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The Landau-Lifshitz-Bloch equation is a formulation of dynamic micromagnetics valid at all temperatures,

treating both the transverse and longitudinal relaxation components important for high-temperature applications.

In this paper we discuss two stochastic forms of the Landau-Lifshitz-Bloch equation. Both of them are consistent

with the fluctuation-dissipation theorem. We derive the corresponding Fokker-Planck equations and show that

only the stochastic form of the Landau-Lifshitz-Bloch equation proposed in the present paper is consistent with

the Boltzmann distribution at high temperatures. The previously used form does not satisfy this requirement in the

vicinity of the Curie temperature. We discuss the stochastic properties of both equations and present numerical

simulations for distribution functions and the average magnetization value as a function of temperature.

DOI: 10.1103/PhysRevB.85.014433 PACS number(s): 75.40.Mg, 75.78.Cd, 75.60.Jk

I. INTRODUCTION

Stochastic fluctuations were introduced into magnetism by
Brown,1,2 who recognized the necessity to describe the devia-
tions from the average magnetization trajectory in an ensem-
ble of noninteracting nanoparticles described as macrospins
within the Landau-Lifshitz-Gilbert (LLG) equation of motion.
He introduced fluctuating fields, formal quantities responsible
for magnetization fluctuations. The strengths of these fields
were calculated based on two approaches with the same
final results: (i) the fluctuation-dissipation theorem (FDT);
(ii) deriving the corresponding Fokker-Planck (FP) equa-
tion for the probability distribution function and requiring
that its equilibrium solution be the Boltzmann distribution.
Brown’s idea has important consequences in the theory of
magnetic nanoparticles, since it allows the calculation of
the switching probability over energy barriers created by
magnetic anisotropy and therefore to describe the effect
of superparamagnetism.2,3 Later the results of Brown were
brought to micromagnetic modeling,4 understanding each dis-
cretization unit as a macrospin with fluctuating magnetization
direction and giving rise to thermal micromagnetics.4,5

One should note that the LLG equation imposes a serious

restriction in the magnetization dynamics since it assumes

a constant magnetization length.6 It has been shown that the

stochastic micromagnetic approach based on the LLG equation

significantly overestimates the Curie temperature7 because the

high-frequency spin waves are artificially truncated. Based on

the thermal averaging of many exchange-coupled atomistic

spins, Garanin8 derived the Landau-Lifshitz-Bloch (LLB)

equation. The LLB equation essentially interpolates between

the LLG equation at low temperatures and the Ginzburg-

Landau theory of phase transitions. It is valid not only below

but also above the Curie temperature Tc. An important property

of the LLB equation is that the magnetization magnitude

is no longer conserved but is a dynamical variable. The

transverse and the longitudinal magnetization components

have different damping parameters which can be related to

the microscopic damping (“coupling to the bath”) parameter.

Thus the thermal fluctuations on average are included in the

temperature dependence of macroscopic parameters such as

magnetization, anisotropy, and damping.

LLB micromagnetics has become a real alternative to LLG
micromagnetics for temperatures which are close to the Curie
temperature (T � 3Tc/4).9 This is realistic for some novel
exciting phenomena, such as light-induced demagnetization
with powerful fs lasers.10–12 During this process the electronic
temperature is normally raised higher than Tc. Micromagnetics
based on the LLG equation cannot work under these circum-
stances while micromagnetics based on the LLB equation has
proved to describe correctly the observed fs magnetization
dynamics.11,12 An important property of the LLB theory,
the longitudinal relaxation of the magnetization magnitude,
appears to be responsible for the novel demagnetization
mechanism and the linear reversal path.12,13 Another exciting
area of magnetism where the LLB micromagnetics can be
put at work are the spin-torque effect with Joule heating14 or
spin-based caloric effects, such as thermally driven domain
wall motion via the spin Seebeck effect.15 Important industrial
applications for LLB micromagnetics also include the model-
ing of thermally assisted MRAM16 and heat-assisted magnetic
recording, one of the future possibilities to overcome the
superparamagnetic limit in magnetic recording technology.17

As mentioned above, the LLB equation describes an aver-

aged magnetization trajectory. However, at high temperatures

the dispersion of individual trajectories is important; for ex-

ample, when the magnetization is quenched it should describe

the loss of magnetization correlations in different sites of the

sample. In the laser-induced dynamics this is responsible for

the slowing down of the magnetization recovery at high laser

fluency as the system temperature decreases.9,11 Therefore,

under these circumstances the use of the stochastic LLB

equation is paramount.

It is widely known that there is no unique formalism for

the introduction of the stochastic terms into a deterministic

equation. For example, in the LLG equation the random field

could be introduced to both precessional and damping terms

or to the precessional term only or to the damping term

only.18–20,25 For the LLG equation all these formulations lead

to the same FP equation but with different resulting strengths

of the fluctuating fields. Moreover, the stochastic terms can

also be introduced as additive noise in the form of fluctuating

torques.19,25 This approach also coincides with the fluctuating

fields approach near the equilibrium.25
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Garanin and Chubykalo-Fesenko21 have suggested treating

the LLB equation following Brown’s treatment of the LLG

equation. They derived a form of the stochastic LLB equation

where, similar to the LLG equation, the stochastic terms were

introduced as additional formal stochastic fields, different for

longitudinal and transverse fluctuations. They also introduced

the FP equation and showed that the longitudinal fluctuations

result in an additional decrease of the switching time of

magnetic nanoparticles at elevated temperatures. However, as

we show in the present paper, although near equilibrium the

resulting stochastic equation is consistent with the FDT, the

requirement of the Boltzmann distribution in equilibrium is

not fulfilled in the vicinity of the Curie temperature. This is in

contrast to the stochastic LLG equation where both approaches

are in complete agreement. In the present paper we introduce a

different form of the stochastic LLB equation, consistent with

the Boltzmann distribution at arbitrary temperature.

II. TWO FORMS OF THE STOCHASTIC LLB EQUATION

Applying a general statistical mechanics approach to

the LLG equation, Brown has suggested introducing the

stochastic terms into a deterministic equation of motion as

“formal concepts, introduced for convenience, to produce the

fluctuations δM”; see Ref. 2. Thus these terms are not based on

a kind of “first principles” approach, although some attempts

to justify their final form exist in the literature and show that

their properties (such as the absence of memory effects) are

valid with some special assumptions only.22,23

Since the fluctuating variables are formal, their choice is

multiple. For the LLG equations it is customary to introduce

three-component noise variable in the form of the fluctuating

field in the precessional or damping or both terms. Stochastic

variables can also be introduced as additive noise in the form

of fluctuating torques.19,25 This approach also coincides with

the fluctuating fields one if the linearization of the LLG

equation is performed.25 All these formulations lead to the

same FP equation but with different resulting strengths of

the fluctuating variables. For the LLB equation, however,

it has been shown21,25 that the naive introduction of the

same fluctuating field in all terms (precessional, longitudinal

relaxation, and transverse relaxation) and the application of the

FDT does not lead to convenient properties. The fluctuating

fields should have correlations, not only between different spin

sites but between different components (x,y,z) as well.

The stochastic LLB equations which we study in the present

paper have been designed to fulfill the properties of the sim-

plest noise variables to be isotropic and uncorrelated in sites

and components. The stochastic LLB equation, introduced in

Ref. 21 (called here sLLB-I) is written for each macrospin

(nanoparticle or discretization element) describing its average

spin polarization m = M/M0
s (M is the magnetization and M0

s

is the saturation magnetization value at T = 0) in the following

form:

ṁ = γ [m × Heff] +
|γ |α||

m2
(m · (Heff + ζ ||))m

−
|γ |α⊥

m2
[m × [m × (Heff + ζ⊥)]], (1)

where γ is the gyromagnetic ratio, α‖ and α⊥ are dimensionless

longitudinal and transverse damping parameters given by

α‖ = λ
2T

3Tc

, α⊥ = λ

[

1 −
T

3Tc

]

, T < Tc, (2)

and Tc is the Curie temperature. For T > Tc, α⊥ equals α‖.

Here λ is the parameter describing the coupling of the spins to

the heat bath on an atomistic level. The effective field Heff is

given by

Heff = H + HA +

⎧

⎨

⎩

1
2χ̃‖

(

1 − m2

m2
e

)

m, T � Tc,

− 1
χ̃‖

(

1 + 3
5

Tc

T −Tc
m2

)

m, T � Tc.

(3)

Here me is the zero-field equilibrium spin polarization for

a given temperature. H and HA are applied and anisotropy

fields, respectively; χ̃|| = (dm/dH )H→0 is the the longitudinal

susceptibility. Note that for simplicity we present the classical

version of the LLB equation; for a finite spin value see Ref. 26.

Perpendicular and longitudinal noise parameters have the

following properties:

〈ζμ〉 = 0,
〈

ζ
μ

i (0)ζ ν
j (t)

〉

=
2kBT

|γ |M0
s V αμ

δijδμνδ(t), (4)

where μ,ν = ||, ⊥ and indices i,j denote components x,y,z

and V is the particle volume.

In this equation the formal stochastic variables were

introduced as additional random fields. The noise is isotropic

and multiplicative and for an individual spin it has six

dimensions; i.e., the random fields acting on longitudinal and

transverse damping have different properties. No random field

was assumed in the precessional term. From the point of view

of the FDT, this avoids the presence of correlations between

different field components and different spins. This form of the

stochastic LLB has been used in previous publications.9,10,12,21

Here we demonstrate that this approach is not completely

satisfactory in that, at elevated temperatures, the Boltzmann

distribution is not correctly recovered. In order to explore this

inconsistency we propose an alternative approach, introducing

instead of an additional random field, an additional random

torque in the longitudinal direction in an additive manner, the

choice of which we justify in Sec. III. This leads to a different

stochastic differential equation, called here sLLB-II, which we

propose in this paper:

ṁ = γ [m × Heff] +
|γ |α||

m2
(m · Heff)m

−
|γ |α⊥

m2
[m × [m × (Heff + η⊥)]] + η||. (5)

In what follows we apply to this equation both the FDT and the

FP equation approaches. Both approaches give the following

properties of the fluctuating terms:

〈

η
μ

i

〉

= 0, 〈η⊥
i (0)η⊥

j (t)〉 =
2kBT (α⊥ − α||)

|γ |M0
s V α2

⊥
δijδ(t),

(6)

〈η||
i (0)η

||
j (t)〉 =

2|γ |kBT α||

M0
s V

δijδ(t), 〈η||
i η

⊥
j 〉 = 0.
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The noise components are again isotropic. Note that α⊥ > α||,
according to Eq. (2), and that in this noise representation the

transverse fluctuations are absent above Tc, where α⊥ = α||.
Note that in the present paper Eqs. (1) and (5) are

interpreted as Stratonovich stochastic differential equations

and the fluctuating noise variables (4) and (6) as the time

derivatives of scalar Wiener processes.

The application of the FDT (see Appendix A) justifies

that for both Eqs. (1) and (5), the particular choices of

stochastic variables provide isotropic and uncorrelated (in

different spin sites and components) noise properties near

equilibrium. In the next section and based on the same choice

of the stochastic variables, the FP equations are derived for

both Langevin equations. As we will see, only for Eq. (5) the

equilibrium distribution is the Boltzmann one in the whole

temperature range. Thus, this equation is recommended as

the only valid approach at temperatures around Tc. This is

especially important for simulation of heat-assisted magnetic

recording.

III. THE FOKKER-PLANCK EQUATION

Once a convenient set of isotropic and uncorrelated

noise variables has been found, the derivation of the FP

equation from the known stochastic equation of motion is

straightforward.28 As a first step, we will do this for noninter-

acting systems only. Consider a general system of differential

equations in the Stratonovich form with multiplicative noise

dmk = akdt + bkj ◦ △Wj . (7)

Here the subscript k denotes stochastic variables, j numbers

independent standard Wiener processes △Wj , and the sign ◦
indicates the Stratonovich calculus. For stochastic LLB equa-

tions we have vector equations for the variable m and the

vector a stands for the deterministic part, common for both

sLLB-I and sLLB-II:

a(m,t) = γ [m × Heff] +
|γ |α||

m2
(m · Heff)m

−
|γ |α⊥

m2
[m × [m × (Heff)]], (8)

while the matrix bkj is defined by the stochastic part, different

for sLLB-I and sLLB-II. Note that for the one-spin LLB

equation the index k stands for spin components x,y,z and

there are 6 independent Wiener processes.

The FP equation gives access to the dynamics of the

probability function f (m,t), which is defined as the prob-

ability to find the average magnetic moment at position m

and time t . The form of the FP equation is completely

defined by the stochastic differential Eq. (7) and requires

calculations of the diffusion and drift terms.. The FP equation

reads

∂f

∂t
= −

∑

i

∂(aif )

∂mi

+
1

2

∑

i,j,k

∂

∂mi

{

bik

∂

∂mj

[bjkf ]

}

, (9)

where the first and second terms are the drift and diffusive

terms respectively.

We assume for the sLLB-I Eq. (1) the properties of Eq. (4),

i.e., the isotropic form and absence of correlations between

components with unknown at this stage magnitude of the

correlators

〈ζ ν(t)ζ ν(0)〉 = 2Dνδ(t), (10)

where ν = ||, ⊥ and the indices corresponding to different spin

components x,y,z are omitted for simplicity. Here 2D||,2D⊥
are diffusion coefficients to be defined from the thermody-

namic equilibrium. For stochastic LLB equations, we denote

6 independent noise variables with x,y,z and perpendicular ⊥
and parallel || symbols, corresponding to different components

of magnetization and parallel or perpendicular damping terms.

The elements of the bkj matrix, corresponding to parallel || and

perpendicular ⊥ noise variables, are

b
||
kj =

α|||γ |
√

2D||

m2
mkmj ,

(11)

b⊥
kj = α⊥|γ |

√

2D⊥

(

−
mkmj

m2
+ δkj

)

.

Here both k and j indices correspond to components x,y,z.

Substituting these into the FP equation (9), calculating the

derivatives, and collecting all the terms, one comes to the

following FP equation:

∂f

∂t
= −

∂

∂m

{

γ [m × Heff]f +
α|||γ |
m2

(m · Heff)mf −
α⊥|γ |
m2

[m × [m × Heff]]f

}

−
∂

∂m

{

D⊥α2
⊥|γ |2

m2

[

m ×
[

m ×
∂f

∂m

]]

−
D||α

2
|||γ |2

m2
m

(

m ·
∂f

∂m

)}

− 2D||α
2
|||γ |2

∂

∂m

(

m

m2
f

)

. (12)

The FP equation above differs from the one suggested

originally in Ref. 21 by the presence of the last term. Note that

for small deviations from equilibrium, i.e., under conditions

for which the FDT was applied (not close to Tc), this term is

zero to the first order.

The FP equation should be solved in the stationary case

to find the equilibrium function from which the unknown

coefficients can be defined. In the conventional statistical

mechanics one normally searches for the equilibrium solution

in the form of the Boltzmann distribution:

f = f0 exp ( − F (m)/kBT ), (13)

∂f

∂m
=

V M0
s

kBT
Hefff. (14)

where F is the free energy.

Here f0 is a normalization constant. It is easy to see that

the FP equation (12) in equilibrium cannot be satisfied with
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the Boltzmann distribution function. After the substitution

f = f /m2, it is possible to show that in equilibrium the

function f is the Boltzmann distribution (13). This allows us to

calculate the magnitudes of the correlators (10) obtaining the

properties indicated in Eq. (4). Thus the equilibrium solution

of the FP equation (12) is not the Boltzmann distribution but

f = f̃0

1

m2
exp(−F/kBT ) (15)

(here f̃0 is a new normalization constant), as indeed we will

see in the numerical simulations in Sec. IV.

The sLLB-II equation (5) was constructed in order to satisfy

the FP equation derived in Ref. 21 and to correct for the

additional drift term. Provided that 〈ην(t)ην(0)〉 = 2D̃νδ(t),

ν = ||, ⊥, for this equation we have

b
||
kj =

√

2D̃||δkj (16)

and the same values for the perpendicular part as in Eq. (11)

(with D⊥ → D̃⊥). The corresponding FP equation reads

∂f

∂t
= −

∂

∂m

{

γ [m × Heff]f +
α|||γ |
m2

(m · Heff)mf

−
α⊥|γ |
m2

[m × [m × Heff]]f

}

−
∂

∂m

{

D̃⊥α2
⊥|γ |2

m2

[

m ×
[

m ×
∂f

∂m

]]

− D̃||
∂f

∂m

}

.

(17)

Using the relation (14), it is easy to check that in equilibrium

this equation has a solution of the Boltzmann distribution

function (13). This provides the following conditions for the

fluctuating strength properties:

α|| − α⊥ +
D̃⊥α2

⊥|γ |V M0
s

kBT
= 0,

(18)

α⊥ −
D̃⊥α2

⊥|γ |V M0
s

kBT
−

D̃||V M0
s

kBT |γ |
= 0,

from which Eqs. (6) are deduced.

Using the relation

m2 ∂f

∂m
= −

[

m ×
[

m ×
∂f

∂m

]]

+
(

m ·
∂f

∂m

)

m, (19)

we can finally cast the FP equation (17) in a conventional form

which coincides with the one presented in Ref. 21:

∂f

∂t
+

∂

∂m
J = 0, (20)

where the probability current J is given by

J = γ [m × f Heff] + α|||γ |
m

m2

[

m ·
(

f Heff −
kBT

M0
s V

∂f

∂m

)]

−
α⊥|γ |
m2

[

m ×
[

m ×
(

f Heff −
kBT

M0
s V

∂f

∂m

)]]

.

IV. NUMERICAL TESTS

In order to compare the properties of the two different forms

of the LLB equation, we have implemented the stochastic

equation in both forms, using the Stratonovich interpretation

and the Heun numerical scheme.18 Some useful properties of

the stochastic equations are summarized in Appendix B. The

Heun numerical scheme is of the predictor-corrector type and

is especially convenient since the correction to the drift due

to the influence of the predictor coincides exactly with the

Ito-Stratonovich drift. Thus in the Stratonovich interpretation

the scheme is the same as for the deterministic equation.

For the LLB equation, the free energy of the system is

conveniently defined as6,9

F

M0
s V

=

⎧

⎪

⎨

⎪

⎩

m2
x+m2

y

2χ̃⊥
+ (m2−m2

e)
2

8χ̃‖m2
e

, T � Tc,

m2
x+m2

y

2χ̃⊥
+ 3

20χ̃‖

Tc

T −Tc

(

m2 + 5
3

T −Tc

Tc

)2

, T > Tc.

(21)

Here the longitudinal and the perpendicular susceptibilities χ̃‖,

χ̃⊥ and the equilibrium magnetization me are all temperature-

dependent values. The first term provides a uniaxial anisotropy,

while the second term controls the length of the magnetization.

At low temperatures the second term keeps the magnitude of

the vector m very close to me, due to the fact that χ̃‖ ≪ 1

for all temperatures not too close to Tc. In this case both

sLLB-II and sLLB-I trivially give the same result coinciding

with that of the LLG equation with temperature-dependent

parameters. The deviations from the LLG case are defined by

the parameter21 χ̃||/χ̃⊥, i.e., are better seen close to Tc when

the parallel susceptibility is not small and for high-anisotropy

materials such as FePt, for which χ̃⊥ is also small.

As an input into the single-spin LLB equation we need

temperature-dependent macroscopic parameters: the magne-

tization me(T ) and perpendicular and parallel susceptibilities

χ̃⊥(T ) and χ̃‖(T ), respectively. These can be taken either from

experiment or evaluated numerically. The easiest approximate

way is to evaluate these parameters from a mean-field approach

(MFA).10 In order to make the following results as realistic as

possible, we have performed all calculations with parameters

extracted from an atomistic Langevin dynamics model of FePt

parameterized with density functional theory calculations, a

comprehensive description of which can be found in Ref. 9.

This latter approach is more likely to form the basis of

future applications for the LLB, due to the specificity of

the parameters to the problem of interest, and the multiscale

approach to the problem enabling the incorporation of a

significant level of details into the macroscopic model.

The following calculations utilize the FePt input parameters

from Ref. 9, which in summary give magnetic characteristics

of Tc of 660 K and magnetocrystalline anisotropy energy

density of 7.7 × 106 J/m3. The high anisotropy accentuates

the differences between the sLLB-I and sLLB-II, and this is

especially true near Tc, where any deviations from the expected

Boltzmann distribution become obvious. For the integration

we use a time step with �t = 1 fs. The intrinsic damping is set

to λ = 1.0, since we are interested in equilibrium distributions.

The gyromagnetic ratio has the usual value of γ = 1.76 ×
1011 T−1 s−1.

The first case of interest is the distribution in the length of

magnetization, P (|m|). The presence of anisotropy results in

symmetry breaking and gives rise to a 3D free-energy surface.

Therefore for simplicity the following results are calculated
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FIG. 1. (Color online) Isotropic distributions of the magnitude of

the magnetization, comparing the sLLB-II and sLLB-I at (a) T =
620 K, (b) T = 640 K, and (c) T = 650 K.

for the isotropic case, with χ⊥ = ∞. The system size was set

so that M0
s V = 1.5 × 10−19 J T−1, equivalent to a cell size

of 5.3 nm. The system is first equilibrated for 1 ns (106 time

steps) and then the distribution is sampled over 10 ns (107 time

steps). The isotropic distributions for the sLLB-I and sLLB-II

equation are plotted in Fig. 1.

For temperatures not close to Tc the two forms of the LLB

equation possess nearly identical distributions, barely distin-

guishable from the noise and coinciding with the Boltzmann

form, as is evident from the data for T = 620 K. As the

temperature becomes closer to Tc and the value of me becomes

small, the distributions show significant differences. At the

higher temperature of T = 650 K, the sLLB-II fits perfectly

with the expected Boltzmann distribution

P (|m|) ∝ m2 exp

(

−
F

kBT

)

, (22)

corresponding to the distribution Eq. (13) for an axially sym-

metric case. The results from sLLB-I fits with the anticipated

(non-Boltzmann) distribution Eq. (15), i.e., without the m2

factor in Eq. (22).

Next we consider the anisotropic case, where the distribu-

tions are different along different axes. In order to assess the

raw distribution, it is necessary to record the probabilities for

all mx , my , and mz in the unit sphere. This way the phase-space

volume is equal for all elements, and it is possible to take

“slices” along certain interesting directions, such as my ≈ 0,

and compare that with the analytic distribution directly. The

presence of anisotropy gives the magnetization a preferential

direction along the z axis. Probability distributions along

mz and mx for different temperatures are plotted in Fig. 2

and they are in agreement with the corresponding analytical

distributions.

As before, the plots show near perfect agreement of the

distributions at 620 K. At T = 640 K we note the presence

of a peak for |m| = 0 for the sLLB-I due to the 1/m2 factor

in the corresponding distribution (15). Differences in the dis-

tributions for sLLB-I and sLLB-II become apparent as the

temperature approaches Tc. Importantly, sLLB-II gives the

Boltzmann distribution (13) even at elevated temperatures and

as such is the form to be used close to Tc.

Given the differences in the equilibrium distributions for

the two stochastic forms of the LLB equation, it is important

to ascertain the differences in terms of the overall behavior

of the system. As our next step we consider the behavior of

the average magnetization of an ensemble of noninteracting

spins as a function of temperature (see Fig. 3). The average

magnetization length is defined as thermal average

|m| =
√

〈

m2
x

〉

+
〈

m2
y

〉

+
〈

m2
z

〉

(23)

with

〈

m2
x

〉

=
1

t

∫ t

0

m2
x(t ′)dt ′ (24)

and similar definitions for 〈m2
y〉 and 〈m2

z〉.
The results are presented for different system sizes showing

important size effects and deviations close to Tc. The results

converge for larger system sizes due to the fact that the LLB

equation has been derived in the MFA model, i.e., effectively

for the infinite system. As can be seen both approaches

sLLB-II and sLLB-I give practically indistinguishable results

almost for the total temperature range, being the average

value provided by the sLLB-I always slightly to the left with

respect to sLLB-II. Note that it can be shown analytically that

both distributions (13) and (15) displace an initial value me

relative to the input one. The additional shift depends on the

longitudinal susceptibility and is slightly larger for sLLB-II

than for sLLB-I. Thus, the effect should be visible for large

temperatures only where it competes with finite-size effects.

The fact that the average magnetization value differs from

the input one constitutes a real problem for the multiscale

modeling technique for which the conservation of the average

magnetization length, calculated on the basis of the lower rank

approach, is desirable. This problem will be addressed in the

future.

V. CONCLUSIONS AND DISCUSSION

In the present paper we have introduced a stochastic form

of the LLB equation which is consistent with the Boltzmann

distribution function in the whole temperature range, including

very close to the Curie temperature, called here sLLB-II.
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FIG. 2. Anisotropic distributions of magnetization slices for my ≈ 0, comparing the sLLB-I (left) and sLLB-II (right) at [(a), (b)] T = 620 K,

[(c), (d)] T = 640 K, and [(e), (f)] T = 650 K.

Unlike the previously introduced stochastic LLB equation

(sLLB-I), where both fluctuating fields were introduced as a

multiplicative noise,21 in the sLLB-II equation the longitudinal

fluctuations are introduced as an additive stochastic process.

We have proved the properties of the stochastic variables for

the sLLB-II basing on the FDT as well as on the FP equation

approaches. Unlike the case of the LLG equation where the

two approaches gave the same result, the sLLB-I equation

appeared to be consistent with the FDT approach but, contrary

to the sLLB-II equation, not consistent with the Boltzmann

distribution at high temperatures.

The results were checked in numerical simulations. Al-

though detailed distribution functions close to the Curie tem-

peratures appeared to be very different, at the present moment

we did not see prominent differences in the evaluation of the

macroscopic properties such as average magnetization, the

switching time,21 or the ultrafast magnetization dynamics.12

Examples showing significant differences in the physical

behavior of macroscopic properties are yet to be found.

The detailed numerical simulations also show some further

problems in the use of the stochastic LLB equation within

the multiscale description. Due to the approximation in the

derivation of the free energy Eq. (21), the calculation of

average magnetization using this particular functional form

does not reproduce exactly the input value of the average

magnetization me, although it is close to it for large system

sizes. The latter should be considered as a necessary condition

in the multiscale description. If the free energy were evaluated

on the basis of the full atomistic description, the correct

magnetization value would be recovered. Furthermore, we

should also notice the presence of finite-size effects, although

not so pronounced as in the modeling using the LLG approach.

The corrections of these problems will be the subject of further

investigation.
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FIG. 3. (Color online) Magnetization versus temperature (a) for

the whole temperature range and (b) close to the Curie temperature

Tc, for different system sizes. The results provided by the sLLB-II

(lines) are always to the right with respect to those calculated within

the sLLB-I (symbols). The black line represents an input me value.
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APPENDIX A: THE FLUCTUATION-DISSIPATION

THEOREM

The approach based on the FP equation has the great

advantage to deal with a complete nonlinear problem resulting

from the multiplicative noise in terms of the probability

distribution functions.18 The approach based on the FDT,24,25

however, is a linear-response theory, valid for small deviations

from the equilibrium only. One may wonder, therefore, why

the FDT is necessary at all, since it is valid for linearized

systems only. The problem is that one should provide for

the FP equation the choice of convenient stochastic variables

which could potentially lead to a correct equilibrium with

the desired properties of being isotropic and uncorrelated in

space and time. However, not all assumptions of the formal

stochastic variables are consistent with this requirement.

The FDT approach in this sense is more general than FP.

Given a formal assumption for the fluctuating variables, it

allows proving their equilibrium properties based on the

Onsager relation. This allows choosing convenient fluctuating

variables with desired properties of being isotropic and

uncorrelated.

Generally speaking, the noise in Eqs. (1) and (5) is

multiplicative. However, close to equilibrium, one can lin-

earize the stochastic equations, converting the noise variables

to additive. Below we use a standard close-to-equilibrium

statistical mechanics based on the Onsager reciprocal relations

close to equilibrium. This approach can be applied for a

multispin case without any additional difficulty so that the

indices i and j in this subsection refer to both spin components

and different sites.

Following Refs. 24, 25 and 27, let us consider a general

form of the linear Langevin equation of motion for thermody-

namically conjugate variables xi and Xi = (1/kBT )(∂F/∂xi):

ẋi = −
∑

j

γijXj + fi, (A1)

where F is the free energy, γij are the so-called kinetic

coefficients, and fi are the components of a random force

representing thermal fluctuations in the system and the indices

i and j denote the particle’s degrees of freedom. According to

the FDT in the Onsager formulation, the properties of fi are

related to γij as follows:

〈fi(t)〉 = 0, 〈fi(t)fj (t ′)〉 = κijδ(t − t ′). (A2)

Here the matrix κij = γij + γji is symmetrized.

Close to the equilibrium state, the LLB equation can be

linearized using small deviations from the equilibrium values

hi = H i
eff − H

i,(0)
eff , μi = mi − mi

(0). (A3)

For simplicity let us direct the local axis z parallel to the

local magnetization direction mi
(0) = (0,0,mi

0). It is easy to

show that for the LLB equation H
i,(0)
eff = 0. The consequence

of the linearization of the LLB equation is that it assumes

that |μi | ≪ mi
0; i.e., it will not be valid near Tc, where

mi
0 ≈ 0.

After linearizing, we come to the stochastic LLB equation

in the form

μ̇i = −
∑

j

γijXj = −
M0

s V

kBT

∑

j

γijhj ; (A4)

i.e., the internal fields hj are linearly proportional to thermo-

dynamically conjugated variables for μj :

Xj = −
1

kBT

∂F

∂μj

=
M0

s V

kBT
hj . (A5)

The fact that the linearized LLB equation can be written

exactly in the form (A4), i.e., with the magnetization as a linear

combination of only the field components, is quite remarkable
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and it is this form which leads to the absence of correlations

between different spin sites. It is not a general property but

a consequence of the form of the damping.25 Consequently,

from now on we omit indices corresponding to different spin

sites referring only to different x,y,z components.

The nonzero kinetic coefficients have the following

forms:

γxx = γyy =
α⊥kBT |γ |

M0
s V

, γzz =
α||kBT |γ |

M0
s V

,

(A6)

γxy = −γyx = −
m0|γ |kBT

M0
s V

.

The reversible antisymmetric parts, coming from the preces-

sional term, do not contribute to the thermal fluctuations after

symmetrizing the kinetic coefficients for calculations of the

matrix κij :

κxx = κyy =
2α⊥kBT |γ |

M0
s V

, κzz =
2α||kBT |γ |

M0
s V

. (A7)

Hence we can see that the longitudinal fluctuations exist

in our system and are different from the transverse ones.

Finally, we can rewrite the properties of a random force fi as

follows:

〈fi(t)〉 = 0, 〈fi(t)fj (t ′)〉 = 0, i �= j, (A8)

〈fx(y)(t)fx(y)(t
′)〉 =

2α⊥kBT |γ |
M0

s V
δ(t − t ′), (A9)

〈fz(t)fz(t
′)〉 =

2α||kBT |γ |
M0

s V
δ(t − t ′). (A10)

It is easy to demonstrate that in all other systems of coordinates,

not coinciding with z||m0 (the z axis locally is parallel to the

equilibrium magnetization direction), this noise representation

leads to correlations between different noise components.

Thus, the additive noise representation is inconvenient. In

contrast, the linearization of the sLLB-I (1) equation leads

to the following relations:

fx,y = α⊥|γ |ζ⊥
x,y, (A11)

fz = α|||γ |ζ ||
z , (A12)

and we come finally to the following properties, coinciding

with Eqs. (4):

〈ζx(y),⊥(t)ζx(y),⊥(t ′)〉 =
2kBT

|γ |α⊥M0
s V

δ(t − t ′), (A13)

〈ζz,||(t)ζz,||(t
′)〉 =

2kBT

|γ |α||M0
s V

δ(t − t ′). (A14)

It is clear from this representation that if only one noise

variable in both longitudinal and transverse damping terms

ζ were used, its three components would be different due to

the relations above. Transforming this to an arbitrary system of

coordinates, it is easy to see that this noise is again correlated

in all other systems of coordinates. However, if different noise

variables are used for perpendicular and longitudinal process,

then the longitudinal component of the transverse noise ζz,⊥
and the transverse components of the longitudinal one ζx(y)||
remain undefined. They can be arbitrary due to the form of

the LLB equation. Thus, without the loss of generality we can

assume that ζz,||,ζx,||, and ζy,|| have the same correlators for the

first and the second moments and the same for ζz⊥,ζx,⊥,ζy⊥.

This form of the noise leads to the invariance property of the

noise function with respect to the change of the system of

coordinates.

Similarly, for the sLLB-II Eq. (5):

fx(y) = α⊥,x(y)η
x(y)
⊥ + η||,x(y), (A15)

fz = ηz
||. (A16)

Since x,y components of η|| are undefined, we can again

assume that η||,x,η||,y,η||,z have the same correlators for the

first and second moments to assure the invariance with the rot-

ation of the system of coordinates. For η⊥,x(y) this gives the

properties of Eq. (6) with an additional assumption that η⊥,z

and η⊥,x(y) have the same statistical properties.

Thus both forms of the stochastic differential equations,

sLLB-I and sLLB-II, are consistent with the FDT for interact-

ing and noninteracting systems. The application of the FDT

also shows its deficiency; indeed small deviations from the

equilibrium imply that μx,μy ≪ m0; i.e., the approach is not

valid for m0 → 0.

The application of the FDT provides us with a suitable

choice of uncorrelated noise variables, independent of the

equilibrium m0. However, one should note once again that in

the original nonlinear LLB equation the noise is multiplicative

so that the covariance matrix is dependent on current m:

κij = κij (m). To deal with a completely nonlinear problem

one should turn to the FP approach.

APPENDIX B: SOME USEFUL PROPERTIES OF THE

STOCHASTIC FORMS OF THE LLB EQUATION

The numerical schemes often contain the following opera-

tors Ljbki where

Lj =
d

∑

k

bkj

∂

∂mk

, (B1)

which should be evaluated.29 Particularly, numerically more

efficient schemes could be written for the commutative noise.

The condition for the commutative noise reads

Ljbk,i = Libkj ∀k,i,j ; (B2)

i.e., the indices i and j can be interchanged.

The longitudinal part of the sLLB-II equation is trivially

commutative, since this part of the noise is additive. For both

sLLB-I and sLLB-II equations it is easy to demonstrate that

Lj,||bli,|| = 0, Lj,||bli⊥ ≡ 0. (B3)

Thus the longitudinal part is always commutative. For the

transverse part we have

Lj,⊥bli,⊥ = −
2D⊥α2

⊥γ 2

m2

(

δjiml + δljmi −
2mimjml

m2

)

.

It is clear that

Lj,⊥bli,⊥ �= Li,⊥bl,j,⊥.

Thus it is a transverse part of the LLB which is not

commutative. This is unfortunate for both LLB and LLG
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equations; the latter was noticed by Garcia-Palacios et al.18

For the sLLB-I equation additionally the mixed term is not

commutative; i.e.,

Lj,⊥bli,|| =
2
√

D||D⊥α||α⊥γ 2

m2

(

δjiml + δljmi −
2mimjml

m2

)

�= Li,⊥bl,j,||. (B4)

We interpret the stochastic LLB and LLG equations in terms

of the Stratonovich calculus. The corresponding Ito equation

can be derived with an additional drift term. This procedure is

useful since most of numerical schemes are written in terms

of the Ito calculus for which the evaluation of the stochastic

integrals is straightforward. The corresponding drift terms are

easy to evaluate using the known relation

AI
i = AS

i +
1

2

∑

j

Ljbij . (B5)

For the sLLB-I case

RI = AI − AS = −
2kBT |γ |
M0

s V
(α⊥ − √

α⊥α||)
m

m2
, (B6)

and for the sLLB-II

RII = AI − AS = −
2kBT |γ |
M0

s V
(α⊥ − α||)

m

m2
. (B7)

Thus the drift term is parallel to the magnetization di-

rection. For the numerical schemes for the stochastic LLG

equation this is fortunate, since the additional drift can

be removed by normalizing the magnetization magnitude

at each time step. Obviously, this cannot be done for the

stochastic LLB equation. Note that in both cases the drift

term increases with temperature and just below Tc when

m → 0 becomes very large. However, it becomes zero

at T > Tc.
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