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Abstract

We study three stochastic differential games. In each game, two players control a process
X = {Xt , 0 ≤ t < ∞} which takes values in the interval I = (0, 1), is absorbed at the endpoints
of I, and satisfies a stochastic differential equation

dXt = µ
(
Xt, α(Xt), β(Xt)

)
dt + σ

(
Xt, α(Xt), β(Xt)

)
dWt , X0 = x ∈ I .

The control functions α(·) and β(·) are chosen by players A and B, respectively.
In the first of our games, which is zero-sum, player A has a continuous reward function

u : [0, 1] → R . In addition to α(·) , player A chooses a stopping rule τ and seeks to maximize
the expectation of u(Xτ ) ; whereas player B chooses β(·) and aims to minimize this expectation.

In the second game, players A and B each have continuous reward functions u(·) and v(·) ,
choose stopping rules τ and ρ, and seek to maximize the expectations of u(Xτ ) and v(Xρ) ,
respectively.

In the third game the two players again have continuous reward functions u(·) and v(·) ,
now assumed to be unimodal, and choose stopping rules τ and ρ. This game terminates at
the minimum τ ∧ ρ of the stopping rules τ and ρ , and players A , B want to maximize the
expectations of u(Xτ∧ρ) and v(Xτ∧ρ) , respectively.

Under mild technical assumptions we show that the first game has a value, and find a saddle
point of optimal strategies for the players. The other two games are not zero-sum, in general,
and for them we construct Nash equilibria.
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sions, local time, generalized Itô rule.
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1 Preliminaries

The state space for the two-player games studied in this paper, is the interval I = (0, 1). For
each x ∈ [0, 1], players A and B are given nonempty action sets A(x) and B(x), respectively. For
simplicity, we assume that A(x) and B(x) are Borel sets of the real line R.

Denote by Z = C([0,∞)) the space of continuous functions ξ : [0,∞) → R with the topology
of uniform convergence on compact sets. A stopping rule is a mapping τ : Z → [0,∞] such that

{ξ ∈ Z : τ(ξ) ≤ t } ∈ Bt := ϕ−1
t (B)

holds for every t ∈ [0,∞) . Here B is the Borel σ-algebra generated by the open sets in Z, and
ϕt : Z → Z is the mapping

(ϕt ξ)(s) := ξ(t ∧ s) , 0 ≤ s < ∞ .

We shall denote by S the set of all stopping rules.

The two players are allowed to choose measurable functions α : [0, 1] → R and β : [0, 1] → R
with α(x) ∈ A(x) and β(x) ∈ B(x) for every x ∈ [0, 1] . (We assume that the correspondences
A(·) and B(·) are sufficiently regular, to guarantee the existence of such ‘choice functions’.) For
each such pair α(·) and β(·) , we have the dynamics

(1.1) dXt = µ
(
Xt, α(Xt), β(Xt)

)
dt + σ

(
Xt, α(Xt), β(Xt)

)
dWt , X0 = x ∈ I

of a diffusion process X ≡ Xx,α,β that lives in the interval I and is absorbed the first time it
reaches either of the endpoints. Here W = {Wt , 0 ≤ t < ∞} is a standard, one-dimensional
Brownian motion, and the functions µ( · , · , · ) , σ( · , · , · ) are measurable and map the product
space [0, 1]× R× R into R and (0,∞) , respectively.

More precisely, we are assuming that for any pair of functions α(·) and β(·) chosen as above,
the local drift and variance

b(x) := µ
(
x, α(x), β(x)

)
, s2(x) := σ2

(
x, α(x), β(x)

)
, x ∈ [0, 1]

are measurable functions, which satisfy the conditions

s2(x) > 0 ,

∫ x+ε

x−ε

1 + |b(y)|
s2(y)

dy < ∞ for some ε = ε(x) > 0

for each x ∈ I, as well as

b(x) = s2(x) = 0 for x ∈ {0, 1}

(in other words, both endpoints are absorbing). The first of these conditions implies, in particular,
that the resulting diffusion process

dXt = b(Xt) dt + s(Xt) dWt , X0 = x

is regular: it exits in finite expected time from any open neighborhood (x − ε, x + ε) ⊂ I (cf.
Karatzas & Shreve (1991), p.344).
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If τ is a stopping rule, we often write Xτ as abbreviation for a random variable that equals
Xτ(X) when τ(X) is finite on the path {Xt , 0 ≤ t < ∞} . Also, for a bounded and measurable
function u : [0, 1] → R , we set

u(Xτ ) ≡ lim sup
t→∞

u
(
Xτ(X)∧t

)
=

{
u

(
Xτ(X)

)
; if τ(X) < ∞

lim supt→∞ u (Xt) ; if τ(X) = ∞
}

.

2 A Zero-Sum Game

Assume player A selects the control function α(·) and a stopping rule τ , whereas player B has only
the choice of the control function β(·) . Let u : [0, 1] → R be a continuous function, which we
regard as a reward function for player A. Then the expected payoff from player B to player A is

E[ u(Xτ ) ] ,

where X ≡ Xx,α,β and the game begins at X0 = x ∈ I . Assume further that u(·) attains its
maximum value at a unique position m ∈ [0, 1] . Call this game G1(x) .

Optimal strategies for the players have a simple intuitive description: In the interval (0,m) to
the left of the maximum, player A chooses a control function α∗(·) that maximizes the “signal-
to-noise” (mean/variance) ratio µ/σ2 , whereas player B chooses a control function β∗(·) that
minimizes this ratio. In the interval (m, 1) to the right of the maximum, player A chooses α∗(·)
to minimize µ/σ2 , whereas player B chooses β∗(·) to maximize it. Finally, player A takes the
stopping rule τ∗ to be optimal for maximizing E[u(Zτ ) ] over all stopping rules τ of the diffusion
process Z ≡ Xx,α∗, β∗ , namely

(2.1) dZt = b∗(Zt) dt + s∗(Zt) dWt , Z0 = x ,

with drift and dispersion coëfficients given by

(2.2) b∗(z) := µ
(
z, α∗(z), β∗(z)

)
, s∗(z) := σ

(
z, α∗(z), β∗(z)

)
,

respectively. More precisely, we impose the following condition.

C.1: Local Saddle-Point Condition. There exist measurable functions α∗(·), β∗(·) such that
(α∗(z), β∗(z)) ∈ A(z)×B(z) holds for all z ∈ (0, 1) ;

( µ

σ2

)
(z, a, β∗(z)) ≤

( µ

σ2

)
(z, α∗(z), β∗(z)) ≤

( µ

σ2

)
(z, α∗(z), b) , ∀ (a, b) ∈ A(z)×B(z)

holds for every z ∈ (0,m) ; and
( µ

σ2

)
(z, a, β∗(z)) ≥

( µ

σ2

)
(z, α∗(z), β∗(z)) ≥

( µ

σ2

)
(z, α∗(z), b) , ∀ (a, b) ∈ A(z)×B(z)

holds for every z ∈ (m, 1) .

Remark 1: For fixed z, the existence of α∗(z), β∗(z) satisfying the condition C.1 corresponds
to the existence of optimal strategies for a “local” (one-shot) game with action sets A(z) and B(z),
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and with payoff given by (µ/σ2)(z, a, b) for 0 < z < m and by (−µ/σ2)(z, a, b) for m < z < 1 .
Such strategies exist, for example, if (µ/σ2)(z, · , · ) is continuous, and the sets A(z), B(z) are
compact for every z ∈ I .

Suppose that the local saddle-point condition C.1 holds, and recall the diffusion process Z ≡
Xx,α∗, β∗ of (2.1), (2.2) for a fixed initial position x ∈ I . Fix an arbitrary point η of I, and write
the scale function of Z as

p(z) :=
∫ z

η
p′(u) du , z ∈ I ,

where we have set

p′(z) := exp
{
−2

∫ z

η

b∗(u)
(s∗(u))2

du

}
= 1 +

∫ z

η
p′′(u) du > 0

and
p′′(z) := −2 p′(z) · b∗(z)

(s∗(z))2
.

C.2: Strong Non-degeneracy Condition. We have

inf
z∈I


 inf

a∈A(z)
b∈B(z)

σ2(z, a, b)


 > 0 .

Theorem 1 : Assume that α∗(·), β∗(·) satisfy the local saddle-point condition C.1. For each
x ∈ I, define the process Zx ≡ Xx,α∗, β∗ of (2.1), (2.2), and assume that the strong non-degeneracy
condition C.2 holds. Let

(2.3) U(x) := sup
τ∈S

E[ u(Zx
τ ) ] , x ∈ I

where τ ranges over the set S of all stopping rules, and consider the element τ∗ of S given by

(2.4) τ∗(ξ) := inf{t ≥ 0 : U(ξt) = u(ξt)} , ξ ∈ Z .

Then for each x , the game G1(x) has value U(x) and saddle-point
(
(α∗(·), τ∗), β∗(·)) .

Namely, the pair (α∗(·), τ∗) is optimal for player A, when player B chooses β∗(·) ; and the
function β∗(·) is optimal for player B, when player A chooses (α∗(·), τ∗) .

Before broaching the proof of this result, let us recall some well-known facts from the theory of
optimal stopping (as developed, for instance, in Snell (1952), Chow et al. (1971), Neveu (1975) or
Shiryaev (1978)). The function U(·) of (2.3) is the value function for the optimal stopping problem
associated with the random process u(Zx) = {u(Zx

t ), 0 ≤ t < ∞} ; it is obviously bounded,
because the reward function u(·) is continuous (therefore bounded) on the compact interval [0,1].
In addition, the function U(·) is known to be continuous, and the stopping rule τ∗ to be optimal:
i.e., U(x) = E[ u(Zx

τ∗) ] (see, for example, Shiryaev (1978)). Furthermore,

U(x) = Ũ(p(x)) , x ∈ I ,
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where Ũ(·) is the least concave majorant of the function ũ(·) defined through

u(x) = ũ(p(x)) ;

for instance, see Karatzas & Sudderth (1999) or Dayanik & Karatzas (2003), pp.178-181. The
process Y ≡ Y y := p(Zx) is easily seen to be a “diffusion in natural scale”, that is,

dYt = s̃(Yt) dWt , Y0 = y := p(x) ,

where s̃(·) is defined via s̃(p(x)) = s(x) p′(x) , x ∈ I. The state-space of this diffusion is the open
interval

Ĩ =
(
p(0+), p(1−)

)
.

The function Ũ(·) is the value function of the optimal stopping problem for the process ũ(Y ) with
starting point Y0 = y ∈ Ĩ ; to wit,

Ũ(y) = sup
%∈S

E[ ũ(Y y
% ) ] , Y y

0 = y ∈ Ĩ .

We shall refer to this as the “auxiliary optimal stopping problem”.
As the least concave majorant of ũ(·) , the function Ũ(·) is clearly increasing on the interval

(p(0+), m̃) and decreasing on the interval (m̃, p(1−)) , where m̃ := p(m) is the unique point at
which the function ũ(·) attains its maximum over the interval Ĩ . Furthermore, the function Ũ(·)
is affine on the connected components of the open set

Õ :=
{

y ∈ Ĩ : Ũ(y) > ũ(y)
}

,

the optimal continuation region for the auxiliary stopping problem. Consequently, the positive
measure ν̃ defined by

ν̃
(
[c, d )

)
:= D−Ũ(c)−D−Ũ(d ) , p(0+) < c < d < p(1−) ,

assigns zero mass to the set Õ : ν̃(Õ) = 0 . Note also that Õ = p(O) , where

O := {x ∈ I : U(x) > u(x) }

is the optimal continuation region for the original stopping problem.

Proof of Theorem 1: Let α(·) and β(·) be arbitrary control functions for the two players, and let
τ ∈ S be an arbitrary stopping rule for player A . Consider the processes

Z ≡ Xx,α∗, β∗ , H ≡ Xx,α∗, β , Θ ≡ Xx,α, β∗ .

It suffices to show

(2.5) E[ u(Θτ ) ] ≤ E[ u(Zτ∗) ] ≤ E[ u(Hτ∗) ] .

Indeed, these inequalities mean that the pair (α∗(·), τ∗) is optimal for player A, when player B

chooses β∗(·) ; and that β∗(·) is optimal for player B, when player A chooses (α∗(·), τ∗) .
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In other words,
(
(α∗(·), τ∗) , β∗(·)) is a saddle-point for the game G1(x) , and this game has

value
E [u(Zτ∗) ] = E

[
u

(
Xx,α∗, β∗

τ∗

) ]
= U(x)

equal to the middle term in (2.5). This is the same as the value U(x) of the optimal stopping
problem for the diffusion process Z, as in (2.3).

Furthermore, it suffices to prove (2.5) when m = 1, to wit, when the maximum of u(·) occurs
at the right-endpoint of I. This is because it is obviously optimal for player A to stop at m, so the
intervals (0,m) and (m, 1) can be treated separately and similarly.

• To prove the second inequality of (2.5), consider the semimartingale H̃ := p(H) which satisfies

dH̃t = p′(Ht) dHt +
1
2

p′′(Ht) σ2
H(t) dt = p′(Ht) [ µH(t) dt + σH(t) dWt ] +

1
2

p′′(Ht) σ2
H(t) dt

or equivalently

(2.6) dH̃t = σ2
H(t)

[
1
2

p′′(Ht) +
µH(t)
σ2

H(t)
· p′(Ht)

]
dt + p′(Ht) σH(t) dWt ,

where we have set

µH(t) := µ
(
Ht, α

∗(Ht), β(Ht)
)

and σH(t) := σ
(
Ht, α

∗(Ht), β(Ht)
)
.

By condition C.1 and the positivity of p′(·) , we have

1
2

p′′(Ht) +
µH(t)
σ2

H(t)
· p′(Ht) ≥ 1

2
p′′(Ht) +

( µ

σ2

) (
Ht, α

∗(Ht), β∗(Ht)
) · p′(Ht)

=
1
2

p′′(Ht) +
b∗(Ht)(
s∗(Ht)

)2 · p′(Ht) = 0

from (2.2). Therefore, the process H̃ = p(H) is a local submartingale.

Now let us look at the semimartingale U(Ht) = Ũ(H̃t), 0 ≤ t < ∞ . By the generalized Itô rule
for concave functions (cf. Karatzas & Shreve (1991), section 3.7), this process satisfies

U(HT ) = Ũ(H̃T ) = U(x) +
∫ T

0
D−Ũ(H̃t) · dH̃t −

∫

Ĩ
LH̃

T (ζ) ν̃(dζ)

= U(x) +
∫ T

0
D−Ũ(p(Ht)) · σ2

H(t)
[

1
2

p′′(Ht) +
µH(t)
σ2

H(t)
· p′(Ht)

]
dt

(2.7) +
∫ T

0
D−Ũ(p(Ht)) · p′(Ht) σH(t) dWt −

∫

Ĩ
LH̃

T (ζ) ν̃(dζ) .

We are using the notation LΥ
T (ζ) for the local time of a continuous semimartingale Υ , accumulated

by calendar time T at the site ζ . The last integral of (2.7) is equal to
∫

Ĩ\Õ
LH̃

T (ζ) ν̃(dζ) ,
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and therefore vanishes for T = τ∗(H) ; just recall that ν̃(Õ) = 0 , Õ = p(O) , and observe that the
stopping rule τ∗(H) of (2.4) can be written as

(2.8) τ∗(H) = inf{t ≥ 0 : Ũ(H̃t) = ũ(H̃t)} = inf{t ≥ 0 : H̃t /∈ Õ } .

Thus, the nonnegativity of D−Ũ(·) and of the term in brackets on the second line of (2.7) guarantee
that U(H·∧τ∗) is a bounded local submartingale, hence a (bounded, and genuine) submartingale.
Consequently, the optional sampling theorem gives

U(x) ≤ E[ U(Hτ∗) ] = E[ u(Hτ∗) ] .

For this last equality, we have used (2.8) and the property

τ∗(X) < ∞ a.s., for every process X ≡ X x,α,β as in (1.1);

this is a consequence of the strong non-degeneracy condition C.2. Since U(x) = E[u(Zτ∗) ] , the
proof of the second inequality in (2.5) is now complete.

• To verify the first inequality of (2.5), namely

U(x) = E[ u(Zτ∗) ] ≥ E[ u(Θτ ) ] ,

we observe that an analysis of the processes Θ̃ := p(Θ) and Ũ(Θ̃) ≡ U(Θ) , similar to that carried
out above, shows they are local supermartingales, and that U(Θ) is a genuine supermartingale
because it is bounded. By the optional sampling theorem we obtain then

U(x) ≥ E[U(Θτ ) ] ≥ E[ u(Θτ ) ]

for an arbitrary stopping rule τ ∈ S . 2

Remark 2: Before proceeding to the next section it is useful to recall that, in the special case
where player B is a dummy, we have solved a one-person game control-and-stopping problem for
player A. That is, against any fixed control function β(·) for player B, it is optimal for player A

to choose an α(·) that maximizes (µ/σ2) to the left of m and minimizes (µ/σ2) to the right of
m; and then to choose a rule τ which is optimal for stopping the process

u
(
Xx,α, β

)
.

This essentially recovers, and slightly extends, the main result of Karatzas & Sudderth (1999).

General results about the existence of values for zero-sum stochastic differential games have
been established in the literature, using both analytical and probabilistic tools; see, for instance,
Friedman (1972), Elliott (1976), Nisio (1988) and Fleming & Souganidis (1989).

7



3 A Non-Zero-Sum Game of Control and Stopping

Suppose now that both players A and B have continuous reward functions, u(·) and v(·) respectively,
which map the unit interval [0,1] into the real line. Will shall assume that u(·) and v(·) attain their
maximum values over the interval [0,1] at unique points m and `, respectively; and without loss of
generality, we shall take ` ≤ m .

As in the previous section, the two players choose control functions α(·) and β(·) , but now we
assume that both players can select stopping rules, say τ and ρ respectively. The dynamics of the
process X ≡ Xx,α, β are given by (1.1), just as before. The expected rewards to the two players
resulting from their choices of (α(·), τ) and (β(·), ρ) at the initial state x ∈ I are defined to be

E[u(Xτ ) ] and E[ v(Xρ) ] ,

respectively. Let G2(x) denote this game.
As this game is typically not zero-sum, we seek a Nash equilibrium: namely, pairs (α∗(·), τ∗)

and (β∗(·), ρ∗) such that

E
[
u

(
X x, α, β∗

τ

) ]
≤ E

[
u

(
X x, α∗, β∗

τ∗

) ]
, ∀ (α(·), τ)

and
E

[
v

(
X x, α∗, β

ρ

) ]
≤ E

[
v

(
X x, α∗, β∗

ρ∗

) ]
, ∀ (β(·), ρ) .

This simply says that the choice (α∗(·), τ∗) is optimal for player A when player B uses (β∗(·), ρ∗) ,
and vice-versa.

Speaking intuitively: in positions to the left of the point `, both players want the process X
to move to the right; in the interval (`,m), player A wants the process to move to the right, and
player B wants it to move to the left; and at positions to the right of m, both players prefer X
to move to the left. Here, “moving to the right” (resp., to the left) is a euphemism for “trying to
maximize (resp., to minimize) the signal-to-noise ratio (µ/σ2) ”; recall the discussion in Remark
4.1 of Karatzas & Sudderth (1999), in connection with the problem of that paper and with the goal
problem of Pestien & Sudderth (1985).

These considerations suggest the following condition.

C.3: Local Nash Equilibrium Condition. There exist measurable functions α∗(·), β∗(·) such
that (α∗(z), β∗(z)) ∈ A(z)×B(z) holds for all z ∈ (0, 1) ;

( µ

σ2

)
(z, a, b) ≤

( µ

σ2

)
(z, α∗(z), β∗(z)) , ∀ (a, b) ∈ A(z)×B(z)

holds for every z ∈ (0, `) ;
( µ

σ2

)
(z, a, β∗(z)) ≤

( µ

σ2

)
(z, α∗(z), β∗(z)) ≤

( µ

σ2

)
(z, α∗(z), b) , ∀ (a, b) ∈ A(z)×B(z)

holds for every z ∈ (`,m) ; and
( µ

σ2

)
(z, α∗(z), β∗(z)) ≤

( µ

σ2

)
(z, a, b) , ∀ (a, b) ∈ A(z)×B(z)

8



holds for every z ∈ (m, 1) .

Suppose there exist measurable functions α∗(·) and β∗(·) that satisfy condition C.3, and
construct, for each fixed x ∈ I , the diffusion process Zx ≡ Xx,α∗, β∗ of (2.1), (2.2). Next, consider
the optimal stopping problems for these two players with value functions

U(x) := sup
τ∈S

E[ u(Zx
τ ) ] and V (x) := sup

ρ∈S
E[ v(Zx

ρ ) ] , x ∈ I ,

respectively. Define also the stopping rules

τ∗(ξ) := inf{t ≥ 0 : U(ξt) = u(ξt)} and ρ∗(ξ) := inf{t ≥ 0 : V (ξt) = v(ξt)} , ξ ∈ Z .

Theorem 2: Assume that the strong non-degeneracy condition C.2 holds, and that there exist
measurable functions α∗(·), β∗(·) satisfying the local Nash equilibrium condition C.3.

For each x ∈ I, construct the process Zx ≡ Xx,α∗, β∗ of (2.1) and (2.2). Then the pairs
(α∗(·), τ∗) and (β∗(·), ρ∗) form a Nash equilibrium for the game G2(x) .

Proof : Consider the control-and-stopping problem faced by player A, when player B chooses the
pair (β∗(·), ρ∗) . By condition C.3, the control function α∗(·) maximizes the ratio (µ/σ2) to the
left of m, and minimizes it to the right of m. Also, the rule τ∗ is optimal for stopping the process
u(Zx) (player A). Thus, by Remark 2 at the end of section 2, we see that the pair (α∗(·), τ∗) is
optimal for player A when player B chooses the pair (β∗(·), ρ∗) .

Similar considerations show that the pair (β∗(·), ρ∗) is optimal for player B when player A

chooses the pair (α∗(·), τ∗) . 2

It is not difficult to extend Theorem 2 to any finite number of players. General existence
results for Nash equilibria in non-zero-sum stochastic differential games have been established in
the literature; see, for instance, Uchida (1978, 1979), Bensoussan & Frehse (2000), Buckdhan et
al. (2004). For examples of special games with explicit solutions, see Mazumdar & Radner (1991),
Nilakantan (1993) and Brown (2000).

4 A General Game of Stopping

In this section we address a game of stopping, which will be crucial to our study of the control-
and-stopping game in the next section. This stopping game is a cousin of the so-called Dynkin
(1967) Games, which have been studied by a number of authors; see, for instance, Friedman (1973),
Bensoussan & Friedman (1974, 1977), Neveu (1975), Bismut (1977), Stettner (1982), Alario-Nazaret
et al. (1982), Morimoto (1984), Lepeltier & Maingueneau (1984), Ohtsubo (1987), Hamadène &
Lepeltier (1995), Karatzas (1996), Cvitanić & Karatzas (1996), Karatzas & Wang (2001), Touzi &
Vieille (2002), Fukushima & Taksar (2002) and Boetius (2005), among others.

Let X be a locally compact metric space and suppose that, for each x ∈ X , the process
Zx = {Zx

t , 0 ≤ t < ∞} is a continuous strong Markov process with Zx
0 = x and values in the

space X. We shall assume that Zx is standard in the sense of Shiryaev (1978), p.19. (For the
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application to the next section, Zx will be a diffusion process in the interval (0,1) with absorption
at the endpoints, just as it was in sections 2 and 3.)

Consider now, for each x ∈ X, a two-person game G3(x) in which players A and B have bounded,
continuous reward functions u(·) and v(·), respectively, that map X into the real line. Player A

chooses a stopping rule τ , player B chooses a stopping rule ρ, and their respective expected rewards
are

E[u(Zx
τ∧ρ) ] and E[ v(Zx

τ∧ρ) ] .

The resulting non-zero-sum game of timing has a trivial Nash equilibrium τ̌ = ρ̌ = 0 , which leaves
player A with reward u(x) and player Bwith reward v(x). A somewhat less trivial Nash equilibrium
is described in Theorem 3 and its proof below.

Theorem 3: There exist stopping rules τ∗ and ρ∗ such that

E[ u(Zx
τ∗∧ρ∗) ] ≥ E[ u(Zx

τ∧ρ∗) ] , ∀ τ ∈ S

and
E[ v(Zx

τ∗∧ρ∗) ] ≥ E[ v(Zx
τ∗∧ρ) ] , ∀ ρ ∈ S

hold for each x ∈ X , to wit, the game G3(x) has (τ∗, ρ∗) as a Nash equilibrium; in this equilibrium
the expected rewards of players A and B satisfy

(4.1) E[u(Zx
τ∗∧ρ∗) ] ≥ u(x) and E[ v(Zx

τ∗∧ρ∗) ] ≥ v(x) , ∀ x ∈ X ,

respectively; and the inequalities of (4.1) can typically be strict.

The stopping rules τ∗, ρ∗ of the theorem will be constructed as limits of two decreasing sequences
{τn} and {ρn} of stopping rules. The specific structure of these sequences will be important for
the application we undertake in the next section.

These stopping rules will be defined inductively, in the order τ1, ρ1, τ2, ρ2, · · · , as solutions to
a sequence of optimal stopping problems. First, let us define

(4.2) U1(x) := sup
τ∈S

E[ u(Zx
τ ) ]

and
τ1(ξ) := inf{t ≥ 0 : ξt ∈ F1 } , ξ ∈ Z ,

where
F1 := {x ∈ X : U1(x) = u(x)} .

Next, let
V1(x) := sup

ρ∈S
E[ v(Zx

τ1∧ρ) ] ,

ρ1(ξ) := inf{t ≥ 0 : ξt ∈ G1 } , ξ ∈ Z ,

where
G1 := {x ∈ X : V1(x) = v(x)} .

10



It is well known (e.g. Shiryaev (1978)) that the stopping rules τ1 and ρ1 are optimal in their
respective problems, in the sense that U1(x) = E[ u(Zx

τ1) ] and V1(x) = E[ v(Zx
τ1∧ρ1

) ] ; and that the
functions U1(·) , V1(·) are continuous. Thus the optimal stopping regions for these two problems,
namely, F1 and G1, are closed sets.

Suppose now that we have already constructed: the stopping rules τ1, ρ1, · · · , τn, ρn ; the
continuous functions U1(·) , V1(·) , · · · , Un(·) , Vn(·) ; and the closed sets F1, G1, · · · , Fn, Gn . Let

Un+1(x) := sup
τ∈S

E[u(Zx
τ∧ρn

) ] ,

Fn+1 := {x ∈ X : Un+1(x) = u(x)} ,

τn+1(ξ) := inf{t ≥ 0 : ξt ∈ Fn+1 } , ξ ∈ Z ;

as well as
Vn+1(x) := sup

ρ∈S
E[ v(Zx

τn+1∧ρ) ] ,

Gn+1 := {x ∈ X : Vn+1(x) = v(x)}
and

ρn+1(ξ) := inf{t ≥ 0 : ξt ∈ Gn+1 } , ξ ∈ Z .

Observe that
u(x) ≤ U2(x) = sup

τ∈S
E[u(Zx

τ∧ρ1
) ] ≤ U1(x) , x ∈ X .

Thus F1 ⊆ F2 and so τ1 ≥ τ2 . Similarly, G1 ⊆ G2 and ρ1 ≥ ρ2 . An argument by induction shows
that τn ≥ τn+1 and ρn ≥ ρn+1 , as well as

u(x) ≤ Un+1(x) ≤ Un(x) , v(x) ≤ Vn+1(x) ≤ Vn(x) ,

hold for all n ∈ N .

Also by construction, we have

(4.3) E[ u(Zx
τn+1∧ρn

) ] ≥ E[ u(Zx
τ∧ρn

) ]

and

(4.4) E[ v(Zx
τn∧ρn

) ] ≥ E[ v(Zx
τn∧ρ) ] ,

for all integers n and stopping rules τ , ρ. Define the decreasing limits

τ∗ := lim
n→∞ ↓ τn , ρ∗ := lim

n→∞ ↓ ρn ,

and let n →∞ in (4.3), (4.4).
The above construction shows also that, for every integer n ∈ N , the functions Un(·) , Vn(·)

are continuous and the sets Fn , Gn closed.

11



On the other hand, it is clear that the inequalities in (4.1) can be strict. For instance, take
u(·) ≡ v(·) and suppose that the optimal stopping problem of (4.2) is not trivial, that is, has a
non-empty optimal continuation region O1 := X \ F1 = {x ∈ X : U1(x) > u(x) } . Then ρ1 = τ1 ,
V1(·) ≡ U1(·) as well as ρ2 = ρ1 = τ1 , U2(·) ≡ U1(·) , and by induction: Vn(·) ≡ Un ≡ U1(·) ,
τn = ρn = τ1 for all n. For every x ∈ O1 , the inequalities in (4.1) are then strict, since

E[ u(Zx
τ∗∧ρ∗) ] = E[ u(Zx

τ1) ] = U1(x) > u(x) . 2

Remark 3: It is straightforward to generalize Theorem 3 to the case of K ≥ 2 players with
reward functions u1(·), · · · , uK(·) , who choose stopping rules τ1, · · · , τK and receive payoffs

E[ ui(Zx
τ1∧···∧τK

) ] , i = 1, · · · ,K .

5 Another Non-Zero-Sum Game of Control and Stopping

For each point x in the interval I = (0, 1), let G4(x) be a two-player game which is the same as the
game G2(x) of section 3, except that the payoffs to the two players, resulting from their choices
(α(·), τ) and (β(·), ρ) , are now, respectively,

E
[
u

(
X x,α,β

τ∧ρ

) ]
and E

[
v

(
X x,α,β

τ∧ρ

) ]
.

Just like the game of the previous section, this one has the trivial Nash equilibrium (α̌(·), τ̌)
and ( β̌(·), ρ̌) , with arbitrary α̌(·), β̌(·) and with τ̌ = ρ̌ = 0 .

A somewhat less trivial equilibrium for this game is constructed in Theorem 4 below. It uses the
additional assumption that the reward functions u(·) and v(·) are unimodal with unique maxima
at m and `, respectively, and with 0 ≤ ` ≤ m ≤ 1 . To say that u(·) , for example, is unimodal,
means that u(·) is increasing on the interval (0, m) and decreasing on the interval (m, 1).

Theorem 4 : Assume that the strong non-degeneracy condition C.2 holds; that there exist measur-
able functions α∗(·), β∗(·) satisfying the local Nash equilibrium condition C.3; and that the reward
functions u(·) , v(·) are unimodal. For any given x ∈ I, define the process Zx ≡ Xx,α∗, β∗ as in
(2.1) and (2.2).

Let τ∗, ρ∗ be the Nash equilibrium of Theorem 3 for the stopping game G3(x) of section 4.
Then the pairs (α∗(·), τ∗) and (β∗(·), ρ∗) form a Nash equilibrium for the game G4(x) .

Proof : We must establish the comparisons

(5.1) E
[
u

(
X x, α, β∗

τ∧ρ∗

) ]
≤ E

[
u

(
X x, α∗, β∗

τ∗∧ρ∗

) ]
, ∀ (α(·), τ)

and

(5.2) E
[
v

(
X x, α∗, β

τ∗∧ρ

) ]
≤ E

[
v

(
X x, α∗, β∗

τ∗∧ρ∗

) ]
, ∀ (β(·), ρ) .
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It suffices to show that for all n ∈ N , we have

(5.3) E
[
u

(
X x, α, β∗

τ∧ρn

) ]
≤ E

[
u

(
X x, α∗, β∗

τn+1∧ρn

) ]
, ∀ (α(·), τ) ,

and

(5.4) E
[
v

(
X x, α∗, β

τn∧ρ

) ]
≤ E

[
v

(
X x, α∗, β∗

τn∧ρn

) ]
, ∀ (β(·), ρ) ,

where the stopping rules τ1, ρ1, τ2, ρ2, · · · are as defined in section 4. The latter inequalities are
sufficient, because we can obtain (5.1) and (5.2) from them by passing to the limit as n →∞ .

Let us prove the first of these latter inequalities – the second, (5.4), will follow then by symmetry.
This inequality (5.3) says that (α∗(·), τn+1) is optimal for player A in the one-person problem of
control-and-stopping that occurs when player B fixes the pair (β∗(·), ρn) . (See Remark 2, at the
end of section 2.)

Consider two cases: namely, when the initial state x belongs to Gn , the stopping region for the
rule ρn , and when x is not an element of Gn .
• If x ∈ Gn , then ρn stops the process immediately, and every pair (α(·), τ) that player A may
choose is optimal .
• If x belongs to the open set On := [0, 1] \ Gn , then there exists an interval (q, r) such that
x ∈ (q, r) ⊆ On and the process X x, α, β∗

· ∧τ∧ρn
is absorbed at the endpoints of this interval, for all

(α(·), τ) .
It is clearly optimal for player A to stop at the point m where u(·) attains its maximum,

so we can assume that the interval (q, r) lies to one side of m. Suppose, to be precise, that
x ∈ (q, r) ⊆ On ∩ (0,m) . Because it is unimodal, the function u(·) increases on (q, r) and attains
its maximum over the interval [q, r] at the point r. By Remark 2 and the condition C.3, it is
optimal for player A to use the control function α∗(·) , and then to choose a rule that is optimal
for stopping the process X x, α∗, β∗

· ∧ρn
≡ Z x· ∧ρn

, namely, the stopping rule τn+1 .
This completes the proof. 2

As in previous sections, we conjecture that Theorem 4 can be extended to a K−person game
in a straightforward manner. However, it may be more difficult to generalize to reward functions
that are not unimodal.

6 Generalizations

The results of the paper can easily be extended to much more general information structures on
the part of the two players, than we have indicated so far.

Consider, for example, the zero-sum game G1(x) of section 2. Suppose that on some filtered
probability space (Ω,F ,P) , F = {Ft}0≤t<∞ we can construct, not just the diffusion process Z
of (2.1), but also progressively measurable processes H and Θ satisfying the stochastic differential
equations with random coëfficients

dHt = µ (Ht, α
∗(Ht), bt) dt + σ (Ht, α

∗(Ht), bt) dWt , H0 = x

13



and
dΘt = µ (Θt, at, β

∗(Θt)) dt + σ (Θt, at, β
∗(Θt)) dWt , Θ0 = x ,

respectively. Here a and b are progressively measurable processes, with

at ∈ A(Θt) and bt ∈ B(Ht) , ∀ 0 ≤ t < ∞ .

Then the same analysis as in the proof of Theorem 1, leads to the comparisons

E[ u(Θt) ] ≤ E[ u(Zτ∗) ] ≤ E[u(Hτ∗) ]

as in (2.5), for an arbitrary stopping time t of the filtration F.
In other words: the pair (α∗(·), τ∗) is optimal for player A against all such pairs (a, t) , and the

function β∗(·) is optimal for player B against all such b.
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