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STOCHASTIC FOUNDATIONS
OF THE UNIVERSAL DIELECTRIC RESPONSE

Abstract. We present a probabilistic model of the microscopic scenario
of dielectric relaxation. We prove a limit theorem for random sums of a spe-
cial type that appear in the model. By means of the theorem, we show that
the presented approach to relaxation phenomena leads to the well known
Havriliak–Negami empirical dielectric response provided the physical quan-
tities in the relaxation scheme have heavy-tailed distributions. The mathe-
matical model, presented here in the context of dielectric relaxation, can be
applied in the analysis of dynamical properties of other disordered systems.

1. Introduction. Dielectric relaxation in solids, defined as approach-
ing equilibrium of a dipolar system driven out of equilibrium by a step or
alternating external electric field, is one of the most intensively researched
topics in experimental and theoretical physics (see e.g. [1, 3–5, 10–15, 17–19,
21, 22, 24, 25, 27–30]. The empirical investigations of dielectric properties of
different relaxing systems have shown that despite the variety of materials
used and of experimental techniques employed, the time or frequency de-
pendencies of dynamic dielectric characteristics are very similar. It has been
observed that for most dielectrics the prevailing form of i(t), the time decay
of the depolarization current, exhibits the fractional power laws in time; i.e.
for some 0 < p1, p2 < 1,

i(t)/t−p1 → const > 0 as t→ 0,(1)

i(t)/t−p2−1 → const > 0 as t→∞.(2)

This common property of dielectric responses of relaxing systems is known
as the “universal relaxation law” [4, 13, 14].
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Furthermore, the statistical analysis of the data for hundreds of materials
have shown [4, 11, 13] that the inverse Fourier transform of i(t),

∞�

0

e−iωti(t) dt,(3)

is the complex function

ϕ(ω) =
B

(1 + (iAω)α)γ
(4)

where A,B > 0, 0 < α, γ ≤ 1. In case α < 1 and γ ≤ 1 the function (4)
corresponds to the so-called Havriliak–Negami (if γ < 1) or Cole–Cole (if
γ = 1) response, and it yields (1) and (2) with p1 = 1 − αγ and p2 = α. If
γ < 1 and α = 1 formula (4) yields the so-called Cole–Davidson response
that satisfies the short-time power law (1) only (with p1 = 1−γ). For α = 1
and γ = 1 the formula corresponds to the Debye response characterized by
the exponential decay of the depolarization current, i(t) ∝ e−t/A. Notice
that although the Cole–Davidson and Debye responses do not satisfy the
universal relaxation law, they are observed for some dielectric materials,
and often in relaxation processes other than dielectric relaxation.

The empirically established formula (4) characterizes the observed be-
haviour of the relaxing system without in any way indicating the physical
mechanisms involved. Since the experiment probes the ensemble average in
the sense that only the net effect of a large number of contributions from
different relaxing entities within a sample is measured, in theoretical at-
tempts to explain the observed relaxation laws it is unanimously assumed
that they correspond to a kind of general behaviour which is independent
of the details of the systems examined. The relaxation process results from
an appropriate configuration of the system, imposed by nonequilibrium con-
straints at time t = 0, and is conditioned by specific interactions of different
parts of the system [21, 23, 26, 28]. Both the initial nonequilibrium state
of a complex system and the internal interactions have, in general, random
characteristics. Hence, the question of the origins of the universal relaxation
law has to be addressed in terms of probabilistic models which can provide
a clue to a better understanding of the physical mechanism of the relax-
ation processes. The recent advances in the stochastic theory of relaxation
[15, 17–19, 28–30] have provided the technique to formulate both the mi-
croscopic scenario of relaxation and the resulting effective representation of
the system. The approach based on the general probabilistic formalism of
limit theorems enables us to treat relaxation of complex systems regardless
of the precise nature of local interactions.

The aim of this paper is to present a limit theorem for random sums of
a special type that explains applicability of formula (4) as a fitting function
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for dielectric data and brings to light the underlying reason for the wide oc-
currence of the universal relaxation law. The article is structured as follows:
In Section 2 we introduce a general idea of probabilistic representations for
dielectric responses of relaxing systems, and we derive the representation
corresponding to formula (4). In Section 3 we present a model of the mi-
croscopic scenario of dielectric relaxation. In Section 4 we prove the limit
theorem, and we show by means of it that the model leads, under appropri-
ate general assumptions, to the dielectric responses related to function (4).
We thus indicate stochastic origins of the responses observed empirically.

2. Probabilistic representation of dielectric characteristics. A
function φ(t) such that i(t) ∝ −dφ/dt and φ(0) = 1, called a relaxation
function, is usually considered instead of i(t) in theoretical approaches to
model relaxation. In probabilistic terms φ(t) is interpreted as the survival
probability of the nonequilibrium initial state of the relaxing system until
time t (see [20]). Introducing θ̃, the random waiting time of the entire system
for the transition from its initial state, we obtain

φ(t) = Pr(θ̃ ≥ t)(5)

and, equivalently,
∞�

0

e−iωti(t) dt ∝ Ee−iωθ̃.(6)

On the other hand, following the historically oldest approach to relaxation,
the relaxation function φ(t) is commonly assumed to take the form of a
weighted average of an exponential decay e−bt with respect to the distribu-
tion of relaxation rate b, a physical quantity characterizing the speed of the
transition [4]. This means that

φ(t) = L(β̃; t)(7)

where the random variable β̃ is distributed as the relaxation rate considered.
(Here and throughout this paper L(X; t) := Ee−tX denotes the Laplace
transform of a random variable X.)

Summing up, the dielectric response of the relaxing system can be associ-
ated with θ̃, the waiting time of the system for the transition from the initial
state, and β̃, the relaxation rate of the system. The random variables θ̃ and
β̃ are strictly connected since from (5) and (7) we have Pr(θ̃ ≥ t) = L(β̃; t).
Each of them can unequivocally represent the shape of i(t), as well as of its
inverse Fourier transform (3).

We now derive the explicit forms of the waiting time θ̃ and the relaxation
rate β̃ for the empirically observed dielectric responses corresponding to (4).
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Theorem 1. For the relaxation function φ(t) related to (4) with param-
eters A,B > 0, 0 < α, γ ≤ 1 we have

φ(t) = Pr(AG1/α
γ Sα ≥ t) = L

(
1
A

S ′α
Sα

(
1
Bγ

)1/α

; t
)
,(8)

where

• for α 6= 1 the random variables Sα and S ′α are identically distributed
according to the completely asymmetric α-stable law such that L(Sα; t) =
e−t

α
;
• for any 0 < γ ≤ 1 the random variable Gγ is distributed according to

the gamma distribution with scale parameter 1 and shape parameter γ;
• for γ 6= 1 the random variable Bγ is distributed according to the gener-

alized arcsine distribution with parameter γ, i.e., the beta distribution with
parameters p = γ and q = 1− γ;
• B1 = 1, S1 = 1, and S ′1 = 1 with probability 1;
• for any 0 < α, γ ≤ 1 the random variable Gγ is independent of Sα;
• for any 0 < α, γ ≤ 1 the random variables Bγ , Sα, and S ′α are inde-

pendent.
As a consequence, the dielectric response corresponding to (4) has the

following probabilistic representations:

θ̃
d= AG1/α

γ Sα,(9)

β̃
d=

1
A

S ′α
Sα

(
1
Bγ

)1/α

.(10)

Proof. For any 0 < α ≤ 1,

L(Sα; t) = L(S ′α; t) = e−t
α
.(11)

For θ̃ of the form (9), applying the technique of conditional expected value
we obtain

Ee−iωθ̃ = Ee−iωAG1/α
γ Sα = E(E(e−iAωx1/αSα)|x=Gγ )

= Ee−(iAω)αGγ =
1

(1 + (iAω)α)γ
.

As a consequence, (6) holds for
∞�

0

e−iωti(t) dt = ϕ(ω),

where ϕ(ω) is given by (4). This leads to the first equality in (8). To show
the second, observe that for any 0 < γ ≤ 1,

L(1/Bγ ; t) = Pr(Gγ ≥ t).(12)
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Indeed, it is obvious that (12) holds for γ = 1. In case γ 6= 1, the density
function of Bγ is

fγ(x) =





1
Γ (γ)Γ (1− γ)

xγ−1(1− x)−γ for 0 < x < 1,

0 otherwise;
and hence,

L(1/Bγ ; t) =
1�

0

e−t/xfγ(x) dx = [y=−1+1/x]

=
1

Γ (γ)Γ (1− γ)

∞�

0

e−t(y+1)(y + 1)−1y−γ dy

=
1

Γ (γ)Γ (1− γ)

∞�

0

(∞�

1

te−st(y+1) ds
)
y−γ dy

(∗)
=

1
Γ (γ)Γ (1− γ)

∞�

1

(∞�

0

te−st(y+1)y−γ dy
)
ds =

1
Γ (γ)

∞�

1

te−st(st)γ−1 ds

= [x=st] =
1

Γ (γ)

∞�

t

e−xxγ−1 dx = Pr(Gγ ≥ t),

where (∗) follows from [8, XIV, §3, 521].
Then, applying the technique of conditional expected value, we deduce

from (11) and (12) that

L
(S ′α
Sα

(
1
Bγ

)1/α

; t
)

= E
(

E
(
e
−t
( 1
Sα
( 1
Bγ
)1/α)

S′α
∣∣∣∣

1
Sα

(
1
Bγ

)1/α))

= E
(

E(e−txS
′
α)
∣∣∣
x= 1
Sα
( 1
Bγ
)1/α

)
= E(e−(t/Sα)α/Bγ )

= E(E(e−(t/x)α/Bγ )|x=Sα) = E(Pr(Gγ ≥ (t/x)α)|x=Sα)

= Pr(G1/α
γ Sα ≥ t),

which yields the second equality in (8).

It is worth noting that it follows from [2, 4] that for the random variable β̃
of the form (10) the density function g(b) is given by the following analytical
formula:

• for 0 < α, γ < 1,

g(b) =





1
πb
· sin(γψ(b))

((Ab)2α + 2(Ab)α cos(πα) + 1)γ/2
for b > 0,

0 for b ≤ 0,
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where

ψ(b) =
π

2
− arctan

(
(Ab)−α + cos(πα)

sin(πα)

)
;

• for 0 < α < 1, γ = 1,

g(b) =





1
πb
· sin(πα)

(Ab)α + (Ab)−α + 2 cos(πα)
for b > 0,

0 for b ≤ 0;

• for α = 1, 0 < γ < 1,

g(b) =





1
πb
· sin(πγ)

(Ab− 1)γ
for b > 1/A,

0 for b ≤ 1/A.

The second case (0 < α < 1, γ = 1) is especially interesting. It provides
a simple form of the density function for the quotient Sα/S ′α of indepen-
dent and identically distributed positive α-stable random variables while, in
general, the density functions of Sα and S ′α themselves cannot be given by
analytical formulas.

3. Model for the microscopic scenario of dielectric relaxation.
To explain the wide applicability of formula (4) in representing dielectric
data, the information on the microscopic scenario which relates the local
random characteristics of complex systems to the deterministic and univer-
sally valid empirical relaxation laws is of great importance. We now present
a model for the detailed scheme of relaxation process (proposed recently
in [15, 19, 30]) that provides the internal structure of the relaxation rate
representing the response of the relaxing system.

In any dielectric complex system capable of responding to an external
electric field it is possible that only a part of the total number n of dipoles
in the system are able to follow changes of the field [13, 14]. However, even if
some dipoles do not directly contribute to the relaxation dynamics, they may
affect the stochastic transition of the active dipole. This influence is reflected,
for example, in the properties of individual relaxation rates β1n, β2n, . . . of
the active entities in the system. According to the rate-theory concept [27],
the individual relaxation rates are considered here as the contributions of the
dipoles to the total relaxation rate representing the response of the system
as a whole. They are often assumed to take the form βjn = βj/an with βj
independent of the system size n and the same normalizing constant an for
each dipole.

Assume that the jth active dipole interacts with Nj − 1 inactive neigh-
bours forming a cluster of size Nj . The number Kn of active dipoles in the
system coincides with the number of clusters determined by the local inter-
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actions. The latter is equal to the first index k for which the sumN1+. . .+Nk

of the cluster sizes exceeds n, the size of the system; i.e.

Kn = min
{
k :

k∑

j=1

Nj > n
}
.

Depending on the screening mechanisms [13], the active dipoles may
“see” some of their active neighbours. If so, the cooperative regions built
up from the active dipoles may appear. The number Ln of such mesoscopic
regions is determined by their sizes M1,M2, . . .:

Ln = min
{
l :

l∑

m=1

Mm > Kn

}
,

where Mm is the number of interacting active dipoles in the mth cooperative
region. The contribution of each region to the total relaxation rate is the
sum of the contributions of all active dipoles over the region. Hence, for the
mth region its relaxation rate, say βmn, is equal to

βmn =
M1+...+Mm∑

j=M1+...+Mm−1+1

βj/an.

The probabilistic representation of the dielectric response for the relaxing
system as a whole is provided by the total relaxation rate β̃n, that is, the
sum of the contributions over all cooperative regions:

β̃n =
Ln∑

m=1

βmn.(13)

In general, the number of dipoles directly engaged in the relaxation pro-
cess, as well as their locations, are random. Therefore, all the quantities Nj ,
Mm, βjn, and those defined by them, have to be considered as random
variables. Their stochastic characteristics would obviously determine the
properties of the total relaxation rate β̃n if they were known. But they
are not, in general. Nevertheless, as we shall show in the next section,
on the basis of limit theorems of probability theory, it is possible to de-
fine the distribution of the weak limit β̃∞ = limn→∞ β̃n even with rather
limited knowledge of the distributions of the introduced micro/mesoscopic
quantities.

4. Limit theorem for the total relaxation rate. Assume that M =
{Mm, m = 1, 2, . . .}, N = {Nj , j = 1, 2, . . .}, and β = {βj , j = 1, 2, . . .}
are independent sequences, each consisting of independent and identically
distributed positive random variables. (Mm and Nj are integer-valued.) It
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is easy to show that β̃n given by (13) can be rewritten in the form

β̃n = Sβ(In)/an(14)

with
In = SM (νM(νN (n))),

where for X = {Xj , j = 1, 2, . . .} being X = M,N , or β,

SX(0) = 0, SX(k) =
k∑

j=1

Xj for k = 1, 2, . . . ,

νX(n) = min{k : SX(k) > n}.
Observe that β̃n in (14) has the form of a normalized random sum with the
random index In independent of the components βj . Below we discuss its
asymptotic properties (as n→∞) for the cases connected with formula (4).
(More general considerations will be presented in [16].)

Throughout this paper, we will say that the distribution of a positive
random variable Xj has a heavy tail if for some c > 0 and 0 < r < 1,

lim
x→∞

Pr(Xj > x)
(x/c)−r

= 1.

For such a distribution the expected value EXj is infinite.

Theorem 2. Let 0 < α, γ < 1, c1, c2 > 0 be fixed.

(a) Assume that both Nj and Bj have heavy-tailed distributions with
c = c1 and c = c2, respectively , and the same r = α.

• If the distribution of Mm has a heavy tail with some c > 0 and
r = γ, then

Sβ(In)
n

d−→
n→∞

c2

c1

S ′α
Sα

(
1
Bγ

)1/α

.

• If EMm <∞, then

Sβ(In)
n

d−→
n→∞

c2

c1

S ′α
Sα

=
c2

c1

S ′α
Sα

(
1
B1

)1/α

.

(b) Assume that the expected values of both Nj and Bj are finite, and
ENj = c1, EBj = c2.

• If the distribution of Mm has a heavy tail with some c > 0 and
r = γ, then

Sβ(In)
n

d−→
n→∞

c2

c1

1
Bγ

=
c2

c1

S ′1
S1

(
1
Bγ

)1/1

.
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• If EMm <∞, then

Sβ(In)
n

a.s.−→
n→∞

c2

c1
=
c2

c1

S ′1
S1

(
1
B1

)1/1

.

The random variables Bγ , Sα, and S ′α are as in Theorem 1.

Proof. Under the assumptions of part (a), from [7, Theorem XIII.6.2]
we obtain

SN (n)
n1/α

d−→
n→∞

c1 (Γ (1− α))1/αSα,(15)

Sβ(n)
n1/α

d−→
n→∞

c2 (Γ (1− α))1/αS ′α.(16)

Since for any n, k = 1, 2, . . . ,

{νN (n) > k} = {SN (k) ≤ n},(17)

we have νN (n)→∞ a.s. as n→∞. Moreover,

νN (n)
nα

d−→
n→∞

1
cα1 Γ (1− α)

(
1
Sα

)α
.(18)

Indeed, from (17), (15) and Cramér’s theorem, for any x > 0 we have

Pr
(
νN (n)
nα

> x

)
= Pr(νN (n) > [xnα]) = Pr(SN ([xnα]) ≤ n)

= Pr
((

[xnα]
xnα

)1/αSN ([xnα])
[xnα]1/α

≤ 1
x1/α

)

−→
n→∞

Pr(c1 (Γ (1− α))1/αSα ≤ 1/x1/α),

which leads to (18).
If the distribution of Mm has a heavy tail, we have

SM (νM(n))
n

d−→
n→∞

1
Bγ

(19)

(see [7, XIV 3]). Since the sequences {SM (νM(n))} and {νN (n)} are inde-
pendent, it follows from [6, Theorem, part (V)] that (18) and (19) yield

In
nα

d−→
n→∞

1
cα1 Γ (1− α)

(
1
Sα

)α 1
Bγ
.(20)

In case EMm <∞, from [9, Theorems I.2.3 and II.5.1] we have

SM (νM (n))
n

a.s.−→
n→∞

1.

Hence, from (18), [9, Theorem I.1.1], and Cramér’s theorem we get

In
nα

d−→
n→∞

1
cα1 Γ (1− α)

(
1
Sα

)α
.(21)
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From (16), (20), (21), by means of the theorem proved in [6] we obtain the
assertions of part (a).

Under the assumptions of part (b) we have

νN (n)
a.s.−→
n→∞∞,

νN (n)
n

a.s.−→
n→∞

1
c1

(see [9, II 5]), and from Kolmogorov’s strong law of large numbers

Sβ(n)
n

a.s.−→
n→∞ c2;

hence, the proof of the statements of this part is parallel to that of (a).

Studying relaxation phenomena, one usually deals with systems consist-
ing of a large number of dipoles (of order greater than 1023). Within ex-
perimental error one cannot distinguish the observed response of the entire
system, represented by unknown β̃n, from its approximation resulting from
the weak limit β̃∞ = limn→∞ β̃n. For the β̃n given by (13) with an = n,
under the assumptions of Theorem 2, the limit β̃∞ has been shown to have
the form (10) with A = c1/c2, corresponding to the dielectric response re-
lated to (4). Hence, in the presented approach to dielectric relaxation, the
response related to (4) appears as a result of statistical rules the system
follows during its spatio-temporal evolution. This indicates the stochastic
reasons for applicability of (4) as a fitting function for dielectric data.

Table 1. Assumptions for which the model leads to particular
responses given by (4) with A,B > 0, 0 < α, γ ≤ 1 (c0 is a
positive constant)

Assumptions Response

βj Nj Mm

heavy tail heavy tail heavy tail

with r = α with r = α with r = γ Havriliak–Negami

and c = c0 and c = Ac0 and c > 0 α, γ < 1

heavy tail heavy tail

with r = α with r = α EMi <∞ Cole–Cole

and c = c0 and c = Ac0 α < 1, γ = 1

heavy tail

EBi = c0 <∞ ENi = Ac0 <∞ with r = γ Cole–Davidson

and c > 0 α = 1, γ < 1

EBi = c0 <∞ ENi = Ac0 <∞ EMi <∞ Debye

α = 1, γ = 1

Detailed assumptions for which the model leads to the Havriliak–Negami,
Cole–Cole, Cole–Davidson, and Debye responses are collected in Table 1.
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Let us add that the heavy-tail property has been recognized [15] as di-
rectly related to the spatial (if referred to Nj and Mm, the cluster and
cooperative-region sizes) or temporal (if referred to the relaxation rate βj)
scaling properties of the system.
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