in duration, and the chunks are made
available at an origin server.

• A peer, interested in viewing the video stream, obtains
from the system a list of peers currently watching the
video. The peer then establishes partner relationships
(TCP connections) with the peers on the list.

• The peer requests media chunks from its partners and
(possibly) from the server. But because the chunks have
playback deadlines, a peer only requests chunks that can
likely be received before their playback deadlines.

• Once a peer has obtained a chunk, it makes the chunk
available for downloading by other peers.

An important characteristic of pull-driven P2P streaming is the
lack of an (application-level) multicast tree - a characteristic
particularly desirable for the highly dynamic, high-churnP2P
environment [18]. Although pull-driven P2P streaming has
similarities with BitTorrent, BitTorrent in itself is not afeasible
delivery architecture, since it does not account for the real-time
needs of streaming.

Several pull-driven P2P streaming systems have been suc-
cessfully deployed to date, accommodating thousands of si-
multaneous users. Most of the these deployments have origi-
nated from China (including Hong Kong). The pioneer in the
field, CoolStreaming, reported more than4, 000 simultaneous
users in 2003. More recently, a number of second-generation
pull-driven P2P streaming systems have reported phenomenal
success on their Web sites, advertising tens of thousands of
simultaneous users who watch channels at rates between 300
kbps to 1 Mbps. These systems include PPLive [13], PPStream
[14], VVSky [17], TVAnts [16] and FeiDian [8].

In P2P streaming systems, participating nodes are very
heterogeneous, particularly in terms of the amount of upload
bandwidth they contribute [9]. Today there are roughly two
classes of peers participating in P2P streaming systems: broad-
band residential peers with DSL and cable access; and institu-
tional peers with high-bandwidth Ethernet access. In addition
to being heterogeneous, nodes churn, with peers randomly
joining the system, watching the video for a random period
of time, and then leaving the system. As the peers churn,
both the system’s demand for video as well as the system’s



overall ability to supply video changes. Another important
characteristic of P2P live streaming systems is that they can
allow for small buffering delays, which potentially mitigate
against the short-term bandwidth variations due to peer churn.
Broadly speaking, a P2P streaming system performs well if
all participating peers can continuously playback the video
(without freezing or skipping) with a small playback delay.

In this paper we develop a simple stochastic fluid model
that seeks to expose of the fundamental characteristics and
limitations of P2P streaming systems. This model accounts
for many of the essential features of a P2P streaming system,
including the peers’ real-time demand, peer churn (peers join-
ing and leaving), peers with heterogeneous upload capacity,
limited server upload capacity, and buffering and playback
delay. Additionally, the model is tractable, providing closed-
form expressions which can be used to shed insight on the
fundamental behavior of P2P streaming systems. We use
the stochastic fluid model to seek answers to the following
questions.

• What are the key parameters that determine the perfor-
mance of the P2P streaming system? Is there a threshold
effect for which the performance switches from poor to
excellent as the threshold is crossed?

• It has been observed that large P2P streaming systems
generally perform better than small systems [9]. Why do
large systems perform better?

• What happens to performance as the system scales? In
particular, for a dynamic system with churn, what is the
asymptotic performance of the system as the average
number of participating peers become very large?

• Can buffering and playback lag significantly improve
performance? If so, by how much and in what circum-
stances?

• Can we quantify the benefit of additional infrastructure
resources? Will increasing the server upload rate signifi-
cantly improve performance?

• Finally, how can admission control be applied to provide
adequate service to all peers while minimizing the num-
ber of rejected peers?

This paper is organized as follows. In Section 2 we intro-
duce the basic model for P2P streaming with peer churn. In
Section 3, we take a brief interlude and derive necessary and
sufficient conditions for a churnless system. These conditions
are not only central to our stochastic model with peer churn
but are also of independent interest. In Section 4 we return to
systems with churn. We first determine an explicit expression
for the probability of degraded service. We then employ an
asymptotic model to study large P2P streaming systems. In
Section 5 we explore the potential for improvement with
playback buffering and lag at the peers. In Section 6 we use
the results from Section 4 to develop an effective admission
control scheme for P2P streaming systems. We summarize the
contributions of this paper and conclude in Section 7.

A. Related Work

To our knowledge, this is the first paper that presents
an analytical model for P2P streaming systems (fluid or
otherwise). Here, we briefly describe other papers that propose
fluid models for P2Pdownload systems. Qui and Srikant
[15] developed and solved a fluid model for BitTorrent-like
systems. The model accounts for churn, and views the number
of seeds and leechers as fluid quantities. They develop simple
differential equations for the fluids and solve the equations in
steady state. Clevenot et al [4] develop a multiclass fluid model
for BitTorrent systems. The multiclass fluid model leads to a
non-linear system of differential equations with special struc-
ture. They prove the system of differential equations admits a
unique stable equilibrium, which is computed in closed-form.
The fluid models in [15] and [4] are not applicable to streaming
systems with heterogeneous upload rates, since there is no
notion of leechers transitioning to seeds.

There is also recent work in modeling the time it takes to
distribute a file from seeds to leechers inchurnless download
systems. Mundinger et al have studied this problem for hetero-
geneous peers with infinite download capacity, both for chunk-
based and fluid-based systems [12]. Kumar and Ross derived
an explicit expression for the minimum download time in a
general heterogenous fluid system with finite download rates.
They also extended this result to multi-class systems with first
and second-class leechers. Biersack et al used a chunk-based
model to derive expressions for the distribution time for a
several practical overlay topologies [2].

II. M ODELING P2P STREAMING

In this section we provide our basic model and notation
of P2P streaming. The video originates from a server node;
denote byus (in bps) for the upload rate of the server. Let
r denote the rate (in bps) of the video. The video is to be
streamed to all participating peers.

We classify each peer as either asuper peeror anordinary
peer. Super peers provide high-speed access rates in excess of
a few Mbps; ordinary peers have residential broadband access,
typically with upload rates of 500 kbps or less. In our model,
all super peers have the same upload capacityu1; and all
ordinary peers have the same upload capacityu2 with u2 < u1.
Unless explicitly stated, we assume thatu2 < r < u1. In other
words, a super peer can upload at a rate higher than the video
rate, and an ordinary peer’s uploading capacity is smaller than
the video rate. We often refer to super peers and ordinary
peers as class-1 and class-2 peers, respectively.Although we
are assuming only two classes of the peers, the theory and
results presented here can easily be extended to any number of
classes, with each class having its own upload rate.However,
we shall see that a two-class model suffices to expose many
of the key issues underlying P2P streaming.

Peers join and leave the P2P streaming system at random
times. As in existing P2P streaming systems, whenever a peer
joins the system and receives chunks of video, it is obligated
to redistribute the chunks it receives [18] [13] [14]. Denote by
λi for the rate at which class-i peers join the P2P streaming



system. Denote by1/µi for the average amount of time a class-
i peer views the video (and hence sojourns in the system). We
make no assumptions on the distribution of the peer sojourn
(viewing) times. Peers from the two classes join the system as
two independent Poison processes. LetPi(t) be the number of
class-i peers in the system at time t. Clearly,P1(t) andP2(t)
are two independentM/G/∞ processes [10].

Having described the model for peer churn, we now turn
to streaming. We adopt a fluid flow model and focus on the
instantaneous rate at which peers receive and transfer bits.
Initially we assume a bufferless system, that is, bits cannot
be buffered before playback or before copying to other peers.
(In Section 5, we extend the model to allow for buffers and
playback lag.) In this bufferless model, a peer can playbackthe
video whenever it receives fresh content bits at rater. When
all participating peers receive the video at rater, we say that
the system providesuniversal streaming. When the system is
not providing universal streaming, we say that system operates
in degraded service mode.

At any given instant of time, whether universal streaming
can be accomplished or not depends of number of super peers
and ordinary peers in the system at timet, that is, it is a
function of P1(t) and P2(t). The more super peers in the
system, the greater the average upload capacity per peer and
the easier it is to accomplish universal streaming. Denote by
Φ(P1(t), P2(t)) for the maximal rate at which the system can
deliver fresh content toeach of the peers when the system
is in state(P1(t), P2(t). The functionΦ(·, ·) depends on the
efficiency or the distribution scheme in the pull-driven P2P
streaming protocol. Universal streaming occurs at timet if
and only if Φ(P1(t), P2(t)) ≥ r. To complete the stochastic
fluid model, we need to specifyΦ(·, ·), which we refer to as
the fluid function. In the next section we provide an explicit
expression forΦ(·, ·) for an optimized system.

III. U NIVERSAL STREAMING FOR CHURNLESSSYSTEMS

In this section we seek to derive the maximum streaming
rater for which universal streaming is possible for a churnless
system, that is, for a system in with a fixed set of peers. We do
this for a system that is more general than that described in the
previous section - namely, we consider general heterogeneous
systems, with each peer having its own upload rate.

The results derived in this section will play a central role
in the analysis of the stochastic system with churn. However,
they are also of independent interest, as they provide simple
and explicit expressions for the maximum rate of a churnless
P2P streaming system.

Denote byn for the number of peers in the system and let
ui denote of the upload capacity of peeri for i = 1, . . . , n.
Viewing bits as fluid, bits arrive to the server at rater. As the
bits arrive to the server, they can be copied to one or more
peers. As bits arrive to a peer, they can also be copied to one
or more of the remaining peers. The aggregate bit rate out of
the server cannot exceedus; the aggregate bit rate out of a
peer cannot exceedui, i = 1, . . . , n. The system can perform
universal streaming if it is possible to copy and route the bits

so that all peers receive fresh bits at rater. We define the
maximum achievable rateto be the maximum value ofr such
that the system can perform universal streaming.

Theorem 1: The maximum achievable streaming rate,rmax,
is given by

rmax = min{us,
us +

∑n

1=1
ui

n
}.

Proof: Denote

u(P) =

n
∑

1=1

ui

Clearly, the maximum streaming rate cannot exceed the aggre-
gate upload rate of the server; thus,rmax ≤ us. Furthermore,
the maximum aggregate rate that bits can flow out the server
and out of then peers is bounded byus+u(P). This maximum
aggregate rate, if it could be achieved, needs to be distributed
to the n peers. Thus the maximum streaming rate to an
individual peer is also bounded byus + u(P)/n. Combining
these two bounds gives

rmax ≤ min{us,
us + u(P)

n
}. (1)

It remains to show that if(i) us ≤ (us + u(P))/n, then the
streaming rater = us can be supported; and if(ii) us >
(us + u(P))/n, then the streaming rater = (us + u(P))/n
can be supported.

Supposeus ≤ (us + u(P))/n. Consider a video stream of
rater = us. Divide this video stream inton substreams, with
the ith substream having rate

si =
ui

u(P)
us for all i ∈ P

Note that the aggregate rate of then substreams is equal to
the rate of the stream, that is,

n
∑

i=1

si = us = r.

We have the server copy theith substream to theith peer.
Furthermore, because(n − 1)si ≤ ui, we can have theith
peer copy its substream to each of the othern−1 peers. Thus
each peer receives a substream directly from the server and
also receivesn−1 additional substreams from the othern−1
peers. The total rate at which peeri receives is

ri = si +
∑

k 6=i

sk = us.

Hence the rater = us can be supported.
Now supposeus > (us+u(P))/n. Consider a video stream

of rater = (us+u(P))/n. Divide this video stream inton+1
substreams, with theith substream,i = 1, . . . , n, having rate
si = ui/(n − 1) and the(n + 1)st substream having rate

sn+1 = (us −
u(P)

n − 1
)/n



Clearly si ≥ 0 for all i = 1, . . . , n + 1. Now have the server
copy two substreams to each peeri: the ith substream and the
(n + 1)st substream. The server can do this because

n
∑

i=1

(si + sn+1) = us

Furthermore, have each peeri stream a copy of theith
substream to each of then − 1 other peers. Each peeri can
do this because(n−1)si = ui for i = 1, . . . , n. The total rate
at which peeri receives is

ri = si + sn+1 +
∑

k 6=i

sk = (us + u(P))/n.

Hence the rater = (us + u(P))/n can be supported.�

We remark that this result can be extended to include finite
download rates at each of then peers. In particular, suppose
peer i has download ratedi. Let dmin = min{di : i =
1, . . . , n}. Then

rmax = min{us,
us + u(P)

n
, dmin} (2)

We omit the proof of (2) for brevity; see [11] for a related
result concerning the minimum time to distribute a file to all
peers in a P2P system.

A. Two-Class Model

Let us now return to the original model in which every peer
is either a super peer or an ordinary peer. Denote byn1 and
n2 the number of super peers and ordinary peers in the P2P
streaming system. The following result is a consequence of
Theorem 1 and will be used repeatedly in this paper:

Corollary 1: For any rater such thatu2 < r < u1, universal
streaming is achievable by some fluid distribution scheme if
and only if

r ≤ φ(n1, n2) (3)

where

φ(n1, n2) = min{us,
us + n1u1 + n2u2

n1 + n2

}.

IV. P2P STREAMING WITH PEER CHURN

We now return to original model as given in Section 2 with
peers joining and departing at random times. Denoteρi =
λi/µi. Recall that withPi(t) denoting the number of active
type-i peers at timet, the two stochastic processes(P1(t), t ≥
0) and(P2(t), t ≥ 0) are independent M/G/∞ processes with
arrival ratesλ1 andλ2 and departure ratesµ1 andµ2. Recall
that to complete the stochastic fluid model, we need to specify
a fluid functionΦ(·, ·). Henceforth, we useΦ(·, ·) = φ(·, ·),
where φ(·, ·) is given in Corollary 1. Thus, we assume an
optimized P2P distribution scheme.We remark, however, that
the theory developed in this paper can be easily extended to
any relevant fluid functionΦ(·, ·) ≤ φ(·, ·). For example, we
could useΦ(·, ·) = .8 · φ(·, ·), modeling a P2P distribution
scheme that is only 80% efficient.

A natural question is, in steady-state, for what fraction of
time do we have universal streaming? We refer to this fraction
of time as theuniversal streaming probability. Let Pi be the
random variable denoting the number of active type-i peers in
steady state. It is well-known thatPi has a Poisson distribution
with meanE[Pi] = ρi. From Corollary 1, we have

P (universal streaming) = P (P1 ≥ cP2 − u′
s) (4)

where
c =

r − u2

u1 − r
andu′

s =
us

u1 − r

SinceP1 andP2 are independent Poison random variables, we
can explicitly calculate the universal streaming probability as
follows. Let M = ⌊u′

s

c
⌋. We have

P (P1 ≥ cP2 − u′
s) =

∞
∑

l=0

P (P1 ≥ cl − u′
s|P2 = l)P (P2 = l)

= P (P2 ≤ M) +

∞
∑

l=M+1

P (P1 ≥ cl − u′
s)P (P2 = l)

= P (P2 ≤ M) +

∞
∑

l=M+1

P (P1 ≥ ⌈cl − u′
s⌉)P (P2 = l)

= F2(M)+

∞
∑

l=M+1

(1−F1(⌈cl−u′
s⌉)+f1(⌈cl−u′

s⌉))f2(l) (5)

where

fi(n) =
e−ρiρn

i

n!
andFi(n) =

n
∑

l=0

fi(n)

We will return to this result when we present numerical results
at the end of this section.

A. Large System Analysis

We now scale the system by lettingρ1 → ∞ andρ2 → ∞.
It is natural to consider scaling regimes in whichρ1/ρ2 = K
for some constantK. We consider here a more generalized
regime in which

ρ1 = Kρ2 + β
√

ρ2 (6)

for someK > 0 and someβ (positive or negative). We will
see that this more generalized scaling will enable us to glean
additional insight into the fundamental characteristics of P2P
streaming systems.

Theorem 2: In an asymptotic regime withρ1 = Kρ2+β
√

ρ2,
the asymptotic probability of universal streaming is givenby

lim
ρ2→∞

P (P1 ≥ cP2 − u′
s) =







1 K > c

F ( −β√
c+c2

) K = c

0 K < c

(7)

where 1 − F (·) is the distribution function of the standard
normal random variable.

Proof: Define the normalized random variables

X1 =
P1 − ρ1√

ρ1

, X2 =
P2 − ρ2√

ρ2
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Fig. 1. Degraded-Service probability for small and large systems
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Fig. 2. Degraded-Service probability withρ1/ρ2 = 0.54 fixed. The system
size is scaled in multiples of 10.

Note that

P (P1 ≥ cP2−u′
s) = P (

√
ρ1X1 +ρ1 ≥ c(

√
ρ2X2 +ρ2)−u′

s)

= P (

√

K +
β√
ρ2

X1 + (K − c)
√

ρ2 + β ≥ cX2 −
u′

s√
ρ2

)

Now, asρ2 → ∞, clearly this probability goes to1 if K > c
and goes to0 if K < c. Now consider the caseK = c. As
ρ2 → ∞, this probability goes to

P (
√

KZ1 − cZ2 > −β)

whereZ1 andZ2 are two independent standard normal random
variables. But since a linear combination of independent
normal random variables is also a normal random variable,
we have

P (
√

KZ1 − cZ2 > −β) = F (
−β√
c + c2

) �

Theorem 2 indicates that P2P streaming systems exhibit a
critical threshold. For a large system, ifρ1/ρ2+ǫ < c, then the
performs poorly, rarely providing universal streaming. Onthe
other hand, ifρ1/ρ2 > c + ǫ, then the system almost always

provides universal streaming. This critical thresholdc plays an
important role in the design and operation of P2P streaming
systems. We say that whenρ1/ρ2 ≈ c, we say that system
operates in thecritical region.

Theorem 2 also leads to useful and simple approximation
for medium and large systems when operating in the critical
region Givenρ1, ρ2 andc = (r−u2)/(u1− r), we setK = c
and solve forβ in (6):

β =
ρ1 − cρ2√

ρ2

.

We then plug this expression forβ into F (−β/
√

c + c2) from
Theorem 2 and obtain the explicit approximation:

P(universal streaming)≈ F (
ρ1 − cρ2/

√
ρ2√

c + c2
). (8)

B. Numerical Results and Insights

We now explore how the equation (5) and the approximation
(8) can be used to study the performance of P2P streaming
systems. We do this for two systems: a “small system” with a
number of concurrent peers in the vicinity of 75; and a large
system with the number of concurrent peers in the vicinity of
7,500.

For both the small and large systems, we use the ratesr = 3,
u2 = 1 andu2 = 7. These rates could be, for example, in units
of 100 kbps. The chosen rates reflect current streaming rates,
residential upload rates, and enterprise/university rates. For
this choice of rates, the video rate is three times the uploadrate
of the ordinary peers; and the upload rate of the superpowersis
7 times that of the ordinary peers. (For example, most PPLive
channels are currently in the vicinity of 400 kbps, which is
about 2-4 times the upload rate of many residential broadband
peers. University access rates vary, depending on traffic and
university-to-ISP bandwidths; for most cases, we expectu2/u1

to be in the 5 to 20 range.) These values givec = 0.5 for the
critical factor.

In these numerical examples, we use different server rates
us, all multiples of theu1. By using different multiples for the
server rate, we explore how additional infrastructure resources
can potentially improve performance.
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Fig. 3. Tandem Fluid Queueing Model for P2P Streaming Buffering

We set throughout1/µ1 = 1/µ2 = 0.5 hours. Thus, we
suppose that super peers and ordinary peers sojourn in the
system on average for 30 minutes. For the small and large
system, we fix the arrival rate of the ordinary peers,λ2, and
vary the arrival rate of the super peers in vicinity ofλ2/2. For
the small system, we set the arrival rate of ordinary peers to
λ2 = 100/hr, so that the average number of ordinary peers
in the system isρ2 = λ2/µ2 = 50 and the average number of
super peers,ρ1, is in the vicinity of25. For the large system,
we set the arrival rate of ordinary peers toλ2 = 10, 000/hr,
so that the average number of ordinary peers in the system is
ρ2 = λ2/µ2 = 5, 000 and the average number of super peers,
ρ1, is in the vicinity of 2, 500.

Figure 1(a) shows the probability of degraded service as
a function of ρ1/ρ2 for the small system. Three curves are
shown: one for the approximation and two for the exact value
with two different server rates. As expected, performance
improves as the arrival rate of super peers increases (equiva-
lently, asρ1/ρ2 increases). We observe that by doubling the
infrastructure resources for a server bandwidth ofus = 7 to
us = 14, we can obtain significant performance gains. These
improvements, however, diminish when operating outside of
the critical region (for example, when eitherρ1/ρ2 > 0.7 or
ρ1/ρ2 < 0.3). We also observe from this figure that although
the approximation (8) follows the general performance trend, it
significantly over estimates the probability of degraded service
throughout the critical region. This is to be expected, since
the approximation is derived from a large-system asymptotic
analysis.

Figure 1(b) shows the probability of degraded service as
a function of ρ1/ρ2 for the large system. Four curves are
shown: one for the approximation and three for the exact value
with three different server rates. As expected, performance
improves as the arrival rate of super peers increases (equiva-
lently, asρ1/ρ2 increases). For the large system, the critical
region is very pronounced. For each of three values ofµs,
when ρ1/ρ2 < .47 the system almost always operates in the
degraded service mode. Whenρ1/ρ2 > .47, the system almost
always provides universal service. Figure 1(b) also shows that
doubling or tripling the infrastructure resources (that is, µs)
have little impact on performance. For this large system, we
need to increaseus by a factor of 10 to 100 to get significant
gains. Finally, the figure also shows that the approximationis
very accurate for large systems. In fact, the approximationis
accurate even outside of the critical region.

We also investigate the probability of degraded service as

the system is scaled from small to large. For this we fix
ρ1/ρ2 = 0.54. As before the small size system is chosen to be
with λ2 = 100. The given ratioρ1/ρ2 = 0.54 yieldsλ1 = 54.
From this the system is linearly scaled with a scaling factor
increased from 1 to 100 in multiples of 10. Figure 2 shows
the probability of degraded service with respect to this scaling
factor. We again see that the role of the server upload rate
diminishes as the system scales.

As mentioned in the Introduction, it has been observed that
P2P streaming systems with large peer populations perform
better than systems with small populations [13]. This general
claim is collaborated by Figures 1 and 2. For example,
consider the case ofµs = 7. For the large system withρ1/ρ2 >
.53, universal streaming is essentially always provided. How-
ever, for the small system, withρ1/ρ2 = .53, degraded service
occurs more than 25% time; even atρ1/ρ2 = .68, degraded
service occurs more than 5% time for the small system. Thus,
the large system provides universal service over a much wider
range of system parameters. This can be explained as follows.
When a super peer leaves the system, the impact will be
relatively small in a large system as there is an averaging
effect due to the large number of super peers in the system.
However, in a small system, the loss of a super peer can have
a dramatic effect, moving the system from the critical region
to the overloaded region.

V. BUFFERING AND PLAYBACK LAGS

In Section 4 we observed that one of the fundamental
characteristics of P2P streaming systems is that peer churn
introduces fluctuations in the available upload bandwidth.
In traditional client-server streaming applications, buffering
and playback delays are commonly used to mitigate against
fluctuating available bandwidth. In this section, we investi-
gate whether buffering can also improve performance in P2P
streaming systems.

The basic idea of buffering in P2P streaming systems is to
build up reservoirs of content in the peers’ playback buffers
which is consumed when the upload rate falls below the
live streaming rate. Unlike in video-on-demand systems, the
upload rate in a P2P streaming system is not only constrained
by its aggregate uploading capacityus + u1P1(t) + u2P2(t)
but also by the rate at which fresh content is generated. For a
live streaming session, fresh content is generated by the source
at a fixed rater. If all peers want to have real-time playback,
the uploading rate of new content to a single peer can never
exceedr. In order to have reservoirs of content at the peers, it
is therefore necessary for peers to have playback lags so that
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Fig. 4. Buffering: Degraded-Service probability for small and large systems

they canpre-fetchcontent before playback when the average
uploading rate in the system exceedsr.

To illustrate the potential benefits of buffering, we now
extend the system of Section 4 by placing at each peer a
playback buffer that can hold up tod seconds of video. We
also introduce a server upload buffer. The buffered system
operates as follows. The server is feed content at rater and
uses the P2P system to distribute the content to all peers.
Before starting playback, each peer first fills its playback
buffer. Once playback starts, each peer playback buffer is
drained at rater and the server buffer continues to be fed
at rater. Under the optimized content distribution algorithm
described in the previous section, the maximum rate at whicha
peer can download new content, both directly from the server
and indirectly from other peers, at timet is

φ(t) = min

{

us,
us + u1P1(t) + u2P2(t)

P1(t) + P2(t)

}

. (9)

We call φ(t) the available bandwidth for a peer at timet.
φ(t) is also the rate at which the server can pump out new
content to the whole P2P streaming system. Noteφ(t) is not
the aggregate rate of traffic uploaded from the server to all
peers. For example, if the server simultaneously uploads to
two peers at the full live streaming rater, the aggregate traffic
rate is2r, but the aggregate new content rate pumped into the
system is justr.

When the available bandwidthφ(t) is below r, the server
cannot pump out new content at the full video rate. Con-
sequently, the server buffer level increases at rater − φ(t).
At the same time, a peer’s video download rate is lower
than the video playback rate. Therefore, the peer playback
buffer level decreases at the same rater − φ(t). Thus, as the
reservoir in the peer’s buffer decreases, the reservoir in the
server’s buffer increases. If later the available bandwidth φ(t)
becomes greater thanr, then content in the server’s reservoir
is transferred over to the peer buffer. In this manner, buffering
at the server can help to mitigate the effects of a fluctuating
upload bandwidthφ(t) due to peer churn.

We require that a peer always keep the same playback lagd.
In other words, content that arrives to a peer after its deadline
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Fig. 5. Buffering: Degraded-Service probability withρ1/ρ2 = 0.54 fixed.
The system size is scaled in multiples of 10.

will be skipped. One mechanism to achieve content skipping
is to set the server buffer size tod, and to have the server drop
at rater − φ(t) from theheadof the buffer when the server
buffer is full. In this way, we ensure that all the content in
the server uploading buffer is always “fresh” enough to meet
the peers’ playback deadlines. Our extended system uses this
mechanism.

Under the optimized content distribution algorithm and
homogeneous peer playback policy, all peers download and
playback content synchronously. The interaction between the
content buffer level on the server and the playback buffer level
on any single peer in the streaming system can be modeled as
a tandem queue system illustrated in Figure 3. This system has
two fluid queues in tandem: the server upload queue and a peer
playback queue. Denote byqs(t) andq(t) for the contents in
the server queue and the peer queue, respectively. The server
queue is filled in at the constant video source rater and is
drained at rateφ(t) when the buffer is non-empty and at the
rate r when the buffer is empty; thus the output rate of the
server queue at timet is

I(t) = φ(t)1(qs(t) > 0) + r1(qs(t) = 0).

As discussed above, when the server queue is full and



r > φ(t), content is removed from the head of the server
queue while fresh content continues to join the tail of the
queue. The content is removed from the server queue at rate
D(t) = [r − φ(t)]1(qs(t) = d). Note that we always have
qs(t) + q(t) = rd after playback begins. Under the optimized
distribution algorithm, all peers download new content, both
directly from the server and indirectly from other peers, at
the output rate of the server queue, namely, at rateI(t). The
peer queue is drained at the playback rater when the buffer
is non-empty. Skipping occurs ifq(t) = 0 andI(t) < r.

A. Simulation Results and Insights

This tandem fluid queue system exactly models our fluid
P2P streaming system with peer playback buffers and a server
uploading buffer. It is of interest to compare the performance
of this buffered system to that the bufferless system studied
in Section 4. The buffered system does not appear to be
analytically tractable, so we instead appeal to simulation.

For the simulation results reported here, we use the same
parameters used in Section 4:r = 3, u2 = 1, u2 = 7, and
1/µ1 = 1/µ2 = 0.5 hours. We fix the server bandwidth to
us = 7 in these experiments.

Figure 4(a) shows the probability of degraded service for a
small system at different buffer capacities of 0, 30, 60 and
120 seconds of video. We observe that the system enjoys
significant performance gains by adding only a 30 second
lag to the playback. Additional gains are possibly by further
increasing the playback lag. Comparing 4(a) with 1(a) we
see that playback lags can achieve the same performance
gains as infrastructure increases without the cost of added
infrastructure.

Figure 4(b) shows the probability of degraded service for
a large size system at different buffer capacities. We observe
that in the critical region, playback lags can bring a dramatic
improvement in performance. For example, when operating
at ρ1/ρ2 = c = 0.5, without buffering the probability of
degraded service is approximately 50% With buffering, this
probability drops to approximately 5%. We also observe that
a 30-second lag is sufficient to obtain almost all the potential
buffering gains from buffering. Furthermore, on comparing
4(b) and 1(b), we observe that having a small lag of 30 seconds
is more effective than deploying 10 times the server capacity
for this large system.

We also investigate the probability of degraded service as
the system is scaled from small to large. For this we fix
ρ1/ρ2 = 0.54. As before the small size system is chosen
to be with λ2 = 100. The given ratioρ1/ρ2 = 0.54 yields
λ1 = 54. From this the system is linearly scaled with a scaling
factor increased from 1 to 100 in multiples of 10. Figure 5
shows the probability of degraded service with respect to this
scaling factor. We again observe the advantage of deploying
even small size buffers while the system is operating in the
critical region. (When the system gets very large, we operate in
the under-loaded region, in which the probability of degraded
service becomes almost zero with and without buffering.)

Duration Buffer = 0 Buffer = 30 Buffer = 60
= 0 0.61 0.74 0.78

∈ (0, 18] 0.0065 0.00056 0.00047
∈ (18, 36] 0.007 0.00086 0.00068

TABLE I
SMALL SIZE SYSTEM: FIRST COLUMN SHOWS DEGRADED-SERVICE

DURATION INTERVALS. OTHER COLUMNS SHOW PROBABILITY OF THE

SYSTEM BEING IN THAT PARTICULAR DEGRADED-SERVICE INTERVAL FOR

DIFFERENT BUFFER SIZES. ALL TIME UNITS ARE IN SECONDS.

Duration Buffer = 0 Buffer = 30 Buffer = 60
= 0 0.51 0.81 0.89

∈ (0, 18] 0.023 0.0017 0.0012
∈ (18, 36] 0.009 0.0011 0.0009

TABLE II
LARGE SIZE SYSTEM: FIRST COLUMN SHOWS DEGRADED-SERVICE

DURATION INTERVALS. OTHER COLUMNS SHOW PROBABILITY OF THE

SYSTEM BEING IN THAT PARTICULAR DEGRADED-SERVICE INTERVAL FOR
DIFFERENT BUFFER SIZES. ALL TIME UNITS ARE IN SECONDS.

B. Distribution of Degraded-Service Durations

Using our simulation tool, we also investigate the distri-
bution of the degraded-service durations for both bufferless
and buffered systems. We fix the ratioρ1/ρ2 = 0.5 and
with system parameters of the small and large systems as
before, we simulate the fraction of time the system spends in
degraded-service of different durations. Table I and II show
the probabilities of finding the system in degraded-service
duration of (i) = 0 (universal streaming), (ii) duration between
0 and 18 seconds and (iii) duration between 18 and 36 seconds.
These probabilities are shown for three different buffer sizes
of 0 seconds (bufferless), 30 seconds and 60 seconds. One
can observe that the probability of finding the system (both
large and small) in degraded service decreases by a factor of
10 by increasing the buffer sizes. Further, the probabilityof
universal streaming increases substantially as buffer sizes are
increased.

VI. T HE UNDER-CAPACITY REGION

We learned in Section 4 that, at any instant of time, a P2P
streaming system operates in one of three regions:(i) the over-
capacity region for whichρ1/ρ2 > c+ǫ; (ii) the critical region
for which ρ1/ρ2 ≈ c; (iii) and the under-capacity region for
which ρ1/ρ2 < c + ǫ. The value ofǫ depends on the size of
the system, being smaller for big systems.

Over larger time scales, the values ofρ1 andρ2 will likely
change, possibly causing the system to drift from one of the
three regions to another. From Section IV we learned that
when in the over-capacity region, system performance should
be universally good. We showed in Section V that system
performance is also good in the critical region when buffering
and playback lags are employed. However, in the under-
capacity region, even with large buffers, performance will
generally be poor, with universal streaming rarely occurring.

When operating in the under-capacity region, we have a
number of options including:



• Apply admission control to peers which provide relatively
little upload capacity (ordinary peers in our two-class
model). This requires detecting when the system begins
to enter the under-capacity region, and then rejecting an
appropriate fraction of the low-bandwidth peers that want
to join the system.

• Apply some form of scalable coding technique, so that
the rate of the videor decreases as the system begins to
enter the under-capacity region. Both layered video and
multiple-description video are possibly candidates for the
scalable video.

• Provide good service to as many of the low-capacity peers
as possible. We design the distribution scheme so that
high-capacity peers always get the video at rater; we
also try to provide as many low-capacity peers as possible
with rater. The remaining peers receive nothing.

Designing robust schemes to handle transitions from one
operating region to another remains an important research
problem and will be considered in a future paper.

VII. SUMMARY OF CONTRIBUTION AND LESSONS

LEARNED

In this paper we have developed tractable and relevant an-
alytical models for P2P streaming systems. The contributions
of this paper include:

• Conditions for universal streaming for churnless systems.
For churnless systems with heterogenous upload and
download capacities, we have derived a simple necessary
and sufficient condition for the existence of a fluid
distribution scheme that achieves universal streaming.

• A novel model for P2P streaming systems with peer
churn.The model leads to an explicit expression for the
probability of degraded service. We used the expression
to investigate the performance of small and large P2P
streaming systems.

• Asymptotic analysis of P2P streaming systems.We have
studied analytically the performance of a P2P stream-
ing system as the joining rate of new peers becomes
very large. We obtained an explicit expression for the
probability of degraded service for large systems. We
used that expression to develop an accurate and simple
approximation for degraded service for all operating
regions for moderate and large systems.

• An extended model with buffers and playback lag.This
exact buffer model, although not analytically tractable,
is amenable to efficient simulation. We built a simple
simulation tool to analyze the affects of buffering as well
as the distribution of degraded-service durations.

The models developed and analyzed in this paper have led
to a number of important lessons for P2P streaming systems:

1) Peer churn introduces fluctuations in the available up-
load bandwidth. Specifically, when a super peer leaves
or when an ordinary node joins, the available bandwidth
to a peer (averaged over all peers) decreases; similarly,
when a super peer joins or when an ordinary node leaves,
the available bandwidth to a peer increases.

2) The performance of the system is largely determined by
a critical value. For systems of moderate-to-large size,
if the ratio of average number of super peers to average
number of ordinary peers (ρ1/ρ2) exceeds the critical
valuec, the system performs well; otherwise, the system
performs poorly.

3) Big systems have better performance. Big systems are
more resilient to bandwidth fluctuations caused by peer
churn. Big systems therefore have robust performance
over a wider range of traffic loads (that is,ρ1/ρ2 values).

4) Buffering can dramatically improve performance in the
critical region, for both small and large systems. It
can bring more improvement than that provided with
additional infrastructure bandwidth.

5) Special attention must be given when operating in the
under- capacity region. Both admission control and
scalable video hold promise for dealing with the under-
capacity region.
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