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Part I. Introduction and description of the model. 





1. Introduction. 

In this monograph two-person zerosum stochastic games are considered. 

With the exception of sections 5.3 and 5.4 both the state space and the 

spaces of pure actions of the players are assumed to be finite sets. 

This monograph consists of three parts, supplemented by an appendix. 

In part I the model is described. Further, the different types of 

strategies and evaluation functions are introduced. Analysed subsequently 

is what happens when a player fixes his strategy in advance of the play. 
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In part II we study discounted stochastic games. The theory of 

stochastic games originated in 1953 with the fundamental paper of Shapley 

(1953). He considered stopping stochastic games, i.e. games for which, in 

each state and for each pair of actions of the players, the game stops with 

a positive probability. Discounted stochastic games can be regarded as 

special cases of stopping stochastic games. Shapley proved that a stopping 

game has a value and that both players possess optimal stationary 

strategies. 

In the introductory section of part II we give an alternative proof of 

Shapley's result, using non-linear programming techniques. Further, in part 

II the emphasis lies on two subjects. Firstly we investigate structural 

properties of the class of discounted stochastic games, and secondly we 

consider algorithms. 

Given the value of a discounted stochastic game, optimal stationary 

strategies can be constructed by taking optimal actions in certain matrix 

games. This fact enables us to extend the structural properties for matrix 

games and games in normal form to stochastic games. Particularly, the 

results of Bohnenblust, Karlin & Shapley (1950), Shapley & Snow (1950), 

Vilkas (1963) and Tijs (1976b, 1981) are enlarged to stochastic games. 

For computational reasons special attention is paid to the relations 

between the game parameters and the solution of the game, and to the 

influence of small perturbations of the game parameters on the solution 

of the game. 

Algorithms for discounted stochastic games are mainly based on 

successive approximation methods (e.g. Van der Wal (1977)). Other iterative 

procedures that can be mentioned are the algorithms of Hoffman & Karp 
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(1966) and Pollatschek & Avi-Itzhak (1969). Parthasarathy & Raghavan (1981) 

studied one-player-control stochastic games. For the discounted case they 

gave a linear programming problem, the solution of which corresponds to the 

solution of the associated game. 

In chapter 6, after a short review of existing solution methods for 

discounted stochastic games, we present two algorithms. One can be 

characterized by the term fictitious play for discounted stochastic games. 

This algorithm can be seen as the extension to stochastic games of the 

fictitious play scheme which Brown (1949, 1951) suggested as a solution 

concept for matrix games. The other algorithm of chapter 6 can be applied 

to the subclass of discounted switching control stochastic games, giving a 

finite procedure for deriving the solutions of these games. The class of 

switching control stochastic games was introduced by Filar (1981). 

In part III we consider undiscounted stochastic games. This part is 

also built up of a chapter on structural properties and a chapter on 

algorithms. 

The theory of undiscounted zerosum stochastic games began with 

Gillette (1957). For a long time it was an open question whether 

undiscounted stochastic games possess a value. This question was recently 

answered in the affirmative by Mertens & Neyman (1981). Independently 

a weaker version of their result was elaborated by Monash (1979). 

In a valuable paper Blackwell & Ferguson (1968) studied an example of 

an undiscounted stochastic game (the big match) and showed that no optimal 

strategy exists for one of the players. Even if one wishes to play 

e-optimal, e>O, in general one has to use complicated history dependent 
:;trategies. Hence it is natural to examine subclasses of stochastic games 

for which e-optimal or optimal stationary strategies exist and where these 

strategies can easily be calculated. 

With respect to the structural properties, we characterize games 

having, for e~O, e-optimal stationary strategies for one or both players. 

Further it appears that for each of the players there is at least one state 

which is easy for him. Here, easy for a player means that, starting in such 

a state, he can guarantee himself the value of the game with a stationary 

strategy. Also studied in detail is the subclass of s~ochastic games for 

which the value does not depend on the initial state. Next relations between 

the solution of the limit discount equation and the asymptotic behaviour of 

the value of the T-step game are investigated. 



In deriving our results we make use of the field of real Puiseux 

series. Bewley & Kohlberg (1976a, 1976b, 1978) have elegantly introduced 

this field of real Puiseux series in stochastic games. Their results 

enclose nearly all earlier results on stochastic games. 

Concerning algorithms for undiscounted stochastic games, the afore

mentioned result of Blackwell & Ferguson (1968) showed that it is very 

hard to find s-optimal strategies in general. The algorithms of Hoffman 

& Karp (1966), Federgruen (1978) and Van der Wal (1980) approximate 

the value and give s-optimal stationary strategies for special subclasses 

of stochastic games. Also for undiscounted stochastic games, Parthasarathy 

& Raghavan introduced the one-player-control stochastic game and Filar 

(1981) introduced the switching control stochastic game. 
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In chapter 9 we examine the above mentioned two subclasses of 

stochastic games, which can be solved relatively easily. The one-player

control stochastic game can be solved by a linear programming problem. The 

switching control stochastic game can be solved by a finite sequence of 

linear programming problems. For both classes the orderfield property arises 

in a natural way from the algorithms. 

In the appendix we give the necessary concepts and well-known facts 

for matrix games (section A.1) and Markov decision problems (section A.2) 

that will be used in this monograph. In section A.3 recent literature on 

structured stochastic games is outlined. 





2. Stochastic games; the model. 

2.1. THE MODEL OF THE TWO-PERSON ZEROSUM STOCHASTIC GAME. 

In this monograph we study two-person zerosum stochastic games with 

finite state space and finite action spaces for both players. We begin by 

defining a stochastic game situation, which will serve as the framework of 

a particular stochastic game. 

2.1.1. DEFINITION. A finite two-person zerosum stochastic game situation 

is an ordered quintuple< S, {A lsEs}, {B lsES}, r,p >, where s, A and s s s 
Bs are finite non-empty sets, r is a real-valued function on the set 

H := {(s,i,j) lsES, iEA, jEB} and where p is a map p: H+P(s) with P(S) 
s s 

the family of probability distributions on the space S. 

The game parameters have the following meaning. 

S = {1,2, ... ,z} is called the state space. 

A 
s 

B 
s 

r : 

{1,2, ... ,ms} is called the action set of player in state s. 

{1,2, ... ,ns} is called the action set of player 2 in state s. 

H+JR is called the payof f function; if in state s player 1 chooses 

action iEAs and player 2 chooses jEBs' then player 2 pays player 1 the 

amount r(s,i,j) (if r(s,i,j)<O, then player 2 receives -r(s,i,j) from 

player 1). 

p : H+P(S) is called the transition map. P(S) can be identified with the set 

{w!wEJR2 , w ~O, each sES and l: 2 
1w =1}. Therefore, for each (s,i,j)EH, 

s s= s 
we identify p(s,i,j) with the vector (p(lls,i,j), p(2ls,i,j), .... 

... , p(zls,i,j)). Here p(t\s,i,j) represents the probability that the 

system jumps to state t if in state s player 1 chooses action iEAs and 

player 2 action jEBs. Hence p(tls,i,j)~O and l:~=lp(tls,i,j)=l. 

We usually omit the adjective finite for a stochastic game, since with the 

exception of the sections 5.3 and 5.4 we only consider finite stochastic 

games. 

7 
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Such a stochastic game corresponds to a dynamic system which can be 

in different states and where at certain decision epochs the players can 

influence the course of the play. We consider the infinite horizon model 

and the set of decision epochs is assumed to be identical with the set 

JN={0,1,2, ••• }. 

The game runs as follows. we assume that the initial state s 0 at 

decision epoch 0 is known to the players. The players select simultaneously 

and independently of one another (possibly by a chance experiment) an action 

i 0€A and j 0€B respectively. Now two things happen, both depending on 
so so 

the current state s 0 and the subsequently chosen actions i 0 and j 0 • 

(a) player 2 pays player 1 the amount r(s0 ,i0 ,j0). 

(b) the system jumps to the next state s 1 according to the outcome of 

a chance experiment. The probability that the next state will be 

state t equals p(tls0 ,i0 ,j 0). 

Subsequently, prior to the next decision epoch 1, both players are 

informed of the previous actions chosen by the players and of the new state 

s 1 • At decision epoch 1, the above procedure repeats itself, etc. 

We assume that the game is of perfect recall, i.e. at each decision 

epoch each player remembers all past actions chosen by all players and all 

past states that have occurred. 

Note that for finite two-person zerosum stochastic games, we have for 

each state a similarity with matrix games, in the sense that r(s,i,j) 

denotes the (possibly negative) amount which player 2 pays player 1 if in 

state s the players select actions i and j respectively. However, contrary 

to the situation with matrix games, the game does not exist of a single 

play, but jumps according to the probability measure p(.js,i,j) to the 

next state and continues dynamically. So in choosing an action in a certain 

state a player not only takes into account the immediate reward, but also 

his possibilities in the future states. 

Also like in matrix games, when selecting an action, the players are 

allowed to randomize their pure actions. At the different decision epochs 

this randomization may depend on the history of the game up to that epoch. 

In the next section we discuss the types of strategies that a player may 

use. 



2.2. STRATEGIES IN STOCHASTIC GAMES. 

2.2.1. DEFINITION. The set of possible histories up to a decision epoch T 

consists of all sequences hT=(s0 ,i0 ,j 0 ,s 1 ,i 1 ,j 1 , ... ,sT-l'iT-l'jT-l) 
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that could have actually occurred up to time T, T~l. Here sk represents 

the state and ik and jk the action of player 1 and player 2 respectively 

at time k, k=0,1, ... ,T-1. 

Obviously the set of histories up to time T equals HT, i.e. the 

T-fold Cartesian product of H. 

First we shall describe the different types of strategies that a 

player may use and next give a formal definition. A behaviour strategy µ 

of player 1 specifies for each decision epoch T, each state sT on time T 

and each history hT a probability distribution µT(hT,s 1 ) on the action 

space A of player in states . Thenµ (ilh ,s) is the probability 
ST T T T T 

with which player chooses action iEA at time T if state sT and history 
ST 

h have occurred. 
T 

A semi-Markov strategy for player 1 is a behaviour strategy for which 

µT(hT,sT) only depends on hT through s 0 ; so µT(h 1 ,sT) is of the form 

]JT (sO,sT). 

A Markov strategy for player 1 is a semi-Markov strategy for which 

µT(s 0 ,sT) does not depend on s 0 ; so µT(s 0 ,sT) is of the form µ1 (sT). 

A stationary strategy for player 1 is a Markov strategy for which 

µT(sT) does not depend on T; so µT(sT) is of the form µ(sT). In the 

sequel a stationary strategy for player 1 shall be denoted by the symbol 

p. Then p=(p 1 , ... ,p 2 ), where ps is a probability measure on the action 

space As for each sEs. So psEP(As). If player 1 decides to play the 

stationary strategy p, then every time that the system is in state s, 

player 1 selects his pure action according to ps. A stationary strategy p 

is called pure if ps is pure for each sEs, i.e. ps(is)=l for some isEAs. 

Strategies for player 2 are defined analogously. For player 2 a 

behaviour strategy is denoted by v and a stationary strategy by cr. 

Formally the above concepts lead to the following definition. 
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2.2.2. DEFINITION. A behaviour strategy µ for player 1 is a sequence 

µ0 , µ1 , µ2 , ••• , where µ0;~== 1 P(As) and µT: HT+x:=1P(As) for T~l. 
A semi-Markov strategy µ for player 1 is a sequence 

SM SM SM . SM z SM z 
µ0 , µ1 , µ2 , ••• , where µ0 Exs=lP(As) and µT : s+xs=lP(As) for T~l. 

M M M M 
A Markov strategyµ for player 1 is a sequence µ0 , µ1 , µ2 , •.• , where 

µM€xz P(A ) for T~O. 
T s=l S z 

A stationary strategy p for player 1 is an element of X 1P(A ). s= s 
A pure stationary strategy pp for player 1 is an element of xz A 

s=l s 
Strategies for player 2 are defined analogously. 

For player 1, 1=1,2 we denote by STt' SMSTi' MST£' SST£ and PSST£ 

respectively the classes of behaviour strategies, ~emi-~rkov strategies, 

Markov strategies, ~tationary strategies and E_Ure ~tationary strategies. 

2.2.3. REMARK. It should be noted, that the set ST1 is not the most general 

class of strategies. If we were to represent a stochastic game in the so

called extensive form (see e.g. Von Neuman & Morgenstern (1944)), then 

this would yield a tree of infinite depth for the infinite horizon game. 

On this tree pure and mixed strategies could be defined in the sense of 

Kuhn (1953) and Aumann (1964). This procedure would lead to a class of 

strategies for which the set ST£ is a proper subset. However, Aumann (1964) 

has proved for a certain class of games with perfect recall, including 

stochastic games with finite state space and finite action spaces as a 

special case, that every mixed strategy defined for the game in extensive 

form has an equivalent behaviour strategy. Here two strategies of a player 

are called equivalent if, for all strategies of the other players and for 

all starting states, both strategies yield on each decision epoch the same 

expected payoff for that player. 

2.3. CRITERIA FUNCTIONS FOR STOCHASTIC GAMES. 

A pair of strategies (µ,v) induces for fixed starting state s and each 

time epoch T a probability measure lP (T) on the finite product space 
sµv 

HT. By the Kolmogorov extension theorem (Kolmogorov (1933)) the sequence 

P (0), lP (1), ..• can be extended in the classical way to a unique 
sµv sµv 
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00 

probability measure lP on the inifinite product space H . 
sµv 

Given that player 1 and 2 choose strategy µ and strategy v 

respectively, we define the following stochastic variables: 

x:v' representing the action of player 1 at epoch T. 

Y~v' representing the action of player 2 at epoch T. 

z:v' representing the state at epoch T. 

Obviously the marginal distributions of XT , YT and ZT , for each TEW, 
µv µv µv 

are determined bylP . For initial states the expected payoff at decision 
sµv 

epoch T is given by 

(2. 3.1) 

L r(t,i,j).JP {ZT =t; XT =i· YT =j}. 
(t,i,j)EH sµv µv µv ' µv 

The way in which the stream of payoffs is evaluated specifies a 

particular game. 

2.3.1. DEFINITION. A discounted two-person zerosum stochastic game with 

interest rate aE(O,oo) is a two-person zerosum stochastic game situation 

for which the stream of expected payoffs is evaluated by 

v 
sµv 

L (-1-)T .VT 
T=O l+a sµv 

Note in definition 2.3.1 that V equals the total discounted 
sµv _ 1 

expected payoff when the discount factor equals (l+a) , the starting state 

is s and the players choose µ and v respectively as their strategies. Since 

the state and action spaces are assumed to be finite, Vsµvexistsfor all 

(µ,v). 

2.3.2. DEFINITION. An average reward two-person zerosum stochastic game is 

a stochastic game situation for which the stream of payoffs is evaluated 

by 

w 
sµv 

k 
lim inf -- L VT . 

k->oo k+1 T=O sµv 
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Note in definition 2.3.2 that W equals the average expected payoff sµv 
per unit time when the starting state is s and the players choose µ and v 

respectively as their strategies. Obviously W exists for all (µ,v). In sµv 
chapter III of this monograph we mention some other possibilities of 

averaging the stream of immediate payoffs. 

The two types of games defined in definitions 2.3.1 and 2.3.2 will be 

studied in the chapters II and III respectively. 

Other evaluation functions are possible. For example Groenewegen (1981) 

analysed the total expected payoff without discounting, where the expected 

immediate payoffs are simply added up (i.e. interest rate a=O). 

Whatever the evaluation function, player 1 clearly wishes to maximize 

this function and player 2 wishes to minimize it. The following definition 

applies to both discounted and average reward games. Compare the similarity 

of definition 2.3.3 with definition A.1.3. Note that, given the evaluation 

function and the initial state, the stochastic game can be identified with 

a game in normal form, namely< ST1 , sT2 , Gsµv > , where G represents 

the evaluation function. 

2.3.3. DEFINITION. Let G represent the evaluation function for a two-person 

zerosum stochastic game. The game is said to have a value if for each 

initial state sES: 

sup inf 
µEST 1 vEsT2 

G sµv 
inf sup 

vEsT2 µEST 1 

G sµv 

For games which have a value, say G* E :JRz, for given £ 2 0, a strategy 

µ£ of player 1 and a strategy v£ of player 2 are called £-optimal respective

ly if for each s E S respectively: 

* 2 G -E 
s sup 

µ E ST 1 

Zero-optimal strategies are called optimal. 

The next theorem follows at once from theorem A.1.4. 

2.3.4. THEOREM. Let G be the evaluation function. If there exist a vector 

vEIRz and strategies ii and v such that G -sv sG - for all µ, v and s, sµv s sµv 
then v equals the value of the game and µ and v are optimal strategies 

for player 1 and player 2 respectively. 



Also theorem A.1.5 can be extended to stochastic games (see Hordijk, 

Vrieze & Wanrooij (1976, 1983) for a proof). 

2.3.5. THEOREM. Let G be the evaluation function. If, for each r>O, there 

exists µE and vE such that for each µ, v and s: 

then the value of the game exists and for the specific game with 

starting state sES this value equals lim G 
r+O sµEvE 

13 





3. Playing against a fixed strategy 

In this section, we consider how player 1 can profit from the 

announcement by player 2 of the strategy he intends to play. 

15 

When in a finite two-person zerosum stochastic game player 2 plays a 

behaviour strategy, then Monash (1979; theorem 1, page 6) has proved that 

player 1 can suffice with non-randomized strategies. Actually, Monash 

proved this fact for the average reward case, but in a similar way it can 

be shown for the discounted case. Below we examine what happens when player 

2 fixes a semi-Markov strategy or a stationary strategy. 

The theorems of this section have been extracted from Hordijk, Vrieze 

& Wanrooij (1976, 1983). The statements of that paper are extensions to 

stochastic game situations of results of Derman & Strauch (1966) for Markov 

decision situations. A version of this extension, which is similar to 

theorem 3.1, is also indicated in Groenewegen & Wessels (1976). As shown in 

Hordijk, Vrieze & Wanrooij (1976), the results of this section hold for 

N-person games with countable state space and countable action spaces. But 

since this thesis is mainly concerned with finite two-person zerosum 

stochastic games, we have projected these results on this last model. 

Theorem 3.3 states that, if one player plays a stationary strategy, 

then the other player can restrict himself to solving a Markov decision 

problem associated to that stationary strategy. 

3.1. THEOREM. For a two-person zerosum stochastic game situation, let v be 

a semi-Markov strategy for player 2. Then for each behaviour strategy µ 

of player 1, there exists a semi-Markov strategy µSM such that 

for each sES and T=0,1, .... 

PROOF. Fix a starting state sES and fix a strategyµ of player 1. We will 

abbreviate F- , XT YT and ZT to F- XT, YT and ZT respectively. (cf. sµv µv' µv µv s' 
section 2.3 for the meaning of these variables). 

For all T=0,1,2, ... and each s, i and j: 

(3. 1) 
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Since vis a semi-Markov strategy, the random variables x' and Y', given s 

and s , are independent. Then 

So (3. 1) becomes 

(3 .2) JP- (Z'=s· x'=i; YT=j) = JP-(XT=i lz'=s) .lP-( z'=s; YT=j). s ' s s 

Now, define µSM as follows. If the initial state is s and the 

T is s, then choose action i with probability JP-(XT=ilzT=s). 

state at time 

* We will abbreviate JP- SM to JP-. 
sµ v s 

s 

By induction with respect to T, we first show that 

(3. 3) 

This equality is easily reached for T=O; suppose it holds for some T, then 

(3 .4) JP- (Z T+l=t) 
s 

L JP- (ZT=s; x'=i; YT=j) .p(tls,i,j) 
.. s 

s ,1.' J 

L JP~(Z'=s; x'=i; Y'=j) .p(tls,i,j) 
.. s 

s, l.' J 

* T+l 
JP- (Z =t) . 

s 

Since v is a semi-Markov strategy, (3.4) leads to 

(3.5) 

Now the definition of µSM, (3.2) for T+1 and (3.5) imply equality (3.3) for 

T+l. But then the theorem follows from the definitions of VT_ and VT sµv sµSMv 
(see (2.3.1) and (3.3)). 

D 
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3.2. THEOREM. Consider a two-person zerosum stochastic game with either the 

total discounted payoff or the average reward as criterion function. 

Suppose that for the game where the both players are restricted to 

playing semi-Markov strategies, the value exists. Then for the 

unrestricted game the value also exists and equals the value of the 

restricted game. Moreover an E-optimal strategy, for given E20, for a 

player in the restricted game is also E-optimal in the original game. 

* PROOF. Let G represent the evaluation function and let G be the value of 

the restricted game. Let VE be an E-optimal semi-Markov strategy for player 

2 in the restricted game, given E>O. Such a strategy exists since the value 

exists. By theorem 3.1 there exists for each behaviour strategyµ of player 
SM 

1 a semi-Markov strategy µ such that for each sES: 

(3 .6) 

On the other hand for each sES: 

(3. 7) 

so 

* (3. 8) <;; G +E for each µ and sES. 
s 

Similarly 

(3.9) for each v and sES, 

where µE is E-optimal for player 1 in the restricted game. Since E>O is 

arbitrary, we may apply theorem 2.3.5 to the combination of (3.8) and (3.9). 

* Hence the value of the unrestricted game exists and equals lim G =G , 
sµEvE s 

sES. Furthermore by (3.8) and (3.9) (which also hold in theE~~se E=O) it 

follows that µE and vE are also £-optimal in the original game. 

0 

The converse of this theorem is not true, i.e. the existence of the 

value of a game needs not imply the existence of the value of the restricted 

game. An example of such a game is the "big match" of Blackwell & Ferguson 

(1968) . 
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3.3. EXAMPLE. 

action action 2 

action 1 

action 2 

state state 2 state 3 

In this example there are three states, state 1, 2 and 3; in state 1 

both players have two actions while in the states 2 and 3 both players have 

1 action. In examples always player 1-th actions correspond with the rows 

and player 2-th actions with the columns of the matrices. An entry ~of 
a matrix means immediate payoff y and the next state will be state o with 

probability 1. So for this example 

s {1,2,3}, Al {1,2}, A2 { 1} 

and 

p(1j1,1,1) p(ljl,1,2) p(2jl,2,1) p(3j1,2,2) 

p(212,1,1) p(3[3,1,1) 1, 

while the other transition probabilities are zero. 

The average reward criterion is considered. Obviously, by the results 

of .Mertens & Neyman (1980) this game has a value. Here w*=(l:i,0,1). But if 

the players are restricted to semi-Markov strategies, then the value of the 

game does not exist. This can be shown as follows (cf. Hordijk, Vrieze & 

Wanrooij (1976)). 

In the big match the set of semi-Markov strategies for a player is the 

same as the set of Markov strategies, since the states 2 and 3 are absorbing. 

Let µM (µ~, µ~1 , ... ) be a Markov strategy for player l. Let pT (µM) be 
the probability that in state 1 player 1 chooses action 2 for the first 

time at epoch T. Let p(µM)=Z:=OpT(µM) and abbreviate pT(µM) and p(µM) to 

PT and p. 
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T 
For each o>O there exists a T such that L-r=Op-r~p-o. We construct a Markov 

strategy v0 for player 2 as follows: 

choose in state action 1 at the epochs 0,1, ... ,T and action 2 

thereafter. 
M 

If player 1 plays µ and player 2 plays v0 , the game reduces to a 

stochastic process that realizes exactly one of the following events: 

uses action 2 before time T+l. (i) player 

(ii) player 

(iii) player 

uses action 2 for the first time at -r+l or thereafter. 

never uses action 2. 

The probability that (i) occurs is at least p-o and the average reward in 

that case is 0. Event (ii) has average return 1 but probability at most o. 

Event (iii) has probability 1-p and average return 0. Hence the overall 

average pa yo ff is at most 0, so inf w1µMv,:;o which by the arbitrariness 

o>O results in inf w1 Mv ,:;o. vEMST2 Hence sup inf wiµv ,:;o. 
vEMST2 µ µEMST 1 vEMST2 

The value of the restricted game, if it exists, equals the value of the 

* 

of 

original game by theorem 3.2. Since for the original game w 1 =~, we see that 

the restricted game has no value. 

Now we come to analyse what happens when a player fixes a stationary 

strategy. With a fixed stationary strategy oESST2 , we can associate a Markov 

decision situation MDS(o) in the following way: 

Let< S, {A lsES}, {B lsEs}, r, p > be the original stochastic game situation. 
s s 

Then MDS(o) :=<S, {A lsEs}, r, p > is defined as S:=S; A :=A for each sES; 
s s s 

r ( s , i ) : = L j EB r ( s I i I j ) . as ( j ) and p ( t I s I i ) = L j EB p ( t I s , i , j ) . as ( j ) . 
s s 

3.4. THEOREM. Suppose that in a two-person zerosum stochastic game player 2 

fixes a stationary strategy a. Then for as well the discounted as the 

average reward criterion player 1 cannot do better than solving the 

Markov decision problem corresponding to MDS(a). 

PROOF. We denote a strategy with respect to MDS(o} byµ. Let G be the 

evaluation function for the game and G for the Markov decision problem 

corresponding to MDS(o). From theorem 3.1 we derive, that for each strategy 
SM 

µ there exists a semi-Markov strategy µ such that for each starting state 

sES: 
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(3 .10) G 
Sj.!0 

Now observe that there is a one-to-one correspondence between the set of 

semi-Markov strategies in MDS(o) and the set of semi-Markov strategies for 
-SM -SM -SM ~~ 

player 1 in the original game. Simply by adding to aµ =(µ 0 ,µ 1 , ... )ESMST 

that µSM=(µ~M,µ~M, ... )ESMST1 for which J.l~M =µ~M for each T=0,1, ... . 

Note that such a one-to-one correspondence does not exist for the sets ST 

and ST 1 . 
SM -SM ~~ 

So if we can prove for corresponding.µ ESMST1 and µ ESMST that for each 

sES: 

(3. 11) 

then (3.11) combined with (3.10) will yield the theorem. 

Fix an initial state sES. We abbreviate lP- SM and P--sM to JPand JP 
sµ a sµ 

respectively. we first show by induction with respect to T that 

(3. 12) 
T - ~ 

JP (Z =s) = lP (Z =s) 

. SM -SM 
for corresponding µ and µ and each sES. 

Equality (3.12) is clearly true for T=O; suppose it holds for a certain T, 

then: 

s i 

l: lP(ZT=s) .JP (ZT+l=t[ZT=s) = 

s 

Now (3.11) follows from the fact, that for each T: 



E r(s,i,j).lP (ZT=s; XT=i, YT=j) = 
s,i,j 

E (Er(s,i,j).cr (j)).lP (ZT=s).lP (XT=iJzT=s) 
s,i j s 

- - ...Jt: - -:'r l...Jt: -T E r (s,i) .lP (Z =s) .lP (X =i z =s) = V5µSM· 
s,i 

The well-known results for Markov decision problems (see the theorems 

A.2.5 and A.2.6) lead to the following corollary of theorem 3.4. 

3.5. COROLLARY. For a two-person zerosum stochastic game with evaluation 

function G, which represents discounting or averaging, and a fixed 

stationary strategy a of player 2 we have for each sEs: 

sup 
µEsT1 

G 
S]JfJ 

max 
p€PSST1 

G 
spa 
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Part II. Discounted stochastic games. 
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4. Review of discounted stochastic games. 

4.1. INTRODUcrION. 

Stochastic games were introduced by Shapley (1953). He considered both 

finite and infinite horizon two-person zerosum stochastic games with finite 

state set and finite action sets. Shapley proved that such games have a 

value and that both players possess optimal stationary strategies with 

respect to the discounted payoff criterion. 

Extensions of Shapley's model with respect to the conditions on state 

space and action spaces are exposed by Kushner & Chamberlain (1969) (finite 

state space, compact action spaces), Maitra & Parthasarathy (1970) (compact 

metric state space and compact action spaces plus continuity conditions on 

the payoff function and the transition map), Wessels (1977) (countable 

state space and finite action spaces) and Groenewegen & Wessels (1976) 

(countable state space and countable action spaces) . 

Rogers (1969) has extended Shapley's model to two-person non-zerosum 

games with finite state space and finite action spaces. He has proved the 

existence of equilibrium points of stationary strategies. Parthasarathy 

(1971) considered Roger's model with a countable state space. 

Sobel (1971) introduced N-person stochastic games. For the model with 

finite state space and finite action spaces he showed the existence of an 

equilibrium point of stationary strategies (cf. also Federgruen (1978)). 

Vrieze (1976) considered countable person games with a countable state 

space and compact action spaces. Under appropriate continuity assumptions 

he showed the existence of an equilibrium point of stationary strategies. 

Rieder (1979) also considered countable person games. Using a measurable 

selection theorem he showed the existence of a stationary equilibrium point 

for the model where the state and action spaces are Borelsets and the 

transition law is given by a bounded transition measure. Tijs (1980) 

treated N-person games with a finite state space and with metric action 

spaces. Under certain continuity assumptions he proved the existence of a 

stationary £-equilibrium point for the model where in each state at most 

one of the action spaces is topologically big, while the other action spaces 

are topologically small (finite, compact, precompact). 
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Finally we mention the work of Whitt (1977). He approximated games 

with uncountable state space and uncountable action spaces for the players 

by games with countable state space and countable action spaces. 

Subsequently he showed that under a number of conditions equilibrium points 

of the approximating game are £-equilibrium points of the original game. 

In the sequel SG(S,a) denotes the class of two-person zerosum 

stochastic games with finite state space S, finite action spaces for the 

both players and where the stream of payoffs are discounted according to an 

interest rate a. 

In section 4.2 some well-known facts are given concerning games 

belonging to the class SG(S,a). In section 4.3 some extensions of this 

model are considered. In section 4.4 an alternative proof of the existence 

of the value and of optimal stationary strategies is worked out, using the 

Kuhn-Tucker conditions for non-linear programs. 

In chapter 5 the emphasis lies on structural properties of the 

solutions of discounted stochastic games. In section 5.1 relations between 

the game parameters and the solutions are investigated, which smoothes the 

way for an analysis of the construction of games with given solution. In 

section 5.2 we give an axiomatic characterization of the value function 

on the class SG(S,a). In section 5.3 we treat to what extent small 

perturbations of the game parameters influence the solution of the game. 

In section 5.4 games with a unique pair of optimal stationary strategies 

stand central. 

Sections 5.3 and 5.4 are the only sections of this monograph where we 

consider another model than the two-person zerosum stochastic game with 

finite state and finite actions spaces. In those sections the model has the 

following dimensions: countable state space, compact metric action spaces 

and measurable payoff and transition functions. 

4.2. EXISTENCE OF VALUE AND OPTIMAL STRATIONARY STRATEGIES. 

In discounted stochastic games as treated by Shapley (1953), a 

discount factor SE[0,1) is specified. Then a reward r earned on decision 

epoch T is discounted by the factor ST, T=0,1, .... The idea is that, when 
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looking ahead at time zero, a payoff r on decision epoch T is worth at 

decision epoch 0 only a'.r, this because of e.g. inflation. One can also 

use the concept of interest rate. Say aE(0, 00 ) is the interest rate per unit 

time. Then an amount r on decision epoch 0 has grown to an amount (l+a) '.r 

at decision epoch a. This is the same as saying that in order to have an 

amount r on epoch<, one should start with an amount (l+a)-'.r at time O. 

So an interest rate a corresponds to a discount factor (l+a)-1 . This 

equivalence will be used in the sequel. We consider only infinite horizon 

games. 

For the rest of this section we fix a game fESG(S,a). Let 

M:= max lr(s,i,j) I. Then it follows that for each pair of strategiesµ and 
s,i,j 

v the total discounted payoff is bounded by (1+a)a-1M. 

We now introduce a number of notations. For a pair of stationary 

strategies p and cr we denote by P(p,cr) a stochastic zxz-matrix whose 

(s,t)-th entry equals 

(4.2.1) p(tJs,p ,cr ) := 
s s 

l: l: p <tls,i,j) .p (i) .cr (j), 
iEA jEB s s 

s s 

i.e. if in state s the players play ps and crs respectively, then the 

probability that at the next decision epoch the system is in state t 

equals p(tls,p ,cr ). 
s s 

Further r(p,cr) will denote the z-vector with s-th coordinate: 

(4.2.2) l: l: 
iEA 'EB s J s 

r(s,i,j) .ps (i) .crs (j). 

we now define two maps, which play an essential role in the proof of 

the existence of the value and of optimal stationary strategies. 

L : :JRz +m.z is the map such that for each vE:JRz: apcr 

(4.2.3) L (v) 
apcr 

-1 
:= r(p,cr)+(l+a) .P~,cr).v 

U ::JRz+:JRz is the map such that for each vE:JRz and sES: 
a 

(4.2.4) u (v) := as 
1 z 

max min {r(s,p ,o )+(l+a)-. l: p(tls,p ,o ).vt} 
P cr s s t=l s s 

s s 

(L (v)) • 
apo s 
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Observe that Uo.s(v) is the value of the msxns-matrix game whose (i,j)-th 

entry equals r(s,i,j)+(l+o.J- 1 .Ez 1p(tls,i,j).v. This matrix game is denoted t= t 
by [G (v)]. 

so. 
Note that a stochastic game r in fact is a collection of games, namely 

{r lsEs}, where r refers to the specific stochastic game with initial state s s 
s. This collection of games is solved simultaneously. 

Let V(µ,v) be the z-vector whose s-th component equals V (cf. definition sµv 
2. 3 .1) . 

4.2.1. THEOREM. The maps L and UN are monotone contraction operators on a.pa u 

lR~ Hence both maps have a unique fixed point. The unique fixed point of 

L equals the discounted payoff vector V(p,a). a.pa 

PROOF. If v:Sw, then 

L (v) a.pa 
-1 -1 r(p,a)+(l+o.J .P(p,a) .v:Sr(p,er)+(l+o.) .P(p,er) .w 

L (w). 
a.per 

By lemma A.1.7(c) for each sES: 

U (v) 
0.S 

Val (G (v)) :SVal (G (w)) u (w). 
as so. so. 

So L and U are monotone. 
aper z a 

For v, wElR we have 

d (L (v) ,L (w)) exp er aper llL (v)-L (w) II= (l+al- 1.llP(p,er) (v-wl II :S aper a.per 

(l+al-1IJv-wlJ = (1+a)-ld(v,w). 

Using lemma A.1.8: 

d(Uo.(v) ,uo.(w)) =Jiu (v)-U (w) II= max lval(G (v))-Val(G (w)) I a a. sex sex s 

-1 z 1 
$ (l+a) max E p(tjs,i,jl.I (v -w) l:S(l+al- llv-wll 

s,i,j t=l t t 

-1 
(l+a) d(v,w). 



So both Laper and Ua are contraction operators. Then, by the Bana~h-Picar~ 

fixed point theorem it follows that there exist unique vectors vpo and V 

such that 

* 

* v per 
* and U (V ) 

a 
* v . 

To prove that v equals V(p,er) we first note, that the (s,t)-th 
per 

element of the matrix PT(p,er) gives the probability that at time T the 

system is in state t when the starting state is state s and the players 

choose the strategies p and er respectively. 

Then 

(4 .2 .5) V(p,er) t: (l+a)-TPT (p,er) .r(p,o) 
T=O 

-1 -T T 
r(p,er)+(i+a) .P(p,er). l: (1+a) P (p,er) .r(p,er) 

T=O 

-1 
r (p ,er)+ (l+a.) .P (p ,er). v (p ,er). 

Hence V(p,er) equals the unique fixed point of L 
aper 

4. 2. 2. REMARK. By the contraction property of L and U aper a 
V(p,er)=lim LT (x) and 

T->«> aper 
UT are the T-th iterates 

a 

v*=lim UT (x) for each xEJRz 
T->«> a 

of L and UN respectively. 
aper u 

it follows that 

, where LT and 
apcr 

4.2.3. LEMMA. If L (v)sv then V(p,cr)sv. If L (v)<v then V <v. The 
a.per apcr pcr 

assertions remain true when the inequality signs are reversed. 

PROOF. By the monotonicity property of L it follows by induction that 
a.pa 

LT (v)sv for each -r:2:1, when L (v)sv (<v). Hence V(p,cr)=lim LT (v)sv 
apcr aper T->«> apo 

(<v) in view of remark 4.2.2. 

Now we have enough tools to prove Shapley's theorem. 

* 
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D 

D 

4.2.4. THEOREM. The unique fixed point V of the map Va.equals the value of 

* * the game. Stationary strategies p and o are optimal for player 1 and 

player 2 respectively if, for all p and a: 
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(4.2.6) * L * (V ) a.p 0 

* * i.e. if ps and os are optimal actions for player 1 and player 2 

respectively in the matrix game [G (V*)], for each sES. 
SCI. 

* * * PROOF. Let V be the unique fixed point of Ua.. Let ps and os be optimal 

actions for player 1 and player 2 respectively in the matrix game [G (v*J], 
SCI. 

* * so that (4.2.6) holds for p and o • Then by lemma 4.2.3 we have for each 

p and o: 

* * * V(p,o ) '.S v '.S V(p ,o). 

But then by corollary 3.5 for each sES: 

sup 
µ€ST 1 

* v * '.S v sµo s 

* * Hence by theorem 2.3.4 we see that V is the value of the game and that p 
* and a are optimal stationary strategies for player 1 and player 2 

respectively. 

The equation v=Ua.(v) is often referred to as the optimality equation 

for discounted stochastic games. 

4.2.5. REMARK. A game belonging to SG(S,a) with rational parameters need 
not have a rational value, as can be seen from the following game: 

4 

2 

D 



Here an entry ~ means an immediate reward y and a 

~ 
probability o to state 1 and a jump with probability 1-o to 

interest rate equals a=lo, so the discount factor is 13 = - 1- = 
1+lo 

* * Obviously v2=0 and then v 1 is the solution of the equation 

v 
4 Val ([ 2 

which results in v;=IS. 

4.3. GENERALIZATIONS. 

jump with 

state 2. The 

4/5. 

In this section we discuss some generalizations of the model treated 

in section 4.2. 
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(i) Shapley (1953) himself considered the so-called stopping game, 

i.e. a finite two-person zerosum stochastic game situation where p has the 

property Lz 1p(tls,i,j)=p .. <1 for each s, i and j while 1-p .. is the 
t= SlJ SlJ 

stopprobability. Subsequently the streng of immediate rewards is simply 

added up. 

Such a game is equivalent with a discounted game in our sense, where 

in addition the interest rate may depend on the state and the actions. Namely 

if in state s the players choose actions i and j respectively, then the 

temporary interest rate equals a .. defined by the equation (l+a .. ) -l=p ... 
SlJ -l Sl] Sl] 

The transition probabilities are given by p ... p(tl s,i,j) when p . ,>O and 
SlJ Sl] 

can be arbitrarily chosen when p .. =O. 
Sl] 

(ii) Van der Wal (1981) considered contracting games. He examined two

person zerosum stochastic games with countable state space and finite action 

spaces with the additional assumption that there exists a non-negative vector 

i;;Enl' such that: 

(a) lr(p,a) l~Mi;; for some constant ~O and all p and a. 

(b) P(p,a).i;:~si;: for some SE[0,1) and all panda. 

Again, in Van der Wal' s model the rewards are added up. Indeed, concerning the 

finite state case, this model is a real generalization of Shapley's model. 
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Consider one of the most simple games imaginable, namely the game ~ . 
This game fits in Van der Wal's frame work (~=O, Mand S arbitrary) but 

not in Shapley' s. However the slightly more difficult game 1/<IZI cannot 

be embedded in Van der Wal's model, since this game fails to have the uniform 

tail condition on page 65 in Van der Wal (1981). (Here the entry~ means 

immediate reward 1, probability ~ to stay in the only state of the game and 

probability ~ that the game stops) . A next generalization on this subject 

should cover this last example. 

(iii) Another generalization is concerned with stochastic renewal games 

(see Denardo (1971), Sobel (1973) and Federgruen (1978)). In renewal games 

the time until the next decision epoch is a random variable whose 

probability distribution function only depends on the current state and the 

subsequently chosen actions of the players. The immediate payoffs are 

discounted. 

For the above mentioned three models the existence proof of the value 

and of optimal stationary strategies runs analogously to the proof of 

theorem 4.2.4. The only difference lies in finding a suitable Banach space 

and showing that Lapa and Ua are monotone contraction operators on that 

space. 

4.4. AN ALTERNATIVE PROOF OF THE EXISTENCE OF THE VALUE. 

In this section we assume that each immediate payoff is positive. 

Observe that this restriction can be made without loss of generality, since 

adding a constant c to each immediate payoff changes, for each pair of 

strategies of the players, the total discounted payoff by -1 
a (1+o)c1 • 

z -1 
Hence the value changes by a (1+a)c1 2 , while all intrinsic game properties 

are remained. 

Consider the following non-linear programming problem associated 

with a stochastic game belonging to SG(S,a). 



4.4.1. NLP 

variables y = {y(s,j) lsES, jEB} and v=Cv1 , ••• ,v ). 
s z 

z 
min Es=lvs' subject to 

n s z 
(i) E y(s,j) [r(s,i,j)+(l+a)-l E p(tls,i,j)vt]-vs $ 0, 

j=l t=1 

n 
s 

(ii) E y(s,j)-1 
j=l 
n s 

(iii) - E y(s,j)+l 
j=l 

(iv) -y(s,j) $ O, 

$ O, 

$ 0, 

for all sES and iEA 
s 

for all sES 

for all sEs 

for all sES and jEBs 
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This NLP is suggested by Rothblum (1979) as a solution method for 

stochastic games, whereby the existence of such a solution is pre

assumed. In this section we give a proof of the existence of the value and 

of optimal stationary strategies for both players with the aid of Kuhn

Tucker conditions with respect to optimal solutions of NLP 4.4.1. 

First observe that there is a one-to-one correspondence between the 

set F:={y={y(s,j) lsEs, jEB }Jy satisfies (ii), (iii) and (iv) of NLP 4.4.1} 
s 

and the set Xz 1PCB ). This last set in turn corresponds to the set of 
s= s 

stationary strategies of player 2 (cf. definition 2.2.2). For an element 

yEF we denote by aY the corresponding stationary strategy of player 2. For 

a stationary strategy a we denote by ycr the corresponding element of F. 
. (ycr) (crY) z 

Obviously a=a andy=y for each crEX 1PCB ) and each yEF. 

In the following let M:= max r(s,i,j). 
s,i,j 

4.4.2. LEMMA. NLP 4.4.1 is feasible. 

s= s 

M M M M -1 M PROOF. Take yEF. Let v :=Cv1 , •.• ,vz) with v5 :=a (l+a)M. The pair (y,v) 

satisfies (i)-(iv). 

4.4.3. LEMMA. Let (y,v) be a local minimum, if it exists, of NLP 4.4.1. 

Then Ez v $za- 1 (1+a)M and v >O for alls S s=1 S S E • 

a 
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PROOF. For fixed y=j NLP 4.4.1 turns over into a linear programming 

problem, which we call LP(y). If (y,v) is some local minimum of NLP 4.4.1, 
- - M then v must be an optimal solution of LP{y). Let v be as in the proof of 

lemma 4.4.2. Then vM is a feasible solution of LP{y), which shows half of 

the lemma, namely 

z 
l: 

s=l 
v s 

-1 
za (l+a)M. 

On the other hand, let v be a feasible solution of LP{y). Let states be 

such that v,..,....--min v. Then by condition (i): 
s sES s 

n-s z 
i: y(;,j) [r(;,i,j)+(l+a>-1 i: p<tl';i,i,j)vtl 

j=l t=l 
ns 
l: 

j=1 

- -1 ..... ] -1"' y(s,j)[ min r(s,i,j)+(l+a) v ..... = min r(s,i,j)+(l+a) V"'. 
. . s . . s s,i,J s,i,J 

- -1 
Hence for all s e S: v~ ~ vf ~ a_ (l+a} ~~tj r{s,i,j} > 0 (all rewards are 

assumed to be positive}. Since vis assumed to be an arbitrary feasible 

solution of LP(y} we can conclude v > 0 for all s e s. 
s 

a 

4.4.4. LEMMA. NLP 4.4.1 has a bounded global minimum, which is attained for 

some pair (y* ,v*}. 

PROOF. Add to NLP 4.4.1 the following constraint: 

(v) for all sES. 

The resulting non-linear programming problem is called NLP+. From lemma 

4.4.3 it can be seen that NLP+ and NLP 4.4.1 have the same sets of local 

and global minima, if they exist. 

Now for NLP+ the feasible region is a non-empty compact set. Further the 

objective function is continuous on this feasible region, hence the 

minimum is attained for NLP+ by some pair (y*,v*> satisfying (i)-(v). Then 

also for NLP 4.4.1 the minimum is attained for this pair (y*,v*). 

Thus lemma 4.4.4 shows that NLP 4.4.1 has at least one local (or 

global) minimum point. 

a 



Observe that if (y,v) satisfies the constraints (i)-(iv), then, for each 

pure stationary strategy pp of player 1, constraint (i) leads to 

(4.4.1) 

4.4.5. LEMMA. If (y,v) satisfies the constraints (i)-(iv) then v~V(pP,crY) 

for each pure stationary strategy pp of player 1. Further 

v~sup €ST V(µ,crY). 
µ 1 

PROOF. The first assertion follows from relation (4.4.1). If for v in 

(4.4.1)we r.epecatedly substitute the right hand side of (4.4.1), then we 

obtain for all T~1: 

(4.4.2) v;:;:: 

Letting T-+<x> and using the boundedness of v and r and the fact that 
-T-1 p y 

li~(l+a) =Owe obtain v;:e:V(p ,cr ). 

The second assertion of the lemma follows from corollary 3.5. 

4.4.6. LEMMA. For each local or global minimum point of NLP 4.4.1 the 

Kuhn-Tucker conditions hold. 

PROOF. We will show that the constraints (i)-(iv) satisfy the Arrow

Hurwicz-Uzawa constraint qualification (cf. Mangasarian (1969), page 102). 

Let d=z+~:=lns. Let (y,v) be feasible for NLP 4.4.1. Then the 
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a 

constraints satisfy the Arrow-Hurwicz-Uzawa constraint qualification at the 

point (y,v) if the system 

(4.4.3) 
f vgKCy,v> .c > o} 
1 has 
l'VgL (y,v) .c..?_ 0 

a solution c€JRd. 

Here 'V represents the gradient symbol, 

K:={(s,i) lgsi(y,v)=O and gsi is not concave at (y,v)}, 

L:={Cs,i) lgsi (y,v)=O and gsi is concave at (y,v)}, 
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n 
s 

g . (y ,v) := 2: 
Sl. j=l 

z 
y(s,j)[r(s,i,j)+(l+a)-l 2: p(tjs,i,j)vt]-vs, 

t=1 

gK:={g . I (s,i)EK} and g :={g . I (s,i)EL} U {linear constraints (ii)-(iv)}. 
Sl. L Sl. 

In our case we have that in general gsi is not concave (nor convex). 

For cElRd denote the successive components by c 1 , ... ,cz, c 11 , ... ,c1n 1 ' 

c21'"""'c 1 , c 1•···•c . z- nz-l z znz 

From constraint (i) it can be deduced that for a feasible point (y,v) we 

have 

n 

(4.4.4) llgsi (y,v) .c 
s z 

(l+a)-l 2: y(s,j) 2: p(tls,i,j)ct + 
j=l t=l 

n 
s z 

2: [r(s,i,j)+(l+a)-l 2: p(tls,i,jlvt]c .-c 
j=l t=l SJ S 

Now let (y,v) be a local minimum of NLP 4.4.1. Put cs=-vs,sES and 

csj=o, SES and jEBs. Then we obtain from (4.4.4) that for all (s,i)EK we 

have 

(4.4.5) Ilg . ( y , ; ) • ; 
Sl 

n 
- -1 s 
v-(l+a) l 

s j=i 

z 
y(s,j) l pCtJs,i,jlvt > o, 

t=l 

(l.) ns -in view of constraint and the fact that 2:._ 1 y(s,j)r(s,i,j) > O. 
J-

C lear ly llgl (y,v).;=o for the linear constraints (ii)-(iv). Hence the 

Arrow-Hurwicz-Uzawa constraint qualification holds in the point (y,v). 

Since further the objective function and each constraint function of NLP 

4.4.1 is differentiable at (y,v) we can apply theorem 7.3.7 of Mangasarian 

(1969) in order to conclude that the Kuhn-Tucker conditions hold for (y,v). 

Fix for a moment a local minimum point (y,v) of NLP 4.4.1. Such a point 

exists by lemma 4.4.4. By lemma 4.4.5 the Kuhn-Tucker conditions hold for 

such a point, i.e. there exist, for each sES, iEAs and jEBs, numbers 

Asi' ~sl' ~s 2 ' wsj 2 0, such that 

(a) 

n 
s z 

2: y(s,jJ[r(s,i,j)+(l+aJ- 1 2: p(tls,i,j)v ]-v )A . 
j=l t=l t S Sl 

for all sES and iEA 
s 

0, 



(b) 

(c) 

(d) 

and 

(e) 

(f) 

n 
s 

( E y(s,j)-1)$ 1 0, 
j=l s 

ns 
(- E y(s,j)+1)$ 2 0, 

j=l s 

for all sES 

for all sEs 

-y(s,j)<I> . 
SJ 

O, for all sEs and all jEB5 

z 
1+ E 

s=1 

m 

m 
s 

E 
i=l 

n 
s 

E 
j=l 

mt 
(1+a)-1A. .y(s,j)p(tjs,i,j)- E A.ti 

51 i=l 

for all tEs 

O, 

s z 
E A. .[rCs,i,jl+Cl+al-1 E pCtls,i,j)vt]+$ 1-$ 2-<P . 

i=l 51 t=l S S SJ 

for all sEs and all jEB5 • 

0, 

Multiplying (f) by y(s,j), summing over jEBs, using (d), comparing that 

expression with the summation of (a) over iEAs leads to 

(4.4.6) 

m 
s 

v E A.si 
s i=l 

for all sEs. 

From (e) we obtain 

derive (remembering 

m 

Ei:1A.si~l, 
<I> .~0): 

all sES, and then from (f) and (4.4.6) we 

SJ 
m 

{4.4. 7) 
s m z 

E (A. ./Ek:1>- kl[r(s,i,jl+C1+al-l E pCtls,i,jlvt] 
i=l 51 s t=l 

2' v 
s 

for all sES and all jEBs. 

Define the stationary strategy p for player 1 as 

{4.4.8) 

m 
s 

p (i) := A. ./ E A.sk" 
S S1 k=l 

Then (4.4.7) is equivalent to 

(4.4.9) 

for each pure stationary strategy op of player 2. 
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Inequality (4.4.9) is the "player 2 version" of inequality (4.4.1). Then 

analogous to the proof of lemma 4.4.5 inequality (4.4.9) leads to 

(4.4.10) inf V(p,v) ~ v. 
vEsT2 

The above derivations have paved the way to the following existence 

theorem. 

4.4.7. THEOREM. Each local minimum of NLP 4.4.1 is also global. For each 

global minimum (y,v) the v-part is unique and say equals v* The value 

* of the corresponding stochastic game exists and equals v • Both players 

possess optimal stationary strategies. 

PROOF. Let (y,v) be a local minimum of NLP 4.4.1, which exists by lemma 

4.4.4. Let p be as defined in (4.4.8). 

Combining lemma 4.4.5 and inequality (4.4.10) yields 

sup V(µ,oy) ~ v ~ inf V(p,v) 
µ \) 

Applicationoftheorem_2.3.4 gives that v equals the value of the stochastic 

game and that p and oy are optimal stationary strategies for player 1 and 

player 2 respectively. Since a game has a unique value the uniqueness of 

the v-part of a local minimum (y,v) follows. 

0 

Summarizing, we have seen in this section that the existence of the 

value and of optimal stationary strategies for a discounted stochastic game 

can be shown by analysing the associated non-linear programming problem 

NLP 4.4.1. Moreover a solution method which gives a solution of NLP 4.4.1 

and the corresponding Kuhn-Tucker coefficients, provides the value and a 

pair of optimal stationary strategies for the players of the stochastic 

game. 



39 

5. structural properties of discounted stochastic games. 

5. 1. RELATIONS BETWEEN THE GAME PARAMETERS AND THE SOLUTION OF THE GAME. 

we derive relations between, on the one hand, the game parameters and, 

on the other hand, the value and the set of optimal stationary strategies 

of that game. 

The results of this section, based mainly on Vrieze & Tijs (1980), 

can be seen as extensions of the work of Bohnenblust, Karlin & Shapley 

(1950) and Shapley & Snow (1950). 

For the moment we fix a game fESG(S,a). Let Oi denote the set of 

optimal stationary strat~gies for player i, i=l,2. 

The last assertion of the next lemma shows the dimension relations between 

the solution sets of discounted stochastic games (cf. definition A.1.10). 

5.1.1. THEOREM. For i=l,2 the set Oi can be identified with the Cartesian 

product x:=lOi(s), where Oi(s) is the set of optimal actions for player 

i in the matrix game [G (V*)], where v* is the value of the game. The 
sa 

pair (01 (s),02 (s)) has the (ms,ns)-BKS property for all sES. 

PROOF. In section 4.2, theorem 4.2.4 we have already proved that an 

element of x:=lOi(s) is optimal for player i. Now let p~X== 1 0 1 (s) and* * 

particularly let p 5~0 1 (s). Then there exists a crESST2 such thatLapa(V )<V 

(strict inequality at least in component §).But then, by lemma 4.2.3, 

V (p, cr) <v*. So p cannot be optimal, which proves 0 1=X==l01 (s) . Analogously one 

can show 02=x:=102 (s). That the pair (0 1 (sJ,02 (s)) has the (ms,ns)-BKS 

property follows at once from theorem A.1.11. 

Now we wish to present an extension of the results of Shapley & Snow 

(1950), concerning the characterization of extreme optimal mixed actions 

for matrix games (see theorem A.1.9). From theorem 5.1.1 it is evident 

that pE01 is an extreme point of 0 1 if and only if ps is an extreme point 

of 0 1 (s) for all sES. The subsequent theorem follows at once from 

theorem A.1. 9. 

fJ 
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5.1.2. THEOREM. Let p be an extreme point of 01 and cr be an extreme point 

of 02 . Then there exists a stochastic subgame situation 

<S, {A lsES}, {B lsES}, f:, p>, where 
s s 

(a) for all sES the sets A and B are subsets of A and B respectively 
s s s s 

with IA I = IB I and s s 
(b) f: and p are restrictions of the maps r and p to the set 

{(s,i,jJjsEs, iEA, jEB }, 
s s 

* such that the value of this subgame equals the value V of the original 

game and such that p and a can be calculated in the Shapley-Snow manner 

- * from the square matrix game [G (V l] (cf. theorem A.1.9). Here 
_ * sa * 

[G (V )] is the restriction of [G (V )] to the rows and columns sa sa 
corresponding to A 5 and B5 respectively. 

This theorem also suggests a method of finding the finite number of extreme 

optimal stationary strategies of 0 1 and 02 when the value of the game is 

known. This can be done by looking at the finite number of stochastic 

subgames in which both players have an equal number of pure actions at each 

state. 

Now we analyse two problems concerning the construction of games with 

prescribed solution. 

5.1.3. PROBLEM. Let S, (A ,B ), s(S, p, a, V and 0,(s), sES, £E{1,2} be 
s s )(, 

given, where 0 1 (s)cP(As) and 0 2 (s)cP(Bs) are convex polyhedra. The 

question is whether it is possible to construct a function r such that 

(P1) the value of the corresponding game equals v. 
z 

(P2 J Xs=l0,Q,(s) is the set of optimal stationary strategies for player£, 

£=1,2. 

5.1.4. PROBLEM. Let S, (A ,B ) , sES, r, a, V and 0, (s), s(S, ,Q,({ 1,2} be 
s s )(, 

given, where 0 1 (s)cP(As) and 0 2 (s)cP(Bs) are convex polyhedra. The 

question is whether it is possible to construct a map p such that 

(P 1 ) and (P2 ) hold. 

It will result that problem 5.1.4 is more difficult than problem 5.1.3. 
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5.1.5. THEOREM. Problem 5.1.3 can be solved if and only if for each sES the 

pair (0 1 (s),02 (s)) has the (ms,ns)-BKS property. 

PROOF. If there exists a function r with the desired properties then by 

theorem 5.1.1 (0 1 (s),02 (s)) must have the (ms,ns)-BKS property, sES. Now 

let (0 1 (s),02 (s)) have the (ms,ns)-BKS property for all sES. Then by 

theorem A.1.11, there exists a m ,n -matrix game [K ]=[k (i,j)] such that 
s s s s 

Val(K )=V and such that 01(s) and 02 (s) are exactly the optimal action s s 
sets for player 1 respectively player 2. Now put 

r(s,i,j) 
z 

k s ( i, j) - (1 +a) - l L p ( t \ s, i, j) . V t 
t=1 

Then theorem 4.2.4 and theorem 5.1.1 show that this function r has the 

desired properties. 

With regard to problem 5.1.4 it is clear that this problem can only 

have a solution when the pair (0 1 (s),02 (s)) has the (ms,ns)-BKS property 

for each sES. However r, a and V cannot be chosen independently, as the 

following theorem shows. 

5.1.6. THEOREM. Concerning problem 5.1.4, necessary and sufficient 

conditions for the existence of a map p such that property (P 1) holds, 

are given by the following system of inequalities: 

(5 .1.1) 

where 

m s (l+a) (V -w ) s m 
s s 

, all sES, 

m := ruin V , m 
s 

s 
max Vs and ws :=Val (r(s,.,.)). 

s 

D 

PROOF. First suppose that there exists a map p such that property (P 1) 

holds. Let p be optimal for player 1 in the corresponding stochastic game 

and let cr be an optimal action for player 2 in the matrix game [r(s,.,.)]. s 
Then 

- ~ -1 z I -
V s r ( s, p , cr ) + (1 +a) . L p ( t 1 s, p , o s) . V t 

s s s t=l s 

- ~ -1 - s s r(s,ps,crs)+(l+a) .m 
-1 -

w + (1+a) .m. 
s 
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Analogously one can prove V ~ w +(l+aJ-1 .m, so (5.1.1) s s -
Now suppose that (5.1.1) holds. Take ~ES such that 

holds. 

V =m and sES such s-
that v5=m. In view of (5 .1.1), for each sES there exists an £~E[O, 1] such that 

(l+a) (V -w ) 
s s 

£ m+(l-£ Jiii 
s- s 

£ V +(1-£ )V-. 
s s s s 

Then choose the map p in such a way, that for all (i,j)EAsxBs: 

p(~ls,i,j) 

p<sls,i,jJ 

p(tls,i,j) 

Now 

Val (G (V)) 
sa 

£ 
s 

1-£ 

0, 
s 

if t;<~, s. 

v 
s 

for each sES. So using theorem 4.2.4 we see that property (P 1) holds. 

D 

5.1.7. THEOREM. Concerning problem 5.1.4, a necessary condition for the 

existence of a map p such that (P 1J and (P2 J hold, is that for each sES: 

(5 .1. 2) 

s (l+a) (V min min r(s,ps,os)) s m. 
s psE0 1 (s) osEP(Bs) 

* PROOF. Let a stochastic game have value V and let 6E02 . Then for each sES 

and each psEP(As): 

leads to 

So 

-1 z * * r ( s , p , 6 ) + ( 1 +a) . 2: p ( t I s , p , 6 ) . V s V 
s s t=l s s t s 

r(s,p ,6 )+(l+a)- 1 .m s 
s s -

* v. 
s 

-1 * max r(s,p ,o )+(l+a) ·ms V , 
P EP(A ) s s s 

s s 

which proves the first inequality of (5.1.2). Analogously the last 

inequality of (5.1.2) can be proved. 



However 

max max r(s,ps,os ) ;:: max max r(s,p ,o ) 

EP(A ) osE02 (s) psE0 1 (s) osE02 (s) 
s s 

PS s 

2 min min r(s,p ,o ) ;:: min min r (s,p ,o ) . 
psE0 1 (s) osE02 (s) 

s s 
psE0 1 (s) EP(B ) 

s s 
a 

s s 

This completes the theorem. 

Not only for actions belonging to 0 1 (s) and 0 2 (s) there is a 

restrictive relation, but also for actions belonging to P(As)'01 (s) and 

P(Bsl'°2 (s) there are conditions. 

5.1.8. THEOREM. Concerning problem 5.1.4, a necessary condition for the 

existence of a map p such that (P 1 ) and (P2 ) hold, is that for each 

p EP(A l'°l (s), s s 

m < (l+a) (V -
s 

min 
a EP(B ) 

s s 

and for each a EP(B >'°2 (s), 
s s 

r(s,p ,o ) ) , 
s s 

( 1 +a) ( V - max r ( s , p , o ) ) < m. 
s P EP(A J s s 

s s 

* PROOF. Suppose ps€0 1 (s) for a stochastic game with value V . Then by 

theorem 5.1.1: 

Or 

min 
a EP(B ) 

s s 

min 
a EP(B ) 

s s 

-1 z * 
{ r ( s , p , a ) + ( 1 +a) . l: p ( t I s , p , a ) • V } 

s s t=l s s t 

{r(s,p ,o )+(l+a)- 1 .m} < v*. 
s s - s 

Analogously the second inequality can be shown. 

* < v . 
s 

It is not clear whether the conditions of theorem 5.1.7 and theorem 

5.1.8 are also sufficient for problem 5.1.4 to have a solution. Perhaps 

some condition which relates O'l(s), 'l=l,2 and the sets of optimal actions 
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0 
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for the players in the matrix games [r(s,.,.)], should be formulated. The 

fact that such a relationship exists is shown in a convincing way by the 

following theorem. 

5.1.9. THEOREM. If for problem 5.1.4 the vector Vis such that V=v.lz with 

vEJR, then problem 5. 1. 4 can be solved if and only if the following 

three conditions are fulfilled: 

(a) (0 1 (s),02 (s)) has the (ms,ns)-BKS property, all sES. 

(b) Oi(s) is optimal for player i in the game [r(s,.,.)], i=l,2. 

(c) Val (r(s,.,.)) = 
et et 

--V =--v 
l+et · s l+et · 

, all sES. 

* PROOF. For a discounted stochastic game with value V =v.lz it follows that 

* ~tp(tls,p ,a ).V =v for alls, p and a. So s s t s s 

v * Val (G (V ) ) 
Set 

v 
Val (r (s, . , • l ) + 1 +et. 

Moreover the sets of optimal actions for * [G (V ) ] 
Set 

are the same as those 

for [r(s,.,.)]. Hence, if there exists a map p which solves a problem 

5.1.4 with V=v.lz' then (a), (b) and (c) hold. On the other hand, if (a), 

(b) and (c) hold, then every map p is a solution to problem 5.1.4 as can be 

easily verified. 

D 

In the next theorem we give a sufficient condition for problem 5.1.4 

to have a solution. This condition is rather strong. Note that under this 

condition we need no additional conditions on possible relations between 

the sets Oi(s) and the sets of optimal actions in the matrix games 

[r(s,.,.)]. This result suggests that such a relationship becomes effective 

in extreme cases as in theorem 5.1.9. 

5.1.10. THEOREM. If for problem 5.1.4 for each sES the pair (0 1 (s),02 (s)) 

has the (rns,ns)-BKS property, and if for each s(S and (i,j)EAsxBs 

1 -1 -
r(s,i,j)+(l+et)- ·~ < Vs < r(s,i,j)+(l+et) .m, 

then there exists a map p which solves problem 5.1.4. 
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PROOF. First, let the 

the properties: 

m ,n - matrix game [K ]=[k (i,j)], for each sES have 
s s s s 

(a) Val(K)=Vs; (b) 0 1 (s) and 0 2 (s) are the sets of optimal actions for 

player 1 and player 2 respectively, and (c) for each sES and (i,j)EAsxBs: 

(5.1. 3) ( . ·i (1 )-l < k (. ') < ( . ') (1 )-l -· r s, i, J + +et • !.'1. - s i, J - r s, l., J + +et • m. 

(This is possible because the pair (0 1 (s) ,02 (s)) has the (ms,ns)-BKS 

property and in view of corollary A.1.12). 

Lets, sES, such that V =m and V-=m. Then, by (5.1.3) there exists an 
- s- s 

e: .. E[0,1] for each s, i and j, such that 
Sl.J 

(l+et) (ks(i,j)-r(s,i,j)) 

Now define p as: 

P<~I s,i,j) 

p<sls,i,jl 

p(tls,i,j) 

E •• 
Sl.) 

l-e:sij 

o, if t;<~,5. 

Obviously p is a solution to problem 5.1.4. 

E .. V +(1-E .. )V-. 
Sl.J S Sl.) S 

D 

In the remainder of this section we restrict our attention to problem 

5.1.4 for the subclass of stochastic games for which in each state one of 

the players is a dummy. A player is called a dummy in a state if he has only 

one action available in this state. In A2 it is pointed out that r1arkov decision 

problems can be seen as games for which one of the players is a dummy at 

* each state. Now note that if for a stochastic game with value v one of the 

players is a dummy in state s, then the matrix game * (G (V ) ] 
Set 

is merely a 

row-vector game (in case player l is a dummy) or a column-vector game (in 

case player 2 is a dummy) . Obviously in such a case the extreme optimal 

actions of the sets 0 1 (s) and 0 2 (s) are pure actions. Let PO£(s) the set 

* of pure optimal actions for player£ in the matrix game [G (V )]. If in 
Set 

state s player 1 is a dummy then P0 1 (s)={l} and if player 2 is a dummy then 

P02 (s)={1}. Then we have 0£(s)=P(PO£(s)), £=1,2. 

Now fix a stochastic game r for which in each state either player 1 or 

* player 2 is a dummy. Let V * be the value of f. Let m=min V 
s s 

* and m=max V . 
s 

s 
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Suppose that player 2 is a dummy at state s. Then we may deduce from the 

theorems 5.1.7 and 5.1.8 that the following properties of P0 1 (s) must hold: 

OPTs(l). If iEPo 1 (s), then m :S (l+a) (Vs-r(s,i,1)) ~ m 

Likewise for a state s in which player 1 is a dummy, we have: 

For this class of games we have the following theorem, which shows that 

the conditions of the theorems 5.1.7 and 5.1.8 are also sufficient for 

problem 5.1.4 to have a solution in this case. 

5.1.11. THEOREM. Let a problem 5.1.4 be such that for each sES either ms=1 

or ns=l (one of the players is a dummy). Then this problem can be solved 

if and only if 

(a) 02 (s) is the convex hull of a non-empty set of pure actions of player 

2, 2=1,2. Denote this set by P02 (s). If player 2 is a dummy in state 

s, then P02 (s)={1}. 

(b) For each state sES, in which player 2 is not a dummy, the properties 

OPTS(2) and NOPTS(2) hold, 2=1,2. 

PROOF. The "only if" part of the theorem is already shown above. So it 

remains to prove the " if" part, i.e. to choose a suitable map p. Let~· 
sES be such that V =m and V-=m. Fix sES. Then from the properties OPT (1) and s - s s 
OPTs(2) (one of th;m holds) we see that for each (i,j)EPo1 (s)xPo2 (s) there 

exists an£ .. E[0,1] such that 
Sl.J 

(l+a) (V5 -r(s,i,j)) 
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For this (i,j) define p as: 

p(sls,i,j) 

p<sls,i,jl 

p(tls,i,j) 

e:sij 

l-e:sij 

o, if ti~,s. 

Now let (i,j)~Po1 (s)xPo2 (s) and suppose that player t, tE{l,2}, is a dummy 

in state s. Then take 

P<~I s,i,jl 'i' 2-t 

p<sls,i,jl = t-1 

p(tls,i,j) = 0, if ti~,s. 

It is easy to show (by theorem 4.2.4) that the map p defined in the above 

way, has the desired properties. 

5.2. CHARACTERIZING PROPERTIES OF THE VALUE FUNCTIONS. 

In this section we extend the axiomatic characterization of the value 

function of two-person zerosum games in normal form, presented by Vilkas 

(1963) and Tijs (1981), to the value function of discounted two-person 

zerosum stochastic games. This characterization can be indicated by the 

terms objectivity, monotonicity and sufficiency for the both players. The 

results of this section are outlined in Tijs & Vrieze (19!H). 

We wish to characterize the function f*: SG (S ,o.)-+lRz, where f* (r) 

equals the value of the gamer for each rEsG(S,o.). 

* 

[J 

5.2.1. DEFINITION. For a stochastic game r, with value V , wecall an action 

IEAs for a state sES superfluous if there exists a ~sEP(As) with 

p (i)=O such that for each jEBs: s , 

r(s,.i,j) + -1 z - * 
(1+o.) . E p(tls,i,j).Vt ~ 

t=l 

-1 z - * 
(l+o.) . E p(tls,ps 1 j) .vt. 

t=l 

An action jEBs is called superfluous in an analogous way. 
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We now state fourproperties that a function f: SG(S,cx)+lRz could have. 

It will appear that these properties are necessary and sufficient for a 

function f to be the value function. Furthermore we prove that these 

axioms are independent. 

5.2.2. AXIOM Al. (Objectivity). If rEsG(S,cx) is such that for state sES we 

I -1 
have ms=ns=l and p(s s,1,1)=1, then (f(r))s=cx • (l+cx) .r(s,1,1). 

5.2.3. AXIOM A2. (Monotonicity). If for two games r• ,r"ESG(S,cx) the payoff 

functions r' and r" satisfy r':Sr", while the other game parameters are 

identical, then f (r I) $f (r") • 

5.2.4. AXIOMA3.t.(Sufficiency for player t, t=l,2). If r 1 ESG(S,cx) results 

from rEsG(S,cx) by deleting a superfluous action of player t, then 

f(r'J=f<rl. 

* 5.2.5. THEOREM. The value function f obeys the axioms Al, A2, A3.1 and 

A3.2. 

PROOF. If for a state sES of a game r we have m =n =1 and p(sls,1,1)=1, s s 
then for each pair of strategies (µ,v): 

v 
SjJV 

i:: (1 +ex) -T • r ( s , 1 , 1 ) 
T=O 

-1 
ex .(l+cx).r(s,1,1). 

* -1 Hence fs(r)=cx (l+cx).r(s,1,1) and so axiom Al holds. 

If for r• and r" the payoff functions r' and r" satisfy r':Sr", while 

the other parameters are the same, then obviously for each µ and v we have 

* * V'(µ,v):SV"(µ,v).Hencef (f')=supinfV'(µ,v):SsupinfV"(µ,v)=f (r"). so 
JJ v JJ v 

Axiom A2 holds. 

Now let for a state sES of a gaiue rEsG (S ,ex) an action iEA be 
s 

superfluous in view of action ps. Let r• be the game which results from r 

after deleting action i. 

* Let ps be optimal for player 

to r • So for all jEBs: 

in the matrix game [G (v*)] corresponding 
SCl 

(5.2 .1) * -1 z * * * r(s,ps,j) + (l+cx) • i:: p(tls,p ,j).Vt ~ V 
t=l s s 



Define the action Ps as: 

p (i) 
s 

p (.i) := 0 
s 

Now from (5.2.1) and definition 5.2.1 we see that for all jEBs: 

(5. 2 .2) 
-1 z ~ * 

r(s,p ,j) + (l+a) . l: p(tjs,ps,j) .vt 
s t=l 

* -1 z * * 
r(s,ps,j) + (l+a) . l: p(tls,p ,j) .vt -

t=l s 

* - - -1 z - * -
p {i){r(s,i,j)+(l+a) . l: p(tls,i,j).Vt-r(s,p ,j) -

s t=l s 

-1 z - * 
(l+a) . l: p(tjs,p 5 ,j) .Vt} 

t=l 

* -1 z * 
:o: r(s,p ,j)+(l+a) . l: p(tjs,p ,j) .Vt :". 

s t=l s 

* * 

* v . 
s 
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Since Val(Gsa(V ))=Vs it follows that in (5.2.2) the equality sign holds for 

some jEB . This means that with respect to the game r• we have 
s* * 

Val(G' {V ))=V. Since in the other states nothing changes we also have 
sa * s * 

Val{Gta(V ))=V~, tES and tfs. Hence V is the fixed point of the map Ua, 

applied on game r• {cf. (4.2.4) and theorem 4.2.1). So by theorem 4.2.4 the 

* value of the stochastic game r• equals V . This shows that also axiom A3.1 

holds. Analogously one can show that the value function satisfies axiom 

A3.2. 

So we have seen that the axioms Al, A2, A3.1 and A3.2 are necessary 

properties of a function to be the value function. In the next theorem we 

show that they are also sufficient. 

D 

. z 
5.2.6. THEOREM. A function f: SG(S,a)-+JR satisfies the axioms Ai, A2, A3.1, 

A3.2 if and only if f equals the value function. 

PROOF. The "if" part is proved in theorem 5. 2. 5. Suppose that f obeys the 

axioms Al, A2, A3.1 and A3.2. The proof of the "only if" part proceeds in 

two steps. 
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(a) First let r be a game with a state s and actions (l, j) EA xB , such s s 
that 

(5. 2. 3) p(sls,i,j) 

and such that 

(5.2.4) inf r(s,l,j) 
jEBs 

if i=i or j=j 

r(s,i,j) 

* 

sup r (s ,i, j) 
iEA 

s 

We wish to show that (f(f)) =V for such a game r. Obviously 
* -1 - - s s 

~s=~ . (1+a.):r(~ 1 i,j), since for the stationary strategies panda with 

ps(i)=l and crs(j)=l we have: 

inf V -
vEsT2 spv 

v -spa 
-1 - -

a. ( l+a.) . r ( s , i , j ) = sup V -
µESTl sµcr 

Take a large number Mand consider games f',f"ESG(S,a.), which differ from r 
only in the reward functions r' and r" in the following way 

r' (t,i,j) r"(t,i,j)=r(t,i,j) if t=s and i=i or j=j. 

r' (t,i,j) r(t,i,j)-M, r"(t,i,j) r(t,i,j)+M elsewhere. 

From the monotonicity property off we derive: 

(5 .2 .5) f (f I) :;'; f (f) :;'; f (f") • 

Now observe that in the game r• each action iEA '{i} is superfluous s 
in view of action i, when Mis taken large enough. Hence, by axiom A3.1, 

the actions ifl may successively be deleted without disturbing the f-value. 

Let f be the so obtained game, then f(f')=f(f). But in f each action 

jEBs'{j} is superfluous in view of action j (cf. (5 .. 2.4)). This means that 

in r the actions jfj may successively be deleted without disturbing the 

f-value. Let fbethe remaining game. Then f(f)=fff)=f(f'). Now for game f 

in state s for both players only one action is left, namely i and j 

respectively. Moreover p(sls,i,j)=l, so by axiom Al we get: 

-1 - -
a . (l+a.) .r (s,i,j) = (f (f)) s (fer· l > • 

s 



Analogously it can be shown that (f(f")) =a-1 (1+a) .r(s,.i,ji. Then by 
-1 - - s -1 - -

(5.2.5) we have a (l+a) .r(s,i,j)$(f(f))s$a (l+a)r(s,i,j), which shows 

* that (f(f))s=Vs for such a states. 

(b) Now take an arbitrary game fESG(S,a). Let sEs. Consider the game 

r• (s)ESG(S,a), which is constructed from r by adding in states an 

(ms+l)-th action for player 1 and an (ns+1)-th action for player 2. 

r' and p' equal r and p respectively on AsxBs and for the extra entries 

we define: 

(5.2.6) 

and 

(5. 2. 7) 

r' (s,i,j) 

p' <sls,i,j) 

* * 

-1 * 
Cl (l+ct) . v 

s 
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Obviously V (f)=V (f' (s)). Moreover r• (s) is a game, with respect to state 

s, of the type treated in step (a) of this proof. Hence 

* (5 .2 .8) (f (f' (s))) 
s 

v (f). 
s 

If we could show that concerning game r• (s) the actions ms+1 for player 1 

and ns+l for player 2 in state s are superfluous, then by the axioms A3.1 

and A3.2 this would result in (f(f' (s))) =(f(f)) . Combined with (5.2.8) 
* s s 

this would give (f(f)) =V (f), as was to be proved. 
- s s 

Let ps be optimal for player 1 in the matrix game [G (V*)]; so for each 
Set 

jEBs: 

(5.2.9) 
-1 z - * * 

r(s,p ,j) + (l+a) . l: p(tls,p ,j) .V <o V . 
s t=l s t s 

From the definition of r' (cf. (5.2.6)) we see that (5. 2. 9) also holds for 

the game r•, not only for jEBs but also for j=ns+l. Then 

-1 
z 

- * * (5 .2 .10) r' (s,ps 1 j) + (1+a) . i.: p' (tjs,ps,j) .vt <o v I jEBU{n+l}. 
t=l 

s s s 

By (5.2.6) and (5.2.7) we have: 

(5.2.11) 
-1 z * 

r' (s,ms+l,j) + (l+a) • l: p' (tJs,m +1,j) .V 
t=l s t 

jEB U{n +1}. 
s s 
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Combining (5.2.10) and (5.2.11) gives that action ms+l is superfluous in 

view of p in game r• (s). Likewise one can show that for the game remaining s 
after deletion of action ms+l in r• (s), the action ns+1 is superfluous. 

D 

Now we show that the four axioms Al, A2, A3.1 and A3.2 are independent. 

We do this as follows. For each triplet of them we give a function 

f: SG(S,a)->-lRz which satisfies these three axioms but not the fourth. 

(a) (Objectivity). Let f 1 : SG (S,a)->-lRz be the function with f 1 (f) :=Oz 

for all fESG(S,a). Obviously f 1 satisfies the axioms A2, A3.1 and A3.2 but 

not Al. 

(b) (Sufficiency for player 1). Let f 2 : SG(S,a)+lRz be the function 

defined as: 

(f2 (f)) s := min 
i,j 

z 
{r(s,i,j}+(l+aJ-1 • ~ p<tls,i,jJ.v*cn}. 

t=l t 

Then f 2 obeys the axioms Al, A2 and A3.2 but not A3.1. 

(c) (Sufficiency for player 2) . Let f 3 : SG (S, a) ->-JR2 be the function 

defined as: 

z 
(f3 (rJ)s := max hcs,i,j)+(l+a)-l. ~ p(tls,i,j).<(f')}. 

i,j t=l 

Then f 3 obeys the axioms Al, A2 and A3.1 but not A3.2. 

(d) (Monotonicity) . More work has to be done, to show that axiom A2 is 

independent of the other axioms. First we pay some attention to matrix 

games. For an m,n-matrix game [K] let Ns 1 (K) be the set of pure actions 

for player 1 which are ~ot ~uperfluous. Let NS2 (K) have the analogous 

meaning. Let N01 (K) :={iJiENs1 (K) and p(i)=O for each pE01 (K) }. Similarly 

N02 (K} is defined. 

Suppose that a superfluous action i of player 1 is deleted from [K], 
resulting in a matrix game [K']. Then it can be verified that 

(5.2.12) N0 1 (K') N01 (K) and N02 (K') c N02 (K). 



If a superfluous action of player 2 is deleted, resulting in [K"], then 

analogously: 

(5. 2 .13) N02 (K") = N02 (K) and NOl (K") c NOl (K). 
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Example 5.2.7 below shows that it may happen that N02 (K'lfN02 (K). Let 

ANO£ (K)CNOt(K) be such that kEANOt(K) if and only if kENOt (K) for each 

matrix game [K], which can be obtained from [K] by deleting superfluous 

rows and superfluous columns in any possible order. Note that for a matrix 

game [K] which results from [K] after deleting a superfluous row or column, 

we have ANO£(K)=ANO£ (K), £=1,2. In example 5.2.7 the sets ANOt(K) are empty. 

This is not the case in example 5.2.8. 

5.2.7. EXAMPLE. Let 

[K) [: : :J 
Then NOl (K)={2} and N02 (K)={l,2}. 

player 1, then we obtain [K']=[~ 
N02 (K' )={1 I }={1 }IN02 (K). 

If we delete the superfluous action 1 of 

~ ~].Now NOl (K')={1'}={2}=N01 (K) and 

Moreover for this example we have AN0 1 (K)=AN02 (K)=0. To see this, first 

delete the superfluous row 1. Then column 2 becomes superfluous and is 

deleted. Next the superfluous row 2 and the superfluous column 1 are 

successively deleted. By doing so both players have only left their third 

action, which yields the matrix game [K]=[3]. Obviously AN01 (K)=AN02 (KJ=0. 

5.2.8. EXAMPLE. Let 

[K] = [ ~ : : l 
Then AN0 1 (K)=AN02 (K)={l,2} and no row or column of [K] is superfluous. 
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* Now we return to stochastic games. For a game r with value v we 

* denote the (i,j)-th element of the matrix game [G (V )] by g(s,i,j). Then 
sa 

define f 4 : SG(S,a)+lRz as: 

* Cf4 Cf))s = V - E * . E * g(s,i,j) 
s i€ANo1 (G (V )) j€AN02 (G (V )) 

sa sa 

It can be checked that ~4 satisfies the axioms Al, A3.1 and A3.2. We show 

that f 4 
Suppose 

example 

does not satisfy axiom A2. 

* that r is such that [G (V )] is equal to the matrix game [K] of 
sa * 

5. 2. 8 (such a game exists) • Then V s (r) =3, hence (f 4 (r}) s =3-6-0-0-6=-9. 

Let r• be the stochastic game, which only differs from r in the fact that 

r' (s,1,1)=r(s,1,1)+1. Then r'~r and v:cr')=v:cr). But (f4 Cr'))s=3-7-0-0-6= 

-10<Cf4 Cr))s. So f 4 does not satisfy the monotonicity axiom A2. 

Now we wish to consider another interesting property of the value 

function, called symmetry. To that purpose we introduce the transpose of a 

stochastic game, which is the stochastic game that we obtain by interchanging 

the names of the players. 

5.2.9. DEFINITION. Let rEsG(S,a) correspond to the stochastic game 

situation < S, {A lsES}, {B ls€S},r,p >. The transpose rT of r is the 
s s 

discounted stochastic game associated with the stochastic game situation 

< s, {A lsEs}, {B lsEs}, r,p >, where: 
s s 

s := s, 
A := B and B := A for each s€S. s s s s 
r(s,i,j) := -r(s,j,i) and :P<tls,i,j) pCtls,j,i) for each 

s,t€s and each (i,j)€A XB . s s 

We call a function f: SG(S,a)+lRz symmetric if the following property 

holds. 

5.2.10. AXIOM A4. (Synmetry). f(fT)=-f(f) for all f€SG(S,a). 

It is straightforward to verify that the value function has the 

symmetry property. Furthermore it is simple to show that axiom A3.2 can be 

derived from the axioms A3.1 and A4. So we have the following alternative 

characterization of the value function. 



5.2.11. THEOREM. A function f: SG(S,a)+lRz equals the value function if 

and only if f satisfies the axioms Al, A2, A3.1 and A4. 

Evidently in theorem 5.2.11 axiom A3.1 may be replaced by axiom A3.2. 
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we now introduce the concept of weakly superfluous actions. It appears 

that if we use this concept in characterizing the value function, then we 

do not need the monotonicity axiom anymore. 

* 5.2.12. DEFINITION. For a stochastic game rEsG(S,a) with value V we call 

for a state sES an action iEA for player 1 weakly superfluous, if for 
s 

each p EP(A) there exists an action p EP(A) with p (i)=O and such that s s s s s 

A -1 z A * 
inf {r(s,p ,j)+(1+a) • E p(tls,p ,j)Vt} ~ 
jEB s t=1 s 

s 
z 

inf {r(s,p ,j)+(l+a)-1• E p(tls,p ,j)V:}. 
jEB s t=1 s 

s 

A weakly superfluous action of player 2 is defined similarly. 

It is obvious that a superfluous action is also weakly superfluous, 

but the converse does not necessarily hold. This implies that the next 

axiom with respect to a function f: SG(S,a)+lRz, is stronger than axiom 

A3.JI., Jl.=1,2. 

5.2.13. AXIOM A3.Jl.(w). (Weak sufficiency for player JI., Jl.=1,2). If 

r 1 €SG(S,a) results from rEsG(S,a) by deleting a weakly superfluous 

action, then f(f')=f(f). 

5.2.14. THEOREM. A function f: SG(S,a)+lRz equals the value function if and 

only if f satisfies the axioms Al, A3.1(w) and A3.2(w). 

PROOF. The "only if" part can easily be verified. Concerning the "if" part, 

in the proof of theorem 5.2.6 the monotonicity axiom is only used in the 

first step. There the game r was compared with the two games r• and r", 

which were monotonic with respect to r, i.e. r':>r:>r". Next from r• and f" 

superfluous actions could be deleted. However here we do not need games 

r' and f". Suppose for a state s of a game r we have a saddle point as 
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determined by (5.2.3) and (5.2.4). Then at once in the gamer all actions - -i#i and all actions j#j are weakly superfluous in view of action i and 

action j respectively. So they can successively be deleted. 

The remainder of the proof proceeds analogously to the proof of theorem 

5.2.6. 

a 

In Tijs & Vrieze (1979) the value function for more general classes of 

dynamic games is characterized in an axiomatic way. They showed that 

concerning the evaluation function a monotonicity assumption is the only 

essential condition to be able to give such a characterization. 

5.3. PERTURBATION THEORY FOR DISCOUNTED STOCHASTIC GAMES. 

In this section we study the effect on values and optimal stationary 

strategies of perturbations of the game parameters (payoff function, 

transition probabilities and the interest rate). Most of the results are 

first derived for two-person zerosum games in normal form and then 

transplanted to discounted stochastic games. 

In this section we enlarge our game model. The state space may be a 

countable set and the action spaces are assumed to be compact metric. This 

section and the next section 5.4 are the only places of this monograph, 

where we abandon the finite two-person zerosum stochastic game model. 

It should be noticed, that the question studied here is not only of 

theoretical importance, but also of practical value, because favourable 

answers to this question will give greater confidence in the use of game 

models in applications. Roughly speaking, "favourable" means here that sma11 · 

changes in the game parameters induce only small changes in the values, while 

good strategies in the original game are not too bad in a slightly 

perturbed game. 

The results of this section are special cases of more general 

statements in Tijs & Vrieze (1980). For papers in the same spirit, but in 

a different context, we refer to Krabs (1977), Schweitzer (1968), Tijs 

(1976) and Whitt (1975). 
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By CSG(S) we mean the class of two-person zerosum stochastic games with 

countable state space S, compact metric action spaces for the players, a 

uniform bounded measurable payoff function and a measurable transition map. 

In addition we assume that the players are not allowed to randomize between 

their pure actions. Furthermore the immediate rewards are discounted 

according to some interest rate aE(0, 00). The measurability of the maps 

r(s,.,.) and p(tjs,.,.) is taken with respect to the product a-algebra of 

A and B , where A and 
s s s 

B are the a-algebra's generated by the Borel sets 
s 

of the action spaces As forplayer 1 and Bs of player 2 respectively. 

Note that for a game rECSG(S) the uniform boundedness of rand the 

measurability conditions on r and p ensure that the total discounted 

expected payoff exists for each pair of strategies. 

5.3.1. REMARK. Let rEcsG(S). Suppose we would allow the players to randomize 

at each stage between their pure actions. Let P(A ) and P(B ) be the set 
s s 

of probability measures on the measure spaces <A ,A > and <B ,B > 
s s s s 

respectively, for each sES. Endow P(As) and P(Bs) with the weak topology, 

then it is known (e.g. Parthasarathy (1967), theorem 6.4, page 45), that 

P(A ) and P(B ) are compact and can be metrized. 
s s 

Furthermore, it can be seen that the extensions of the maps r(s,.,.) and 

p(tjs,.,.) to r(s,.,,) and p(tjs,.,.) on P(A )xP(B) are measurable maps, 
s s 

where 

and 

r (s,p ,a ) 
s s J J r(s,a,b)dp(a)da(b) 

A B 
s s 

p(tls,p ,a ) ·= J s s 
J p(tjs,a,b)dp(a)da(b). 

A B 
s s 

Hence, one sees that the mixed extension of I', i.e. the game f where 

S:=S, A :=P(A ) , B :=P(B ) and r and p are as defined above, is also a 
s s s s 

member of the class CSG(S) and even a member with a specific property, 

namely that for each fixed p EP(A) the maps r(s,p ,a ) and p(tls,p ,a ) s s s s s s 
are affine in the variable a . The same holds for a fixed cr EP(B ) . 

s s s 
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This reasoning implies that the class of games RCSG(S) :={rlrEcSG(S), while 

in addition randomized actions are allowed} is a subset of the class 

CSG(S). so assertions which hold for each member of CSG(S) or each member 

of a subset of CSG(S) enclosing RCSG(S), also hold for the class of 

games RCSG (S) . 

Now consider for a game rEcSG(S) for each sEs and vEJsl the game in 
a. 

normal form <A ,B ,G (v)> (cf. definition A.1.1), where for each 
a.s s s 1 

(a,b)EA xB ,G (v) (a,b) :=r(s,a,b)+-1- E p(tjs,a,b) .vt. 
s s s a. +a. tES 

If the value of <A ,B ,G (v)> exists (see definition A.1.3), then this 
s s s 

value is denoted by pVal (Ga.(v)). 

Let VCSG(S) be the subset ~f CSG(S) for which for each sEs and vEJsl 

pVal(Ga.(v)) exists. Note that SG(S,a.)cVCSG(S) for each a.E(O,oo). 

N:w define for a game rEvcsG (S) the map PU : lR IS I +JR / s / as 

PU (v) ·= oval (Ga.(v)), 
s - s 

for each sES and each vEJRls/. 

5.3.2. THEOREM. If fEVCSG(S), then the value of r exists and equals the 

unique solution of the following set of functional equations in the 
. - Is I variable vt.JR : 

PU (v) ·= pVal (Ga(v)) 
s s 

or equivalently 

PU(v) v. 

* Let V be this solution. 

v 
s 

, sES 

If, for £~0, the stationary strategies pE and GE are such that for each 

sES, pEEA and GEEB respectively are £-optimal actions for player and s s s s 
player 2 respectively in the game <A ,B ,Ga(v*l >, then PE and GE are 

s s s 
( l+a) . . . 
~.£-optimal in the stochastic gamer. 

PROOF. Concerning the first part of the theorem, quite similar to the 

proof of theorem 4.2.4 it can be shown for fixed fEVCSG(S), that the map PU 

* is a contraction map and therefore has a unique fixed point, say V . 
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Let for player 1 and E>O the stationary strategy pE be such that for 
E a * each state sEs psEAs is an E-optimal action in the game <As,Bs,Gs(V )>. 

Then for each stationary strategy a of player 2 we have (in vector notation) 

(5.3.1) E 1 E * 
r(p ,a) + l+a P(p ,a) .v +E.llsl ~ * v . 

By repeated application of this inequality, we get 

(5. 3.2) 
1 T T E E * l+a 

E (l+a) P (p ,a) .r(p ,a) ~ v -<--a> .Elis I 
T=O 

As in part I, chapter 3, it can be shown that corollary 3.5 also holds for 

the class of games VCSG(S). Hence (5.3.2) gives: 

(5.3.3) inf 
a€PSST2 

E * V(p ,a) ~ V 

E E a * Analogously for a a with asEBs E-optimal for player 2 in <As,Bs,Gs(V) >for 

each sEs, we have 

(5.3.4) E * l+a 
sup V(p,a) $ V + <--a> .Ells I 

p€PSST1 

* Then, using theorem 2.3.5, (5.3.3) and (5.3.4) show that V is the value 
E E -1 of the game. Further, for any E~O it follows that p and a are a (l+a) .E-

optimal. 

a 

From now on we fix a state space S and action spaces As and Bs' sEs. 

Let VCSG be the subset of VCSG(S) corresponding to these S, A and B , sES. 
s s 

A game rEVCSG is conpletely characterized by a triplet <r,p,a> and sometimes 

a game will be denoted by such a triplet. 

We provide VCSG with the metric d defined by 

d(r,f') := d(<r,p,a>,<r',p',a'>) := max{llr-r'li,llP-P'll,la-a'i}, 

where llp-p' II ·= sup E IP<tls,a,b)-p' (tls,a,b) I 
s,a,b tES 

and llr-r' II sup lr(s,a,b)-r'(s,a,b)I. 
s,a,b 
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5.3.3. THEOREM. The map v\vcsG+:Jsl, where v* (r) is the value of the game 

r, is a continuous map (even pointwise Lipschitz continuous). 

PROOF. Let M:= sup lr (s,a,bJI. Then 
s,a,b 

(5.3.5) Iv* (f) I ,; a+l .M 
s Cl 

Let <r,p,a> and <r' ,p' ,a'>EVCSG and M=max{M,M'}. 

First note that in view of lemma A.1.8and theorem 4.2.4 we have 

(5.3.6) * * a * a' * Iv (f)-V (f'll = lpVal(G (V {r)))-pVal(G (V (f')lll s:: s s s s 

i I * sup lr<s,a,b) + l+a E p(t s,a,b)Vt(f)-r' (s,a,b) -
s,a,b tEs 

l+a E p' <tls,a,b)v: (f') I. 
tEs 

We use the following inequalities, which can easily be verified (xElR, 

v, v I EJR Is I ) • 

(5. 3. 7) I x x' I lx-x' I la-a' I 
l+a - l+a' 5 ~ + (l+a) (l+a') lxl 5 kd+ ~ lxl 1+a l+a 

(5.3.8) I E p(tls,a,b)vt - E p' (t s,a,b)v' I 
tEs tES t 

s llv-v• 11 + llp-p' II · llvll 

Using (5.3.5), (5.3. 7) and (5.3.8) we derive from (5.3.6): 

(5.3.9) Iv* <n-v* (f') I ,; llr-r' II+ llv* m-v* (I'') II+ llp-p' II .M + la-a' j .M 
s s l+a a a 

Rewriting (5.3.9) yields 

(5.3.10) llv*m-v*cr•>lls:: l+a < llr-r•ll+ llp-p'll~+ la-a•l .'.i> a a a 

* From (5.3.10) it follows that the map V (.) is continuous. Putting 
-1 -1 

C =a (l+a) (1+2M.a ) leads to r,a 

(5.3.11) llv*m-v*(r'l 11 s:: c d(r,r•i, 
r,a 

* which shows the pointwise Lipschitz continuity of V (.). 

D 
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~~ E E 
For a game f=<r,p,a>EVCSG let O!ls(f) :=O!ls(r,p,a) for E20 be the set of 

a * E-optimal actions for player !l, !lE{l,2} in the dummy game <As,Bs,Gs(V (f))>. 

Then for E>O,by theorem 5.3.2,the set X 0~ (r,p,a) is a subset of the set 
-1 sES s 

a (a+l).E-optimal stationary strategies for player !l. For E=O, the set 

x o!l (r,p,a) can be identified with the set of optimal stationary 
sEs s 
strategies (the "if" part is proved in theorem 5. 3. 2, the "only if" part 

can be proved along the same lines as the proof of theorem 5.1.1). 

5.3.4. THEOREM. Let E20 and r,r'EVCSG such that 

d(<r,p,a>,<r' ,p' ,a'>) s cS. 

Then for each sEs we have for !lE{l,2}: 

E+2C .o 
E ra 

o!ls(r,p,a) c o!ls (r',q',a'), 

with c as defined in (5.3.11). 
ra 

The proof of this theorem is postponed until after the proof of the next 

lemma. 

5.3.5. LEMMA. Let <A,B,K> and <A,B,K'> be two games in normal form, which 

both have a value. 

If d (K,K I) =sup I K (a,b) -K' (a,b) I So, then o~ (K)c0~+ 2 cS (K') I for each E20 
a b 

and !lE { 1 , 2 } . ' 

PROOF. we only show the inclusion for !l=l. 
~ E 

Let aE0 1 (K). The following three inequalities hold: 

K'(a,b) 2 K(';i',b)-o 

K(';i',b) 2pVal(K)-c 

pVal(K) 2 pVal(K')-8 

for all bEB 

for all bEB 

Combining these three inqualities yields: 

K'(';i',b) 2 pVal(K')-E-26, for all bEB. 

0 
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PROOF of theorem 5.3.4. 
E a * O. (r,p,a) is derived from the game in normal form <A ,B ,G (V (f))>. If x.S S S S 

d(<r,p,a>,<r',p',a'>)So, then from theorem 5.3.3 we get 

So inserting this result in lemma 5.3.5 yields the theorem. 

5.3.6. DEFINITION. We call a function K: AxB+JRsemi-continuous if for each 

bEB the function~: A+JR with ~(a) :=K(a,b) is upper semi-continuous 

and if for each aEA the function KA: B+JR with KA (b) :=K(a,b) is lower a a 
semi-continuous. In that case the corresponding game in normal form 

<A,B,K> is called semi-continuous. 

A stochastic game rEvcsG(S) is called semi-continuous if for each sEs 

the function r(s,.,.) is 

uniformly bounded vector 

continuous on A xB • 
s s 

semi-continuous on A xB and if for each 

vEJRlsl the functions l:
5 p{tjs,.,.)vt is semi

tEs 

SVCSG(S) denotes the subset of semi-continuous stochastic games of 

VCSG(S). Note that SG(S,a)CSVCSG(S) for each finite set Sand each aE(0, 00 ). 

Now if <A,B,K> is a semi-continuous game, for which the value exists, 

then we have that O~(K) is a closed subset of A. Namely O~(K) := 

f-l ([pVal(K)-c, 00)), where f is the upper semi-continuous function on A 

defined by f(a):=infbK(a,b). Moreover, as A is compact, we have 0 1 (K)r~ 
since 01 (K)=nE>OO~(K).Analogously O~(K) is closed and 02 (K)F~ if Bis 

compact. 

For a stochastic game rEsvcsG(S) we clearly have that the dummy games 
a * <As,Bs,Gs(V (f))> are semi-continuous, so the above reasoning applies. 

We now devote some attention to multifunctions. Le~ X and Y be 

Hausdorffspaces andletYbe compact. Let f: X+Y be a wultifunction, 

assigning to each xEX a non-empty compact subset f(x) of Y. Following Berge 

((1959), pp. 114,115), w~ will call such a multifunction upper semi

continuous if for each open set "Yr=Y., the set {xlxEX and f (x)cY} is an open 

subset of X. 

If X and Y are metric spaces, then it is well-known that the multifunction 

f: X+Y is upper semi-continuous if and only if for each (x,y)Exxy and each 

D 
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sequence (~,yk), k=0,1,2, ..• converging to (x,y), while ykEf(xk), we have 

yEf(x). Especially this last characterization of upper semi-continuity of 

multifunctions indicates the usefulness of this concept for the problems in 

which we are involved. Namely X represents a family of games, Y is the set 

of actions (strategies) or action pairs (strategy pairs) and f assigns to 

each xEX the compact metric set of £-optimal actions (strategies) of the 

game x. 

Now we are ready to state the final theorem of this section. Again fix 

S, A and B , sES and let SVCSG be the corresponding subset of SVCSG(S). s s 

5.3.7. THEOREM. For the class SVCSG the multifunctions 

and 

O~s(r,p,a): SVCSG + Bs 

are upper semi-continuous for all sES and all £20. 

PROOF. We prove the theorem for Ois(r,p,a). 

Let <rk,pk,ak>' k=0,1,2, ... be a sequence in SVCSG converging to 

<r,p,a>ESVCSG. Let akEOis(rk,pk,ak) and suppose limk+ooak=a. We need to 
E 

prove that aE0 1 (r,p,a). Let ok=d(<r,p,a>,<rk,pk,ak>) for each kElN. 
s . £+2C .o 

Then by theorem 5.3.4 we have akE0 1s ra k~i). 
Let k(h), with hElN, be such that 2Cra.okSh for each k2k(h). This implies 

that 

for all k 2 k(h), 

since o~s (r)c:O~s (f) if os~s;E:. 

-1 
But then aEO~:h (I') 

-1 
n oE+h <n . 

hElN ls 

-1 
as lim ak=a and O~:h (I') is closed. so also aEO~s(I')= 

k+oo 

Cl 
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In the next section the subclass of SVCSG(S) where both players have a 

unique optimal stationary strategy is considered. 

We will end this section with an example, which shows that O~s, e:2:0, 

is not necessarily a lower semi-continuous multifunction. 

5.3.8. EXAMPLE. Consider the mixed extension of the row game [K ], for e: 
given e:<::O, where A={l} and B=[0,1] (an interval) and K (a,b)=1+e:b for 

e: 
bE[0,1] and a=1. So in fact player 1 is a dummy player. Then for e:>O we 

have 02 (Ke:)={O} and for e:=O we have 02 (K0)=[0,1]. So for the sequence 

[~-1], k=1,2, ••• converging to [K0] there exists an element bE02 <K0) 

such that, it is not possible to construct a sequence bk with 

bkE02 (Kk_1l, such that li~-+«>bk=b. This is equivalent to the fact that 

02 (.) does not have the lower semi-continuity property in K0 • 

5.4. UNIQUE OPTIMAL STRATEGIES. 

This section is a continuation of the investigations of section 5.3. 

The notations introduced there are used again. 

Most of the results of this section can be found in Tijs & Vrieze 

(1980). Let USVCSG(S) be the subset of SVCSG(S) for which both players 

have a unique optimal stationary strategy. 

we remark that if a player has for some discounted stochastic game 

a unique optimal stationary strategy, then this strategy is his only optimal 

strategy, stationary or not. This observation does not hold for average 

reward games. 

For a pair of action sets (A,B) we associate with each (ii ,b) EAxB a map 

Kiib: AxB+lR, such that the game <A,B,Kaf»hasunique optimal actions, which 

are respectively ii and b. 
Take Kiib(a,b) := -1 if b=b and a~a 

·= if a=a and b~b 

:= 0 elsewhere. 

Clearly pVal(K--)=0 and ii and bare the unique optimal actions. 
ab 

5.4.1. REMARK. As the set of optimal stationary strategies of a game 
a * rEsVCSG(S) for player Jl equals X 0Jl(G (V (f))), we see that r 

sES s 
belongs to USVCSG(S) if and only if each game in normal form 

a * <As,Bs,Gs(V (f))>, has a pair of unique optimal actions. 
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5.4.2. THEOREM. Let rESVCSG(S) and let (p,o)E01 (f)x02(r) I with p=(al,a2, ..• ) 

and o=(b 1 ,b2 , •.. ). Then the game f, which results from r by replacing 

the payoff function r by r(s,.,.):=r(s,.,.)+£.K- b (.,.),for given £>0, _ _ as s 
belongs to USVCSG(S). Moreover p and a are the unique optimal stationary 

strategies for the respective players. 

PROOF. -a. * For the game <As,Bs,Gs(V (f))>, sES we have for (a,b)EA XB , in view 
s s 

optimality of a and b : 
s s 

of the 

(5.4.1) r (s,a,b ) + £Ka b (a,bs) + l+a. l: p (t I s,a,bs). < (f) $ 
s s s tEs 

r(s,a ,b) + £K- b (a ,b) + -- l: p(tjs,.;;_ ,b) .v:(r) $ 
s s as s s s l+a. tES s s 

r(s,as 1 b) + £K- b (a ,b) + l+a. l: p(tjs,.;;_ ,b) .V:(I'). 
as s s tES s 

- * Hence (as,bs) is a saddle point for the game <As,Bs,Gs(V (f))>. So by 

theorem A.1.4 the value of this game in normal form equals: 

r(s,a ,b) + £K- b (a ,b) + (l+a.)-l l: p(tjs,a ,b )V:(f)=V*(r). 
s s as s s s tEs s s s 

* But this means that for the gamer, V (f) is the unique solution of the 

* equation v=PU(v), which by theorem 5.3.2 shows, that V (f) equals the value 

of f. From the inequalities (5.4.1) we now deduce that p and a are optimal 

in the game r, since a E0 1 (f) and b E02 (r) for each sEs. 
s s s s 

Suppose pE0 1 cri and pip, say';;; ia. Then (using theorem 5.3.2) s s 

(5.4.2) 

EK- - (';;; ,b) + r(s,';; ,b) + l+a. l: p(tjs,';; ,b ).v:(r). 
a 5 b 5 s s s s tES s s 

On the other hand by definition of K.;;_b and the optimality of a in f: 

£K- - (~ ,b ) + r(s,~ ,b ) + l+a. l: p(tjs,i ,b ) .v* (f) < 
asbs s s s s tEs s s t 

r(s,; ,b ) + l+a. l: p(tjs,i ,b ) .vt*(r) 
s s tES s s 

* $ v (f) I 

s 

which in combination with (5.4.2) leads to a contradition. So fEUSVCSG(S). 

D 
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5.4.3. REMARK. If in theorem 5.4.2 we replace (p,oJE01 (f)x02 <rJ by 

(01 (r)x02 (r))c01 (r)x02 (r), and if Ko 0 on A xB is defined as 
1 s 2s s s 

r ~ (a,b) -1 if bE02s and a!'Zql s 01s02s 
if aE0 1s and b\l02 s 

0 elsewhere, 

then a similar statement can be made. 

5.4.4. REMARK. Concerning m,n-matrix games it is not possible to construct 

for each element of P(JN ) xP(:N ) a matrix game, such that this element m n 
corresponds to the unique optimal actions. This follows at once from 

the dimension theorem for matrix games (see theorem A.1.11). If 

(p,a)EP(lNm) xP(lNn) is the unique saddle point for a matrix game, then p 

and a must have the same number of components unequal to zero. This 

means, that for action spaces A and B, where A=PONml and B=PONnl, m,nEJN, 

it is in general not possible to construct for each aEA and bEB a 

function K~b' where a and b are the unique optimal actions for the game 

<A,B, Ka:i/ and where additionally Kab has the affine property mentioned 

in remark 5.3.1. 

If and only if a and b, seen as elements of PONml and PONnl, have the 

same number of components unequal to zero, such a matrix game [K~b] 

exists. A procedure to carry out this construction can be found in 

Karlin (1959, p. 70). 

For fixed S, As and Bs, sES let USVCSG be the subset of SVCSG for which 

both players have a unique optimal stationary strategy. 

The next theorem is an immediate consequence of theorem 5.3.7 and the 

proof of it will be omitted. 

5.4.5. THEOREM. Let rkESVCSG, k=l,2, ... , such that li~--rk=r, with 

rEusvcsG. If p kEO 1 ( r k) and akEO 2 ( r k) I then li~-)<Ol =p and limk-+«> ak =a I 

where p and a respectively are the unique optimal stationary strategies 

of player 1 and player 2 in r. 

5.4.6. THEOREM (a). The restrictions of the maps 018 : SVCSG~A8 and 

02 : SVCSG""*B to the subset USVCSG are continuous maps for each sEs. s s 
(b) USVCSG is a dense subset of SVCSG. 
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PROOF. (a) follows from the fact that a single-valued map, which is upper 

semi-continuous in the multi-valued sense, is continuous. 

(b) Let rEsvcsG and E>O. we have to prove that there exists 

a fEusvcsG such that d(r,f"J<e:. Take (p,cr)E01 (r)x02 <r>. Then by theorem 

5.4.2 we can construct for any o>O a game rEUSVCSG which only differs from r 

in the payoff function: r(s,.,.) :=r(s,.,.)+OK· A (.,.).Obviously d(r,f)<E 
Ps0 s 

for ·o<o«E, which proves the theorem. 

Also for the next theorem the functions K· · are of valuable use. 
PsOs 

5.4.7. THEOREM. For fixed s, As and Bs, sEs the class of games USVCSG is 

connected if and only if As and Bs are connected for all sES. 

CJ 

PROOF. (a) First suppose that, say As is not connected. Then let Asl and As 2 

be two disjunct non-empty open subsets of As with As=As 1uAs2 . 

Let USk:={rlrEUSVCSG; 01s(r)CAsk} for k=l,2. It is obvious that USVCSG= 

us1uus2 and that us 1nus2=~. 

Further, us1 and us2 are open sets in USVCSG, because 0 1 and 02 are upper semi

continuous multifunctions. 

If we can show that us 1 f~ and us2f~, then we have proved that USVCSG is not 

connected when As is not connected. This will prove the necessity part of 

the theorem. 

Take as1EAsl and as2EAs2 and bsEB. Let rk, k=l,2 be a stochastic game, 

which concerning states is defined as: rk(s,.,.) :=K. b. (.,.) and 
ask s 

pk(tls,a,b)=1 if t=s and pk(tls,a,b)=O if tfs. Define for the states 

unequal to s, rk in such a way that rkEUSVCSG. Then clearly rkEusk' k=1,2. 

So both us1 and us2 are non-empty. 

(b) Now, we suppose that the sets As and Bs, sES are .connected sets. 

Suppose that us 1 and us 2 are disjunct open subsets of USVCSG such that 

USVCSG=US1Uus2. 

If' we can show that us 1=~ or us2~, then this would imply that USVCSG is 

connected. First associate with each pair (p ,cr) €( X A ) x ( X B ) , where 
• • • . - • • sEs s sES s 
p=(a1,a2, ••• ) and O=(b1 ,b2 , ••• ), the game rpcr defined by 

r(s,a,b):=d(b,b )-d(a,a ), all (a,b)EA XB and p(tls,a,b) :=1 for t=s and 
s s s s 

p(tls,a,b)=O if tfs for all (a,b)EA xB and all s,tES. 
s s 



68 

It can be checked that rp0€USVCSG with value 0.11sl and that 01 (fp0)={p} 

and 02<r--)={o}. pCJ 
Let F: ( X A ) x ( X B ) +USVCSG be 

sEs s sEs s 
straightforward to show that 

II ,..., ,..., Rl Rl II F(p,CJ) - F(p,CJ) 

the map defined by F(p,CJ)=f • It is pCJ 

$ d<'P.~i + d(a,~i 

for all (p,cr) and (~ 1~) • Hence, F is a continuous map from the connected 

set (X €A )x(X ESB) into USVCSG. This implies that either r €us1 for s s s s s pCJ 
each p and CJ or r Eus2 for each p and CJ. 

PCJ 
Without loss of generality, we may suppose that 

Now take an arbitrary rEusvcsG. Let 01 (r)x02 Cr)={(p,cr)}. 

Define for each EE[0,1] the game r :=Ef+(l-E)r-- as r (s,a,b) :=E.r(s,a,b)+ 
E pCJ 

(1-E) (d(b,b )-d(a,a )) and p <tls,a,b) :=Ep(tJs,a,b)+(1-E)lit, where lit =1 
S S E S S 

if t=s and ots=O for t#s. 

Along the same lines as the proof of theorem 5.4.2 it now can be shown 

that 

* (i) fEEUSVCSG, (ii) pVal(fE)=E.V (r) and (iii) 01 (fE)x02 (fE)={(p,cr)}. 

Let FF: [0,1]+USVCSG be the map defined as FF(E) :=r , then FF(O)=f-- and E pCJ 
FF(l)=r. Furthermore 

llFF(E 1)-FF(E 2l II $ JE 1-E2 1 ( IJrll +1+sup ld(b,bs)-d(a,.is) 1+1) 
s,a,b 

for each E1 , E2E[0,1]. Hence Fis continuous. But since [0,1] is connected 

and F(O)Eus 1, it follows that F(1)Eus1• So rEus 1 . As rEusvcsG was arbitrary, 

this proves USVCSG=us 1• Hence us2=~, which completes the proof of the 

theorem. 

2.4.8. REMARK. The framework of the model, studied in this section is 

principally the stochastic game. However in the proofs of the theorems 

the dummy games stand central, i.e. two-person zerosum games in normal 

form. Clearly all the theorems of this section and those of the 

preceding one, also hold for the class of two-person zerosum games in 

normal form. So perhaps it would have been more logical if we had first 

[] 
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next had extended them to stochastic games. Such an approach is chosen 

in Tijs & Vrieze (1980). However, since this monograph is concerned 
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primarily with stochastic games, we have chosen for the reverse approach. 

5.4.9. REMARK. The set USVCSG is not necessarily an open subset of SVCSG 

as the following example shows. Take a stochastic game with one state, 

with Al :=[0,1) and B1 :={1}. Then, for f defined by r(l,a,b)=a, 

p(111,a,b)=l, (a,b)EA1XB1 and aE(0, 00 ) Aarbitrarily we have rEUSVCSG. 

For each E>O, the E-neighbourhood of f contains the game f~E defined by 

r~E(l,a,b) :=min{a,1-~E}. Clearly f~E~USVCSG, hence USVCSG is not open. 

5.4.10. REMARK. Concerning matrix games, Bohnenblust, Karlin & Shapley 

(1950) proved, that the set Umn of those m,n-matrix games (m,nEJN), for 

which the mixed extension has a unique saddle point is an open and 

dense subset of the set Mmn of all m,n-matrix games. With some labour, 

one can prove that Umn is not connected for all (m,n)~(l,1). We will not 

do this here, but remark that for the case where (m,n)=(l,2) we have 

U 12 { [ r (1 , 1) r (1 , 2) ] I r (1 , 1 ) ~r (1 , 2) } 

= {[r(l,1) r(l,2)] !r(l,1)>r(l,2) }U 

{[r(l,1) r(l,2)] lr(l,l)<r(l,2) }. 

Note that this phenomenon is due to the fact mentioned in remark 5.4.4, 

namely the fact that not each point of the Cartesian product of the mixed 

action spaces can serve as a unique pair of optimal actions for some 

appropriate matrix game. 

Now consider the class of games SG(S,a) (i.e. finite state and action 

spaces). Let USG(S,a) be the subset of stochastic games, for which both 

players have a unique optimal stationary strategy. Now let fESG(S,a), 

with value v*(r). Then for each sES them ,n -matrix game [G (v*(r)J] has 
s s sa 

* value V (r). 
s 

By the above mentioned result (remark 5.4.10) of Bohnenblust, Karlin & 

Shapley, it follows that for each E>O, there exists a matrix game 
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[ ] * * . K EU n with value V (r), such that d {G {V (f)) ,K ) <£. Hence we may £ ms s s z sa £ 
write K (i,j)=r (s,i,j)+{l+a)-l i:: p(tls,i,j)vt*cn, where r (s,i,j), 

£ £ t=l £ 
(i,j)EA XB, can be chosen such that llr(s,.,.)-r {s,.,.) II<£. s s • £ 

But this means, that for the game r which follows from r by replacing r 
E: * by r(s,.,.) :=r£(s,.,.), it holds that v (f) is the solution of the set of 

. *· * • *· equations v =Val(G (v)), sES. So V {f )=V (f) and as [G (V (f ))]EU we • s sa • e: sa £ msns 
have r£EUSG{S,a). Moreover d(f,f£)<e:, which shows that the result of 

Bohnenblust, Karlin & Shapley can be extended to stochastic games. This 

fact is stated in the next theorem. 

5.4.11. THEOREM. The set USG{S,a) is an open and dense subset of SG(S,a). 
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6. Algorithms for discounted stochastic games. 

In this chapter some algorithms for solving finite two-person zerosum 

stochastic games are considered. In section 6.1 we give a brief survey of 

existing algorithms in this field. In section 6.2 we treat an extension 

to discounted stochastic games of the Brown-Robinson procedure of matrix 

games. Finally in section 6.3 an algorithm for a subclass of stochastic 

games is presented, namely the class of games for which in each state only 

one of the players governs the transitions, although not necessarily in 

each state the same player. 

6.1. SOME ALGORITHMS. 

In the first place we mention the algorithm which in a natural way 

arises from Shapley's proof of the existence of the value of a discounted 

stochastic game (cf. Shapley (1953)). This algorithm can be seen as the 

standard method of successive approximation. 

6.1.1. ALGORITHM (Shapley) 

(i) 

(ii) 

(iii) 

and 

z 
Choose v0E:JR arbitrarily, T:=O 

v<+l (s) ·=Val(G(v)) 
SCI. T 

'( T T '( '( T 
Choose p =(p 1 , •.. ,pz) and o =(o 1 , ••• ,oz) such that for each sES: 

z 
v<+l (s) min {r(s,p',j) 

jr:B s 
+ ~- ~ p(tJs,p',j)v (t)} 

l+a t=l s < 
s 

vT+l (s) = max 
iE:A 

s 
T '( 

Hence P 5 and o 5 

z 
{ r ( s, i, o') + 1 +a ;;; p ( t J s, i, cr T) . v ( t) } . 

S t=l S T 

a.re optimal in [G (v )]. 
SCI. T 

(iv) T := <+1, go to step (ii). 
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From the contraction property of the value operator one can derive for this 

algorithm that 

(a) 

(b) 

(c) 

(d) 

lim v 
T T->-00 

V (µ,OT) 

V(p T ,v) 

m 
-'[ 

v + 
T Cl 

* v 

s v 

:2: v 

. 1 
z 

(f) 

1 -
+ - m .1 

T Cl T z 

+_!_m.1 
T Cl -T 

* s v (f) 

z 

s v 
T 

for all µEST l and all T 

for all vEsT 2 and all T 

m 
T 

+ a "1z' for all T, 

where m :=max {v (s)-v 1 (s)} and m :=min {v (s)-v 1 (s)}. 
T sES T T- -T sEs T T-

Hence v approximates the value of the game and for each £>0, pT and oT are 
T 

£-optimal stationary strategies for T large enough. The algorithm is 

stopped as soon as the bounds in (d) are tight enough. 

The second algorithm we describe, is the discounted version of the 

algorithm of Hoffman & Karp (1966). Originally they presented their 

algorithm for average reward stochastic games, but their procedure 

can also be applied to discounted stochastic games. 

6.1.2. ALGORITHM (Hoffman & Karp). 

(i) 
z 

Choose v 0EIR arbitrarily, T:=O. 

(ii) T Determine .for player 2 a stationary strategy o EssT2, such that 

OT is optimal in [G (v )] for each sES. 
S 00 T 

(iii) Solve for player 1 the Markov decision problem which results 
T when player 2 fixes o (see theorem 3. 4). 

Let vT+l be the optimal value of MDP(oT). 

(iv) T ·= T+1, go to step (ii). 

This algorithm is a generalization of Howard's policy iteration method 

(1960), combined however with successive approximation ideas. So it can be 

seen as value oriented policy iteration. The way in which this algorithm 



approximates the value of the game and produces £-optimal stationary 

strategies is given by the following properties (cf. Van der Wal (1977)). 

* (a) lim v = V (r) 

(b) 

(c) 

T 

m 
Val(G (v )) + -'l: .1 

sa T Cl z 
* m 

$ V (f) $ Val(G (v )) + __.!_, sES 
S SCI T Cl 

where m :=min {Val(G (v ))-v (s)} and m :=max {Val(G (v ))-v (s)}. 
-'[ sES SCI T T T sEs SCI T T 

-T -T -T -T If p and a are such that for each sEs, ps and as are optimal 

actions for player 1 and player 2 respectively in the matrix game 

(G (v )], then pTand GT are £-optimal stationary strategies if 
SCI T 

m -m $£.Cl. 
T -'T 
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We now mention the algorithm of Pollatschek & Avi-Itzhak (1969), which can 

be seen as a straightforward generalisation of Howard's policy iteration 

method. 

6.1.3. ALGORITHM (Pollatschek & Avi-Itzhak). 

(i) 

(1.·i·) . t . t t . T ( T T) d T ( T OT) Deterll!.1.ne s ationary s ra egies p = p 1 , •.. ,pz an a= 0 1 , ••. , z 

(iii) 

(iv) 

such that for each sES, PT and oT are optimal actions in the 
s s 

matrix game [G (v )]. 
SCI T 

T T 
Put VT+l :=V(p ,a). 

T := T+l and go to step (ii). 

Pollatschek & Avi-Itzhak have shown that their algorithm always converges 

to the solution of the game if the following condition holds: 

z 
max l: (max p(tls,i,j -min p(tjs,i,j)). <Cl, 

sEs t=l i,j a,b 

with Cl the interest rate. Further for C1>2 (or discount factor 13<1/3) the 

algorithm always converges for any transition map. 
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Pollatschek & Avi-Itzhak noticed in their paper that their algorithm may 

also converge under less restrictive conditions. Rao, Chandrasekaran & Nair 

(1973) claimed that the algorithm 6.1.3 always converges, but their proof 

is incorrect and an example provided by Van der Wal (1977) shows that the 

proof cannot be repaired. 

Van der Wal (1977) presented a set of algorithms depending on an 

integer :\EJNU{ 00 }. It turns out that for :\=1 the corresponding algorithm 

coincides with Shapley's algorithm and for ;\=00 the algorithm of Hoffman & 

Karp is obtained. 

6.1.4. ALGORITHM (;\) (Van der Wal). 

(i) 

(ii) 

(iii) 

(iv) 

z 
Choose v 0 EJR arbitrarily, T:=O. 

Determine for player 2 a stationary 

that oT is an optimal action in the s 
each sEs. 

T T T strategy o =(o 1 , ... ,oz) such 

matrix game [Gc,JvT)] for 

Put 
:\ 

vT+l :=ML T(vT), where ML;\ is the ;\th iterate of the map 
T 

ML 

T 

0 

z z 
:JR +JR 

T 

Ci 

(ML (v )) 
T T S 

0 

0 

defined by 

z 
·= max {r(s,i,oT) + l: p(tls,i,oT).v (t)} 

l+a t=l T iEA 
s 

T+l and go to step (ii). 

Van der Wal (1977) has shown that the properties (a)-(e) mentioned below 

algorithm 6.1.2, hold for every algorithm (;\), :\EJNU{ 00 }. 

Van der Wal extensively studied generalizations of the method of 

successive approximation. For that purpose he introduced the 

concept of stopping times in stochastic games. We refer for further details 

to Van der Wal (1981). 

Parthasarathy & Raghavan (1981) considered the class of games for 

which one player governs the transitions. For this special case they 

proved the orderfield property, i.e. the property that the value of the 
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game and the extreme optimal stationary strategies of both players lie 

in the same Archimedean field as the game parameters. This result holds as 

well for discounted stochastic games as for average reward games. 

For discounted stochastic games they proposed the following linear 

programming algorithm, which is in fact a finite algorithm. It is assumed 

that in each state the transition probabilities are controlled by player 2. 

6.1.5. ALGORITHM (Parthasarathy & Raghavan). 

z 
max l: v 

s=1 s 
z 

subject to l: r(s,i,j).xs(i)+ l+c:t l: p(tls,j).vt2v, jEB, sES 
iEA t=1 s s 

s 

l: 
iEA 

s 

x (i)=l, 
s 

Note that the NLP 4.4.1 reduces to this LP problem when p(tls,i,j) is 

independent of i. 

sEs. 

Parthasarathy & Raghavan (1981) proved that an optimal solution (v*,x*) 

to this LP corresponds to a solution of the stochastic game, in the sense 

* * * * 
that v is the value of the game and p defined as ps(i)=xs(i) proves to be 

an optimal stationary strategy for player 1. An optimal stationary strategy 

for player 2 can be obtained by solving the dual program of the above LP. 

6.2. FICTITIOUS PLAY AS AN ITERATIVE METHOD FOR SOLVING DISCOUNTED 

STOCHASTIC GAMES. 

Brown (1949;1951) suggested a method, called fictitious play, for 

solving a matrix game. Robinson (1950) proved the validity of that method, 

while Shapiro (1958) provided for the Brown-Robinson scheme an a priori 

estimate of the rate of convergence. 

Extensions of the Brown-Robinson method to infinite zerosum games 

are given in Danskin (1954) and Van den Akker (1976), while Miyasawa 

(1961) studied an extension to 2x2-bimatrix games. Shapley (1964) has given 

examples showing that the natural generalization of the Robinson theorem 
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to arbitrary bimatrix games is not valid. A systematic study of this 

phenomenon was done by Rosenmuller (1971) • 

The method of fictitious play of Brown and Robinson can be seen as 

an infinite stage learning process associated with a matrix game [K]. Here 

at each stage the players choose a pure action which, among the pure 

actions, is a best answer with respect to the collection of past choices 

of the other player. 

The purpose of this section is to extend the ideas of Brown and 

Robinson to discounted stochastic games. However before we can do so, we 

first study the consequences of fictitious play applied to a situation in 

which the matrix game [K] is not exactly known in advance, but where at 

each decision epoch T an aoproximation [K ] is given such that lim K =K. - T T._ T 
This investigation is of independent interest, as it will appear that 

fictitious play can be used for a converging sequence of matrix games. 

Next we describe an iterative method for solving a discounted stochastic 

game with finite state and action spaces. 

The results of this section are distilled from Vrieze & Tijs (1982). 

Now let us consider a converging sequence K1 ,K2 ,K3 , ••• of m,n-matrices 

with lim KT=K, i.e. lim rT(i,j)=r(i,j) for all (i,j)EJNmxJNn. In the 
T._ T._ 

following we denote by T(e), for any e>O, the smallest integer such that 

(6.2.1) lr (i,j)-r(i,j) I ~ e, 
T 

all (i,j) and all T~T(e) 

we also use the following notation. 
k . 

For a vector x=(x1 ,x2 , .•. ,~)ElR, max{x1 , ••• ,xk} is denoted by max(x) and 

min{x1 , •.• ,xk} by min(x). Note that in this setting for a matrix K the 

value of the matrix game [K] equals 

Val(K) max min(pT.K) 
pEP(JN l 

m 

min max (K.cr) • 
crEP (JN l 

n 

C~ and Cj denote the j-th column of KT and K respectively; similarly R~ and 

Ri denote the i-th row. 

Furthermore, let M:=sup{ lr (i,j) I I (i,j)EJN x:N , TEJN}. 
T m n 



6.2.1. DEFINITION. We call a pair of sequences 

x(O), x(l), x(2), 

y(O), y(l) I y(2), 

a vector system for the sequence K1 , K2 , K3 , ••. if 

(vl) min (x (0)) = max (y (0)) 

and if for each TEJN 

(v2) 
i (T) 

x(T) :=x(T-l)+RT , where i(T)EJNm satisfies yi(T) (T-1) 

max (y (T-1)) 

(v3) 
. (T) 

y(T) :=y(T-l)+C~ , where j (T)EJNn satisfies xj (T) (T-1) 

min(x(T-1)). 
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It will be obvious how such a vector system can be formed recursively 

from given x(O) and y(O) satisfying (vl). 

We wish to show that 

-1 
lim T max(y(T)) 
T-+«> 

lim T-l min(x(T)) 
T-+«> 

Val(K). 

In proving this, we proceed as far as possible along the same lines as in 

Robinson (1950), who studied the situation in which K =K for each T. 
T 

6.2.2. LEMMA. 

lim sup T-l min(x(T)) s Val(K) 
T-7<0 

-1 
slim inf T max(y(T)). 

T-+<x> 

PROOF. Take £>0 and k>T(E). Then 

x(k) 
k 

x(T(E))+ l: 
i(T) k i(T) 

R Sx(T(E))+ l: R +£.(k-T(E)).1 
T=T(£)+1 T T=T (£)+1 n 

Let p (k,i) be the number of times that action iEJNm appears in the sequence 

i(T(E)+l), i(T(£)+2), ... ,i(k). 
-1 

Then p(k)=(k-T(E)) (p(k,1), ... ,p(k,m)) is a mixed action for player 1 in 

the matrix game [K] and furthermore 

(6.2.2) pT(k).K 
-1 k i(T) 

(k-T(E)) . L R . 
T=T(E)+l 
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Hence 

x(k) $ X(T(E))+(k-T(E)).pT(k).K+E(k-T(E)).1 1 n 

which implies that: 

-1 -1 -1 T k min(x(k))$k max(x(T(E)))+k (k-T(E))min(p (k).K)+ 
-1 

Ek (k-T (£)) 

-1 -1 -1 $k max(x(T(E)))+k (k-T(E)).Val(K)+Ek (k-T(E)). 

-1 
Hence, lim supk->«>k min(x(k))SVal(K)+E for each E>O, from which the first 

inequality in the lemma follows. 

The second inequality can be proved analogously. 

0 

6.2.3. DEFINITION. If <x(T),y(T); TEJN0> is a vector system for the sequence 

of matrices K1 ,K2 ,K3 , •.. , then the i-th pure action of player 1 is said 

to be eligible for the vector system in the interval [T,T'] when there 

exists a T1E[T,T'] such that yi (T 1 )=rnax(y(T 1)). Eligibility of a pure 

action j for player 2 is defined analogously. 

6. 2. 4. LEMMA. If for k, TEJN all pure actions of both players are eligible 

in [k,k+T], then 

max(x(k+T))-min(x(k+T)) $ 2TM 

max(y(k+T))-min(y(k+T)) $ 2TM. 

PROOF. The lemma follows by modifying in an obvious way the proof of lemma 

2 in Robinson (1950), using the definition of M. 

6.2.5. LEMMA. If, for given k~T(E) all pure actions of both players are 

eligible in [k,k+T], then 

(6.2.3) max(y(k+T))-min(x(k+T)) $ 4TM+2E(k+T)+2MT(E). 

0 
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PROOF. In view Of lemma 6.2.4. 

(6.2.4) max(y(k+T))-min(x(k+T)) s 4TM+min(y(k+T))-max(x(k+T)). 

Let p(k+T) be the mixed action for player 1, as defined in the proof of 

lemma 6.2.2. The inequality (cf. (6.2.2)) 

x(k+T) ~ x(T(e:))+(k+T-T(e:)) .pT(k+T) .K-e:(k+T-T(e:)) .1 
n 

then implies, 

(6.2.5) max(x(k+T)) ~ min(x(T(e:)))+(k+T-T(e:))Val(KT)-e:(k+T-T(e:)) 

where KT is the transpose of the matrix K. 

Similarly, one can show that 

(6.2.6) min(y(k+T)) $ max(y(T(e:)))+(k+T-T(e:))Val(KT)+e:(k+T-T(e:)). 

Note further, that by (v1) and the definition of M, 

(6.2. 7) max(y(T(e:)))-min(x(T(e:))) s 2MT(e:). 

Combining the inequalities (6.2.4)-(6.2.7) yields the assertion of the 

lemma. 

For a matrix K we denote by K-i the matrix, which is obtained from K 

by deleting the i-th row. K-j is the matrix obtained from K by deleting 

a 

the j-th column. When writing K-t it will be clear from the context whether 

t is an action of player 1 (delete row t) or an action of player 2 (delete 

column t). 
m -i 

For a vector y=Cy1,y2, ••• ,ym)ElR, let y be the vector 

(yl' ••• ,yi-1 'Yi+1' •.. ,ym). 
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6.2.6. LEMMA. Let <x(T) ,y(T); TEJN0 > be a vector system for the sequence 

K1 ,K2 ,K3 , ••. of m,n-matrices, converging to K. Suppose that, in the 

interval [k,k+T], pure action i of player 1 is not eligible for the 

vector system. For TE{0,1, ••• ,T}, let 

X 1 (T) 
-i ·= x(k+T)+(max(y(k))-min(x(k))).1n and y'(T)=y (k+T). 

Then <x'(T),y'(T); TE{0,1, ..• ,T}>is the first part of a vector sys-tem 
. -i -i -i 

for the converging sequence of m-1,n-matrices ~+l'~+2 '~+3 , ... · 

Furthermore 

- -max(y(k+T))-min(x(k+T)) (max(y' (rJJ-min(x' tTJ))+ 

(max (y (k)) -min (x (k))) • 

PROOF. Obviously, min(x' (O))=max(y' (0)), since pure action i is not eligible 

at k. Because <x(T),y(T) >is a vector system and i is not eligible in 

(k,k+T], we have for i'(T)=i(k+T)E{1, ••. ,i-1,i+1, ••• ,m} and j'(T)=j(k+T)E:Wn' 

and TE{1, •.. ,T}, that: 

i 1 (T) 
x(k+T)=x(k+T-l)+R , 

k+T yi' (T) (k+T-1)=max(y{k+T-1)) 

•I (T) 
y(k+T)=y(k+T-l)+C] , 

k+T 
xj' (T) (k+T-l)=min(x(k+T-1)) 

These inequalities imply for TE{l, •.• ,T}: 

i 1 (T) x' (T)=x' (T-l)+R-
k+T 1 

Y I {T) = y' (T-1) +Cj 1 (T) 
k+T 1 

Yj_, (T) (T-1)=max(y' (T-1)) 

xj I (T) (T-1)=min(x' (T-1)) 

Consequently the first assertion in the lemma is proved. 

Furthermore 

- -max (y (k+T)) -min (x (k+T)) =max (y' (T)) - (min (x' (T)) - (max (y {k)) -

min (x (k)))) , 

which finishes the proof. 
D 



Analogously one can formulate ·a "player 2 version" of lemma 6.2.6, 

involving a non-eligible action j of player 2. Both versions will be used 

in the proof of the following lemma. 
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6.2.7. LEMMA. Let K1,K2 ,K3 , ••• be a converging sequence of matrices and let 

E>O. Then there exists a non-negative real number T(E) such that for each 

k€:JN0 and each vector system < x ( t) , y ( T) ; t€:JN0> of the sequence 

~+l'~+2 '~+3 , ••• we have: 

max(y(T))-min(x(T)) s ET for all t~T(E). 

PROOF. The lemma is proved by induction with respect to the size of the 

matrices (the number of rows plus the number of columns) under consideration. 

For sequences of 1,1-matrices (of size 2) we can take T(E)=O, since 

y(t)=x(t)€1R for all tElN0 • 

Now suppose that the statement is true for converging sequences of 

m,fi-matrices, with size m+il<m+n. 

Let K1,K2 ,K3 , ••• be a converging sequence of m,n-matrices and let E>O. 

By applying the induction hypothesis to the finite number of converging 
-i -i -i -j -j -j . . 

sequences K1 ,K2 ,K3 , ••• , iElNm and K1 ,K2 ,K3 , .•. , JElNn of size m+n-1, 

we may conclude that there exists a T(E) such that for ~ach ~EJN0 .and each 
-J. -J. -J. 

of the sequences ~+l'~+2 '~+3 , ••• vector system <x' (t) ,y' (T) > for any 
-j -j -j 

or ~+l'~+2 '~+3 we have 

(6.2.8) max y' (T)-min x' (T) S Et for all T~T (E). 

Take a k€JN0 and an arbitrary vector system <x(T) ,y(T); t€JN0 >for 

~+l'~+2 '~+3 , ...• Let t~t(E)+T(E). Then there is a hEJN and qE[0,1), 

such that T=T(E)+(h+q) .T(E). 

We distinguish two cases. 

Case 1. Suppose that there is an integer h€{1,2, ••• ,h} such that all 

actions of both players are eligible in the interval 

[T(E)+(q+h-l)T(E),T(E)+(q+h)T(E)]. Leth be the largest integer in 

{1,2, ••. ,h} with this property. 

Then in each interval [T(E)+(q+d-1)T(E),t(E)+(q+d)T(E)] with dE{h+1, ••• ,h} 

at least one action for one of the players is not eligible. Repeated 

application of lemma 6.2.6 with respect to these h-h intervals yields 



82 

in view of (6.2.8): 

(6.2.9) max(y(T))-min(x(T)) (max (y (T (E) + (q+h) .T (E)) )-

min(x(T (E)+ (q+h) .T(E))) )+ (h-h) .E.T(E). 

Since all actions are eligible in the interval [T(E)+(q+h-1)T(E),T(£)+ 

(q+h) .T(E)], the first term in the right hand side of (6.2.9) is by lemma 

6.2.5 at most 

4T (£) .M+2E (T (£) + (q+h) T (E)) +2MT (E) ~ 2ET+4T (E) .M+2MT (E). 

And the second term is at most ET. Hence 

max (y (T)) -min (x (T)) ~ 3ET+y 

where y=M(4T(e:)+2T(E)). Consequently 

(6. 2.10) max(y(T))-min(x(T)) ~ 4ET, if T ~ max{T(E)+T(E), s- 1y} 

Case 2. If there is no such an integer hwith the property described 

in case 1, then lemma 6.2.6 (and its player 2 version) can be applied h 

times, yielding in view of (6.2.8): 

- -max(y(T))-min(x(T)) ~ max(y(T(E)+qT(E))}-min(x(T(s)+qT(E)))+ 

h£T(£) ~ 2M(T(£)+T(E))+ET ~ ET+y. 

- 1 -1 This implies for T~max{T(E)+T(s), r y} that 

(6.2.11) max(y(T))-min(x(T)) ~ 4ET. 

Combining the two cases we have by (6.2.10) and (6.2.11): 

max(y(T))-min(x(T)) ~ 4ET for all T~T(4s), 



- -1 when we take T(4£)=max{T(£)+T(£) ,£ y}. This completes the proof of the 

induction step, since T(4£) does not depend on k and on the vector system 

<x(T) ,y(T); TEJN0>. 

we now can state the main result of this section. 
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D 

6.2.8. THEOREM. Let K1 ,K2 ,K3 , ... be a sequence of matrices with limT __ KT=K. 

Then for each vector system <x (T) ,y(T); TEJN0> of this sequence, we have 

-1 
lim T max(y(T)) 
T->= 

lim T-l min (x(T)) 
T->= 

Val(K). 

PROOF. The proof is a direct consequence of lemmas 6.2.2 and 6.2.7. 

For a vector system <x(T),y(T); TEJN0> of the sequence K1 ,K2 ,K3 , ••. 

converging to K, let for each TEJN p(T) and cr(T) be the mixed actions of 

players 1and2 respectively for which TP (T ,i) equals the number of times 

i appears in i(1),i(2), •.. ,i(T) and Tcr(T,j) equals the number of times 

j appears in j (1) ,j (2), ••. ,j {T). 

6.2.9. THEOREM. Each limit point of the sequence p(1),p(2),p(3), ... is an 

optimal mixed action of player in the matrix game [K]. Each limit 

point of 0(1),0(2),o(J), .•• is optimal for player 2 in [KL 

PROOF. We only prove the first assertion. Let p be a limit point of 

p(1),p(2),p(3), •... Without loss of generality, we suppose that 

lim p(T)=p. 
T->= 

(Otherwise consider a properly chosen subsequence). 

Let £>0 and let T>T{£). Then 

X(T) x (0) 
Ti£) i(k) T i (k) 

+ 
k=l ~ + l: ~ 

k=T(£)+1 
T 

Ri(k) 5'. x (0) + l: + 2MT{£).1 + £ ( T -T ( £) ) . 1 
k=l n n 

-T 
2MT {£) .1 + £ ( T-T ( £) ) . 1 . x(O) + T.P (T) .K + 

n n 

By taking limits we get 

1 ~T 
lim ,- min(x(T)) 5'. min(p .K)+£ for each £>0. 
T->= 

D 
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But then by theorem 6.2.8 

~T 
Val(K) ~ min(p .K) ~ Val(K) 

Consequently, p is optimal for player 1 in the matrix game [K]. 

0 

6.2.10. REMARK. If the sequence K1 ,K2 ,K3 , ... converges to a matrix K with 

[K]Eu (see remark 5.4.10), then the sequences p(l),p(2),p(3), ... and 
mn 

o(l),o(2),o(3), ... as defined above converge and the limits equal the 

unique optimal actions in the game [K]. 

Now we return to stochastic games. In the remainder of this section 

* a stochastic game fESG(S,a) is supposed to be fixed and let V be the 

value of this game. 

First we recall the notation [G v)] for vE1R2 , which has been defined as 
sa 

the matrix game, where the (i,j)-th entry is equal to 

r(s,i,j)+(1+a)-lLz 1p<t[s,i,j)vt. Then pT.G (v) for psEP(As) is defined 
t= s sa 

as the vector in JRn whose j-th coordinate equals 

z 

r(s,ps,j) + l+a L p(tJs,ps,j)vt. 
t=l 

Analogously for a mixed action a EP(B) of player 2 the vector G (v).o is 
s s sa s 

defined. 

For iEAs, ei denotes the element ps of P(As) with ps(i)=l and ps(i)=O, 

i~i. Similarly, e.EP(B ) is defined. As we always use the notation i for an 
J s 

action of player 1 and the notation j for an action of player 2, no 

confusion will arise. Then e~.G (v) 
i sa 

G (v).e. equals the j-th column of 
sa J 

we now describe the algorithm 

equals the i-th row of G (v) and 
sa 

G (v). 
sa 

for the discounted stochastic game. In 

the algorithm the following sequences are recursively defined. 

V(O), v (1), V (2) f ... E JRZ 

x(s,0), X (s, 1) I X (s,2) f 

ns 
... E JR. , sES 

y(s,O), y (s, 1), y(s,2), 
ms 

... E JR , sEs 

p s (0), p s (1), PS (2) I E P(As), sEs 

as (0), as ( 1), OS (2) 1 E P(Bs), sEs. 



6.2.11. ALGORITHM. 

(i) Choose x(s,0) and y(s,0) such that 

roin (x (s,0)) roax(y(s,0)) and roin(y(s,0)) 

Put Vs(O) := roax(y(s,0)), sEs. 

* 2: v I 
s 

sES. 

Choose p (OJEP(A ) and cr (OJEP(B ) arbitrarily, sES, T:=O. s s s s 
(ii) Take for each sES 

and 

i (s,T)EAs such that y, ( ) (s,T-1) 
J. S,T 

j (s,T)EBs such that x. ( ) (s,T-1) 
J S 1 T 

(iii) Set for each sES 

roax (y (s, T-1)) 

roin (x (s,T-1)). 

-1 
V (T) := roin{roax (T y(s,T-1)), V (T-1)} 

s s 

x(s,T) T 
· = x ( s, T-1) +e. ( ) . G (V ( T) ) 

i s,T sa 

y(s,T) ·= y(s,T-l)+G (V(T)) .e. ( ) 
sa J s,T 

( T -1 ) . p ( T) +e . ( ) 

PS (T) ·= S J. S,T 

T 

(T-1) .cr (T) +e. ( ) 
G (T) ·= S J s, 1 

s 1 

(iv) 1 ·= 1+1 and go to step (ii). 

we next show the following theorems. 

6.2.12. THEOREM. For each sES: 

-1 
lim 1 max(y(s,1)) 

-1 
liro 1 min(x(s,1)) 

1-7-00 1-+«> 

liro v (1) 
s 

* v . 
s 

6.2.13. THEOREM. For each sEs let p5 be a limit point of the sequence 

p (1),p (2),p (3), ••• and 0 a limit point of G (1),cr (2),G (3), ••• 
s s s s - s s s 

Then p=(p 1 , ... ,p 2 ) and O=(o 1 , ... ,cr2 ) are optimal stationary strategies 

for player 1 and player 2 respectively. 
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To prove these theorems, we need the following lemma. 

6.2.14. LEMMA. lim V(T) exists. 
T-><x> 

PROOF. By definition of Vs(T), for each sES, the sequence 

Vs(O),Vs(1),Vs(2), ..• is decreasing. Hence, we have only to show 

that the sequence is bounded from below. We prove by induction that for 

each TEJN0 

(6. 2 .12) * V (T) 2 V 
s s 

for each sEs. 

For T=O we have 

v (0) 
s 

* max(y(s,0)) 2 min(y(s,0)) 2 Vs for each sEs. 

* Suppose now that V s ( T )2 V s for all T5k and all sES, where kEJN. Then 

k 
y(s,k) y(s,0) + I: G (V(T)).e.( ) 

T=l SCI. J S,T 

k 
* * 2 V + I: G (V ) • e . ( ) . 
S T=l SCI. J s, T 

For the mixed action crs(k), we have (see also (6.2.2)) 

k 
* * I: G (V ) .e. ( ) 

T=l SCI. J S 1 T 
k. G (V ) • a (k) • 

SCI. S 

Consequently , 

* * max (y (s,k)) 2 V + k max(G (V ).cr (k)); 
S SCI. S 

but the seond term in the right hand side of this inequality is at least 
* k.Vs by theorem 4.2.4. Hence 

v (k+1) 
s 

-1 min{max((k+l) y(s,k)),V (k)} 2 
s 

for each sES. This completes the proof of the lemma. 

* min{V ,V (k)} 
s s 

[] 



PROOF of theorem 6.2.12.Take sEs. Let V=lim V(T). This limit exists in 
T-t<>o 

view of lemma 6.2.14. 

For TEN, let [K {T)] be them ,n -matrix game [G (V(T))]. 
S S S SCI. 

Then lim K (T) exists by lemma 6.2.14 and equals K :=G (V). 
T-t<>o S S SCI. 

It is obvious that <x{s,T) ,y(s,T); TEJN0 > is a vector system for the 

sequence Ks(l),Ks{2),Ks(3), .... Hence by theorem 6.2.8 we have 

-1 
lim T max(y(s,T)) 
T-t<>o 

-1 
lim T min(x(s,T)) 
T-t<>o 

Val(K). 
s 

Taking the limit in the definition of V (T) and using the above equality s 
we obtain 

v 
s 

min{Val(K ),V} or V ~ Val(K) s s s s 
Val (G (V)). 

SCI. 

This inequality holds for each sES. From lemma 4.2.3 we then infer that 
- * V~V . Conversely from the proof of lemma 6.2.14, we obtain 
- * - * * V=limT._V(T)2:V . So V=V • This implies by theorem 4.2.4 that Val(Gsa(V ))= 

Val(K )=V*, which proves theorem 6.2.12. s s 

PROOF of theorem 6.2.13. By theorem 6.2.9, p and a are optimal mixed 
* s s 

actions in the matrix game [K ]=[G (V )] for player 1 and player 2 s sa 
respectively. This holds for each sEs. The theorem follows now from 

theorem 4.2.4. 

* 6.2.15. REMARK. The vectors V(T) of the algorithm approximate V from 

above. If one wants also an approximation from below, then one can modify 

the iteration procedure in the following way. Start with vectors x(s,O), 

y(s,O) and V~(O) with 

and define 

V' (0) 
s 

V' (T) 
s 

min (x (s,0)) max(y(s,0)) * ~ v 
s 

-1 := max{min(T x(s,T)), V' (T-1) }, 
s 

sES. 
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D 

D 

* Then [v• (T), V (T)] is an estimation interval around Vs whose length shrinks s s 
to zero, when T increases to infinity. 
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6.2.16. REMARK. In section 5.4 we had defined by USG(S,a) the class of 

stochastic games with state space S and interest rate a and for which 

both players have a unique optimal stationary strategy. From theorem 

4.4.11 we have seen that USG(S,a) is an open and dense subset of SG(S,a). 

For games belonging to the class USG(S,a) we can sharpen theorem 6.2.13 

as follows (cf. remark 6.2.10). 

If I'EUSG(S,a), then the sequences p(t)=(pl (t), ••• ,pz(t)) and 

cr(t)=(cr 1 (t), ••• ,crz(t)), t€JN converge to the unique optimal stationary 

strategies of player 1 and player 2 respectively. 

6.2.17. REMARK. Consider a stochastic game for which in each state one 

player, say player 2, is a dummy, i.e. B ={1} for each sEs. Then the 
s 

resulting problem constitutes a Markov decision problem. 

Without loss of generality we may suppose that all payoffs are negative. 
m 

Take y(s,O)=Om ElR s and x(s,O)=OElR. 
s 

Then the algorithm yields (T~1): 

where Vt(T) 

This scheme 

-1 
Vs(t) = max(t y(s,t-1)) 

-1 1 z 
T yi (s,t) = r(s,i,1) + l+a L p(tjs,i,1).Vt(t), i€{1, ••• ,m} 

t=l s 

-1 T 
T L Vt(k). 

h k=l. 'l . s ows simi arity with the successive approximation method for 

solving Markov decision problems (cf. Howard (1960)), but the convergence 

rate may be slower. 

In Markov decision theory, the following scheme is used: 

V (T) 
s 

-1 T max(y(s,t)) 

-1 
T Yi (s,t) 

z 
r(s,i)+ Lp(tjs,i).V (t-1), iE{1, .•. ,m} 

l+a t=l t s 

which assures a geometric rate of convergence. 

In a similar way as for that algorithm, it can be shown for our algorithm 

when applied on Markov decision problems, that for t sufficiently large 

only actions i(s,t) are chosen for which p(t)=(i(l,1), .•. ,i(z,1)) is an 

optimal stationary strategy. Moreover, if we change our iteration scheme 

somewhat by taking 
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V (T) 
s 

-1 
·=min{max(T y(s,T-1)),V (T-1),max(G (V(T-1)).e.( ))}, 

s sa J s,T 

then, in applications to Markov decision problems our algorithm and the above 

mentioned algorithm for Markov decision problems give the same iteration 

scheme. 

For stochastic games where player 1 has an optimal pure stationary 

strategy, this modification of the iteration scheme also gives an 

improvement of the convergence rate. In that case the convergence rate 

becomes geometric. For general stochastic games no improvement may be 

expected. 

6.2.18. REMARK. Shapiro (1958) obtained an a priori estimate of the 

-1/(m+n+2) 
convergence rate of 0(T ) of the Brown-Robinson scheme for 

solving an m,n-matrix game. 

In a similar way as Shapiro did, we can prove for a stochastic game that 

for each sES 

-1 -1 
max(T y(s,T))-min(T x(s,T)) 

where M =(a+l)a-1 max r (s,i,j). 
a 

s,i,j 

Hence, in spite of the fact, that during the iteration also the limit 

matrix is approximated, the a priori convergence rate is no worse than 

in the Brown-Robinson procedure. This shows that our algorithm may be a 

competitor of the usual successive approximation algorithms (cf. section 

6.1). The next table indicates that the possibilities of our iteration 

scheme are better than the possibilities of the Brown-Robinson procedure 

of being a competitor of linear programming in solving a matrix game. 

Namely our iteration scheme needs z times the number of computations 

of the Brown-Robinson procedure, while the successive approximation method 

needs z times the numberof iterations times the number of computations 

of solving an LP problem. 
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LP/succ.approx. Brown-Robinson/our algorithm 

matrix game to solve at each step to compute the 

1 dual pair of LP maximum of an m-vector 

of size m,n problems and the minimum of an 

of size m,n n-vector 

stochastic game at each step, to solve at each step to compute the 

of size m s'ns a dual pair of LP maximum of an m -vector and s 
in state s, problems the minimum of an n -vector s 
sE{1, ... ,z} of size m ,n , 

s s for all sE { 1, ... , z}. 

for each sE { 1, .•• , z} 

6.2.19. REMARK. The algorithm can also be applied when we are dealing with a 

stochastic game which is not exactly known in advance, but for which at 
each stage TE:JN an approximation <rT,pT,aT> is given, with 

lim <rT,pT,aT>=<r,p,a>. 
T-+«> 

At stage T the approximation <r1 ,p1 ,aT> should be used. Also in this case 

the algorithm will converge to the value of the game <r,p,ci>. Furthermore, 

taking limits, optimal stationary strategies for both players are obtained. 

The reason why also in this case the algorithm can be applied, is due 

to the fact that the value function on SG(S,a) is a continuous one 

(theorem 4.3.4) and the fact that the multifunctions 01 and 02 are upper 

semi-continuous on SG(S,a) (cf. theorem 4.3.8). 

6.3.3. A FINITE ALGORITHM FOR THE DISCOUNTED SWITCHING CONTROL STOCHASTIC 

GAME. 

In this section we describe an algorithm for the switching control 

stochastic game, i.e. a game for which in each state only one of the players 

governs the transitions, where not necessarily in each state the same player 
governs the transition. This model is an extension of the model of 

Parthasarathy & Raghavan (1981). They considered stochastic games for which 

in each state the same player governs the transitions. 

The algorithm presented here, consists of a finite sequence of linear 

progranuning problems. The linear programs involved in each step, correspond 
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to the linear program of algorithm 6. 1. 5 which solves a "one player control" 

stochastic game. 

In proving that this algorithm yields the value and optimal stationary 

strategies for the both players the orderfield property arises in a natural 

way. The validity of the orderfield property for this model is first shown 

by Filar (1981). 

Further, in the proof the matrix lemma of Parthasarathy & Raghavan 

(1981) plays a crucial role. 

6.3.1. DEFINITION. A discounted switching control stochastic game is a game 

r for which in each state sES either 

(1) p(tls,i,j)=p(tls,i,j) for all (j,j)EB XB , all tES and iEA s s s 
or 

(2) p(tls,i,j)=p(tls,i,jl for all (i,i)EA xA , all tES and jEB s s s 
In case (1) we say that player 1 controls the transitions and in case 

(2) player 2 controls the transitions. 

The transition probabilities for a state s where player 1 (player 2) 

controls them are denoted by p(t ls,i) (p(tls,j)). 

The set of states where player 1 (player 2) controls the transitions 

is denoted by s 1 (S2 ). 

Before we give the algorithm, we investigate what happens if a player 

fixes the part of a stationary strategy corresponding to the states where 

he controls the transitions. 

Let player 1 fix {p IP EP(A ), sEs 1 }. Then associate with s s s 
{p IP EP(A ), sESJ} the game r({p IP EP(A ), sEsl}) in the following way: s s s - s s s 
S:=S; for sEsl, As:={l}, B :=BI r(s,1,j) := L r(s,i,j)p (i)=r(s,p ,j) and 

s s iEA s s 
s 

p(tls,1,j) :=p(tJs,p ) ; for sEs2 , A :=A , :B =B , s s s s s 
p(tls,i,j)=p(tls,j). So f'c{p IP EP(A ), sEs 1 }), 

s s s 

r ( s ' i , j ) : =r ( s , i , j ) and 

sometimes abbreviated to 

r ( {.}) ' is a "player 2 control" stochastic game as discussed in algorithm 

6.1.5. 

Observe that if, after fixing {p IP EP(A ), sEs1 }, the players play s s s 
the game f({.}), they restrict themselves in their possibilities of choosing 

strategies. Namely their strategies in f({.}) cannot depend on the actual 

outcomes of the chance experiments corresponding to {p IP EP(A ), sES}. 
s s s 
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However, along the same lines as the proof of theorem A.2.3 it can be shown 

that, after fixing {p IP EP(A ), sEs 1 }, neither player 1 nor player 2 can 
s s s 

do better than concentrating upon f({.}). 

We now state the algorithm and then show that this algorithm solves 

in a finite number of iterations the discounted switching control stochastic 

game. 

6.3.2. ALGORITHM. 

(i) 

(ii) 

Put T=O and choose p (O)EP(A ), sEs 1 as an extreme optimal action 
s s 

of the matrix game [G (o )] (cf. theorem A.1.9). 
sa z 

Put T:=T+l. 

Solve f({p (T-1) IP (T-l)EP(A ) , sEs 1 }J with the following LP 
s s s 

problem (variables vs' sES and xs(i), iEAs and sEs 2 J 

z 
max l: v 

s=l s 

subject to 

r(s,ps(T-1),j) + 

l: r(s,i,j)xs(i) 
iEA 

s 

l: 
iEA 

s 

x {i) 
s 

1, 

z 

l+a 
l: p(tls,p (T-1)) .V ~ v s' t=l s t 

z 
+ -- l: p(tls,j) .vt ~ v s' 1+a 

t=1 

Define v(T) as the optimal value of this program. 

jEB I 
s 

jEBs, 

iEA 
s' 

sEs 1 

s€s2 

sEs2 

(iii) If Val(GsJv(T)))=vs(T) for each sEs 1 , then the algorithm stops; 

else for sEs 1 , choose ps(T) such that ps{T) is an extreme optimal 

action of the matrix game [G (v(T))] for player 1. Return to (ii). 
sa 

We will prove that algorithm 6.3.2 stops after a finite number of 

iterations. For this purpose the following lemma is needed. 



6.3.3. LEMMA. For T=l,2, ••. we have v(T)Sv(T+l) Furthermore, if 

Val(G (v(T)))rv-(T) for some s€S1,then V(T)<v(T+l). sa s 

PROOF. Since the LP problem in step 2 coincides with algorithm 6.1.5 we 

have by the result of Parthasarathy & Raghavan (1981) that 

v(T) = Val(f({p (T-1) IP (T-l)EP(A ), s€s 1})), so s s s 

(6.3.1) v (T) = Val (G (v (T))), s sa 

and 
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(6.3.2) 
1 z 

v (T) = min {r (s,p (T-1) ,j) + -1- i:: p <tl s,p (T-1)) .vt (T)}, sEs1 
s 'EB s +a t=l s 

J s 

From the definition of ps(T), we get by (6.3.2): 

1 z 
v (T) S min {r(s,p (T),j) + V i:: p(tls,p (T)).vt(T)}, 

s j€B s a t=l s 
s 

(6.3.3) 

Let for s€s2 , ps be optimal in GsJv(T)). Let the stationary strategy p be 

such that ps=ps, sEs2 and ps=ps(T), s€s1 . 

Then from (6.3.1) and (6.3.3) it follows that for every pure stationary 

strategy aP of player 2 we have: 

v(T) $ r(p,aP) + -- .P(p,aP) .v(T) 
l+a 

which by lemma 4.2.3 implies: 

(6.3.4) 
~ p 

V(p,a-) ~ v(T), p 
all a €PSST2. 

But the 11 s 2-part" of p is a strategy for player 1 in the game 

f'({p (T) IP (T)€P(A ) , sEs1}l, for which moreover (6.3.1) and (6.3.3) hold, s s s 
so 
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v(T+l) va1cf({p (T) 
s 

p ( T) EP (A l , sEs 1 } ) ) 2 inf V (p, v) 
s s 

vEsT2 

min V(p,crP)~V(T), 

crpEPSST2 

which proves the first part of the lemma. 

If Val(G (v(T)))>v-(T) for some sEs 1, then in (6.3.4) the inequality 
§a s 

sign holds (also by lemma 4.2.3), so in this case v(T+l)>v(T). 

6.3.4. THEOREM. Algorithm 6.3.2 stops after a finite number of iterations. 

PROOF. If at T the algorithm does not stop, then by lemma 6.3.3 

Valcf({p (TJIP (T)EP(A), sES})) s s s l 
V(T+l) > 

v(T) = Val(f({p (T-1) IP (T-l)EP(A), sEs 1})). s s s 

But this implies that for each T ,kEJN.·with T 7 k: 

(6. 3 .5) {p (T) IP (T)EP(A ) , sEs 1} ~ {p (T+k) IP (T+k)EP(A ) , sEs 1}. s s s s s s 

Now we invoke the matrix lemma of Parthasarathy & Raghavan(1981, lemma 

4.1). This lemma says that an extreme optimal action for player 

matrix game of payoff type [r. ,+f.] with pure action sets A and B 
l.J l. 

in a 

respectively, is also an extreme optimal action for player 1 in some 

subgame [r .. ] with pure action sets A and B, with ACA. Application of 
l.J 

the matrix lemma to step (iii) of our algorithm means that for each 

state sES and each TEJN an extreme optimal action will be chosen of some 

matrix subgame [r(s,.,.)] with pure action sets As(T) and Bs respectively, 

where A (T)CA . But, since there are a finite number of different subsets 
s s 

A (T) of A and since a matrix game has a finite number of extreme s s 
optimal actions (Shapley & Snow (1950), cf. theorem A.1.9), we see that 

for any sES and T21 the action ps(T) is chosen from the same finite set. 

Combination of this observation with (6.3.5) yields the theorem. 

We now prove that when the algorithm stops, we have a solution of the 

switching control stochastic game. 

D 

0 



6.3.5. THEOREM. If algorithm 6.3.2 stops at the ,-th iteration, then v(T) 

equals the value of the game. 

PROOF. Let the algori tlun stop at the T-th iteration. 

Then from (iii), we derive vs(T)=Val(Gsa(v(T))), sEs 1 . 
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Since from the LP problem corresponding to f({p (T-1) Ip (T-l)EP(A), sEs 1}), 
s s s 

we already have v s (T) =Val (Gsa(v (T))), sEs 2 , we see that v s (T) ~Val (Gsa(v (T))), 

all sES. Hence by theorem 4.2.4 v(T) equals the value of the game. 

6.3.6. REMARK. Let the algorithm stop at the T-th iteration step, Then 

clearly optimal stationary strategies can be constructed from the matrix 

games [ (T))], sES (cf. theorem 4.2.4). For player 1 an optimal 

stationary strategy can directly be derived from the LP of step (ii) at 

iteratj_on step T. Namely, let (~,v(T)) be an optimal solution of this LP; 

0 

then it follows that the stationary strategy p, defined by (1-1), sEs 1 

and ps= (1) ,... (ms)), sEs 2 , is optimal for player 1, because is an 

optimal action in the matrix game [Gsa(v (T))], sES and v (T) is the value of 

the game. 

6.3.7. REMARK. The orderfield property for the class of discounted switching 

control stochastic games, as shovm by Filar (1981), can be alternatively 

proved by the alc;ori thm. It follows by a result of Weyl ( l 950) that both 

the extreme optimal actions of a matrix game and the va.lue of that game 

are in the same ordered field as the entries of the matrix .. This clearly 

holds also for the solution of a feasible linear programming problem with 

bounded solution. 'rhen we can show by induction, that for each r both 

v(T) and each ps(T), , are in the same ordered field as the parameters 

of the game. Hence by the theorems 6.3.4 and 6.3.5 this results in the 

orderfield property. 
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Part III. Average reward stochastic games. 





7. Introduction and preliminaries. 

7.1. HISTORICAL REVIEW. 

In definition 2.3.2 we defined the two-person zerosum stochastic game 
with the average reward as criterion. The notation introduced in part I 

will again be used. 

In part III we consider only two-person zerosum stochastic games 

with finite state spaces and finite action spaces for the two players, and 

when we speak of a stochastic game we tacitly mean a game of this kind. 

Bewley & Kohlberg (1978) have indicated that there are several ways 
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of defining the average payoff, corresponding to a pair of strategies µ and 
\! and a starting state s. For instance when player 1 takes account of his 

worst case, one could take 

k 
lim inf lE {k1

1 l: r(z' ,x' ,Y' ) } 
k->oo s + T=O µv µv µ\! 

or 

or 

lim inf lE {-1a l: (-1-) 'r (z' x' y' ) } 
a-+O s +a T=O l+a µv' µv' µv 

or 

lE {lim inf ~ l: (-1-J'r(z' x' y' )} 
s a-+O l+a -r=O l+a µv' µv' µv 

Obviously there is no reason why lim inf should not be replaced by 

lim sup or any convex combination thereof. Fortunately, Mertens & Neyman 

(1981) have shown that for any stochastic game with finite state and action 

spaces, both players have, for each 8>0, E-optimal strategies with respect 
to each "reasonable" definition of the average reward payoff, including those 

given above. 
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In defining the average payoff, the zerosum aspect of the game should 

not be disturbed, in the sense that if W is defined as the average 
S\J\! 

payoff to player 1, then the payoff to player 2 should be defined as -W 
S\J\! 

This implies that, in general, the definition of the average payoff is 

asymmetric with respect to the players. A symmetric definition may lead to 

the strange situation that both players may profit from cooperating though 

the immediate payoffs are zerosum. For instance, suppose that the following 

matrix game [~ -~J is repeatedly played. Suppose that the players 1 and 2 

respectively play the strategies µ and v which are both defined as: play nn 

times action 1, followed by (n+l)n+l times action 2, etc. Then it can be 

verified that 

and 

k 

lim inf lEs {k!l i:: 
k-t<» T=O 

-1. 

Let r. (ZT ,XT ,YT ) be the stochastic variable denoting the payoff to player 
J µv µv µv 

j, j€{1,2}, at decision epoch T. Then the use of the symmetric definition 

"lim sup" for both players would lead to: 

w (1) 
sµv 

1 k T T T 
·= lim sup Es{k+l r r 1 (Z ,x ,Y ) } 

k->a» T=O µv µv µv 

and 

w (2) 
sµv 1. 

This shows firstly that the zerosum property has vanished in the limit case, 

and secondly that both players realise profit in cooperating .. 

As already defined in section 2.3 we adopt the following definition of 

the average reward 

(7 .1.1) 
k 

w ·= lim infE {k\ i:: r(ZT ,XT ,YT )}. 
sµv k->a» s + T=O µv µv µv 

which equals the payoff to player 1. The payoff to player 2 equals by 

definition -W 
S\J\! 
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TWo-person zerosum stochastic games with the average reward as criterion 

(often called undiscounted stochastic games) were introduced by Gillette 

(1957). He considered games with perfect information (in each state one of 

the players has only one action available), and irreducible stochastic 

games (games where for each pair of stationary strategies the associated 

stochastic matrix P(p,cr) has a single ergodic class and no transient states). 

However, Gillette used an incorrect extension of the Hardy-Littlewood 

theorem, in showing that for these models both players possess optimal 

stationary strategies. This was pointed out by Liggett & Lippman (1969). 

Blackwell & Ferguson (1968) used a slightly modified version of an 

example of Gillette to show for undiscounted stochastic games that, in 

general, the players need not possess optimal stationary strategies. What is 

more, for this example called the big match, one of the players has no 

E-optimal strategy within the class of semi-Markov strategies for E>O small 

enough(cf. example 3.3). 

For a long time it was an open question whether average reward 

stochastic games with finite state and action spaces always have a value. 

Only about 1980 this question was answered in the affirmative, independently 

by Monash (1979) and Mertens & Neyman (1981). Before that, results for 

special cases of undiscounted stochastic games were obtained by several 

authors. The emphasis was laid mainly on the existence of optimal stationary 

strategies for the players. Gillette's paper has already been discussed. 

Hoffman & Karp (1966) have also treated irreducible stochastic games. Their 

approach is based on results of Markov decision theory. 

Kohlberg (1974) treated so-called "repeated games with absorbing 

states". These are games where all but one of the states are absorbing, and 

where the remaining state is transient or recurrent, depending on the 

strategies played. The big match (example 3.3) belongs to this class of 

games. Kohlberg showed that these games have a value which can be found by 

considering the T-step game and letting T tend to infinity. It was later 

discovered that this paper of Kohlberg indicated the way in which in the 

general case the existence of the value can be shown. 

Stern (1975) has proved the existence of the value and the existence 

of optimal stationary strategies for both players for games having the 

property that a state sES exists such that for each pair of stationary 

strategies this state can be reached from any other state. Stern also 

considered games for which only one of the players governs the transitions. 
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He was able to prove the existence of the value and of optimal semi-Markov 

strategies. In a nice way this last model is also studied by Parthasarathy 

& Raghavan (1978, 1981). They showed that the value of such a game lies in 

the same Archimedean field as the parameters of the game, and that both 

players have optimal stationary strategies also lying in that field (these 

results do not hold in general). Furthermore the optimal stationary 

strategy of the player controlling the transitions can be chosen in such a 

way that it is also optimal for the discounted stochastic game with 

interest rate a for all values of a sufficiently close to 0. 

A variant of the model of Parthasarathy & Raghavan is studied by 

Filar (1979). He treated the switching control case, i.e. games for which 

in each state one of the players governs the transitions but not 

necessarily the same player has this privilege in every state. Filar 

obtained results analogous to the above mentioned results of Parthasarathy 

& Raghavan. 

Federgruen (1978) has extended methods used in Markov decision theory 

to stochastic games. One class of games he studied is the class of games 

where, for each stationary strategy of one of the players, the other player 

has a stationary strategy such that the associated Markov matrix of one

step transition probabilities is irreducible. This condition is an extension 

of the communicatingness property as treated in Bather (1973). Another 

class of games considered by Federgruen consists of games where for each 

pair of stationary strategies p and a the associated stochastic matrix 

P(p,o) has the same number of ergodic classes. In both cases he proved 

that the value exists and that both players have optimal stationary 

strategies. He obtained his results by showing that lim a (l+a) -lv exists 
-1 a~o a 

where V 
a 

is the value of the (1+a) -discounted game, and using this fact 

in an appropriate way. In fact Federgruen proved his results for the 

N-person game. Bewley & Kohlberg (1976a, 1976b, 1978) exposed in an elegant 

way some of the relationships between the discounted game, the T-ste~ game 

and the undiscounted game. In the next section we shall explain their use 

of the field of real Puiseux series and mention some of their results, 

which will be used in several sections of part III of this monograph. 

Regarding extensions of the model of the two-person zerosum games to N

person stochastic games we mention the work of Rogers (1969), Sobel (1971) 

and Federgruen (1978). 
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7.2. THE LIMIT DISCOUNT EQUATION. 

In this section we first introduce the field of real Puiseux series. 

As Bewley & Kohlberg (1976a, 1978) have shown this field appears to be a 

useful tool for analysing stochastic games. 

Formally, let for a positive integer M 

series 

K 
I: ck0k/M I K is an integer, ckEJR and such that the 

k=-oo 

K k/M 
I: ck -r converges for all sufficiently large real 

k=-00 

numbers T}. 

Here 0 represents an arbitrarily large real number. 

Thus the members of FM are power series in 0l/M. 

Addition and multiplication in FM are defined in a way that corresponds to 

the same operations on power series. The ordering on FM reflects the 

notion that 0 represents an arbitrarily large real number. To be more 

specific 

Kl 

I: 
k=-oo 

Kl 

I: 
k=-CO 

K 

I: 
k=-00 

c 0k/M + 
K2 

~0k/M 
max (K1 ,K2 ) 

(ck+~) 0k/M I: l: k 
k=-oo k=-oo 

ck0k/M. 
K2 

~0k/M 
K1+K2 

c.d .) 0k/M L: I: ( I: 
k=-oo k=-oo i+j=k 

i J 

C 0k/M 0 . . 0 * k > if and only if ck*> , where k is the largest 

integer k, such that ckfO. 

Once can easily verify by elementary analysis that FM is an ordered 

field. 

Let F:= U F , then F is also an ordered field and F is called the field 
. M=l M . K k/M 

of real Puiseux series. If w= I: c 0 EF, then <jl (w) , for TEJR +, denotes 
K k/M k=-oo k T 

the sum I: ck T • Sometimes we write w (0) for an element of F, in which 

case w (-rf';=epresents <P (w). 
T 
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The following facts are clear: if wEF, then $,(w) is well defined for 

sufficiently large T, and w>O if and only if $,(w)>O for all sufficiently 

large T. 
* k * For wEFM the valuation of w is defined as ~(w) := °M"""' where k is the 

largest integer k such that CkFO. 

The expression o(0y) and 0(0y) will be used to denote an element of F 

of respective valuations less than y and at most y. 

Fz denotes the z-fold Cartesian product of F. 

7.2.1. DEFINITION. For a two-person zerosum stochastic game with finite 

state and action spaces the set of equations 

(7. 2.1) x 
s 

z 
Val(r(s,.,.) + --:y E p(tls,.,.)xt), 

A xB 1+0 t=1 
sEs 

s s 
z 

where x=(x1,x2 , .•• ,xz)EF, is called the limit discount equation. 

Heyl (1950) showed that if the elements of a matrix belong to a certain 

ordered field, then the value of the corresponding matrix game also belongs 

to this field. Hence, if xEFz then the right hand side of (7.2.1) is an 

element of F. The equations (7.2.1) will be abbreviated to 

(7 .2.2) x s Val (Gs0 (x)), 
A XB 

s s 

sES. 

Note that for 0=T, (7.2.1) represents the optimality equation for the 

discounted stochastic game, with interest rate 1/T. Bewley & Kohlberg 

(1976a) have shown that for a matrix game [h(.,.)] with entries belonging to 

F it holds that 

$ T (Val (h ( • , • ) ) ) Val($,(h(.,.))). 

So a solution to (7.2.1) would solve the discounted stochastic game for all 

sufficiently small interest rates. 

Further one should note that a mixed action for player 1 in an 

m,n-matrix game with entries in F is of the form 

m 0 
E 

k=-"" 
f 0k/M where MElN, k , f 0EP (lNm) , fk E1Rm such that E fk (i) =0 

i=l 

·-kEJN, and for each iEJN and each -KEJN: 
m 

0 
E fk(i)0k/M~O. 

k=K 

for each 



0 
1 . h ld . d . '"' Gk/M 2 Ana ogous properties o for a mixe action ~ gk- of player . 

In the notation Val (h(.,.)), where h(.~".')00has entries in F and A 
A xB 

s s 
s 

and Bs are finite sets, we implicitly assume that the value is taken with 

respect to the Puiseux mixed actions as mentioned above. f will denote 

such an action for player 1 and g for player 2. 

Bewley & Kohlberg ( 1976a) proved the following lemma . 

7.2.2. LEMMA. Equations (7.2.1) have a unique solution x*EFz, where for 

* * * * 
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each sES, <l>(xs)::::l. Furthermore <PT(x ):=(</iT(x 1J, ... ,</iT(xz)) is the value 

of the discounted game with interest rate 1/T for all sufficiently large 

T. If for sES fs is an optimal action for player 1 in the matrix game 

[G 8 cx*J], thenp =(<P (f 1), ... ,q, (f )) is an optimal stationary strategy s- T T T Z 

for player 1 in the discounted game with interest rate 1/T, for all 

sufficiently large T. Similar results hold for player 2. 

For a stochastic game let FV (T) Em.z, with TE:JN, be the value of the 

finite horizon game with D ={0,1, ... ,T-1} as set of decision epochs. As 
T 

Shapley (1953) already remarked, we have 

(7. 2.3) FV (T+l) 
s 

Val 
A XB 

s s 

z 
(r(s,.,.) + i:: p(tls,.,.).FVt(T)) 

t=l 

The matrix game in the right hand side of (7.2.3) will be abbreviated to 

[G (FV(T))]. 
s 

The following result of Bewley & Kohlberg (1976a) is essential in the 

theory of stochastic games. 

-1 * -1 
7.2.3. LEMMA. lim T <PT(xs) and lim T FVs(T) exist and are equal for 

all sEs. 
T-700 T-+<» 

Clearly the limit in the above lemma is an obvious candidate to be the 

value of the average reward game. As already mentioned, Mertens & Neyman 

(1981) proved that indeed this limit equals the value of the average reward 

stochastic game, while Monash (1979) showed this fact for a weaker defini

tion of the average reward. 
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-1 -1 * 7.2.4. LEMMA. Let gs=lim T FVs(T)=lim T $T(xs). Then g=(g1 , •.• ,gz) equals 
T-+co T-+co 

the value of the average reward stochastic game. 

Using the lemma's 7.2.2 and 7.2.3 Bewley and Kohlberg were able to 

prove nearly all the earlier results for stochastic games. The following 

lemma stands central in their proofs (Bewley & Kohlberg (1978)). 

7.2.5. LEMMA. Let x*EFz be the solution of the limit discount equation. 

If players 1 and 2 both have real actions p EP(A ) and o EP(B ) respectively, 
* 0 s s s s * 

which guarantee them Val(Gs0 (x ))+o(G) in the matrix games [Gs8 (x J], for 

all sES, then the stationary strategies p=(p 1 ,p 2 , ..• ,pz) and o=Co 1 ,o2 , ••• ,oz) 

are optimal in the undiscounted stochastic game. 

* * In part III x or x (8) will always denote the solution of the limit 

discount equation. 



8. Structural properties of undiscounted stochastic games. 

8.1. STOCHASTIC GAMES AND OPTIMAL STATIONARY STRATEGIES. 

In this section we characterize the class of stochastic games where 

both players have optimal stationary strategies for the average reward 

criterion. Most of the results have been derived from Vrieze (1979a, 1981b). 

First we define the Cesaro limit of a stochastic matrix. For a two-
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person zerosum stochastic game with finite state and action spaces, let p 

and a be stationary strategies for the respective players and let P(p,o) 

be the corresponding stochastic matrix. Then the Cesaro limit Q(p,o) of 

P(p,o) is defined as 

k 
(8 .1. 1) Q(p ,a) := T lim 1 l: P ( p , a) , 

k->«> k+ r=O 

o T T-1 where P (p,o)=Izz and P (p,o)=P(p,o) (P (p,o)) for r?:l. 

It is well-known (e.g. Kemeny & Snell (1961)) that Q(p,o) exists for 

each pair \p,o), and that Q(p,o) has the following properties: 

(8. 1. 2) Q(p,o) .P(p,o) P(p,o)Q(p,o) Q(p,o) .Q(p,o) Q (p,o). 

Observe that the (s,t)-th element of Q(p,o) equals the mean number of times 

that the system is in state t when state s is the starting state and the 

players choose p and a as their strategies respectively. 

Furthermore, by a suitable renumbering of the states, P(p,o) can be 

written as: 

Pll (p,o) 0 I 0 

I 
I 

(8. 1. 3) P (p ,o) 0 P (p' o) I 0 yy 
----------- -~------

I 
p 

y+l 1 (p ,o) p 
y+l Y(p,o) I p 

y+l y+l (p ,o) 

In (8.1.3) Pnn(p,o), nE{l, ... ,y}, is a square matrix corresponding 

to the n-th ergodic class of the Markov chain associated with P(p,o). 
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The rows below the dotted line correspond to the 
-1 

(Iy+l y+l-P y+l y+l (p,cr)) exists 

transient states, and 
T and equals L P 1 1 (p,cr), hence this 

T=O y+ y+ 
matrix has non-negative elements. Then Q(p,cr) has the form: 

Qll (p,cr) 

(8.1. 4) Q (p ,cr) 0 

Qy+l 1 (p ,cr) 

0 

I 
Qy+1 y (p,crl I 

0 

0 

0 

th where Q (p,cr), nE{l,2, ... ,y}, is a square matrix corresponding to then nn 
ergodic class of the Markov chain associated with P(p,cr). Each row of 

Qnn(p,o) is identical and equals the unique invariant distribution of the 
Markov subchain corresponding to it. Further each element of Qnn(p,cr) is 
strictly positive. The rows below the dotted line correspond to the 

transient states. The matrices Q 1 (p,cr), nE{l, ... ,y}, reflect the y+ n 
probabilities with which the system vanishes from the transient states into 

the different states of ergodic class n. 

It is well-known (cf. Kemeny & Snell (1961)) that 

(8.1. 5) Qy+l n (p,cr) 

Observe that the (s,t)-th element of the matrix 
-1 

<\+l y+l-Py+l y+l(p,cr)) .Py+l n(p,cr) equals the probability that, starting 
in the transient state s, the system ever reaches ergodic class n with state 

t as entry state. 

As introduced in section 2.3, we denote the average reward for a pair 

of strategies (µ,v) by Wµv (a z-vector). Clearly, for a pair of stationary 
strategies (p,cr) we have: 

(8.1.6) w 
pcr 

k 

lim inf 1 L PT(p,cr).r(p,o) 
kc+oo k+l T=O 

Q(p,cr) .r(p,o). 

Observe by 8.1.4. that Wpcr is constant on each ergodic set of P(p,o). 

8. 1. 1. LEMMA. If gE:IR.2 , wE:IR.2 and a pair of stationary strategies are such 

that: 

(8.1. 7) P(p,cr) .g 2 g 
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and for each state s recurrent with respect to P(p,a): 

z 
(8.1.8) r(s,ps,as) + ~ p(tls,p ,a )wt 2 ws+gs 

t=l s s 

then 

(a) In (8.1.7) the equality sign holds in the components corresponding to 

the recurrent states of P(p,a) and g is constant on each ergodic set. 

(b) W 2 g and W = g if and only if P(p,a).g=g and in (8.1.8) for pa pa 
each recurrent state s the equality sign holds. 

The ler.mJa remains true i-rilen all inequality signs are reversed. 

PROOF. (a) Assume that P(p,a) has the form (8.1.3). Then, with respect to 

the n-th ergodic class, (8.1.7) can be written as: 

(8. 1. 9) Pnn (p,a) .g(n) 2 g(n), 

where g(n) equals the part of g corresponding to the states of the n-th 

ergodic class. 

Now suppose that in (8.1.9) the inequality sign holds in at least one 

component. Then after multiplying (8.1.9) by Qnn(p,a) we would obtain 

Qnn(p,a).g(n)>Qnn(p,a).g(n), which obviously is a contradiction. (The 

inequality mentioned before is a consequence of the following arguments: 

Qnn(p,a).Pnn(p,a)=Qnn(p,a), each element of Qnn(p,a) is strictly positive 

and Qnn(p,a) has identical rows.). Hence in (8.1.9) the equality sign holds, 

which proves the first part of (a). 
2 

From Pnn(p,a).g(n)=g(n) we deduce Pnn(p,a).g(n)=Pnn(p,a).g(n)=g(n), 

and next P~n(p,a).g(n)=g(n) for each TEN. But then also Qnn(p,a).g(n)=g(n) 

(see (8.1.1)). Since Qnn(p,a) has rowsum 1 and only strictly positive 

elements, it follows from this last equation that g(n) has identical 

components . 

(b) Using part (a) of this lemma we obtain after multiplying (8.1.8) 

with respect to the n-th ergodic class, by Qnn(p,a): 

(8. 1. 10) g(n). 

Here rn(p,a) is the part of r(p,a) corresponding to the n-th ergodic class. 

For the transient states we have (cf. (8.1.S)): 
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(8.1.11) w (y+l) == 
pa 

y 
I Qy+l n(p,a) .rn(p,a) 

n=l 

y -1 
I (I 1 1-P (p,a)) .P n(P,a).Qnn(p,a).rn(p,a) n=l y+ y+ y+l y+l y+l 

-1 y 
2 (I 1 y+l-Py+l y+l (p,a)) . I Py+l n(p,a).g(n) 

y+ n=l 

2 (Iy+l y+l-Py+l y+l (p,a))-1. <\+1 y+l-Py+l y+l (p,a)) .g(y+l) 

g(y+l). 

In the last step of (8.1.11) we have used the fact that with respect to the 

transient states (8.1.7) can be written as: 

y 
IP 1 (p,a).g(n) 2 (I 1 -P y+l(p,a)).g(y+l). n=l y+ n y+ y+l y+l 

Now (8.1.10) and (8.1.11) show the first part of (b). 

Concerning the second part of (b), suppose Wpa=g. Now, if in (8.1.8) 

the inequality sign holds for some state s belonging to the n-th ergodic 

class then this is also the case in (8.1.10), which is a contradiction. 

Furthermore, from W =Q(p,a).r(p,a), P(p,a).Q(p,a)=Q(p,a) and W =git po po 
follows that P(p,o).g=g. On the other hand, suppose that P(p,a) .g=g and that 

in (8.1.8) the equality sign holds for each recurrent states. Then one can 

verify that in (8.1.10) and (8.1.11) the equality signs also hold. This 

proves part (b) of the lemma. 

8. 1. 2. COROLLARY. If gElR2 and wEJR2 are such that 

(8.1.12) 

and 

(8.1.13) 

Val 
A xB 

s s 

z 
(I p(tls,.,.)gt) 
t=l 

z 
(r(s,.,.)+ I p(tls,.,.)wt) 

t=l 

then for some stationary strategy p of player 1 we have infW~ 2g. 
v pv 

(Here Els is the finite set of extreme optimal actions ot player 1 for 

the matrix game mentioned in (8.1.12) .) 

D 
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~ 

PROOF. Let p be optimal for player 1 in the matrix game 
zS 

[r(s,.,.)+ Z p(tJs,.,.)w] on E1 xB . Let p=(p1 , .•• ,p2 ) and let op be an 
t=l t s s 

arbitrary pure stationary strategy for player 2. Then lemma 8.1.1. can be 

applied to g, w and (p,op) yielding W ~g. Now corollary 3.5 proves the 
pop 

corollary. 

* M k/M 
If x (8) = Z ckG is the solution of the limit discount equation, with 

k=-00 
ck=(ckl'ck2 , ... ,ckz)' then in section 7.2 we have seen that cM equals the 

D 

value of the average reward stochastic game. In the sequel this value will 
M 

be denoted by g and the expression z c Gk/M will always denote the solution 
k=-,oo k 

of the limit discount equation. 
z 

[G (v).J with vE.1R2 denotes the matrix game s [r(s,.,.)+ l: p(tjs,.,.)v]. 
t=l t 

The following lemma is well-known (cf. Federgruen (1978)). We give a proof 

without using the Puiseux series expansion of the solution of the limit 

discount equation. 

8.1.3. LEMMA. For a two-person zerosum stochastic game with finite state and 

action spaces the following two assertions are equivalent: 

* * (i) g=g .1 2 , with g EJR, and both players have optimal stationary 

strategies. 

(ii) there exist WiEJR2 and g * ElR, such that 

* ws+g Val (G (w)), 
s A xB 

s s 

sES. 

PROOF. Suppose that (i) is true. Let p be optimal for player 1. Then by the 

theorems 3.4 and A.2.6 it follows that there exists a w(l)EJR2 such that for 
* ~ z I ~ each sES: g +w (l)=min {r(s,p ,j)+ Z p(t s,p ,j)wt(l)}. But then 

s j s t=l s 

* (8.1.14) g +ws(l) 5 Val (G (w(l))). 
s 

A xB 
s s 

Using an optimal stationary strategy for player 2 gives analogously the 

existence of a vector w (2) ElR2 such that 

* (8.1.15) g +ws(2) ~ Val (G (w(2))). 
s 

A xB 
s s 

Since also w(l)+o.1 2 , with oEJR, satisfies (8.1.14) we may assume 

w(l)Sw(2). Then for each sES: 
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(8.1.16) 

Since the Val-operator is monotonous and Lipschitz continuous with constant 

1 (cf. Lemma A.1.8) the inequalities (8.1.16) guarantee the existence of a 

vector w with w(l)~w~w(2) such that (ii) holds. 
z 

* I * Now suppose that (ii) holds. Trivially g =Val ( L p(t s,.,.)g) and 
A xB t=l 

s s 
all actions are optimal in this matrix game. Then we may apply corollary 

8.1.2 two times, giving the existence of stationary strategies p and cr such 

that 

Hence theorem 2.3.4 shows that (i) holds. 

We now prove the following lemma. 

8.1.4. LEMMA. 

z 
Val ( l: p(tls,.,.)gt), 

A xB t=1 
s s 

sES. 

PROOF. From the solution of the limit discount equation we derive: 

(8.1.17) 
M k/M 
L cks T 

k=-"' 

-1 -1 z M k/M 
Va] (r(s,.,.)+(l+T ) l: p(tls,.,.). l: ckt't ), 

t=l k=-00 

for each sufficiently large T and each sES. 

Dividing both sides of (8.1.17) by T, letting T tend to infinity and using 

the fact that the Val-operator is continuous, we obtain the assertion of 

the lemma. 

In the following 0 , Ji=l,2, will denote the set 
J1,s z 

for player J1, 
z 

in the matrix game [ l: p(t!s,.,.).g] on 

0 i'= x 
s=l 

t=l t 
ois· It is well-known that OJ1,s is the convex 

of optimal actions 

A xB , and 
s s 

hull of a finite set 

(cf. theorem A.1.9). Eis will denote this finite set of extreme optimal 

actions and En: = X En , Jic{l,2}. 
"' sES ,,s 

D 

D 
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* 8.1.5. LEMMA. If p is an optimal stationary strategy for player 1, then 

* p E01 , sES. Similarly for player 2. 
s s 

PROOF. By assumption i~f Wp*v=g, then by the theorems 3.4 and A.2.6 we 

obtain: 

z 
E p(tls,p:,j).gt}, 

t=l 

which shows that p*E0 1 • 
s s 

With a stochastic game r we associate two stochastic games, called 

f(l) and f(2), which are defined by: 

(a) for iE{l,2}, in r(~) the set of states and the set of pure actions for 

player 3- i remain as in r, and the set of pure actions for player i in 

state s equals E iS. 

(bl) for r(l) the immediate payoffs and the transitions are defined for 

each (ps 1 j)EE1sxBs as: 

and 

r 1 (s,p ,j):= E r(s,i,j)ps(i)-gs 
s iEA 

s 

p 1 <tls,p ,j) := E p(tls,i,j) .p (i). 
s iEA s 

s 

(b2) for f(2) the immediate payoffs and the transitions are defined for 

each (i,as)EAsxE2s as: 

and 

r 2 (s,i,a) := E r(s,i,j)as(j)-gs 
s 'EB 

J s 

p2 CtJs,i,a l := E p(tJs,i,j) .a (j). 
s 'EB s 

J s 

8. 1. 6. THEOREM. If for a stochastic game r both players have optimal 

stationary strategies with respect to the average reward criterion, then 

(a) f(l) and f(2) both have average reward value Oz. 

a 

(b) the sets of optimal stationary strategies for player i coincide for r 
and r ( i) , iE { 1, 2}. 

PROOF. We shall prove only the assertions concerning f(l), since those 

concerning f(2) can be shown in an analogous way. 
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* * Suppose that p and o are optimal for players 1 and 2 respectively in the 

game f. Then by corollary 3.5, the fact that g is the value of the game r, 
and lemma 8.1.5, we have: 

* * * * * * (8.1.17) min Q(p ,o).r(p ,o}=g= max Q(p,o ).r(p,o l=ax Q(p,o ).r(p,o} 
oESST2 pESST1 pE0 1 

A two-fold application of theorem A.2.8 on (8.1.17) gives: 

* * * * min Q(p ,o) (r(p ,o}-g)=O =max Q(p,o } (r(p,o }-g). 
oESsT2 z pE0 1 

(8.1.18) 

Since p*E0 1 (lemma 8.1.5), part (a) of the theorem follows from (8.1.18) as 

* a consequence of corollary 3.5. Furthermore we see from (8.1.18) that p 

* and a are optimal in f(1}, so half of part (b) is proved. 
~ 

Now suppose that p is optimal for player 1 in f(l). Then for each 

stationary strategy o: 

Q(p,o). (r(p,o)-g) :?: oz' or 

(8. 1. 19) Q(p,o} .r(p,o) :<: Q(p,o) .g. 

Since p E0 1 , we have P(p,o).g:<:g and then with induction P'(p,o) .g~g for s s 
all Twhichimplies Q(p,o).g:<:g. Insertion of this result in (8.1.19) shows 

~ 

by the fact that o is arbitrarily chosen and corollary 3.5, that p is also 

optimal in r. 

It is obvious that player 2 may have optimal stationary strategies in 

f(l) which are not optimal in r since such strategies may be beated by a 

strategy of player 1 outside the set 0 1• 

The following theorem is a generalization of theorem 8.1.6, part (a). 

8.1.7. THEOREM. Suppose that for the undiscounted stochastic gamer both 

players have optimal stationary strategies. Then for each z pairs of 

finite sets (A ,B )cP(A )xP(B ), sE{l, ..• ,z}, such that P(A )::::i0 1 and s s s s s s 
~ z 

P(B J::::i02 , there exists a vElR such that s s 

z 
Val (r(s,.,.)+ l: p(tls,.,.).vt) 

A xB t=l 
s s 

sES. 

D 
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PROOF. Define the game f(3), where the sets of pure actions in states for 
~ 

the players are As and Bs respectively, and where 

and 

l: 
iEA 

s 

l: r(s,i,j).p (i).a (j)-g 
'EB s s s 
J s 

l: 
iEA 

s 

p(tls,i,j) .p (i).a (j) 
s s 

for each (p ,a )EA xB 
s s s s 

Then, analogous to the first part of the proof of theorem 8.1.6 we derive 

that the average reward value of f(3) equals 0 2 and thus the theorem is a 

consequence of lemma 8.1.3. 

Theorem 7.3.3 part (a) of Federgruen (1978) is a special case (namely 

A =E 1 , B =E2 ) of theorem 8.1.7. Federgruen gave a counter example (page s s s s 
174), showing that the existence of a v satisfying 

Val (G s (v)) , 

E1sxE2s 

sEs, 

is not sufficient for the existence of optimal stationary strategies. 

In the next theorem we give a necessary and sufficient condition for 

the existence of optimal stationary strategies. 

8.1.8. THEOREM. For a two-person zerosum undiscounted stochastic game with 

finite state and action spaces, the following two assertions are 

equivalent. 

(i) The value of the game is g and both players have optimal stationary 

strategies. 

(ii) (a) 

(8.1.20) Val 
A XB 

s s 

z 
( l: p(tjs,.,.)gt), 
t=l 

sES 

z z (b) There exist vectors v 1ElR and v2 EJR such that 

(8.1.21) sES 

Cl 
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and 

(8.1.22) sES. 

PROOF. Suppose that (i) is true. Part (a) of (ii) is generally valid and 

has been proved in lemma 8.1.4. 

Consider the game f(l) associated with r, as defined above. Then from 

theorem 8.1.6 part (a) and lemma 8.1.3 the existence of a v 1 satisfying 

(8.1.21) is obvious. Similarly via f (2) the existence of a v2 satisfying 

(8.1.22) follows. 

Now suppose that (ii) is true. 

Then, by corollary 8.1.2 applied to (8.1.20) and (8.1.21) and by the 

player 2 version of corollary 8.1.2 applied to (8.1.20) and (8.1.22), we 

have for some stationary strategies p and a: 

inf w~ 
pv v 

Finally by theorem 2.3.4 we obtain the derived result. 

D 

If both players possess optimal stationary strategies, it is generally 

not possible to choose v 1=v2 in theorem 8.1.8, as the following example 

shows. 

2 3 

Here g=(0,1,-1), 011 =E 11 =(!:l,l:i,OJ, 021 =E21 =(l;,l:i,O) and for both players 

* * the respective strategies p and a are the unique optimal strategies if 

* * p 1=a 1=C!:l,l:i,Ol. 

Let v=(v1 ,v2 ,v3J satisfy both (8.1.21) and (8.1.22). Then from (8.1.21) 

we deduce v 1sl:i(v2+v3J-1, while from (8.1.22) we get v 1?:l:i(v2+v3)+1, which 

yields contradiction. 
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In Markov decision problems, once one has a solution to the functional 

equations (cf. theorem A.2.6), there is a clear rule whether a stationary 

strategy is optimal or not. In stochastic games, this problem is much more 

complicated. The next theorem gives a characterization of the optimality 

of a fixed stationary strategy. 

The example thereafter shows that the results for the MDP cannot be 

extended in a straightforward manner to stochastic games, and furthermore 

it can be seen that theorem 8.1.10 can hardly be strengthened. 

8.1.9. REMARK. Along the same lines as the proof of theorem 8.1.8 we can 

show the following: 

Knowing that the value of a stochastic game equals g, the existence 

of a vector v 1 such that 

(8.1.23) sES 

is a necessary and sufficient condition for player 1 to possess an 

optimal stationary strategy. Also the existence of a vector v2 such 

that 

Val (GS (v2) } ' 
ASxE2s 

sES, 

is a necessary and sufficient condition for player 2 to possess an 

optimal stationary strategy. 

The following example shows that the inequality signs in the above 

equations cannot generally be replaced by equality signs. 

2 

Clearly g=(0,0}, E11=A1 , each strategy of player 1 is optimal and player 

2 has no optimal stationary strategy. However for v=(v1 ,v2J we have 



118 

o:= Val (G1 (v)) =Val[l+vl 
EllxBS V1 

If v2~1+v 1 , then o=l+v1>v1=v1+g1 . 
2 ( 1+v1 ) -v 1 v 2 

If v 2<1+v 1 , then o= v
1
+2-v2 > v 1=v1+g1 • 

Hence for each v satisfying (8.1.23) the inequality sign holds for state 1. 

For a stationary strategy p of player 1, we define R(p) :={sjsEs, s is 
recurrent with respect to P(p,cr) for some optimal reply a of player 2 
against p in the stochastic game}. 

8.1.10. THEOREM. For a stochastic game with value g, a stationary strategy 

p for player 1 is optimal if and only if there exists a vEJRz, such 

that: 

(a) p E0 1 , sEs 
s s 

(G (v)) , 
s 

such that for each state sER(p), the action ps guarantees player 1 

vs+gs in the matrix game [Gs(v)] on E1sxBs. 

~ 

PROOF. Let p be optimal. Part (a) is proved in lemma 8.1.5. 

By looking at the Markov decision situation MDS(p) corresponding to fixing 
p, we may conclude from theorem 3.4 and theorem A.2.6 that there exists a 
vElRz , such that 

z 
min {r(s,p ,j)+ l: p(tJs,p ,j) .vt}, each sES, 
jEB s t=1 s 

s 

which implies part (b) . 

Now suppose that (a) and (b) of the theorem hold. Let a be an optimal 

reply top. Then we have the following inequalities: 

(8.1.24) g S P(p,o).g 

and 
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z 
(8.1.25) vs+gs s r(s,p ,cr )+ L p(tls,p ,cr ) .vt 

s s t=l s s 

for each states which is recurrent with respect to P(p,cr). 

Inequalities (8.1.24) and (8.1.25) imply by lemma 8.1.1 that 

gSQ(p,cr).r(p,cr). Since a was assumed to be an optimal reply top, this 

shows that p is optimal for player 1 in the stochastic game. 

8.1.11. EXAMPLE. 

3 

2 

The following facts can be derived. 

(a) the value equals (0,0,0); both players have optimal stationary 

strategies. 

(b) g=(0,0,0) and v=(d,d,d) with dEJR are the only solutions to the 

functional equations 

z 
Val(Lp(tls,.,.)g l, 

t=l t 

and 

Val 

ElsxBs 

(Here Els =As, sES) . 

(G (v)l 
s sES 

sEs 

* * * * * (c) For the optimal stationary strategy p =(p 1 ,p 2 ,p 3J, with p1=(1,0,0) 
* * and p2=(1,0,0), it holds that p2 is not optimal in the matrix game 

[G (v)] for v=(d,d,d). s 
(d) 

·. * For p as in (c), the pair g={0,0,0) and v=(d,d-1,d) has the 

properties of theorem 8.1.10. 

D 

3 (e) There exists no pair g=(0,0,0) and vEJR such that, for each optimal 

stationary strategy the properties mentioned in theorem 8.1.10 hold. 

(The optimal stationary strategy p* as in (c) asks for v 1 ~v2+1, 
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while the optimal stationary strategy p with p 1=(0,1,0) and 

p 2=(0,1,0) asks for v2~v1 +1. 

If for each pair of pure stationary strategies (p,a), all states are 

recurrent with respect to P(p,a), then the sets of optimal stationary 

strategies can be fully characterized. We have 

8.1.12. THEOREM. If for a two-person zerosum stochastic game, for each pair 

of stationary strategies (p,a) all states are recurrent with respect to 

P(p,a), then a stationary strategy p is optimal for player 1 if and only 

if 

(a) p E0 1 , 
s s 

all sEs. 

(b) for each vElRz, such that 

Val 

Els"Bs 

(G (v)) 
s 

sEs 

the action o is optimal in the matrix game [G (v)]. 
s s 

PROOF. The "sufficiency" follows at once from the recurrency assumption 

and theorem 8.1.10. 

The "necessity" can be shown as follows. 

If p g0 1 for some s, then p cannot be optimal by lemma B.1.5. So we may 
s s 

assume p E0 1 , each sES. Suppose for some ~ES that p~ is not optimal in 
s s s 

the matrix game (G~(v)) on E 1~xB~. 'l'hen there exists a a such that 
s s s 

v+g ~ r(p,o)+P(p,o) .v, 

where the inequality sign holds at least in component s. 

Since each state is recurrent with respect to P(p,o), lemma 8.1.1(b) now 

shows that w~ ~<g. Hence p cannot be optimal. 
Pa 

D 



8.2. THE ASYMPTOTIC BEHAVIOUR OF IJFV(T)-Tgll . 

In this section we shall study the asymptotic behaviour of 

llFV(T)-•gll • Here FV(T) equals the value of the T-step game and g the 

value of the average reward game. Firstly we shall characterize the 

asymptotic behaviour 11 FV ( T) -•g 11 $ B log T for some BElR and secondly we 

shall analyse the asymptotic behaviour II FV (T) -Tg II $C for some CElR. 

Bewley & Kohlberg (1976b) have shown that, in general, a vector 
K k/K 

funtion y (T) = L: d1 T , with KEJN, can be constructed such that 
k=1 ~ 

llFV(T)-y(T) II $D log T for some DElR. Furthermore they give an example 

which shows that, in general, an expansion in fractional powers of T, 

which is more precise than the above y(T), need not exist. 

Most of the results of this section can also be found in Vrieze 

* (1979b). As before, x (8) 
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~ ck8k/M denotes the solution of the limit 
k=-00 discount equation and g:=cM equals the value of the average reward game. 

8.2.1. THEOREM. For a stochastic game the following assertions are 

equivalent: 

(i) llFV(T)-Tgll $B log T for each TElN and some BEJR. 

(ii) cM-1=cM-2= ... =c1=0z. 

(iii) there exists a vElRz , such that 

Val 
A XB 

s s 

(iv) there exists a vElRz, such that 

Val 

E1sXE2s 

(G (v)) 
s g +v ' s s 

sES 

sEs. 

where Eis' 2=1,2, equals the finite set of extreme optimal actions 
z 

of player i in the matrix game [ L: p (t Is,.,.) gt]. 
t=1 

The proof of this theorem will be built up in a number of lemma's, 

which respectively prove: (i)~(ii), (ii)~(iii), (iii)<=>(iv) and (iii)~(i). 

8.2.2. LEMMA. If for some BElR llFV(T)-Tgll :$B log T for all T holds, then 

cM-1=cM-2= •.. =c1=0z· 
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K k/K 
PROOF. Let y(T)= l: <\T and cEllbe such that IJFV(T)-y(T) JI sc log T 

k=l for all T and suppose that y(T) is constructed as indicated by Bewley 

& Kohlberg (1976b, statements 6.9-6.12, page 326). 

Obviously the assumption of the lemma implies: 

g and dK-l dK-2 = ... 0 . 
z 

However, considering the way in which the vectors dK-l'dK_2 , ... ,d1 are 

constructed in Bewley & Kohlberg (1976b, statement 6.7), it can be seen 

that, if one of the vectors cM-l'cM_2 , ... ,c 1 does notequalOzthenatleast 

oneofthevectorsdK-l'dK_2 , ••• ,a1 doesnotequal02 • This proves the lemma. 

8.2.3. LEMMA. If for the solution of the limit discount equation we have 

cM_ 1=cM_2= ••• =c 1=02 , then there exists a vEJR.z such that 

Val (G (g8+v)) 
A XB s 

s s 

-1 
g s ( e+ 1 ) +v s +O ( e ) I sEs . 

PROOF. Take v=c0-g. Since cM_ 1=cM_2= ••. =c 1=02 , we derive from the limit 

discount equation that 

(8. 2. 1) Val 
A xB 

s s 

(GS (g8+v)) sEs. 

Weyl (1950) proved that, if the elements of a matrix game belong to a 

linearly ordered field, then also the value of this game belongs to that 

field. Using this result here implies that Val (Gs(g8+v)) is of the form 
A XB 

s s 
with dksEJR, which combined with (8.2.1) shows the lemma. 

8.2.4. LEMMA. For a stochastic game the following two assertions are 

equivalent: 

(iii) there exist vEJR.z and gEJJl such that 

-1 
Val (G (g8+v)) =gs(O+l)+vs+0(8 ) , sES 

A XB s 
s s 

(iv) there exist vEJRz and gEJR2 such that 

D 

D 



and 

Val 
A XB 

s s 

g +v = 
s s 

z 
( r p(tJs,.,.)gt)' 
t=1 

sES. Val (GS (v)), 

ElsXE2s 

sES 

PROOF. Suppose (iii) to be true. Then for some Cs ElR and sufficiently 

large T 
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(8.2.2) 
-1 z -1 -c T s Val (r(s,.,.)+ L p(tJs,.,.) (g T+v ))-g (T+l)-v SC T . 

S A XB t=l t t s s S 
s s 

Dividing each term of (8.2.2) by T and letting T tend to infinity gives by 

the continuity property of the val-operator: 

(8. 2. 3) Val 
A xB 

s s 

z 
( L p ( t Is, . , . ) gt) 
t=l 

i.e. the first part of (iv). 

Consider now the following limit: 

z 
d :=lim {Val (G (gT+v))- Val ( L p(tJs,.,.)g T)} 

s T-+oo A XB s A xB t=1 t 
s s s s 

z -1 z 
Val ( L p(tJs,.,.)g +G (v).T )- Val ( L p(tJs,.,.)g )} 

A xB t=l t s A xB t=l t 
=lim ~s~-s~~~~~~~~~~~~~~~s~-s~~~~~~~~-

-1 
T-7oo T 

Mills (1953) has called such a limit a marginal value, and has shown that 

the limit exists and equals Val 

ElsXE2s 

(G (v)). 
s 

On the other hand, after substitution of the equality in (iii) and of 

(8.2.3) into the definition of d we obtain: 
s 

d s 
lim {g (T+l)+v +O(T- 1)-g T} 

s s s 

hence showing that (iii) implies (iv) • 

g +v 
s s 
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Now suppose that (~v) is true. 

In the proof of lemma 8.2.3 we already argued that: 

(8. 2. 4) Val 
A XB 

s s 

(Gs (g0+v)) 

So we need to show d 1s=gs and d05=vs+g5 • 

From (8.2.4) we derive for each T large enough: 

Val 
A XB 

s s 

z 1 
( l: p(tls,.,.)g +G (v).T-) 
t=l t s 

Taking the limit as T-+oo yields 

(8.2.5) 
z 

Val ( l: p(tls,.,.)gt) 
A XB t=l 

s s 

hence d 1s=gs. 

As in the first part of the proof we have 

z 

0 

i:: dk+1 
k=-"' 

Hm {Val (G (gT+v))- Val ( i:: p(tJs,.,.)g T)} 
A xB s A "B t=l t 

s s s s 

k 
T 

s 

(G (v)). 
s 

on the other hand, after substitution of (8.2.4) and (8.2.5), this limit 

equals dos· But, by assumptions, Val (G (v))=g +v, which shows that 
E XE s s s 

dos=gs+vs. 1s 2s 

8. 2. 5. LEMMA. If, for a stochastic game, there exists a vEJRz such that 
-1 

Val (Gs (c:j9 +v)) =gs (8+1) +v+o (0 ) , sES, then there exists a BEJR such that 
A XB 

s s 
llFV(T)-TgJJ '.".B log T, all TEJN. 

PROOF. By assumption there exists a CEJRsuch that for large T: 

J Val (G (Tg+v))-g (T+l)-v J 

A XB s s s 

-1 
'.". C. T , sEs. 

s s 

Then 

D 
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(8.2.6) JFV (T+l)-g (T+l)-v l=I Val (G (FV(T)))-g (T+l)-v I 
s s s A XB s s s 

s s 

I Val (G (FV(T)))- Val (G (gT+v))+ Val (G (gT+v))-g (T+l)-v I s s s s s s A XB A XB A XB s s s s s s 

I Val (G (FV(T)))- Val (G (gT+v)) J+I Val (G (gT+v))-g (T+l)-v Is s s s s s A xB A xB A XB s s s s s s 

jjFV(T)-gT-vll + C.T-l. 

The last inequality follows from the fact that the val-operator is Lipschitz 

continuous with constant 1. By repeated application of (8.2.6) we obtain for 

each T and a fixed K sufficiently large: 

Since 
T 

i.: 
k=l 

T -1 
llFV(T+K)-g(T+KJ-vll s llFV(K)-gK-vll +c. i.: (k+K-1) 

k=l 

-1 
k =O(log T) for each T, the assertion in the lemma follows. 

Summarizing the lemma's 8.2.2-8.2.5 proves theorem 8.2.1. 

a 

Federgruen {1978) called the set of equations mentioned above in (iv) the 

natural extension to stochastic games of the set of functional equations 

for average reward Markov decision problems (cf. theorem A.2.6). For MDP's 

this set of equations characterizes the optimal gain and the set of optimal 

stationary strategies. In section 8.1 we have seen that it makes more sense 

to regard the set of functional equations mentioned in theorem 8.1.8 (ii) 

as the natural extention. With these equations both the value and the 

existence of optimal stationary strategies can be characterized. However, 

for the set of equations mentioned above in (iv), theorem 8.2.1 leads to 

the following theorem. 

8. 2 .6. THEOREM. If for a stochastic game there exist gEJRz and vEJRz , such 

that 

z 
g =Val ( l.: p(tjs,.,.)gt) 

s A xB t=l 
s s 

and g +v =Val (G {v)), 
s s E XE s 

ls 2s 

then g is uniquely determined, namely g=g=cM. 

sES 
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PROOF. The proof uses some of the arguments of the previous lemma's. From 

(iv) with g instead of g we obtain (iii) with g instead of g (lemma 8.2.4). 

From (iii) with g instead of g we get (i) with g instead of g (lemma 8.2.5). 

But this implies lim FV(T) = g, which by lemma 7.2.4 shows the theorem. 
T-- T 

[J 

we now shall studie conditions under which llFV(T)-gTJI sB for some BEJR. 

For a strategyµ of player 1, we denote by FV112 (T) the minimum expected 

payoff in the T-step game which player 2 can guarantee himself, knowing that 

player 1 plays ].!. Similarly FVvl (T) is defined for a strategy v of player 2. 

Obviously for each µ and v and each TElN: 

(8. 2. 7) FV112 (T) s FV(T) S FVvl (1). 

For a vector wElRz, we shall use Vw: =max w and /',w: =min w . 
s s s s 

By MDP(p) we denote the Markov decision problem that results when player 1 

fixes the stationary strategy p. 

The following lemma will be used. 

8. 2. 7. LEMMA. For a stationary strategy p of player 1, there ex.ists a number 

B such that for each TElN: 

V(FVP 2 (1)-Tg) s B+TV(g(p)-g) s B. 

where g(p) and g equal the average reward value of MDP(p) and of the 

original game respectively. 

PROOF. From theorem 3.4 we know that when player 1 announces that he will 

play the stationary strategy p, then the best player 2 can do is to solve 

MDP(p). For Markov decision problems it is known that the value of the 

T-step problem minus T times the average reward value is uniformly bounded 

in T, cf. Brown (1965). This, applied to MDP(p) yields for some BEJR and 

each TElN: 

11FVp2 ( T) -T . g ( p) 11 s B. 

From this inequality the first inequality of the lemma. can be deduced, 

while the second inequality follows from the fact g(p)sg. 

D 
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A similar lemma can be given for player 2. 

Bewley & Kohlberg (1978) mentioned a strategy µ for player 1 uniformly 

t-stage optimal if V(FV(T)-FVµ2 (T))~B for all T and some number B. 
(Similarly for player 2 with reversal of the inequality sign.) They showed 

that if a player has, for each sES, a real action which guarantees him 
* * 0 in the game [Gs0 (x )] on AsXBs a payoff Val (Gs0 (x ))+o(0), then the 

A XB 
s s 

stationary strategy corresponding to these actions is uniformly T-stage 

optimal. 
The first part of the following theorem is obvious (cf. lemma 7. 2. 4). The 

secondpart is a consequence of lemma 8.2.7. 

8.2.8. THEOREM. A uniformly T-stage optimal stationary strategy is 
optimal with respect to the average reward criterion. For a stochastic 

game where FV(T)-Tg is not bounded from above, player 1 has no stationary 
strategy which is uniformly T-stage optimal. Analogously for player 2. 

The case mentioned in theorem 8.2.8 occurs in the following example. 

8.2.9. EXAMPLE. 

2 

The average payoff value of this game equals (0,0). Player 2 has no 

optimal stationary strategy, while each (stationary) strategy of player 

is optimal. For state 2, FV2 (T)=0 for each T and for state 1: 

FV 1 (T+l) [ 
l+FV l (T) 

Val 
FV l (T) 

2 

1+FV1 (T)] 
1 

FVl (T) + FV1 (T) 

It can be verified that this relation implies FV1 (T)2T~, and thus 

FV1 (T)-Tg1 is not bounded from above. Therefore, for this game, it may be 

wise for player 1 to play a Markov strategy which is optimal for a T-step 

game for some large T, instead ofplaying an optimal stationary strategy. 
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8.2.10. THEOREM. For a stochastic game where V(FV(T)-Tg)sB for all T and 

some BElR, a stationary strategy p for player 1 is optimal with respect 

to the average payoff if and only if this strategy is uniformly T-stage 

optimal. 

PROOF. Theorem 8.2.8 states that a uniformly T-stage optimal stationary 

strategy is also optimal in the average reward game, which proves the 

sufficiency of the theorem. 

Let p be optimal. Consider MDP(p), then g(p)=g. But since by Brown (1965) 

JJFvp 2 (T)-T .g(p) JI sc for some cEJR and by assumption V (FV(T)-Tg) sB, we 

then have V(FV(T)-FVP 2 (T))sD for some DElR and each TEJN, i.e. p is 

uniformly T-stage optimal. 

An analogous statement can be made for player 2, in which case the 

inequality sign in theorem 8.2.10 must be reversed and V must be replaced 

by b.. 

The following theorem may be of computational importance. 

8.2.11. THEOREM. If both players have optimal stationary strategies, then 

JjFV(T)-TgjJ sB for some BE:IR and each TEJN. 

PROOF. Follows at once from theorem 8.2.10. 

D 

D 

The converse of this theorem is not true. The "big match" of Blackwell 

& Ferguson (1968) (cf. example 3.3) presents a counterexample. Namely 

FV1 (T)=~T=g 1 .T and player 1 possesses no optimal stationary strategy. 

However, for stochastic games, where g does not depend on the initial 

state, the converse of theorem 8.2.11 proves to be true. 

8.2.12. THEOREM. The following two assertions are equivalent: 

(i) 

(ii) 

* g=g .lz and both players have optimal stationary strategies. 

jjFV(T)-TgjJ SB with g=g*.1 and BE:IR. 
z 

PROOF. Theorem 8.2.11 shows that (i) implies (ii). 



Now suppose that (ii) is true. Then theorem 8.2.1 (the equivalence of 

(i) and (iv)) implies that there exists a vEJR such that 

* (8.2.8) g +v 

* 

s Val (GS (v)), 
E1sXE2s 

sES 
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But since g=g .lz it ~an be seen that E1s=As and E2s=Bs, since each entry 

of the matrix game [ 2: p(tjs,.,.)gt] equals g*. Then from lemma 8.1.3 

we may conclude thatt=lboth players possess optimal stationary strategies. 

One may ask under what properties of the game parameters it holds 

that llFV(T)-Tgjj ~B. At this point we wish to express the following 

conjecture. 

8.2.13. CONJECTURE. ljFV(T)-Tgjj ~B for all TE:IN and some BEIR if and only 

if the solution of the limit discount equation can be expressed as a 
. . . * (El) ~ Elk Laurent series expansion, i.e. x - = L ck- • 

k=-"' 

However we have not yet been able to prove this assertion. The following 

theorem gives a sufficient condition. In this theorem we use the limit 

recursion equation, as formulated by Bewley & Kohlberg (1976a). We now 

define this limit recursion equation. To this end let, for 

K(w) be the element of F defined as 

where (El+l)k/M is defined to be 

K k/M 
K (W) := L Ck (8+1) , 

k=-"' 

K k/M 
w= E eke EF, 

k=-00 

(8. 2. 9) (e+llk/M := 8k/M + ~ 8k/M-1 + L ~ c~-iiek/M-2 M < M M + ..• 

As $T(K(w))=$T+l (w), obviously K(w)EF. 

8.2.14. DEFINITION. The following set of equations in the variable 
z x=(x1 ,x2 , ... ,xz)EF is referred to as the limit recursion equation: 

(8.2 .10) Val (GS (x) ) , 
A XB 

s s 

sEs. 

Recall that FV (T+l)=Val(G (FV(T))), for each sES. Suppose that xEFz s s 
describes an asymptotic expression for FV(T) in the sense that $T(x)=FV(T) 

for large T. Then $T+l (xs) =Val(Gs($T(x))) for large T. Now the limit 

recursion equation can be seen as the replacement of this sequence of 

equations by a single equation. 
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The following lemma is an immediate consequence of the fact that 

1/(1+0-1)=1-0-1+0-2- .•. and the fact that the solution of the limit discount 

equation has valuation at most 1 (cf. Bewley & Kohlberg (1976a)). 

8.2.15. LEMMA. If x*EF2 solves the limit discount equation, then 
* * -1 y =x /(1+0 ) satisfies: 

* 0 Val {G (y ))+o{0) 
A XB s 

s s 

8.2.16. THEOREM. If for a stochastic game the limit recursion equation has 

a solution y= ~ <\0k/M, with dM_ 1=aM_2= ... =d1=0, then //FV(T)-Tg// :o:B 
for each TEJN k=-"' and some BElR. 

PROOF. From~ 1 {y )=Val {G (~ (y))) for large T, and FV (T+1)= 
<+ S A XB s T s 

s s 
Val {Gs{FV(T))) for each sand each T, we derive by means of the Lipschitz 

A XB 
s s 

continuity of the val-operator: II~ l(y}-FV(T+1)1/:>I/~ (y)-FV(T)I/ for T+ T 
large T. 'l'hus /l~T+k(y)-FV{T+k) II :o: /l~k(y)-FV(k) II for each TEl'il and each 

kEl'il. This implies that ~T(y)-FV{T) is bounded uniformly in T, which in 

view of lim FV(T) = g leads to y=g.0+d0+o(0°). Hence it follows that 
T-+<x> T 

/!FV(T)-tgJI is bounded uniformly in T. 

We conclude this section with the following lemma, which might be 

useful in showing the reverse of theorem 8.2.16 which we suspect to be 

true. 

0 z 8.2.17. LEMMA. If y=g0+d0+o(0 JEF is such that 

K(ys) 
-1 

Val (Gs(y))+o(0 ), 
A xB 

each sES, 

s s 

then the limit recursion equation has a solution 

0 z y g0+d0+o{0 )EF . 

PROOF. Suppose that yEF~ is such that 

Let v=D.0-l/M.1 with DElR. 
z 

M+l 

K(ys)= Val {G (y))+o(0 M ). 
A XB s 

s s 

D 



M+l 2M+l 

D 
K(ys+vs)= Val (Gs(ys+vs))+(C+M)O 

A xB 
s s 

M ) , we obtain for each sES : 

M+l M+l 

M + o(G M 
for some cEJR. 

131 

Then by choosing D appropriately we see that there exist y and yEF2 , with 
- M 

y<:y_, such that, for each sES: 

(8.2.11) K(y) 2 
s 

Val (G (y)) 2 Val (G (y_)) 2 

A XB S A XB S 
s s s s 

Since both the operator K and the val-operator are monotone and continuous, 

(8.2.11) assures the existence of any, with y<:y<:y_, such that 

K{y )=Val (G (y)), sES. 
s A xB s 

s s 

From the solution of the limit discount equation, we see that if 

* -1/M x =g8+c0+o(G ), then 

(8. 2 .12) 
-1 

Val (G (g8+c0 -g ))+o(G J, 
A XB s 

s s 

all sEs, 

which by theorem 8.2.1 proves to be equivalent to l!FV(T)-Tg\1-s;B log T. 

Now the condition of lemma 8.2.17 appears to be the step "one-stronger" 

than (8.2.12). So in view of lemma 8.2.17 we have the feeling that the 

condition of theorem 8.2.16 is also a necessary one for the property 

\IFv'.1)-1gll-s; B. However we have not yet been able to provide either a 

proof or a counterexample of this conjecture. 

8.3. GAMES WITH A VALUE INDEPENDENT OF THE INITIAL STATE. 

In this section we consider the class of stochastic games for which 

the average reward value g has the form g=g*.lz Some of the results of 

this section can also be found in Vrieze (1979a). 

8.3.1. THEOREM. For a two-person zerosum stochastic game with finite state 

and action spaces, the following assertions are equivalent. 

(i} g=g* .1 2 • 

(ii) there exists a g*EJR.such that, for each e:>O, there exists a 

v(e:)(JR.2 with 

D 
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(8. 3 .1) Iv (s)+g*-(Val 
s A xB 

s s 

G (v(s))l I ,; £, 
s 

each sES. 

PROOF. Suppose that (i) is true. From the solution of the limit discount 

equation we derive 

(8.3.2) Val 
A xB 

s s 

By assumption, c =g*.1 . Hence, we see from (8.3.2) that, for fixed s>O, M M z 
v(s)= E c, tk/M, for sufficiently large t, satisfies assertion (ii) of the 

k=O .<. 
theorem. 

Now suppose that (ii) is true. Fix £>0 and let v(£) satisfy (8.3.1). 

Let p (£) be an optimal action for player 1 in the matrix game [G (v(£))] s s 
and let p(c) be the stationary strategy p(c)=(p 1 (£), ... ,pz(c)). Then for 

each pure stationary strategy op of player 2: 

(8.3.3) v(c)+g*.1 -£.1 ,; r(p(c),0P)+P(p(£),0P).v(£). z z 

Multiplying (8.3.3) from the left by Q(p(c),crp) gives: 

(8.3.4) 

But (8.3.4) implies by corollary 3.5, and the fact that c>O is arbitrary: 

(8.3.5) g*.lz $sup inf Wµv 
µ v 

Similarly we can derive 

(8.3.6) g*.1z ~ inf sup wµv 
v µ 

Since for each function f(µ,v) it holds that inf sup f(µ,v)~sup inf f(µ,v), 
v µ µ v 

the combination of (8.3.5) and (8.3.6) shows that assertion (i) is true. 

8.3.2. THEOREM. If for a stochastic game g=g*.lz' then 

(a) Both players possess £-optimal stationary strategies for each c>O. 

(b) Both players have optimal Markov strategies. 

0 



133 

PROOF. (a) This follows from the proof of the preceding theorem; especially 

(8.3.4) shows by corollary 3.5 that p(£) is an £-optimal stationary 

strategy. 

Concerning (b) , an optimal Markov strategy can be constructed by making 
FVs(T) 

use of the fact that ~-T~- converges to g* for each state sES (a scheme 

for such a Markov strategy can be found in Bewley & Kohlberg (1978, 

page 117)). 

8.3.3. REMARK. £-optimal stationary strategies can be derived from the 

solution of the limit discount equation. Namely, let ps(T) be an optimal 

action for player 1 in the matrix game [G (x*(T))] which has value x*(T). 
ST S 

D 

Then the stationary strategy p(T)=(p 1 (T) , ... ,pz(T)), which is optimal for 

the discounted stochastic game with interest rate T- 1 , is, for sufficiently 

large T, £-optimal for the average reward game. This can be shown along the 

same lines as the relations (8.3.2), (8.3.3) and (8.3.4) were established. 

Federgruen has given a characterization for the class of games with a 

value independent of the initial state and for which in addition both 

players possess optimal stationary strategies. In fact his result equals 

lemma 8.1.3. In the next lemma we extend this characterization with three 

further equivalencies. 

8.3.4. LEMMA. The next assertions are equivalent. 

(i) g=g*.lz and both players have optimal stationary strategies. 

(ii) there exist a wEJRz and a g*(JR such that 

Val 
A xB 

s s 

(G (w)), 
s 

each sES. 

* (iii) x*(G) has the property that cM=g .lz and cM_ 1=cM_ 2= ... =c 1=02 • 

(iv) there exists a g*CJR such that n F(£)~0, where F(s) for s>O 

(v) 

equals the set of vectors v(£) 

there exists a g*EJR such that 

and each TUN. 

£>O . f . ( 3 ) satis ying 8. . 1 . 

i[FV(T)-Tg*.l II ::; B, with BEJR 
z 

PROOF. The equivalence of (i) and (ii) is already proved in lemma 8.1.3, 

while the equivalence of (ii) and (iii) is a special case of theorem 
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8.2.1 (since g=g*.lz it follows that E1s=As and E2s=Bs). From theorem 

8.3.1 we infer that (ii) and (iv) are equivalent assertions. Finally 

theorem 8.2.12 states the equivalence of (i) and (v). 

D 

In the following theorem we give a sufficient and necessary condition for 

one player to have an optimal stationary strategy (cf. remark 8.1.9). 

8.3.5. THEOREM. For a stochastic game with average payoff value g*.lz' 

player 1 has an optimal stationary strategy if and only if there exists 

a vector vEJRz' such that 

(8.3.7) vs+g*,; Val (Gs(v)), 
A xB 

s s 

each sES. 

PROOF. Suppose that (8.3.7) holds. Let the stationary strategy p be such 

that p :is optimal for player 1 in [G (v)]. Then inequalities (8.3.3) and s s 
(8.3.4) hold with £=0 and p(£) replaced by p. Then corollary 3.5 shows that 

p is optimal. 

Now suppose that p* is an optimal stationary strategy for player 1. By 

considering MDP(p*) it follows, from the minimizing version of theorem 

A.2.6, that there exists a ;'EJR2 with 

z 
~ 

vs+g* min 
jEB 

s 

{r(s,p*,j)+ l: p(tls,p*,j).;'t}' 
s t=l s 

sES. 

But since 

z 
min { r ( s, p *, j )+ l: p ( t I s, p *, j) . ~ } ,; 
jEB s t=l s t 

s 

we see that v satisfies (8.3.7). 

Val (G (;')) 
s A l<B 

s s 

Obviously an analogous statement of theorem 8.3.5 can be made 

concerning player 2. Note that, if in (8.3.7) for some v the equality 

sign holds for each sES, then by lemma 8.3.4 also player 2 has an optimal 

stationary strategy. 

We finish this section by demonstrating a curious phenomenon. In lemma 

8.3.4 we have seen that if the solution of the limit discount equation has 

. M-1 k/M 
properties (a) c =g*.1 and (b) l: eke =O, then both players have 

M z k=l z 

D 
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optimal stationary strategies. A stochastic game for which the solution 

of the limit 

M~lc 8k/M20 
k=l k z 

discount equation has the properties (a) above and (b'l 

appears more favourable and easier to play from the viewpoint 

of player 1 than that with properties (a) and (b).Thus one would be 

inclined to believe that (a) and (b') would imply the existence of an 

optimal stationary strategy for player 1. The next example shows that in 

general the above suggestion need not be true. However the converse of 

this statement does hold i.e. 
k/M if player 1 has an optimal stationary strategy, then L eke 20 . 

k=l z 
Further, this property holds for arbitrary cM. This can be seen by 

M-1 

observing that x*(8)2V *(8), if p* is an optimal stationary strategy where p 
V *(8) equals the solution of the limit discount equation associated with p 
MDP(p*). Since Vp*(8)=cM8+0(8°) the assertion follows. 

8.3.6. EXAMPLE. 

1 

lo-:::71 
~ 

2 3 4 

Let x*=(xi,x2,x3,x4J be the solution of the limit discount equation. The 

states 1 and 2 can be considered apart. 

Solving the limit discount equation for these two states results in 
! -1 

xi=8 (1+8 ) and x2=0, so g 1=0 and g 2=0. Obviously each stationary strategy 

of player 1 is optimal in the states 1 and 2. 

Now consider the states 3 and 4. Define for O<c<l the stationary strategy 

pc as follows: p~ and p~ are arbitrary, p~ and p: both put weight c on 

the first action and weight 1-E on the second. Then for the states 3 and 4, 

PE guarantees player 1 an average payoff -€. On the other hand player 2 can 

assure himself an average payoff 0 for the states 3 and 4 by playing his 

second action in these states. Conclusion: the average reward value of 

this game equals (0,0,0,0). Furthermore it can be 

no optimal stationary strategy. So if we can show 

checked that player 1 
M-1 k, 

that z ckse 1 ~o for 
k=l 

has 

the 

states s=3 and s=4 then we are ready (for s=l and s=2 this inequality 



136 

* * follows from x1 and x2 ) • 
-1 

Consider the game with interest rate t Let p(t) be as follows: 

p 1 (t) and p2 (t) are optimal in the t-1 discounted game, both p 3 (t) and 

p4 (t) are such that the first row is chosen with probability t-~ and the 
-~ -1 second row with probability 1-t • Let y 3 (t) and y 4 (t) be the t -

discounted expected payoff that the strategy p(t) guarantees player 1 in 

state 3 and state 4 respectively. 

Then by theorem A.2.5: 

(8.3.8) 

and 

(8.3.9) 

-1 
-1 tl (l+t -1) -! (1-t ) ·Y3 (T) 

minh • _1 - (1-T )+ ----_-:1,---
l+T l+t 

t -! l t .y3 (T)-(1-T )y4 (T) 
- T - + --------.,.----} 

l+T -l 

-1 l l(l -1) -! (1-T ).y4 (T) 
minh- .' +T_ 1 - (1-T )+ -----,,.---

l+T i+t-l 

-! -t 
T . y 3 (T) + ( 1-T ) . y 4 ( T) 
------~1----}. 

l+T 

Suppose in (8.3.8) that the minimum is attained by the first component, 

then: 

or 

(8.3.10) 

-1 
(l+T )y3 (T) 

-1 
l+T 

y (T) = --
3 l+T-! 

-t -1 -t 
T (l+T )+(1-T ).y3 (T), 

Similarly if in (8.3.9) the minimum is attained by the first component, 

then 

(8. 3 .11) 



Now suppose that as well in (8.3.8) as in (8.3.9) the second component 
-~ yields the minimum, then from (8.3.9) we get y 3 (T)=y4 (T) (1+T ). 

Substitution of this relation in (8.3.8) with respect to the second 

component results in: 

or 

(8. 3 .12) 
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The above analysis shows, by (8.3.10), (8.3.11) and (8.3.12) that in both 

(8.3.8) and (8.3.9) the minimum is attained by the second component, and 
* -~ that (8.3.12) represents the solution. Obviously x3 (T)~y 3 (T)=-(1+T ) and 

* x4 (T)~y4 (T)=-1 for sufficiently large T. Hence we may conclude that 

M-1 M-1 
L ckseks~O for s=3 and s=4. In fact L c eks=O for s=3 and s=4. Namely 

k=1 k=l ks 

if in the states 3 and 4 player 2 always chooses his second action, then, 

for each discount factor, this strategy assures him a discounted expected 

payoff of at most 0 for the initial states s=3 or s=4. 

Summarizing, example 

value cM=g*.1 2 , for which 

8.3.6 is a stochastic game with average payoff 
M-1 k/ 

L eke ~Oz, but for which player 1 has no 
k=l 

optimal stationary strategy. 
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8.4. ON THE EXISTENCE OF EASY INITIAL STATES. 

* **--In this section we show that there exist non-empty subsets, S , S cS 

such that, at least for the states belonging to s*(s**i, player 1 (player 2) 

can assure himself the average payoff value by choosing an appropriate 

stationary strategy. A state with this property is called an easy initial 

state for player 1 (player 2). 

The results of this section are based on Tijs & Vrieze (1986). 
In section 7.2 we have mentioned the important result of Bewley & Kohlberg, 

that the solution of the limit discount equation is of the form 

(8. 4.1) * x (6) 

* and x 
s 

It follows from a well-known result of Weyl (1950) that, for the matrix game 
z 
l: p(tls,.,.)x~ 

t=l ] 

1+e-1 
on AsxB5 , the players possess 

m 
optimal actions, say f (8j and g (8) respectively, such that f (8)EFMs and 

Ilg s s "' s 
g5 (8)EFM. From now on we fix such an optimal action f 5 (8), for each sES, 

for player 1. 

lN will denote the set {-1,-2, ••. }. 

We recall that 

(8. 4. 2) f (8) 
s 

where for each sES and each kElN - : 

(8. 4. 3) f EP(A ), l: f (i)=1, E fk (i)=O 
os s iEA os iEA s 

s s 

and where for each sES, iEA5 and kElN-: 

(8.4.4) 

(8.4.5) if 'fis(i)=O, £=k+1,k+2, ••. ,o. 
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Let p be the stationary strategy for player 1 with ps:=f05 • Note that 

p =lim f (T). By lemma 7.2.2 (f1 (T), .•• ,fz(T)) is optimal in the discounted 
S T-+oo S 

stochastic game with interest rate T-l, hence we see that p can be considered 

as the limit of optimal stationary strategies for player 1 in discounted 

games with interest rate a, for a~O. We shall show in this section that this 
strategy p for player 1 is optimal for all specific plays starting in a non-

* * empty subset S Here S is defined as follows. Let 

(8.4.6) max 
sES 

(the maximum is taken with respect to the order in F; note that ~ is a 

scalar). Then 

M M 
s* := {sEsl E ~ek/M= E cksek/M}. 

k=1 k=1 
(8. 4. 7) 

M k/M * If we call Lk=lckse of expression (8.4.1) the main part of xs' then we 
can say that s* consists precisely of those states in S with maximal main 

part. Observe that E~=lcksek/M corresponds to the positive powers of 8. 

* Theorem 8.4.1 below states that S consists of easy initial states for 

player 1. 

* 8.4.1. THEOREM. The states in S are easy states for player 1. Namely if 

* the initial state s of a specific game belongs to the set S , then 

player 1 can guarantee himself the average payoff value cMs by means of 

the stationary strategy p. 

A similar theorem can be formulated for player 2. The elements of the 
** * set S consisting of those states s for which the main part of xs is 

minimal, are easy states for player 2. 

The proof of theorem 8.4.1 is postponed until we have proved a number 

of preliminary lemma's. 

From now on fix an arbitrarily chosen pure stationary strategy crP, 

which puts weight 1 on some action j EB , sES. Since f (8) is an optimal * s s s 
action in the matrix game [Gs8 (x )], we have for each sES: 
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(8.4.8) 

in which 

(8.4.9) 

* -1 -1 * -x +R +c1+0 l . r P t(xt) ~ o, 
s s t€s s 

R 
s 

0 
:= r 1\s0k/M 

k=-m 

is the expected immediate reward in state s, and 

(8.4.10) 
0 

Pst := r P 6k/M 
k=-m kst 

can be interpreted as the probability that the system jumps to state t€S, 

if in state s player 1 uses the mixed action f (6) and player 2 chooses j • s s 
For the coefficients in (8.4.9) and (8.4.10) we have for all kE{0,-1,-2, ••• } 

and sES: 

(8.4.11) r r(s,i,j )fk (i) 
iEA s s 

s 

and 

(8.4.12) Pk t = r pCtls,i,j )fk Ci). 
s iEA s s 

s 

For further use, we note that in view of (8.4.3), (8.4.4) and (8.4.5) we 

have, for all k€:N-, that: 

(8.4.13) r Post 1, r P = 0 
tES t€S kst 

(8.4.14) Post ~ 0 

(8.4.15) Pkst ~ 0 if PJl,st=O, Jl,=k+1,k+2, ••• ,o. 

Denote the left side of (8.4.8) by the Puiseux series EM v 6k/M Then k=-..,..ks • 
for each k<M: 

(8.4.16) if YJl,s=O, Jl,=k+1,k+2, ••• ,M. 
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In the following, we are especially interested in the expressions for 

the coefficients corresponding to non-negative powers. For them we obtain, 

as a result of (8.4.8), (8.4.9), (8.4.10) and (8.4.1): 

(8.4.17) 

18 .4 .18) 

-c + i.: 
ks tES 

0 
i.: p C I 

2=-(M-k) 2st k-2t 

0 

k=M,M-1, ... , 1 

-c0 +R0 + l: l: P c - l: p c 
s s tES 2=-M 2st -2t tES Ost Mt 

The following subsets of Splay a rule. For kE{M,M-1, ... ,1}, let 

(B.4.19) {sEsly2s=O, 2E{k,k+1, ... ,M}} 

(8.4.20) 

(cf. (8.4.6) for the definition of d 2J. 

The elements of Tk correspond to the set of states s for which the M-k+l 

leading coefficients of the Puiseux series x:=l:~=-oocksek/M are equal to 

h k 1 1 . f . . f h . 1 . ~M d 8k/M t e M- + eading coe ficients o t e maxima main part Lk=l k . 

Furthe~ Sk can be interpreted as the set of states s for which the action 

js of player 2 is a best answer to the optimal action fs(8) of player 1 

in the matrix game [G (8)] with respect to the M-k+l highest powers of 8. s 
Define also SM+l:=S and TM+l:=S. Observe that 

(8 .4. 21) 

(8.4.22) * s 

From (8.4.16) we obtain 

(8.4.23) 2: 0 

(8.4.24) yk-1 s > 0 

and from (8.4.6) 

(8.4.25) 

for kE{M+l,M, ... ,2} 

for kE{M+l,M, ... ,1} and sESk 

for kE{M+l,M, ... ,2} and sESk'Sk-l 

for kE{M+l,M, ... ,2} and sETk 
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(8.4.26) c < 
k-1 s for kE{M+l,M, •.. ,2} and sETk'Tk-l 

In lemma 8.4.4 we shall show that the following two properties hold 

for each kE{M,M-1, ... ,1}. 

Property (Yk) : Tk C Sk 

Property (Zk): Plst = 0 for all sETk, tE8'Tk-l 

lE{0,-1, ... ,-(M-k)}. 

8.4.2. LEMMA. If property (Zk) holds for some kE{M,M-1, .•• ,2}, then for each 

sETk-l and each lE{-1,-2, ... ,-(M-k+l)}. 

(a) Plst ~ 0, for all tETk-l,Tk-l-l 

(b) I Plst - I Plst 
tETk-l'Tk-1-1 tETk-1-1 

PROOF. By (Zk) and (8.4.21) we have for lE{-1,-2, ... ,-(M-k+l)}, 0 i£>1, and 

tETk-l'Tk-l-l' 11.'st=O, which by (8.4.15) implies part (a) of the lemma. 

Furthermore by (Zk) and (8.4.21) 

Plst 0, 

which in view of (8.4.13) proves part (b) of the lemma. 

Let for fixed kE{M,M-1, ... ,2} 

(8.4.27) 

(8.4.28) I plstck-1-lt' lE{-1,-2, ..• ,-(M-k+l)} 
tES 

Then from the definition of yk-l s (cf. 8.4.17) it follows that 

0 
(8.4.29) yk-1 s = I ~ls" 

1=-(M-k+l) 

a 

8.4.3. LEMMA. If the properties (Yk) and (Zk) hold for some kE{M,M-1, ... ,2}, 

then ukls = 0 for each s E Tk-l and each 1 E {0,-1, ... ,-(M-k+l)}. 



143 

PROOF. In view of sETk_ 1cTk, (8.4.20), (Zk), (8.4.25) and (8.4.13) we have 

(8.4.30) 1\.os -d + k-1 
L P .c 1 5 d. (-1+ L P0 ) = 0 

T Ost k- t --k-1 T st 
t€ k t€ k 

And by (Zk), (8.4.20), lemma 8.4.2(a) and (b) and (8.4.25) we have for 

each iE{-1,-2, ... ,-(M-k+l)} 

(8.4.31) 

Now observe that sETk_ 1cTkcsk (since (Yk) holds) implies with (8.4.23) that 

(8.4.32) 

But then the combination of (8.4.29)-(8.4.32) gives the assertion of the 

lemma. 
D 

8.4.4. LEMMA. The properties (Yk) and (Zk) hold for each kE{M,M-1, ... ,1}. 

PROOF. We prove the lemma by induction with respect to k. For k=M, we 

have by (8.4.16), (8.4.17) and (8.4.25) and sETM: 

0 5 YMs = -c + L p .c 5 dM(-1 + L po ) o. 
Ms tES 0 st Mt tES st 

Then clearly cMt =dM for t such that Po st>O and this proves both (YM) and 

(ZM). 

Now take kE{M,M-1, ••• ,2}. We shall show that (Yk) and (Zk) imply 

(Yk-l) and (Zk_ 1 ), which terminates the proof of the lemma. If we could 

prove that for each sETk-l the following three statements are true: 

(8.4.33) O, 

(8.4. 34) 0 
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(8.4.35) Ptst = 0 if t€Tk-t'Tk-l-t and t€{-1,-2, ••• ,-(M-k+1)}, 

then we can combine (Yk) and (8.4.33), using (8.4.21) to conclude that 

(Yk-l) holds; and we can combine (Zk), (8.4.34) and (8.4.35) to conclude 

that (Zk-l) holds. 

So the only assertions to prove are (8.4.33)-(8.4.35). 

Fix s€Tk-l" Firstly from (8.4.29) and lemma 8.4.3 we derive (8.4.33). Next 

observe from (8.4.25) and (8.4.26) that ~os=O if and only if (8.4.34) 

holds; hence lemma 8.4.3, taking t=O, shows that (8.4.34) is true. Finally 

from (8.4.31), lemma 8.4.2(a) and (8.4.26) we see that1kts=O if and only 

if (8.4.35) holds, but then lemma 8.4.3, taking successively 

t=-1,-2, ••• ,-(M-k+l), guarantees (8.4.35). 

* 8.4.5. LEMMA. For s€S =T1 we have 

-1 
(a) l: l: Ptst.c-tt :5 0 

t€S t=-M 

(b) l: p Ost cMt = dM • 
t€S 

P.ROOF. From lemma 8.4.4 (property (Zk) for k=l and t=O) and (8.4.20) we 

* infer fer s ES = T1: 

l: p c = l: p c 
t€S Ost Mt t€T Ost Mt 

1 

which proves part (b). 

* Fix s E S "'T1 • 

Take tE{-1,-2, ••• ,-M}. For each 1€{0,-1, ••• ,-t+l} we have in view of 

lemma 8.4.4, taking k=1: 

(8.4.36) 

(8.4. 37) 

But then by (8.4.15) and (8.4.37): 

(8.4.38) ~ 0 

c 
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And by (8.4.13) and (8.4.36): 

E P = - E P . 
tET 'T 2st tET 2st 

1-2 -2 -2 

(8.4. 39) 

Now the combination of (8.4.36), (8.4.6), (8.4.39) and (8.4.38) yields 

for each 2E{-1,-2, ..• ,-M}: 

E P c + E P c $ 
tET 'T 2st -2t tET 2st -2t 

1-2 -2 -2 

E P c + E P d 
tET 'T 2st -2t tET 2st -2 

1-2 -2 -2 

which proves part (a) of the lemma. 

* 8.4.6. LEMMA. For each sES , we have 

(a) 

(b) * for tES'S . 

* PROOF. Since S =T1 , part (b) is already proved in lemma 8.4.4 (property 

(Zk) for k=l and ~=O). 

* Take sES . Then by property (Y1 ) of lemma 8.4.4 we see that sEs 1 . 

Hence by (8.4.23) and (8.4.18): 

0 
(8.4.40) o $ Yos = -c +R + l: l: P" tc-" - E Po t"cMt 

Os Os tES 2=-M Ns Nt tES s 

Inserting lemma 8.4.S(a) and (b) into (8.4.40) proves the lemma. 

We are now ready to prove theorem 8.4.1. 

PROOF of theorem 8.4.1. 

Suppose that player 1 uses the stationary strategy p and player 2 the pure 

stationary strategy aP. Then by lemma 8.4.6 part (b), we see that the 

* 

0 

Cl 

subset of states S can be treated separately, since the system cannot jump 

* out of S • 
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* * * * Let c0 , P 1 Q and r be the parts of c, P, Q and r respectively that 

* refer to S 

Then lemma 8.4.6(a), written in vector notation, gives (cf. (8.4.11) 

and (8. 4.12)) : 

(8.4.41) 

* ,.., aP Multiplying (8.4.41) by Q (p, ) gives then 

(8.4.42) 
*,.., p *,.., p 

Q (p,a ).r (p,a) ?: ~-lls*I" 

* Thus by (8.4.42) we have proved that for the states belonging to S , 

player 1 can assure himself the average reward value by playing p against 

each pure stationary strategy of player 2. But then by corollary 3.5 this 

is also the case against any strategy of player 2, by which theorem 

8.4.1 is proved. 

We conclude this section with two examples. In the first example the 
* ** set of easy initial states of player 1 (player 2) coincides with S (S ) 

and S=s*us** s*ns**=~. In the second example s* (s**> is a proper subset 

of the set of easy initial states of player (player 2) and there is a 

state which is easy for neither player. 

8.4.7. EXAMPLE. 

m~
l 0 

2 1 

0 -1 
2 2 

1 2 

* * * Obviously by symmetry we have x (6)=(x1,-x1), and by solving the limit 

discount equation we obtain x;=~/(26+1)-~. Hence s*={1} and s**~{2}. The 

value of the undiscounted stochastic game is (O,O), and it can be 

verified that only state 1 is easy for player 1 and only state 2 is easy 

for player 2. 

For the strategy p, as defined at the beginning of this section, we have 

c 
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that p prescribes the choice of the first row in both states (p is unique 

in this game). This strategy is optimal for player 1 if the game starts 

in state 1. 

8.4.8. EXAMPLE. 

3 4 

* * * Here x (8)=(x1,0,-x1 ,0), and by solving the limit discount equation we 

obtain 

-1 I (1+8 ) ( (8+1)-1) 

This implies that s*={l}, s**={3} and that the value of the undiscounted 

game is (O,O,O,O). 

State 4 is not easy for either player, and state 1 (state 3) is not an 

easy initial state for player 2 (player 1), while state 2 is easy for 

both players. 
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9. Algorithms for undiscounted stochastic games. 

In section 9.2 we shall show how stochastic games in which one player 

controls the transitions can be solved by a linear programming problem. In 

section 9.3 we consider the switching control stochastic game, by which we 

mean a game such that in each state only one of the players, but not in 

each state necessarily the same one, controls the transitions. It results 

that this class of games can be solved by a finite sequence of linear 

programming problems. 

In section 9.1 we give a review of well-known algorithms for 

undiscounted stochastic games. 

9.1. SOME KNOWN ALGORITHMS. 

The first algorithm we describe is the algorithm of Hoffman & Karp 

(1966). It can be applied to irreducible stochastic games, i.e. games for 

which, for each pair of pure stationary strategies, the corresponding 

stochastic matrix has a single ergodic class and no transient states. In 

part II, algorithm 6.1.2, we have given the discounted version of this 

algorithm. 

9. 1. 1. ALGORITHM (Hoffman & Karp) . 

(i) Choose v0E1Rz such that v~=O; let T :=O. 

(ii) Determine a stationary strategy cr'=(o~, ... ,cr~), such that 

optimal action for player 2 in the matrix game [G (v')]. 
s 

(iii) Solve the Markov decision problem, MDP(cr'), which results 

player 2 fixes cr'. This so~ution corresponds to the unique 

solution of the following set of equations: 

T+l _ Q 
vl - • 

z 
max {r(s,i,cr')+ E p(tls,i,o'J.vT+l}, 
iEA s t=1 s t 

s 

(iv) T:=T+l and go to step (ii). 

sEs 

cr' is an 
s 

when 
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Hoffman & Karp have shown that the sequence (g',v'), T=1,2, ••. has a limit, 

* * say (g ,v ) , for which 

(9.1. 1) * * g +vs Val 
A xB 

s s 

* (GS (v ) ) 1 sES. 

From lemma 8.1.3-we recall that (9.1.1) implies that the value equals 

g*.1z' while optimal actions in [Gs(v*)] for the players provide optimal 

stationary strategies. 

Federgruen (1978) has given two algorithms for undiscounted stochastic 

games. The first one can be applied succesfully whenever the stochastic game 

has the properties (a) both players have optimal stationary strategies, and 

(b) the average payoff value is independent of the initial state. This 

algorithm proceeds as follows. 

9.1.2. ALGORITHM (Federgruen) 

(i) Fix a sequence a,, T=l,2, •.. , which satisfies 

as T-+oo 

(for example the choice a =T-y with O<y~l satisfies these 
T 

relations) 

(ii) Choose v1E:JR.z such that v~=O. 
(iii) Calculate recursively for T=l,2, ..• 

T+l 
g 

T+l 
v s Val 

A XB 
s s 

-1 Z T 
(r(l,.,.)+(l+a) l: p(tj1,.,.)v) 

T t=l t 

-1 Z T T+l 
(r(s,.,.)+(l+a) l: p(tjs,.,.)v )-g , 

T t=1 t 

In fact this algorithm is an extension of the modified value

iteration method of Hordijk & Tijms (1975) to stochastic games. 

sES. 
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* The way in which this algorithm approximates the value g . lz of the game and 

produces £-optimal stationary strategies is given by the following 

properties. Let 

Then 

(a) 

(b) 

(c) 

lim m 

m 
T 

--'[ T->= 

min 
sES 

max 
sES 

lim m 
T->= 

{ T+l T+l (l )-1 T} 
VS +g - +aT VS • 

T * lim g g T T-><o 

* T lim v exists and equals v (say), where 
T->= 

* * * g +v Val (G (v ) ) , sES s s 
A ><B 

s s 
* T m '.S g '.S m and m '.S g s m 

--'[ T --'[ T 

(d) If rnT-E.:_T<£, then gT is an £-approximation of g*, and a stationary 

strategy for a player built up from optimal actions of the matrix 
-1 z I T games [r(s,.,.)+(1+a) L p(t s,.,.)vt] is £-optimal for that 

T t=l 
player. 

The second algorithm of Federgruen (1978) can be applied to stochastic 

games for which for each pair of pure stationary strategies, the 

corresponding Markov chain is unichained (transient states are allowed). In 

addition it is assumed that the data-transformation of Schweitzer (1971) is 

carried out in order to ensure the strong aperiodicity property, i.e. 

p(tjs,i,j)>O for all t,s,i,j. For this class of games the data

transformation leaves unchanged both the value of the game and the sets of 

optimal stationary strategies of the players. Furthermore the aperiodicity 
T * property ensures the convergence of the sequence of vectors w -T.g .lz, 

T=0,1, ... , where w0 is arbitrary and 

(9. 1. 2) 
T 

w 
s 

:= Val 
A xB 

s s 

(G (WT-1)) 
s 

for T2:1 and sES. 

This leads to the following algorithm, which bears a resemblance to 

algori thrn 9. 1. 2 . 
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9.1.3. ALGORITHM (Federgruen). 
1 z 1 

(i) Choose v EJR , such that v 1=o. 

(ii) Calculate recursively for T=1,2, •.• 

T+1 
g 

T+l 
v 

s 

z 
Val ( r (1 , • , • ) + E p ( t I 1 , • , • ) v ~) 

A1xB 1 t=l 

Val 
A xB 

s s 

z 
I T T+l (r(s,.,.)+ E p(t s,.,.)vtl-g 

t=l 

Federgruen has shown that for this algorithm the same relations hold 

as for algorithm 9.1.2, mentioned under (a)-(d) (now aT=O in the 

definitions of~ and mT).In addition, the convergence of~ and mT is 

monotone. Furthermore the convergence rate is geometric as a consequence 

of the data-transformation. 

Finally we wish to mention some of the results of Van der Wal (1981). 

His algorithm agrees with the standard method of successive approximations, 

which is represented by equation (9.1.2). A scheme which reflects his 

algorithm would be algorithm 9.1.3 above. Van der Wal shows that this 

algorithm can be applied to two classes of stochastic games. 

The first one is the same class as Federgruen treats with algorithm 

9.1.3. Van der Wal obtained similar results as Federgruen. Moreover he 

proved that under the strong aperiodicity assumption it holds that 

T+l T w -w 

if T+m, where y is a constant, O<y~l, depending on the transition 

probabilities of the game. 

In the second case Van der Wal (1981) considers the class of games 

for which the set of equations 

Val (G (v)), 
A xB S 

s s 

sES 

has a solution. If in addition the data transformation is carried out, then 

h h th t th f 11 i h ld P tt . T T+l T E ( T , d f' d e s ows a e o ow ng o s. u 1ng gs:=ws -ws, s S w is e ine 

as in (9.1.2)) and m :=max gT and m :=min gT, then both m and m converge 
T sES s ---'! sES s T -T 
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* * monotonically tog , where g .lz is the average payoff value of the game. 

This demonstrates that in this case also the method of standard successive 

approximation yields an £-band around the value of the game and nearly 

optimal stationary strategies for the players. 

9.2. STOCHASTIC GAMES WHERE ONE PLAYER CONTROLS THE TRANSITIONS. 

In this section a linear programming problem is elaborated which 

solves the class of games for which only one of the players governs the 

transitions. A consequence of our analysis is a constructive proof of the 

orderfield property for this class of games (cf. Parthasarathy & Raghavan 

(1981)). 

A stochastic game in which the transition probabilities are 

controlled by one player is a special case of a switching control 

stochastic game as defined in definition 6.3.1. 

9.2.1. DEFINITION. A stochastic game in which player 2 governs the 

transitions is a game for which p(tls,i,j)=p(tls,i,j) for all 

(i,i)EAsxAs' each jEBs and each (s,t)Esxs. This probability is 

abbreviated to p(tls,j). 

Stern (1975) proved that such games have an average payoff value. 

Bewley & Kohlberg (1978) and Parthasarathy & Raghavan (1978) independently 

showed that both players possess optimal stationary strategies. In 

addition Parthasarathy & Raghavan have proved the orderfield property for 

this class of games, i.e. the property that a solution of the game lies 

in the same Archimedean field as its parameters. By a solution we mean the 

value plus optimal stationary strategies. Given this property it was to be 

expected that a solution could be found by a finite procedure. Filar & 

Raghavan (1979) have given such a procedure. However their algorithm is 

rather cumbersome, since many computations have to be done. For instance 

for each pair of pure stationary strategies the average payoff must be 

computed. From these payoffs z matrix games are constructed. The values of 

these matrix games correspond to the value of the stochastic game. 

However to find optimal stationary strategies still further calculations 

must be carried out. 
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Below we will formulate a linear programming problem, whose solution 

gives in one blow the value of the game and optimal stationary strategies 

for both players. The results of this section are deduced from Vrieze 

(1981a). 

Independently Hordijk & Kallenberg (1981b) have proposed a similar 

algorithm. They analysed their linear programming problem in detail and 

have stated some interesting properties of it. 

We first state the algorithm, then show that this linear programming 

problem has'-a solution and lastly prove that this solution corresponds to 

a solution of the stochastic game. 

Consider the following linear programming problem in the variables 

(g1 , ... ,gz), (v 1 , ... ,vz), xs(i), sES, iEAs. 

9.2.2. ALGORITHM. 

LPl: 

(i) 

(ii) 

(iii) 

z 
max L gs, subject to 

s=l 
z 

g - l: p(tl s,j) .g '50 
s t=l t 

, sES, jEBs 

z 
g +v - l: x (i).r(s,i,j)- l: p(tls,j).v '50 

s s iEA s t=l t 
s 

l: x (i)=l, x (i)::O:O 
iEA s s 

, sES, iEAs. 

s 

The dual linear programming problem in the variables (w1 , .•. ,wz), 

ys(j), zs(j), sES, jEBs is: 

DLPl: 
z 

min L w subject to 
s=l s 

( j) 

( j j) 

(jjj) 

(jv) 

(Here c'J 
st 

z 
l: 

s=l 
z 
l: 

s=l 

L: ( 0 t -p ( t I s I j) J y ( j) + l: z ( j) = 1 
.E s s ·- t 
J Bs JtBt 

l: ( 0 t -p ( t I s, j) ) z ( j) =0 ' tES 
jEB s s 

s 

- l: z ( j) . r ( s, i, j) +w ::o:o 
jEB s s 

, sES, iEAs 

s 

, sES, jEBs. 

1 if s = t and o 
st 

Oelse.) 

I tES 



Note that the set X:={xlx:={x (i) ;sES, iEA }, x satisfies (iii)} s s 
corresponds to the set of stationary strategies of player 1 in a one to 

one manner in the following way. If xEX, then define 

(9.2 .1) 

which obviously is a stationary strategy for player 1 in view of 

condition (iii). On the other hand for a stationary strategy p define 

(9.2.2) xp by xp (i) :=p (i). 
s s 

p (xp) (px) 
Then x EX and clearly p =p and x =x. 
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Intuitively, for any state s the numbers zs(j), jEBs are proportional 

to the probabilities of player 2 choosing his pure actions at state s. 

9.2.3. LEMMA. Both linear programming problems are feasible and have 

bounded solutions. 

PROOF. Consider the primal problem. Observe that if g = min r(t,i,j), each 
s (t,i,j) 

sES and vs=O, sES and xEX arbitrary, then (g,v,x) satisfies (i)-(iii), and 

thus the primal problem is feasible. 

Now let (g,v,x) be a feasible solution and let op be an arbitrary 

pure stationary strategy of player 2. Then from (i) and (ii) we obtain 

(in vector notation): 

(9.2.3) 

(9.2.4) 

(Since, for a pair of stationary strategies p and a the transition 

probability matrix depends only on a we will write P(o) instead of P(p,o) .) 

From (9.2.3) and (9.2.4) we derive by lemma 8.1.1: 

(9.2.5) 

Now (9.2.5) shows that g is bounded from above (e.g. by 

uniformly in the feasible solutions (g,v,x). 

max r ( s , i, j ) ) 
(s,i,j) 

Hence a finite optimal solution to the primal problem exists. 
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From the duality theorem for linear programming problems it follows that 

the dual problem also is feasible and has a bounded solution. 

9.2.4. LEMMA. Let (g,v,x) be a feasible solution to the primal problem. 

Then 

minWx<!g. 

" p " 

PROOF. This result can be deduced immediately from (9.2.5) by using 

corollary 3.5. 

c 

c 

In the following we will frequently use some properties of the Cesaro 

limit Q of a stochastic matrix P. These properties are outlined in section 

8.1. We recall that if P is a stochastic matrix corresponding to an ergodic 

Markov chain, then Q:=lill\r--(T+1)-lE~=OP' has the properties: (a) each row 

of Q is identical and equal to the law vector q (say), (b) q is the 

invariant distribution of P, i.e. the unique solution to qP=q, E q =1, 
s€S s 

and (c) each component of q is strictly positive. 

Associated with a feasible solution (w,y,z) to the dual program, we 

define a number of quantities: 

(9.2.6) 

(9.2. 7) 

(9.2.8) 

(9.2.9) 

(9.2 .10) 

u := E z (j), 
s 'EB s 

J s 

s0 :={sjsES and us=O} 

'; (j) :=z (j)/u , 
s s s sEs--s0 and jEBs 

d := E (y (j) +z (j)), sES 
s jEB s s 

s 

y (j):=(y (j)+z (j))/d, sES, jEBS s s s s 

Observe that from condition (j) we have E y t (j) > O if . 1: Zt(j) 

thus ds > 0 for each SES. 
jEBt J€Bt 

0 
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~ * Further, stationary strategies a and a for player 2 are defined as: 

(9.2 .11) sES, jEBs 

(9.2.12) 

It will result that a* is optimal for player 2 if it is associated with 

an optimal solution (w,y,z) of DLPl. 

9.2.5. REMARK. Observe from the conditions (j) and (jj) that: 

z 
l: l: (a t-p<tls,j)) (y (j)+z (j))+ l: z (j)=l, tEs 

s=l jEBs s s s jEBt t 

which in view of (9.2.6), (9.2.9) and (9.2.11) is equivalent to 

z 
(9.2.13) d - i: pCtls,cr J .d +ut=1, 

t s=l s s 
tES 

In the following we assume that, for a stationary strategy a of player 

2, after suitable rearranging of the states, P(o) has the form as in 

(8 .1. 3) . So 

P 11 (a) 0 I 0 
I 
I 
I 

P(a) 
0 P (a) I 

yy I 0 

----- ----------
I 

Py+ll Col P 1 (a) I p 
y+l y+l (a) y+ y 

Pnn(o) corresponds to the n-th ergodic class of P(o), whose set of 

states is denoted by E (a), nE{l, ... ,y}, and P 1 1 Co) corresponds to the n y+ y+ 
transient states of P(a). This set of transient states is denoted by T(o). 

,....., ,....., * * In the following y corresponds to a and y to a • 

If P=(p(tlsl) corresponds to a stochastic matrix, then for each cEJR2 : 

z z 
(9.2.14) l: (et- l: p(tlslcs)=O 

t=l s=l 

as a consequence of l:~=lp(tjs)=l. 
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* 9.2.6. LEMMA. (a) u=u.P(cr ) • 

* (b) the transient states of P(cr ) are exactly the states s0 • 

PROOF. Part {a) follows immediately after inserting definitions (9.2.6) 

and (9.2.12) into condition (jj). Concerning part (b), note first that 

summing up condition (j) over tES yields 

(9.2 .15) 
z 
E u =z>O 

s=l s 

Now, by (9.2.15) and part (a) of the lemma, it follows from the theory of 

Markov chains that u can be written as a linear combination of the 

* invariant distributions of P(cr ): 

u=\(q1:0: ••• :0)+A.2 {0:q2 :0: .•. :0)+ ..• +A. *(O: .•• :O:q *:0), 
y y 

* 
with A. ~O, Ey 1:>.. =z and where q equals the unique invariant distribution 

n n= n n 
of P (a*), nE{l, .•• ,y*}. Note that the vector q is strictly positive. 

nn * n 
Hence if u >O, then sEF.v(cr) for some nE{l, •.• ,y*}, and moreover ut>O for 

s n 
each tE&v(cr*). Therefore, if we wish to show that s0 is exactly the set of 

n * 
transient states of P(cr ), it suffices to show that no ergodic class lies 

entirely within s0 . 

* * Suppose then for some nE{l, ••• ,y} that En(cr )cs0 . 

Summing up (9.2.13) over tEEn(cr*) yields in view of (9.2.14) (here jEnCcr*ll 

equals the number of states of ergodic class n): 

E 
tEE (a*) 

n 

E 
s~E (a*) 

n 

E p(tjs,j) .y (j) 
"EB s 
J s 

E ea*> I 
n 

As ys(j)~O the left hand side is non-positive, but then we have a 

contradiction since the right hand side is strictly positive. This shows 

* that the assumption En(cr )cs0 is wrong, which proves the lemma. 

9.2.7. COROLLARY. u can be written as 

u=A. 1 (q 1:0: •.. :0)+A.2 (0:q2 :0: •.• :0)+ ..• +A. *(O: .•. :O:q *:O) 
* y y 

with A. >O, nE{l, ... ,y*}, Ly 1:>.. =z, and where q equals the invariant 
n n= n n 

distribution of P (cr *) • 
nn 

[J 
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9.2.8. COROLLARY. Let pp be a pure stationary strategy for player 1. Then 

for each nE{l, •.. ,y*}: 

(9.2.16) (a) 

(9.2.17) (b) 
z 
l: 

s=l 

l: z (j) .r(s,pP,j) = AW (n) 
'EB s s n ppcr* 
J s 

* 
l: z (j) .r(s,pP,j) 

'EB s s 
J s 

y 
l: A .W (n) 

n=l n pPcr* 

(Here W p * (n) equals the expected payoff for the pair of strategies 
* p 0 * (pP,o) when the starting state of the specific play belongs to E (o ); 

n 
remember (cf. (8.1.4) and (8.1.6)) thatW p *isconstantonanergodicset). p 0 

Corollary 9. 2. 8 can be verified by writing z ( j) = ';' ( j ) . u , s € S\S 
s s s 0' 

next inserting the expression for u of corollary 9.2.7 in the left hand 
sides of (9.2.16) and (9.2.17), and by realizing that 

From now on (g,v,x) and (w,y,z) are assumed to correspond to a dual 

pair of optimal solutions. 

9.2.9. LEMMA. (a) ws=O for sEs0 

(b) l: w 
* s sEE (o ) 

n 

PROOF. Part (a) follows directly from us=O, sEs0 , condition (jjj), and 

the fact that the dual LP is a minimization problem. 

Part (b) follows from Corollary 9.2.8 (a). 

9.2.10. LEMMA. P(a*) .g=g and P(O')~g=:=g. 

* PROOF. From P(cr ).g~g (condition (i)) it follows that the equality sign 

holds for the components belonging to the set S'S0 of recurrent states of 
* P(cr) (see lemma 8.1.l(a)). Hence we have for sES and jEBs: 

D 
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(9.2.18) 

From the complementary slackness property we obtain for sES and jEBs: 

(9.2.19) 

(9.2.18) and (9.2.19) together with the definitions of o* and a (see 

(9.2.11) and (9.2.12)) give the lemma. 

a 

9.2.11. COROLLARY. 

(a) For each nE { 1 , ... , y * } , g is constant * on E 
n 

(a ) . 
(b) For each nE{ 1, •.. ,y}, g is constant on E (cr) • 

n 

In the following g(n), for nE{l, ... ,y*}, denotes the constant value 

ofgonE (a*). Similarly fornE{l, ... ,y}. 
n 

"' * 9.2.12. LEMMA. For (n 1 ,n2JE{1, .•. ,y}x{1, .•. ,y } we have either 

* * E (cr)nE (cr) E (cr ), or 
nl n2 n2 

"' * * PROOF. Let sEE (cr)nEn (cr) and let tEEn (cr ). 
nl 2 * 2 

Then sand t communicate under P(a ). But since y (j)=cr (j)>O if 
s s 

"' * zs(j)=crs(j)>O (see 9.2.10), it follows that sand t also communicate under 

P (";;), so tEE (a). 
nl 

a 

Lemma 9.2.12 implies that the following are sensible definitions. 

Let 

';i'E { 1, •.. ,y} 

T;- := En<alnTccr*> , ';i'E{1, ... ,y} 

T := {niTCcrl~E ccr*>} 
n 

"' * TT := T(cr}nT(cr ) 
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Obviously 

(9.2.20) {1, .•. ,y*} 

For a finite set c we mean by lei the number of elements of C. 

9.2.13. LEMMA. For 'il'E{l, ... ,y} we have 

L: u L: A 
tE111(o) t nE°n n 

L: IE (0*) l+IT~I+ L: 
nEDv n n tE&....,(0) 

i:: p<tJs,aJ .d 
~ s 

sET (0) 
n n 

PROOF. The first equality follows from corollary 9.2.7. The second can be 

checked by summing up (9.2.13) over tEEr;(cr) and using 9.2.14 (with 

P=P"-""(cr)). 
nn 

From (9.2.13) we can also infer: 

(9. 2. 21) dt = 1+ i:: p(tls,crJd 
~ s 

sET(0) 
for tETT. 

* And after summing up (9.2.13) over tEEn(0) with nET and using corollary 

9.2.7 we obtain 

(9.2.22) A 
n 

9.2.14. LEMMA. 

i:: p(tls,oJ.d 
~ s 

sET(0) 

nE{ 1, ... , y *} 

CJ 

PROOF. From the duality theorem for linear programs, lemma 9.2.9(a) and (b) 

and (9.2.20) we obtain: 

(9. 2. 23) l: g 
sES s 

y 
L: 

:;;'=1 

L: w 
sES s 

* y 
l: A .max W (n) 

n=l n pP pP0* 

l: A max W (n)+ L: A .max W (n). 
nED-v n pP pP0* nET n pP pP0* 

n 



162 

Now observe that, using Corollary 3.5, lemma 9.2.4, and the fact that W * pa 
is constant on E (a*) for each p: 

n 

(9.2.24) max W (n) 2: W (n) 2: g(n), 
pP pPa* pXa* 

for all n€{1, ••• ,y*}. 

Substituting inequality (9.2.24) into (9.2.23) and recalling that 

g(n)=g(;') for n€D;r yields: 

(9.2.25) 

Inserting the expression for E A of lemma 9.2.13 and also relation 
nEon n 

(9.2.22) into (9.2.25) leads to: 

(9.2.26) 
y ..... * y ..... 

2: E g(n) E IE (a ) I+ E g(n) l'INI E g 
s€S s ';i°=1 n€0-.. n n'=l n ..... 

y ..... 
+ E g(n) E 

';i°=1 tEP>---Cal 
n 

n 

E p(tls,o)d + E g(nl.IE ea*> I 
"" s n s€T(a) n€T 

- E g(n) E * dt+ E g(n) E * E ..... pCtls,a)ds 
n€T t€En(a) n€T t€En(a) s€T(a) 

= E gs (the first + the fourth term) 
s€5'So 

+ E ..., gs (the second term) 
s€s0n (5'T(a)) 

+ E ..., gs (extra term added) 
s€s00T(a) 

- E gtd + E E g .p(tls,o).d 
t€TT t t€TT s€T(a) t s 

(in view of (9.2.21), the same extra term subtracted) 

+ E gt E pCtls,o)d (the third and the sixth term) 
t€5'TT s€T (0) s 

- E g(n) E * dt (the fifth term) 
n€TT t€E (a 

n 

= E g + E g E p(tls,a).d - E gtd. 
s€S s t€S ts€T(a) s t€T(a) t 
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But since E p(tls,cr) .gt=g by lemma 9.2.10, it follows that the second and 
tES s 

the third term of the last expression of (9.2.26) sum up to zero. Then 

(9.2.26) results in the inequality: 

l: g 
sES s 

~ E g 
sES s 

Hence in (9.2.25) the equality sign must hold, and since An>O for each 

nE{l, ... ,T*} this implies that the equality sign holds in (9.2.24) also, 

which proves the lemma. 

Now we can state the main 'theorem of this section. 

IJ 

9.2.15. THEOREM. Algorithm 9.2.2 provides a solution method for 

undiscounted stochastic games in which player 2 controls the transitions. 

If (g,v,x) and (w,y,z) is a dual 

program, then g equals the va.lue 

optimal stationary strategy for 

optimal stationary strategy for 

PROOF. From lemma 9.2.14 we obtain 

(9.2.27) max W 
pP 

p * = gs 
sp a 

pair of optimal solutions to this 

of the game, x (cf. (9. 2 .1)) is p an 

* player 1 and a (cf. (9.2.12)) is an 

player 2. 

P(a*) is independent of pP, so for each pp we have the same configuration 

of recurrent and transient states, namely s-..s0 is the set of recurrent 

states and s 0 is the set of transient states (see lemma 9.2.6). 

* By lemma 9.2.10, P(<J )g=g. From this equality and from (9.2.27) we derive 

along the same lines as (8.1.11), with inequality signs replaced by equality 

signs, that 

Thus 

max 
pP 

for sEs0 . 
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But then by corollary 3.5 and lemma 9.2.4 we see that for all strategies 

µ and v 

w 
* µcr 

:;; w 
x * P a 

These inequalities prove theorem 9.2.15 as a consequence of theorem 2.3.4. 

9.2.16. REMARK. If in each state player 1 has only one action, then the 

game reduces to a minimizing Markov decision problem. In this case our 

algorithm results in an algorithm presented by Hordijk & Kallenberg (1979). 

Parts of their proofs could be projected on our problem; in particular the 

* fact that s 0 is exactly the set of transient states for P(cr ) could be 

proved for both cases in an analogous way. The problem of proving the 

* optimality of a is essentially different. Following their line of argument 

lead to the result that o* is "optimal" against all pP, such that 
p zf'V ~ I x 

p € X A , where A :={i iEA and p (i)>O}. 
s=l s s s s * 

Clearly this is not enough for showing the optimality of a • 

9.2.17. REMARK. For the important case in which, for each pure stationary 

strategy oP, the probability matrix P(aP) has a single ergodic class and no 

transient states, both the algorithm and the proofs can be considerably 

simplified. The algorithm now becomes: 

(i) 

(ii) 

maximize the scalar g, subject to 

z 
g+v - L x (i).r(s,i,j)- E p(tls,j).v :;;o 

s i€A s t=l t 

L 
iEA 

s 

s 

x (i)=l and x (iJ~O 
s s ,sES, i€As 

The dual of this linear programming problem is: 

(j) 

(jj) 

z 
min L w , 

s=l s 
z 
L L z (j) 

s=l j€Bs s 
z 

subject to 

L L (o t-p(tls,j))z (j) 

s=l j€Bs s s 
0 , t€S. 

sES, j€Bs 
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(jjj) - l: z (j).r(s,i,j)+w :::: 0 
'EB s s 
J s 

, sES, iEAs 

(jv) , sEs, jEBs 

* * In this case the stationary strategy a with a (j)=z (j)/ l: zs(j) for each 
s s 'EB 

j and sis optimal for player 2 when the z (j)'s belong J s to an optimal s 
solution of the dual program. 

In the rest of this section we give some further properties of a 

player 2 control stochastic game. First we obtain two results which will be 

used in the next section. 

For a player 2 control stochastic gamer, R(f) denotes the set of states s 

for which player 2 has an optimal stationary strategy a, such that state s 

is recurrent under P(cr). 

9.2.18. LEMMA. Let g be the value of a player 2 control stochastic gamer. 

Then 

(a) 
z 

g =min l: p(tls,j)gt 
s 'EB t=l J s 

z 

, sES. 

Let E2 ={jijEB and gs= l: p(tjs,j).gt}. 
s s t=l 

(b) If a is optimal for player 2, then 

(c) Let vElRz be such that 

(9.2.28) g +v ~ Val (G (v)), 
s S A xE s 

s 2s 

all sES 

then the equality sign holds in (9.2.28) for each sER(f). 

PROOF. Part (a) holds in view of lemma 8.1.4. Part (b) is proved in a more 

general context in lemma 8.1.5, while the equality g=P(a).g is a consequence 

of part (a) and the definition of E2s. 
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Considering part (c), take ~ER(r) and let a be an optimal stationary 

strategy for player 2 such that state';; is recurrent under P(a). Let E(a) 

be the ergodic set to which';; belongs. Now suppose that the inequality 

(9.2.28) is strict for';;. Then there exists a stationary strategy p for 

player 1 such that 

g+v ::> r(p,a)+P(a) .v, 

with strict inequality at least for component ';;EE(a). Application of the 

second part of lemma 8.1.l(b) shows that a cannot be optimal. Hence we have 

a contradiction and therefore the equality sign holds in (9.2.28) for~-

Note that the existence of a v satisfying (9.2.28) is quaranteed by 

both theorem 8.1.8 and by the existence of an optimal solution (g,v,x) to 

LP1 (cf. theorem 9.2.15). 

a 

With a player 2 control stochastic game we associate another linear 

programming problem, called LP2. Because we use this program for games with 

payoffS Of the type r(S,i,j)=r(s,i,j)-g (g is the average reward Value) I 
s 

it is convenient to incorporate this special form here. 

g1 , ••• ,gz in LP2 are not variables like in LP1, but given numbers. 

Intuitively in this game the average reward value is identical to zero. 

9.2.19. ALGORITHM. 

LP2: variables u= Cu1 , ••• , u ) , x={x (i) I sES, iEA } 
z s s 

(i) 

(ii) 

max E u , subject to 
sES s 

u - E r(s,i,j).x (i)- E p(tjs,j)ut:>O, 
s iEA s tES 

E 
iEA 

s 

s 

x (i)=1 and x (i)~O 
s s , sEs, iEAs. 

The dual LP is: 

sES, jEBs 

DLP2: variables d=(d1 , ••• ,d ), y={y (j) lsES, jEB }. 
z s s 

min E d , subject to 
sES s 
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(j) L L (6 t-p(tls,j))y (j)=l 
sES jEBs s s 

, tEs 

- L r(s,i,j).y (j)+ d ~ 0, s € S, i E As 
'EB s s 
J s 

( j j) 

(jjj) for all sEs, jEBs. 

Hordijk & Kallenberg (1981a) have shown that for the transient case 

(i.e. the case where lim P'(crp)=O for all pure stationary strategies op) 
'!'-- zz 

LP2 is feasible. For such games the solution to LP2 corresponds to the 

total payoff value of the game. We need an extension of their result to 

what we call a semi-transient player 2 control stochastic game. This is a 

game for which (a) L p(tls,j)~l, each jEBs, sES, (b) the average payoff 
tEs value equals 02 and (c) player 2 has a stationary strategy a such that 

P(cr) is transient. 

9.2.20. LEMMA. For a semi-transient player 2 control stochastic game with 

payoffs of the form r(s,i,j)=r(s,i,j)-g the corresponding linear program 
s * LP2 is feasible and has a bounded optimal solution u for which 

* u 
s 

Val 
A XB 

s s 

z 
(r(s,.,.)-g + L p(tls,.)ut*) 

s t=l 
, sEs 

PROOF. Add a state z+l, where both players have one action denoted by the 

scalar 1 and such that p(z+1Jz+l,1)=1, p(z+lJs,j)=l- L p(tls,j), sES, and 

r(z+l,1,1)=0. Then we obtain a stochastic game with 5~~-stopping 
transition probabilities which obviously has also average payoff value 0. 

But this means (see lemma 8.1.3) that there exists a vector vElRz+l such 

that 

(9.2.29) v 
s 

z+l 
Val ( r ( s , . , . ) -g + r p ( t I s , . ) v ) , 

A XB s t=l t 
sE{l,2, ... ,z+l} 

s s 

As in (9.2.1) and(9.2.2) there exists a one-to-one correspondence 

between the set of stationary strategies for player 1 and the set of all 

x satisfying condition (ii) of LP2. Let p be such that ps is an optimal 

action for player 1 in ( 9. 2. 29) for each sES. Then it can be checked that 

the pair (u,xp) satisfies conditions (i) and (ii) of LP2, when 

us=vs-vz+l' sES. So LP2 is feasible. 
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Next let (u,x) be an arbitrary feasible pair. Let a be such that P(o) is 

transient. Then condition (i) implies 

z 
(9.2.30) us r(px,o)-g+P(cr).u and also us s Val (r(s,.,.)-gs+ l p(ljs,.)ut) 

AsxBs t=1 

By iterating the first inequality we obtain in view of P(cr) being transient: 

(9.2.31) us E PT(cr)(r(px,cr)-g) s sup 
T=O p 

E PT(cr) (r(p,cr)-g). 
-r=O 

Since P(cr) is transient the right hand side of (9.2.31) is bounded. Hence 
z 

for any feasible solution (u,x) to LP2, E us is uniformly bounded from 

above. This implies that LP2 has a finit~= 1optimal solution. 

* * Now let (u , x ) be any optimal solution of LP2. In view of the second 

inequality of 9.2.30 it remains to show, that for no s € S: 

(9.2.32) 
z 

* ,.... I"' * u.v < Val (r(s,.,.)-~ E p(t s,.)ut). 
s A,,..x&.,. s t=l 

s s 

Let P,:,,. be an optimal action for player 1 for the matrix game in the right hand 
s 

side of (9.2.32). Then, for sufficiently small E>O, it follows that 

,.... ,.... I"' * UNI-£ s min { E (r(s,i,j)-9::').~(i)+ E p(t s,j)ut 
s j iEJ\.v s s tES--{s} 

s 

"'I"' * + p(s s,j) (UN!-E)}. 
s 

This inequality implies that the pair (~ 1 x), with us=us*' xs(i)=x*{i) if 
- s * 

s#s and \i.s=ustE, ~(i)~'S(i), is feasible for LP2 and EsEsus>EsESus. But 

this is in contradiction with the optimality of (u*,x*) for LP2. Hence 

the lemma is proved. 

We conclude this section with a theorem which states that the 

solution of the limit discount equation for games in which one player 

governs the transitions is a rational function of e. 

9.2.21. THEOREM. The solution of the limit discount equation can be 

expressed as a Laurent series expansion if the game is such that one 

player controls the transitions. 

IJ 
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PROOF. Suppose that player 2 governs the transitions. Parthasarathy & 

Raghavan (1981), theorem 4.2, have shown that, for such a game, player 2 

has a stationary strategy which is uniformly discount optimal, i.e. 

optimal for each interest rate close enough to zero. 

Bewley & Kohlberg (1978), theorem 6.1, proved that a stationary strategy a 

is uniformly discount optimal if and only if it is optimal in the limit 

discount equation, i.e. if and only if, for each sEs, the real action 

as is an optimal action in the matrix game 

z 
l: p(sjt,.)<(8) 

s=l ] 
1+8-l 

[r(s,.,.) + 

with entries in the field of real Puiseux series. 

But then, for such an uniformly discount optimal stationary strategy a, the 

solution of the limit discount equation satisfies the following relations: 

x (8) 
s 

max {r(s,i,cr )+ 
iEA s 

s 

z 
l: p(tjs,cr )x (8) 

t=l s t } 

1+8-l 
, sES 

Now this set of equations is nothing else than the limit discount 

equation for MDP(cr), i.e. the Markov decision problem which results 

when player 2 fixes a. And it is well-known that the unique solution of 

the limit discount equation for Markov decision problems has a Laure.nt 

series expansion. 

Observe that the kind of reasoning used in the proof of theorem 

9.2.21 generalizes theorem 6.4 of Bewley & Kohlberg (1978). They state 

* that x (8) is a rational function of 8 if both players have uniformly 

discount optimal stationary strategies, while in our case only one of the 

players possesses such a strategy. 

9.3. A FINITE ALGORITHM FOR THE SWITCHING CONTROL STOCHASTIC GAME. 

In this section we show how the switching control stochastic game can 

be solved with the aid of a finite sequence of linear programming problems. 

A switching control stochastic game has already been defined in section 6. 3, 
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where we gave an algorithm for the discounted version. We adopt the 

notation as introduced there. 

In his Ph.D. dissertation, Filar (1979) proved that for switching 

control Wldiscounted stochastic games the orderfield property holds. This 

indicates that a finite algorithm should exist for this class of games. 

A first attempt to find such an algorithm was made by Filar & Raghavan 

( 1980). 

This section provides an efficient algorithm for finding the solution 

of the undiscounted version of the switching control stochastic game. The 

results of this section are based on Vrieze, Tijs, Raghavan & Filar (1983). 

The part of a stationary 

set s 1 is denoted by pc. Thus 

strategy p of player 1 which refers to the 

pc corresponds to a set {pcJpcEP(A ), sEs 1}. 
s s s 

As already mentioned in section 6.3, if a particular pc is fixed then the 

remaining game is a player 2 control stochastic game. This game will be 

denoted by f(pc). 

Thus I'(pc}=<S, O\[sE§}, {Bs[sEs}, r, p>, where S=S=S1Us2, where 

for sES1: A :={1}, B :=B , r(s,1,j) := l: r(s,i,j)pc(i), 
s s s iEA s 

p(t[s,j) := l: p(t[s,i)pc(i), and s 
iEA s 

s 
for sES2: A :=A, B =B, r(s,i,j)=r(s,i,j), p(t[s,j):=p(t[s,j). s s s s 
The corresponding LP1 of algorithm 9. 2. 2 for this game will be denoted by 

LPl(f(pc)). 

Now fix for a moment a subset s 0cs, vectors g, wEJRz, a particular pc 

and for each sEs0 a non-empty subset E2s of Bs. Then corresponding to r 
and the five parameters s 0 , g, w, pc and {E25 JsEs0 } we introduce the 

following player 2 control stochastic game: 

r (S ,g,w,pc,{E2 [sEso})=<S,{A lsEs}, {B lsEs}, ~. p>, where S=Soandwhere 0 s s s 
for sEsnsl:A :={1}, B :=E2 I r(s,i,j) :=-g + l: (r(s,i,j)+ l: p(t[s,i)wt)pc(i), 

8 8 8 s iEA tEs--s s 
-1 I c - s o p(t s,j) := i: p(t s,i)p (i) for tEs 0=s, and 

iEA s 
s 

for sEsns2: A :=A , B :=E2 I r(s,i,j) :=-g +r(s,i,j)+ l: p(t[s,j)wt 
_ s s s s _ s tEs--s 

and p(tJs,j)=p(t[s,j) for tEs0=s. 0 

It will result that this game is a semi~transient player 2 control 

stochastic game as introduced in the preceding section. 
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The corresponding LP2-program of algorithm 9.2.19 for this game is denoted 

by LP2Crcs0 ,g,w,pc,{E2slsEs0}>>. 

Now we have enough tools to establish our algorithm. 

9.3.1. ALGORITHM. 

Step 1. Take T=O and choose g(O)=(-M, ... ,-M), where M= max Jr(s,i,j) J. 

Choose w(O)=Oz, 8(0)=0 and pc(O) such that for each s,i,j sEs 1 the 

action pc(O) is an extreme optimal action for player 1 in the matrix s 
game [r(s,i,j)] on A XB • 

s s 
Step 2. Consider the current value of T and the associated values of the 

entities g(T), w(T), S(T), pc(T). Determine for each sEs 1 : 

·= {iEA I l: p(tjs,i)g (T)= max{l: p(tjs,iJ.gt(T)} 
s tES t iEA tEs 

s 

and for each sEs2 : 

E2s(T+1) := {jEB Ii:: p(tjs,j)gt(T)=g (T)}. 
s tES s 

Proceed to step 3. 

Step 3. Choose pc(T+l) such that, for each sEs 1 , p~(T+l) is an extreme 

optimal action for player 1 in the matrix game 

z 
A1 (1) := [r(s,i,j)+ i:: p(tjs,i)w (1)] 

s t=l t 

However if Car(p~(T))cE 1s(T+l), and if both gs(T)+ws(T)=Val(A1s(T)) and 

p~(T) is an optimal action for player 1 in the game A1s(T), then put 

p C ( T+ 1) : =p C ( T) • 
s s 

Step 4. Obtain g(T+l), v(T+l) by solving LPl (f(pc(T+1))). 

Step 5. If g(T+l)fg(T), then put w(T+1):=v(T+1), S(T+1)=0 and return to 

step 2, taking 1:=1+1. If g(r+l)=g(T), then continue to step 6. 

Step 6. Let 

:= {sEs 1 Jg (T)+w (r)<Val(A1 (1))} 
s s s 

·= {sEs2Jg (T)+w (T)<Val(A2 (T))} s s s 
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z 
where A2 (T):=(r(s,i,j)+ l: p(tjs,j).wt(T)] on AsxE 2s(T+1). 

s t=1 
Put G(<+l) :=Gl (T+1)UG2 (T+1). 

If G(T+1)=0, then go to step 9. Otherwise put S(-r+1):=G(-r+1)US(-r) and go 

to step 7. 

Step 7. Put E2s(T+1) :=Bs for sES(T+1)0S 1. 

Find u (-r+1) for each sES(-r+1) by solving for a semi-transient player 2 s 
control stochastic game the LP problem 

LP2(r(S(T+1), g(T+1), w(T), pc(T+1), {E2s(T+1)jsES(T+l)})). 

Step 8. Put ws(T+l):=ws(T) if sltS(1+l) 

w (T+l) :=u (T+1) if sES (T+l). 
s s 

Return to step 2 with T := T + 1. 

Step 9. The algorithm is stopped. The vector g(T) is the value vector for 

* * the undiscounted switching control stochastic game. Moreover p and a 

are optimal stationary strategies if they are chosen as follows: 

* for sEs 1 , p 
* s 

sEs2 , ps and 

* and as are optimal in the matrix game A1s(T) and for 

* as are optimal in the matrix game A2s(T). 

In proving that in step 9 we indeed obtain a solution of the game, we 

show that at each stage T=O, 1, 2,... the properties below are valid. Here 

g(-1) is chosen such that g(-1)<g(0). 

we recall that, for a player 2 control stochastic gamer, R(f) is defined 

as the set of states s for which player 2 has an optimal stationary 

strategy a such that states is recurrent under P(a). 

Consider the following properties. 
z c 

g (T):S: l: p(tjs,p (T))gt(T), 
s t=1 s 

z 
gs(T):S: l: p(tjs,j).gt(T), 

t=l 
z 

g (T)+w (T):S:r(s,pc(T) ,j)+ l: p(tjs,pc(T))w (T), 
s s s t=l s t 

(Although, in step 6, A2s(T) is only defined for the case g(T+l)=g(T) this 

definition is extended to general T.) 

C(T): 

D(T): 

g(T)~g(T-1) 

If g(-r)=g(-r-1), then R(f(pc(T)))cR(f(pc(T-1))) and pc(T)=pc(-r-1) 
s s - c for each sER(f (p (<))) n s 1 . 
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E (T): S(T)nR(r(pc(T)))=0 

F(T): If g(T)=g(T-1) and G{T)i0, then W(T)~(T-1), with strict 

inequality in at least one component. 

Since g(-1)<g(O) and by definition S(0)=0, it follows that A1 (0), A2 (0), 

B1 (0), B2 (0), C(O), D(O), E(O) and F(O) hold. By induction on T we wish to 

prove that A1 (T), ... ,F(T) hold for each TE{0,1, ..• }. For this purpose we 

need a string of lemma's. 

z 
9.3.2. LEMMA. Suppose g (T)=max 

c s iEA 
L p(tls,i).gt(T) for some sEs1 . Then 

t=l 
Car (p s (T) )CE1s (T+l). s 

Furthermore, if property B1 (T) holds for this state sES, then for all 

jEB : 
s 

g (T)+w (T)sr(s,pc(T+l),j)+ L p(tls,pc(T+l)).w (T). 
s s s tEs s t 

z 
PROOF. Condition (i) of LP1(r(pc(T))) yields g (T)S L p(tls,pc{T)).gt(T), s s 
which in combination with the assumption in the leiJi~ 1 implies that 

z I ,....., ~ c c g (T)= L p(t s,i) .g (T) for each iECar(p (T)). Hence Car(p (T) )cE1 (T+1). s t=1 t s s s 
Now this fact in combination with B1 (T) implies 

z 
g (T)+w (T)Smin {r(s,pc(T),j)+ L p(tls,pc(T)).w (T)} s 

s s j s t=l· s t 

z 
s Val(A 1s(T))=mi.n {r(s,pc(T+l),j)+ L p(tls,pc(T+l)).w {T)}. 

J s t=l s t 

9.3.3. LEMMA. Properties A1 (T) and A2 (T) hold for all T~O. 

0 

PROOF. This is an immediate consequence of condition (i) of LP1(r(pc(T+1))). 

9.3.4. LEMMA. Suppose that A1 (T), A2 (T), B1 (T) and B2 (T) hold. Then 

C ( T+ 1 ) holds . 

0 

PROOF. Choose the stationary strategy p for player 1 as follows. If sEs 1 , 

then p 5 :=p~(T+1) and if sEs2 , let ps be an optimal action in the matrix game 

A25 (T). Let crP be an arbitrary pure stationary strategy for player 2. Since 
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Pisa feasible strategy for the game f(pc(T+l)), it is sufficient to show 

that W~ p2g(T). By A1 (T), A2 (T) and the formulae for pc(T+1) we have 
pcr 

(9.3.1) 

Let R(p ,crP} be the set of recurrent states for P (p ,crP). 'I'hen by lemma 

8.1.1. (a) the equality sign in (9.3.1) holds for each component 

sER(p,crP}. For sER(p,crP)ns 1 this yields 

z 
g (T) = L p(tjs,pc(T+l))g (T)=max 

s t=l s t iEA 

So we may apply lemma 9.3.2, obtaining 

s 

z 
L p(tls,i).gt(T). 

t=l 

(9.3.2) g (T)+w (T)~r(s,ii ,crP)+ L p(tls,ii ) .wt(T). 
s s s tES s 

For sER(p ,crP)ns2 we have by B2 (T), by the choice of p, and by noting that 

Car(crP)cE2 (T+l): 
s s 

z 
(9. 3. 3) g (T)+w (T)~r(s,p ,crP)+ L p(tls,crP).wt(T). 

s s s t=l s 

Then, by lemma 8.1.l(b), the inequalities (9.3.1), (9.3.2) and (9.3.3) 

imply 

And since crp is arbitrary we obtain: 

g(T+l) = max min W 2g(T), 
P 0 P pap 

where the maximum is taken with respect to e&ch stationary strategy p 

admissible in the game f(pc(T+1)). 

9.3.5. LEMMA. Suppose Al (T), Bl (T) and B2(T) hold. Then D(T+1) holds. 

PROOF. Suppose g(T+l)=g(T}. Observe that in f(pc(T+l)) in the states 

belonging to s 1 player 2 has ~o influence on the transition probabilities. 

Then by lemma 9.2.18: g (<)= L p(tjs,pc(T+l)).g (T) for sEs 1. Since 
s t=l s t 

pc(T+1)EP(E 1 (T+l)) this implies: 
s s 

IJ 
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(9. 3.4) g (T) = max 
s iEA 

s 

z 
i:: p ( t Is Ii) gt ( T) I 

t=l 
for all sES 1 . 

Hence by lemma 9.3.2 for all sEs 1 : 

z 
g ( T) +w ( T) ,,;min { r ( s, pc ( T+ 1) , j) + i:: p ( t I s , pc ( T+ 1) ) • wt ( T) }. 

s s jEB s t=i s 
s 

(9. 3. 5) 

Since g(T+l)=g(T) equals the value of f(pc(T+l)), lemma 9.2.18 can be 

applied to (9.3.5) and B2 (T) (which together form the assumption in part 

(c) of lemma 9.2.18). This implies that for sER(f(pc(T+l))) the equality 

sign holds in the respective inequalities. Since Car(pc(T))c:E 1 (T+l) (cf. 
s s 

- c (9.3.4)) we conclude that, for sER(f(p (T+l)))ns 1 , Val(A 1s(T))=gs+ws. 
c Further, by B1 (T), ps(T) is optimal in A1s(T). So by step 3 of the 

algorithm 

(9. 3.6) - c for all sER(f (p (T+l)) Jns 1 

which proves the second part of D(T+1). 

Fix sER(f(pc(T+l))) and let a be optimal for player 2 in f(pc(T+l)), 

such that states is recurrent under P(o). Then (9.3.6) and g(T+l)=g(T) 

imply that, for the ergodic set to which s belongs, a is also optimal in 

f(pc(T)), and obviously states remains recurrent in f(pc(T)). This shows 

that R ( f (pc ( T + 1 ) ) )C:R cf (pc ( T ) ) ) . 

IJ 

9.3.6. LEMMA. Suppose Ai (T), Bl (T), B2(T) and E(T) hold. Then E(T+l) holds. 

PROOF. If g(T+l)>g(T), then S(T+1)=0 and hence E(T+l) is true. Thus suppose 
- c - c g(T+l)=g(T). From E(T) and R(f(o-(T+l)))c:R(f(o (T))) (lemma 9.3.5) it 

follows that S(T)nR(f(pc(T+l))l=0. In view of the definition of S(T+l) it 

then suffices to show that 

(9. 3. 7) - c G(T+l)nR(f (p (T+l)) )=0. 

In the proof of lemma 9.3.5 it has been shown that 

- c for sER(f (p (T+ll) )ns 1 

and by lemma 9.2.18, 
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- c for sER{f(p (T+1J)Jns2 • 

Hence by these two equations it follows from the definition of G(T+l) in 

step 6 that (9.3.7) holds. 

IJ 

9.3.7. LEMMA. Suppose Al {T), Bl {T), B2(T) and E(T) hold. Then F(T+l) holds. 

PROOF. Suppose g(T+l)=g(T) and G(T+l);i,0. From relation (9.3.5) in the proof 

of lemma 9.3.5 we have that, for sES(T+l)ns 1 , 

z 
(9. 3.8) g (T)+w (T)Smin {r(s,pc(T+l) ,j)+ E p(tls,pc(T+l)).wt(T)}, 

s s jEB s t=l s 
s 

and, for sES(T+1Jns2 , we see from B2 (T) that: 

(9. 3. 9) 

Since the value of f(pc(T+l)) equals g(T+l)=g(T) and since 

S(T+l)nR(r(pc(T+l)))=.0 (lemma 9.3.6) it can be verified that the game 
- c I f(S(T+l),g(T+l),w(T),p {T+1),{E2s(T+1) sES(T+l)}) is a semi-transient 

player 2 control stochastic game. Namely: 

(a) E ~ltls,j)Sl; 
tEs (T+l) 

(b) The S(T+l)-part of an optimal stationary strategy a of player 2 in the 

game f(pc(T+l)) gives, when applied to f(.,.,.,.,.), a transient 

stochastic matrix; and 

(c) the average reward value equals Oz. To see (c), by {b) we have that the 

value is at most Oz and if a is such that some states of S(T+1) are 

recurrent, then a is disadvantageous for player 2 in view of 

S(T+l)nR(f(pc(T+l)))=,0. Hence the best player 2 can do is playing a 

transient stationary strategy, resulting in value Oz. 

Furthermore, putting~ (1)=1 if sEs1ns(T+1) and x (i)=p (i), i EA 
s s s s 

if sEs2ns(T+1), where ps is optimal for player 1 in A2s(T), it can be seen 

that the pair ({w {TJisES(T+l)}, {x (illsES(T+lJ,iEA }) satisfies s s s 
conditions (i) and (ii) of LP2(f (.,.,.,.,.)).But since G(T+l);i,0 in 

(9.3.8) or (9.3.9) at least one strict inequality sign holds. Hence, by 

lemma 9.2.20, we obtain for the solution {u lsES(t+l)} of this LP2 problem 
s 

that us"?:ws(T), all sES(T+l), with the inequality sign holding for at least 

one coordinate. 
0 
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9.3.8. LEMMA. Suppose Al (T), Bl (T), B2(T) and E(T) hold. Then Bl (T+l) and 

B2 (T+l) hold. 

PROOF. If g(T+l)~g(T), then B1 (T+l) and B2 (T+l) follow from condition (ii) 

of LPl(f(pc(T+l))). Suppose now g(T+l)=g(T). From F(T+1) (lemma 9.3.7) we 

obtained ws (T+l) ::OW s (T) for each sES (T+l) . By definition, w s (T+l) =w s (T) for 

each sES'S (T+1). 

In the first part of the proof of lemma 9.3.5 (cf. (9.3.4)), it has been 

shown that the condition of lemma 9.3.2 is satisfied for each sEs 1• So 

using B1 (T), lemma 9.3.2 and B2 (T) we have that B1 (T+l) and B2 (T+l) hold 

for sES'S (T+l). 

Further, by condition (i) of LP2(r(.,.,.,.,.)), it follows that B1 (T+1) and 

B2 (T+1) also hold for sES(T+l). 

D 

Now, combining the lemma's 9.3.3-9.3.8 we conclude that from the 

assumption "A1(T), A2(T), Bl(T), B2(T), C(T), D(T), E(T) and F(T) hold" 

it follows that "A1(T+l), A2(T+l), Bl(T+l), B2(T+l), C(T+l), D(T+l), E(T+l) 

and F (T+l) hold". 

Hence we have proved. 

9.3.9. THEOREM. For each TE{0,1,2, ... } the properties Ai (T), A2(T), Bl (T)' 

B2(T)' C(T), D(T), E(T) and F(t) hold. 

The following is an important theorem. 

9.3.10. THEOREM. Algorithm 9.3.1 stops after a finite number of iterations. 

PROOF. Parthasarathy & Raghavan (1981) have shown that an extreme optimal 

action for player 1 in a matrix game of payoff type [f(i,j)+h(i)] on AxB 

is also an extreme optimal action for player 1 in some subgame [f(i,j)] on 

axB with aCA (cf. Parthasarathy & Raghavan (1981), lemma 4.1 p. 381). 

Applied to step 3 of our algorithm, this means that, for each state sEs1 , 

at any stage T an extreme optimal action pc(T) of player 1 for some matrix s 
game [r(k,i,j)] on as(T)XBs' with as(T)cAs' is chosen. Shapley & Snow 

(1950) have shown that a matrix game has only a finite number of extreme 

optimal actions. Furthermore, a matrix game has a finite number of 

submatrices. Since there are a finite number of states, this implies that 

(9. 3.10) the set from which pc(T), T~O, is chosen is a finite one. 
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It remains to show that no cycles can occur, i.e. that no strategy 

repeats itself infinitely often. 

By the properties C(T) and F(T) we deduce that for each T exactly one 

of the following events occurs: 

Hl: g(T)>g(T-1) 

H2: g(T)=g(T-1), pc(T)fpc(T-1), G(T)f{1l, W(T)>w(T-1) 

H3: g(T) =g(T-1), pc(T)=pc(T-1) I G(T)f{1l, W(T) >w(T-1) 

H4: g(T)=g(T-1), pc(T)=pc(T-1), G(T)={1l. 

Since r (pc (T)) depends only on pc (T) we have in view of C(T): 

(9. 3.11) 

kE{T,T+l, ••• } and lE{T-1,T-2, ..• ,0}. 

Now suppose that, from stage T, H2 repeats itself infinitely often. 
Since Is! is finite we may assume without loss of generality that 

S(T)=S(T+1)=S(T+2)= •... But then observe that the optimal value of 

LP2(f(S(T-1+1) ,g(T-1+1), w(T-2+1). pc(T- Hl), {E2s(T-1+1) /sES(T-1+1)})) in 
step 7 of the algorithm depends only on {pc(T-1+1) lsES(T-1+1)=S(T)}, s 
1=1,2, ... , since the other parameters do not change. But since 

w(T-l+l)>w(T-2+1) we find pc(k+l)fpc(k), for 1=1,2, ••. and k=T-1,T,T+1, •.. 
But then in view of (9.3.10) 

(9. 3.12) H2 cannot repeat itself infinitely often. 

Let k be the first time that H2 does not occur. Then either S(k)=!ll, in 
which case Hl occurs, or H4, or possibly H3 occurs. 

If H3 occurs, then, by the construction of G1 (T) and G2 (T), and by the 

equality in the assertion of lemma 9.2.20, we see that G(T)0S(T-1)={1l. Hence 

(9. 3.13) if H3 occurs then S(T) strictly includes S(T-1). 

As final statement we have 

(9. 3.14) if H4 occurs then the algorithm stops. 
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Now by (9.3.12) and (9.3.13) we see, in view of the finite number of 

states, that a sequence in which only the events H2 and H3 occur cannot 

happen. But then in view of (9.3.11) and (9.3.10), H4 must occur within a 

finite number of iterations, which by (9.3.14) proves the theorem. 

9.3.11. THEOREM. Step 9 of the algorithm is reached after a finite number 

of iterations and provides a solution to the game, i.e. g(T) equals the 

* * value of the game and p and a are optimal stationary strategies. 

PROOF. By theorem 9.3.10 step 9 is reached after a finite number of 

iterations. 

From g(T+l)=g(T), pc(T+l)=Pc(T), G(T+l)=~ and the definitions of 
* * * * p and a (observe that psEP(Els(T+l)), for sEs 1 and osEP(E2s(T+l)), for 

sEs2), we conclude that for any two pure stationary strategies pp and op 

(9.3.15) 

(9.3.16) 

(9.3.17) 

Similarly 

(9.3.18) 

(9.3.19) 

(9. 3.20) 

g (T)+w (T) 
s s 

z 
* P I * s r(s,p ,o )+ 2: p(t s,p ) .wt (T) 
s s t=l s 

z 
* p I P g (T)+w (T) s r(s,p ,o )+ 2: p(t s,o ) .w (T). 

s s s s t=l s t 

g (T)+W (T) 
s s 

g (T)+w (T) 
s s 

z 
:?: r(s,pP,o*)+ 2: p(tls,o*) .w (T). 

s s t=l s t 

[J 
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Now (9.3.15)-(9.3.20) imply by lemma 8.1.l(b) that 

* p * p * * * * Q(p ,cr ) .r(p ,cr ) :i!g(T)=Q(p ,a ) .r(p ,cr ) :?! 

By corollary 3.5 and theorem 2.3.4 these inequalities yield the theorem. 

9.3.12. REMARK. For the class of stochastic games for which, for each pair 

of pure stationary strategies (pP,crP), the Markov chain associated with 

P(pP,crP) has no transient states algorithm 9.3.1 can be considerably 

simplified. Only the steps 1-5 are necessary in this case (cf. also remark 

9.2.17). Furthermore, as soon as g(T+l)=g(T) the algorithm can stop since 

the value of the game is reached. These facts follow immediately from the 

properties D(T) and E(T). 

We conclude this section with the observation that our algorithm 

provides a constructive proof of the existence of the value and of optimal 

stationary strategies for both players in the switching control stochastic 

game. Also the result of Filar (1979) that player 1 has an optimal 

* * stationary strategy p such that, for each sEs 1 , ps is an extreme optimal 

action in a matrix game [r(s,i,j)] on asxBs with ascAs, can be derived 

from our algorithm. Similarly for player 2. Furthermore the finiteness of 

the algorithm gives a constructive proof of the ordered field property. 

Cl 
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Appendix. 
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A.1. MATRIX GAMES. 

In this section we give a number of well-known concepts in matrix game 

theory. Also some results will be mentioned which are used in this 

monograph. 

A.1.1. DEFINITION. A two-person zerosum game in normal form is an ordered 

triplet < A, B, K >, where A and B are non-empty sets and K: AXB+JR is a 

real-valued function on the Cartesian product of A and B. The sets A 

and B are called the action spaces of player 1 and player 2 respectively. 

The elements of A and B are called actions and K is the payoff function. 

A matrix game is a two-person zerosum game in which both A and B are 

finite sets. 

Since we only consider games in normal form, and not games in 

extensive form, we usually omit the qualification "in normal form". 

Such a (non-cooperative) game is played as follows. The players 1 and 

2 choose, independently of one another, an action aEA and an action bEB 

respectively; subsequently player 2 pays player 1 the amount K(a,b). (If 

K(a,b) is negative, then player 2 receives -K(a,b) from player 1). We call 

K(a,b) the payoff of the play. Clearly player 1 wishes to maximize, and 

player 2 to minimize, this payoff. 

According to definition A.1.1 the players are not allowed to 

randomize their actions, i.e. to select a (pure) action with the aid of 

a chance experiment. However in non-cooperative game theory it is the 

custom to permit the players to use lotteries. This results in the mixed 

extension of a game (cf. e.g. Luce & Raiffa (1957)). Since in this 

monograph we only consider games where the players have finite action 

spaces, the next definition is restricted to that case. Such games are called 

matrix games. 

A.1.2. DEFINITION. A mixed extension of a matrix game < A,B,K >is a two

person zerosum game< P(A),P(B),K >where P(A) is the family of all 

probability measures on the finite set A. If A consists of m elements, 

then A is identified with the set :N : ={ 1, 2, ••• ,m}; so P (A) 
m 

corresponds 
m 

with the (m-1)-dimensional simplex {xlx=(x1 , ••• ,xm), 

Likewise P(B)={yly=(y1, ... ,y ), y.~Oandi:1: 1y.=1} if 

x.~O and 
i 

B has n 

l: x.=1}. 
i=1 i 
elements. 

n i J= J 
Furthermore K(x,y)=l:~ 1 l:~ 1K(i,j) .x .. y. for each (x,yJEP(A)xP(B). 

i= J= i J 
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When we speak of an action in a matrix game, this action may either 

be pure or mixed. Concerning matrix games, the variable i always denotes 

a pure action for player 1 and j a pure action for player 2. Though it 

might cause ambiguity, we usually write K(x,y) instead of K(x,y). By 

K(x,j) and K(i,y) we mean K(x,ej) and K(ei 1 y), where ej respectively ei 

corresponds to the probability measure that puts weight 1 on action jEB 

and iEA respectively. 

Note that a mixed extension of a matrix game itself is a two-person 

game in normal form. The mixed extension of a game is played as follows. 

The players 1 and 2 choose independently of one another an action 

xEP(A) and yEP(B) respectively; then for each player a chance experiment 

according to the probability measures x and y respectively is carried 

out, in order to select pure actions iEA and jEB respectively. 

Subsequently player 2 pays player 1 the amount K(i,j). Thus, if the 

players play x and y, the expected outcome of the game equals K(x,y). 

In this monograph the mixed extension of a matrix game < A,B,K > 

is abbreviated to [K]. When we speak of a matrix game, the mixed 

version is intended. However, when we speak of a two-person zerosum game 

< A,B,K >, the "pure" version is intended. 

* A.1.3. DEFINITION. A two-person zerosum game is said to have a value V , 

if 

sup inf K(a,b) 
aEA bEB 

inf sup K(a,b) 
bEB aEA 

* v . 

For a game with given value v*, the actions a£ and b£ are called 

£-optimal, with £~0, for player 1 and player 2 respectively, if 

inf K(a£ 1 b) ~ v*-£ and sup K(a,b£) ~ v*+£. 
bEB a EA 

Zero-optimal actions are named optimal. 

For a good understanding of the value concept one should note that when 

playing optimally player 1 (player 2) can guarantee himself a payoff of at least 

(at most) the value of the game, whatever action the other player chooses. 

The value of a two-person zerosum game <A,B,K> is denoted by pVal(K). The 

"p" in pVal reflects the notion that only pure actions are allowed. 
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A.1.4. THEOREM. For a two-person zerosum game < A,B,K > the following 

assertions are equivalent. 

* (ij The game has value V and max inf K(a,bl and min sup K(a,b) exist. 
aEA bEB bEB aEA 

(ii) There exist v*E:m, ~EA and bEB, such that for all (a,blEAxB 

* K(a,b) s K(a,b) V s K(a,b). 

* PROOF. Suppose (i) is true. Let V =max inf K(a,b)=min sup K(a,b) be the 
aEA bEB bEB aEA 

value of the game. Obviously there exist aEA and bEB such that 

~ * inf K(a,b)=V =sup K(a,b). Hence (ii) is true. Suppose (ii) is true. Then 
bEB a EA 

(A.1.1) sup inf K(a,b) ;e: inf 
aEA bEB bEB 

sup K(a,b) ;e: inf sup 
a EA bEB a EA 

But for each (a,b)EAxB we have 

K(a,b) s sup K(a,b). 
a EA 

So for each aEA we have 

K(a,b) 

K(a,b). 

inf K(a,b) s inf sup K(a,b), 
bEB bEB aEA 

which implies 

* v 

(A.1.2) sup inf K(a,bl s 
aEA bEB 

inf sup K(a,b). 
bEB aEA 

Now (A.1.2) implies that the equality signs must hold throughout (A.1.1). 

This results in 

max inf K(a,b) 
aEA bEB 

inf K(a,b) 
bEB 

* v sup K(a,b) 
a EA 

min sup K(a,b). 
bEB aEA 

So (i) is true. 

D 
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Note that if a and b obey (ii) of theoremA.1.4, then a is optimal 

for player 1 and b is optimal for player 2. 

The following theorem is well-known (e.g. Tijs (1977)). 

A.1.5. THEOREM. If for a game < A,B,K >, for each E>O, there exists 

(aE,bE)EAxB, such that for each (a,b)EAxB: 

then the value of the game exists and equals lim K(aE,bE). 
EfO 

The class of matrix games with m rows and n columns is denoted by 

M 
mn 

Already J. von Neumann (1928) proved the following theorem concerning 

matrix games. 

A.1.6. THEOREM. For all m,nElNeach matrix game [K]EM has a value and 
mn 

both players possess optimal actions. 

The value of a matrix game [K] is denoted by Val(K). The set of 

£-optimal actions for player t, tE{1,2}, is denoted by O~(K) for E>O and 

by Ot(K) for E=O. 

In the next lemma, three well-known properties of the value operator are 

stated. Here Jmn denotes an m,n-matrix for which each element equals 1. 

A.1.7. LEMMA. If [K1] and [K2]EMmn with K1~K2 and if (x,y)EP(A)xP(B), then 

(a) inf K1 (x,y) = min K1 (x,j) and sup K1 (x,y) 
yEP(B) jEB xEP(A) 

foranycElR. 

max K1 (i,y) 
iEA 

PROOF. (a) We only prove the first equality; the second can be shown 

analogously. Clearly 

(A.1.3) inf Kl (x,y) S min Kl (x,j). 
yEP(B) jEB 
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However, since y (j) 2'.0 and E~ 1y (j) =1, we have for all y: 
J= 

n n 
. E Kl (x, j) y ( j) <". 
J=1 . 

E y(j) min Kl (x,j) 
j=l jEB 

So in (A.1.3) the equality sign holds. 

(b) 

T Val(K1+cJmn) =sup inf (K1 (x,y)+(x .Jmny) .c) 
x y 

=sup inf K1 (x,y) + c = Val(K1)+c. 
x y 

* (c) Let x EO 1 (K2). Then 

* * Val (K1) <". min K1 (x ,j) <". min K2 (x ,j) = Val(K2). 
jEB jEB 

min K1 (x,jl. 
jEB 

The next lemma states the Lipschitz continuity property of the value 

operator. 

PROOF. From K1 -d(K 1 ,K2 )Jmn~K2~K1+d(K1 ,K2 )Jmn' we derive by (b) and (c) of 

lemma A. 1 . 7 : 

This proves the lemma. 

For a matrix game [K]EM it is well-known that the optimal action mn 
spaces 01 (K) and 02 (K) are polytopes (i.e. convex hulls of finite sets). 

[] 

[] 

This fact is stated in the following theorem, due to Shapley & Snow (1950). 
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A.1.9. THEOREM. Let [K]EMmn, x*Eo1 (K) and y*E02(K). Then the following 

two assertions are equivalent. 

* * (i) x is an extreme point of 01 (K) and y is an extreme point of 02 (K). 

* (ii) There exists a square k,k-submatrix K of K, such that 

*k x 

Val(K) 

*k 
y 

* det(K ) 
T * 1k.adj(K) .1k 

adj(K*) .1k 

T * 1k.adj(K) .lk T * lk.adj(K ).lk 

*k *k * * (Here x and y are the vectors obtained from x and y by removing 

* the coordinates, which play no role in K and which are zero). 

The statement in the next theorem is called the dimension relation 

for matrix games and is due to Bohnenblust, Karlin & Shapley (1950). It 

shows the way in which the sets 01 (K) and 02 (K) are topologically related. 

Let A=lNm and B=lNn. Let the polytope E1cP (A) and define car (E 1) as 

Car(E1l :={iEAlthere exists an xEE1 with x(i)>O}. Car(E1) is named the 

carrier of E1• By Unf(E 1J we denote the number of unnatural faces of E1 , 

i.e. faces which are not entirely contained in the relative boundary of 

P(A). Similarly we define Car(E2l and Unf(E2 l for a polytope E2cP(B). 

For a set Ft=.m.k we denote by dim (E) the dimension of E. 

A.1.10. DEFINITION. Let A=lNm and B=:Nn. A pair of polytopes 

(E E )EP(A)xP(B) is said to possess the (m,n)-BKS property if 
1' 2 

(a) I car (E1) l-dim(E 1l \car (E2l l-dim(E2l • 

(b) lcar(E1l j+Unf(E2) ~ m and lcar(E2l l+unf(E 1l ~ n. 

A.1 .11. THEOREM. Let A=lNm and B=JNn • For a pair 

(E1,E2JEP(A1)xP(B) there exists a matrix game 

02 (K)=E2 if and only if (E 1,E2) possesses the 

of polytopes 

[K] E Mmn such that 01 (K) = E1 an 

(m,n)-BKS property. 

A. 1.12. COROLLARY. Let A=lNm and B=:Nn • Let vElR and let the pair of 

polytopes (E 1,E2)EP(A)xP(B) have the (m,n)-BKS property. Then, for each 

e>O, there exists a matrix game [K]EMmn with Val(K)=v, 01 (K)=E1, 

0 (K)=E and such that \K(i,jl-v\<e for all (i,j)EAxB. 
2 2 



A 
PROOF. In view of theorem A.1.11 there is a game [K] with solution 

v, E1, E2 . Then for T large enough the matrix game [K] defined as 

K(i,j)=v+T-l(K(i,j)-v) has the desired property. 
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A.2. MARKOV DECISION PROBLEMS. 

In this section we give some well-known properties of Markov decision 

problems. 

A.2.1. DEFINITION. A finite (stationary) Markov decision situation is an 

ordered quadruple < S, {A [sES}, r, p >, where the finite set Sis the 
s 

state space, the finite set As the action set in state s, r is the reward 

function and p the transition map. 

The meanings of the parameters of the Markov decision situation are 

the same as in definition 2.1.1 of chapter I for a stochastic game 

situation. Also one should think of a Markov decision situation as a 

dynamic system which may be in certain states. At discrete points in time 

the course of the system can be influenced by selecting an action from a 

set which depends on the current state. This action results in an immediate 

reward and determines the next state according to a chance experiment. This 

chance experiment only depends on the current state and the action 

subsequently chosen. We assume decision epochs T=0,1,2, .... 

A Markov decision situation can be regarded as a stochastic game 

situation with only one player. 

Strategies for Markov decision situations are defined in an analogous 

way as for stochastic game situations (definition 2.2.2). The different 

types of strategy spaces are denoted by ST, SMST, MST, SST and PSST 

respectively. 

Also for Markov decision problems one can differentiate between a 

number of optimality criteria, each of them specifying its own manner of 

evaluating the stream of immediate (expected) rewards. In our definition 

of a Markov decision problem we have implicitly assumed that one wishes 

to maximize the evaluation function over the set of strategies. 
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A.2.2. DEFINITION. A discounted Markov decision problem with interest rate 

aE(0, 00), is a Markov decision situation fox which the stream of payoffs 

is evaluated as 

v sµ := 

00 

I: (-1-) T VT 
T=O l+a • sµ· 

Note that, in definition A.2.2, VT equals the expected payoff at 
sµ 

decision epoch T for initial state s and strategy µ. So Vsµ is the total 

discounted expected payoff for starting state s, strategy µ and discount 

factor (1+a} -l. 

A.2.3. DEFINITION. An average reward Markov decision problem is a Markov 

decision situation fox which the stream of payoffs is evaluated as 

k 
W : = lim inf -- I: VT • 

sµ k-+«> k+1 T=O sµ 

T 
In definition A.2.3 V has the same meaning as in definition A.2.2. sµ 

So Wsµ equals the average expected reward per unit time for starting state 

s and strategy µ. 

Like in stochastic games obviously V and w exist for each s and µ. sµ sµ 

A.2.4. DEFINITION. Let G be the evaluation function fox a Markov sµ 
decision problem. A strategy µE is said to be E-optimal, given E~O. 

if fox each sES: 

G ~ sup G -E. 
sµE µEST sµ 

Zero-optimal strategies axe called optimal. 

Markov decision problems are extensively studied in the literature. 

See for example Blackwell (1962, 1965), Derman (1970}, Hordijk (1974} and 

Federgruen (1978). 

We now quote a number of results of Markov decision theory, which are 

referred to in this monograph. The way in which we use these theorems is 

as follows: fix for the two-person zerosum stochastic game a stationary 

strategy for one player; then the other player faces a Markov decision 

problem; apply the results of the Markov decision theory to this problem 
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and then return to the stochastic game. 

In the following theorems r(s,p ) and p(tjs,p ) with p EP(A ) are defined 
s s s s 

as r(s,ps):=EiEA r(s,i).ps(i) andp(tjs,ps):=EiEA p(tls,i).ps(i). 
s s 

A.2.5. THEOREM. For an infinite horizon discounted Markov decision problem, 

the vector v*Emz defined as v* :=sup V for each sES, is the unique 
s sµ 

solution of the following set of f~nctional equations in the variable 

xEmz: 

z 
x = max {r(s,i) + l+a E p(tjs,i) .xt} 

s iEA t=l 
, sEs. 

s 
* * * * A stationary strategy p =Cp 1 ,p 2 , ••• ,pz) is optimal if and only if for 

each sES: 

* v s 
* z * * 

r(s,ps) + l+a E p(tls,p ) .vt. 
t=l s 

Also an optimal pure stationary strategy exists. 

A proof of this theorem can be found in Blackwell (1965) and in Derman 

(1970). 

A.2.6. THEOREM. For an infinite horizon average reward Markov decision 

problem let the vector w*Emz be defined as w* :=sup W , for each sES. 
s µEsT sµ 

Consider the following set of functional equations in the variables 

x,yEmz: 

(A.2.1) 

and 

(A.2.2) 

x 
s 

max 
iEA 

s 

z 
E p(tjs,i).xt 

t=l 

z 

, sEs 

xs+ys = max {r(s,i)+ E pCtls,i).yt} 
iEE t=l 

where E 
s 

s 
z 

:= {iEA Ix= E p(tls,i).xt}. 
s s t=l 

, sES, 
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* * Then this set of equations is solvable and for each solution (x ,y we 

* * * * * * have x =W. Furthermore a stationary strategy p =(p 1,p 2 , ... ,pz) is 

optimal if and only if the following holds: (i) p (i)=O for i~E 
* z * * s * * s (hence W = l: p(tjs,p ) .Wt) and (ii) for any solution (W ,y) of the 
s t=l s 

equations (A.2.1) and (A.2.2) it holds that for each state sES which 

* is recurrent with respect to p ** * z I** we have W +y =r(s,p )+l: 1p(t s,p ) .yt. s s s t= s 
Also an optimal pure stationary strategy exists. 

A proof of this theorem can be found in Schweitzer & Federgruen (1978). 

A.2.7. REMARK. If we have to do with a minimizing Markov decision problem, 

then in the theorems A.2.5 and A.2.6 "max" must be replaced by "min". 

we conclude this section with a theorem which is used in chapter III 

of this monograph. 

A.2.8. THEOREM. For an infinite horizon average reward Markov decision 

* problem MD, let the optimal value be W . Let MD be the Markov decision 

problem which only differs from MD by the immediate rewards: 
- * r(s,i)=r(s,i)-Ws. Then the average reivard problemMDhasoptimalvalue Oz. 

* * PROOF. For the problem MD, let (W ,y ) be a solution to (A.2.1) and (A.2.2). 

* As Oz trivially obeys (A.2.1) it follows immediately that (Oz,y ) is a 

solution to (A.2.1) and (A.2.2) for problem MD. Then, by theorem A.2.6, 

Oz is the optimal value of MD. 

D 
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A. 3. RECENT LITERATURE ON STRUCTURED STOCHASTIC GAMES 

The trend to analyse stochastic games with additional structure on the 

game parameters (rewards and transitions) has been continued during the last 

years. One reason is that for the general case computational procedures are 

complex, accentuated by the fact that even in the discounted case the value 

may be irrational while all the data are rational (cf. remark 4.2.5). Another 

reason is that structured stochastic games are often more suitable for prac

tical applications. 

Independently Sobel (1981) and Parthasarathy, Tijs & Vrieze (1984) con

sidered SER-SIT stochastic games, i.e. games with separable reward structure 

and state independent transition structure. To be more specific, the reward 

function r is of the form r(s,i,j}"" c(s) +a (i,j) and the transition map p 

is of the. form p ( t ! s, i, j ) = q ( t Ii, j ) . The action spaces are assumed to be 

the same for each. state. Hence the rewards are built up by a term depending on 

the actual state and a term depending on the chosen actions, while the tran

sitions only depend on the actions. In Sobel (1981) it is outlined how such 

models can be used in inventory problems and in Parthasarathy, e.a. (1984) 

an application to air pollution problems is presented. 

For discounted zero-sum SER-SIT games the following results hold. The 

* value V 

* v s 

of the discounted game equals 

-1 -1 z = c ( s) + a ( 1 +a) Val [ a (. ,. ) + ( 1 +t'.'t) i:: t= 1 q ( t I . , . ) c ( t) ] . 
AxB 

Both players have optimal myopic stationary strategies. By a myopic strategy 

we mean a strategy that in each state prescribes the same (mixed) action. 

For a SER-SIT game an optimal myopic stationary strategy can be composed by 

an optimal (mixed) action of that player for the matrix game 

[a(.,.)+ (1+a}-l i::~=l q(t I.,.) c(t)]. The above facts can be derived in a 

straight way from theorem 4.2.4. 

For undiscounted zerosum SER-SIT games similar results hold. The value 

of the undiscounted game equals 

Val [a(.,.)+ i::tz=l q(t!.,.)c(t)].1 
AxB Z 

(so state independent) and optimal myopic stationary strategies can be 
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composed from optimal actions of the players in the matrix game 

[a(.,.)+ L~=i q(t!.,.)c(t)]. These ~acts follow at once from lemma 8.1.3 

since w := c and g* :=Val [a(.,.)+ Ltz=l q(t l.,.)c(t)] satisfy the equations 
AXB 

in (ii) of this lemma. 

In both Sobel (1981) and Parthasarathy, e.a. (1984) also nonzerosum 

SER-SIT games are analysed, resulting in ~yopic equilibrium points. 

Dirven & Vrieze (1986) too studied myopic equilibrium points. They 

showed how stochastic games can be used in analysing advertisement models. 

Their state variable corresponds to the number of customers allied to firm 

1 (player 1), while the rest of the market is attracted to firm 2 (player 2). 

Dirven and Vrieze gave economically interpretable conditions, sufficient for 

the discounted payoff s to be linear in the state variable for each pair of 

myopic stationary strategies. These conditions are (i) r(s,i,j) = f(i,j). s 
z l l 

+g (i,j),for player l = 1,2 and (ii} E(s,i,j) := L t=O p(t!s,i,j) (t-s) 

h(i,j).s+k (i,j). Different properties of the functions f 2 , g 2 , hand k 

appear to correspond to different market behaviour on advertisement budgets 

(the actions). They showed that if f 2(.,.) and h(.,.) are independent of 

i and j 1 then discounted myopic equilibrium points exist. 

Raghavan, Tijs & Vrieze (1985) treated stochastic games with additive 

reward and transition structure, i.e. games for which r(s,i,j) = r 1(s,i) 

and p(tls,i,j:p1Ct!s,i) + p 2(t!s,j). The reward structure can readily be 

interpreted. Concerning the transition structure, let 

q 1(s,i) := L~=l p(tls,i) and q 2 (s,j} := r~=l p(t!s,j). Clearly 

q 1(s,i) +q2 (s,j) = 1. Then it can be seen that the additive transition 

structure can be explained as: when cell (i,j} turns up in states then with 

probability q 1 (s,i) player 1 governs the transitions according to the 

probability vector (p1(1ls,i), p 1 (2js,i), ... ,p 1 (zls,i))q~ 1 (s,i) and with 

probability q 2 (s,j) player 2 governs the transitions according to the 

probability vector (p2 Clls,j}, p 2 C2!s,j), ... ,p2 (zJs,i))q; 1cs,j). 

For AR-AT games, when inserting the structure of the game into the 

discounted optimality equation, it can be seen that the matrix game 
* -

[GSa.{V )] (cf. section 4.2) can be decomposed in a part only depending on i 

and a part only depending on j. Hence both players have optimal pure 

stationary strategies. 

When regarding undiscounted games as the limit of discounted games with 

a. tending to 0, then by the above result ( a.nd the finiteness of the action 

sets and the state space), there is a sequence of a.'s tending to 0 for which 
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for both players the same pure stationary strategy is optimal for each a of 

this sequence. It is well-known that uniformly discount optimal stationary 

strategies are optimal for the undiscounted version (cf. lemma 7.2.5 and 

Bewley & Kohlberg (1978)). Thus for AR-AT games both players possess op

timal pure stationary strategies for the average evaluation criterion. 

For the nonzerosum case, neither for the discounted nor for the un

discounted version equilibrium points of pure stationary strategies need 

to exist for AR-AT games, as examples in Raghavan, e.a. (1985) show. 

The models so far discussed satisfy the orderfield property (cf. sec

tion 9. 2), i.e. that the solution (value and optimal stationary strategies 

respectively equilibrium points) lie in the same Archimeadian field as the 

data of the problem. Only for models with this orderfield property a relative 

simple algorithm (like linear programming) might be expected and indeed for 

each of the above models this appears. 

A further model for which the orderf ield property holds is considered 

in Vrieze, Tijs, Parthasarathy & Dirven (1985). They analysed a two-person 

nonzerosum stochastic game with two states and in both states two actions 

of the players. Furthermore the rewards are governed by one player, say 

player 1, i.e. rl(s,i,j) = rl(s,i), l = 1,2 for both states and all actions. 

They showed that for the extreme points of the set of stationary equilibrium 

points the orderfield property holds. 

Finally we like to mention a paper of Raghavan (1984).He surveyed 

nearly all algorithms for as well discounted as undiscounted two-person 

zerosum stochastic games. Moreover he started interrelating the subclasses 

of games determined by the structure on the parameters. Most of these al

gorithms can also be found in this monograph (cf. chapter 6 and chapter 9). 

DIRVEN, C.A.J.M. & O.J. VRIEZE (1986), Advertisement models, stochastic games 

and myopic strategies, to appear in Operations Research. 

PARTHASARATHY, T., S.H. TIJS & O.J. VRIEZE (1984),Stochastic games with state 

independent transitions and separable rewards. In: Hammer, G. & 

D. Pallaschke (eds.), Selected topics in Operations research and 

mathematical economics, Springer Verlag, Berlin, 262-271. 

RAGHAVAN, T.E.S. (1984), Algorithms for stochastic games, a survey, Dep. of 

Math., Statistics and Computer Science, University of Illinois at 

Chicago, Chicago, Illinois. 

RAGHAVAN, T.E.S., S.H. TIJS & O.J. VRIEZE (1985), On stochastic games with 

additive reward and transition structure, J.O.T.A. ~, 451-464. 
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SYMBOL INDEX 

(Symbols with only local significance are not included). 

Greek English 

C4 11 A 7 
s 

s 26 <A,B,K> 181 

r 27 B 7 

f (pc) 170 Sr ck8k/M 111 
k=-oo 

f(So,g,w,p°,{E2slsESO}) 170 c 60 ra 
r < {p 1 p EP <A ) , s s s sEs1 ) 91 CSG(S) 57 

K (w) 129 dCr ,r • l 59 

J\1S (T) 171 e. 84, 186 
l. 

J\2s(T) 172 e. 84, 186 
J 

IJ 9, 10 E.Q, I .Q,=1,2 112 

IJ (ilh ,s ) 9, 10 f* 47 T T T 
µT(sO,sT) 9, 10 f (8) s 138 

IJ (s ) 9, 10 F 103 T T 
\) 9, 10 FM 103 

\) (j I h Is ) 9, 10 FV(T) 105 T T T 
\)T (sO,sT) 9, 10 FVIJ 2 (T) 126 

VT (ST) 9, 10 FVvl (T) 126 

CJl(w) 104 g 121 

p 9 I 10 g(n) 109 
c 

170 g (8) 138 p 
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a 9, 10 [G (x)) 
s 105, 111 

T 9 [ G (v)] 
sa 28 

cj>T (w) 103 [GC4 (v)] 58 s 
8 103 [Gs8 (x)] 104 

h 9 T 
H 7 

HT 9 

i 188 

i 9 T 
j 188 

jT 9 
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NOTATIONS 

JN, lR and lRm are the set of natural numbers, the set of real numbers 

and the m-fold Cartesian product of lR respectively. 

JN := {1,2, ... ,m} and JN := {-1,-2,-3, ... }. 
m 

1 := (1,1, ... ,l)ElRm and 0 := (0,0, ... ,0)ElRm. m m 

For x=(xl,x2, ... ,xm)ElRm, llx[J := maxkEJNm [xkl 

For x,yElRm, d(x,y) := [[x-yj[. 

For xElRm, Car(x) := {k[kElN I 
m 

For x,yEJRm, x?y if and only if xk?yk for each kEJNm 

and x>y if and only if x2y and at least for one component k it holds 

that xk>yk. 

xsy and x<y are defined analogously. 

By an mxn-matrix we mean a matrix consisting of m rows and n columns. 

Imm denotes the mxm-matrix with each entry equal to 1. 

If K is an mxn-matrix, KT represents the transpose of K. 

If K1 and K2 are two mxn-matrices, then 

d (K1 ,K2) : =maxmEJN , nEJN I K1 (m,n) -K2 (m,n) [ . 
m n 

The adjoint of an mxm-matrix K is denoted by adj(K) and the determinant 

of K is denoted by det(K). 

A vector is supposed to be a column vector. However, when no confusion 

arises we often write x.K instead of xT.K for xEJRm and Kan mxn-matrix. 

For a finite set S, lsl is the numer of elements of S. 





MATHEMATICAL CENTRE TRACTS 
I T. van der Walt. Fvced and a/mast fixed points. 1963. 
2 A.R. Bloemena. Sampling from a graph. 1964. 
3 G. de Leve. Generalized Markovian decision processes, part 
/:model and method. 1964. 
4 G. de Leve. Generalized Markovian decision processes, part 
II: probabilistic background. 1964. 
5 G. de Leve, H.C. Tijms, P J. Weeda. Generalized Markovian 
decision processes, applications. 1970. 
6 M.A. Maurice. Compact ordered spaces. 1964. 
1 W.R. van Zwet. Convex transformations of random variables. 
1964. 
8 J.A. Zonneveld. Automatic numerical integration. 1964. 
9 P.C. Baayen. Universal morphisms. 1964. 
IO E.M. de Jager. Applications of distributions in mathematical 
physics. 1964. 
11 A.B. Paalman..de Miranda. Topological semigroups. 1964. 
12 J.A.Th.M. van Berckel, H. Brandt Corstius, R.J. Mokken, 
A. van Wijngaarden. Formal properties of newspaper Dutch. 
1965. 
13 H.A. Lauwerier. Asymptotic expansions. 1966, out of print; 
replaced by MCT 54. 
14 H.A. Lauwerier. Calculus of variations in mathematical 
physics. 1966. 
15 R. Doornbos. Slippage tests. 1966. 
16 J.W. de Bakker. Formal definition of programming 
languages with an application to the definition of ALGOL 60. 
1967. 
17 R.P. van de Riel. Formula manipulation in ALGOL 60, 
part I. 1968. 
18 R.P. van de Riel. Formula manipulation in ALGOL 60, 
part 2. 1968. 
19 J. van der Slot. Some properties related to compactness. 
1968. 
20 P.J. van der Houwen. Finite difference methods for solving 
partial differential equations. 1968. 
21 E. Wattel. The compactness operator in set theory and 
topology. 1968. 
22 T J. Dekker. ALGOL 60 procedures in numerical algebra. 
part l. 1968. 
23 TJ. Dekker, W. Hoffmann. ALGOL 60 procedures in 
numerical algebra, part 2. 1968. 
24 J. W. de Bakker. Recursive procedures. 1971. 
25 E.R. Paerl. Representations of the Lorentz group and projec· 
tive geometry. 1969. 
26 European Meeting 1968. Selected statistical papers, part I. 
1968. 
27 European Meeting 1968. Selected statistical papers, part II. 
1968. 
28 J. Oosterhof f. Combination of one-sided statistical tests. 
1969. 
29 J Verhoeff. Error detecting decimal codes. 1969. 
30 H. Brandt Corstius. Exercises in computational linguistics. 
1970. 
31 W. Molenaar. Approximations to the Poisson, binomial and 
hypergeometric distribution fanctions. 1970. 
32 L. de Haan. On regular variation and its application to the 
weak convergence of sample extremes. 1970. 
33 F.W. Steutel. Preservation of infinite divisibility under mix· 
ing and related topics. 1970. 
34 I. Juhasz, A. Verbeck, N.S. Kroonenberg. Cardinal func
tions in topology. 1971. 
35 M.H. van Emden. An analysis of complexity. 1971. 
36 J. Grasman. On the birth of boundary layers. 1971. 
37 J.W. de Bakker, G.A. Blaauw, A.J.W. Duijvestijn, E.W. 
Dijkstra, P.J. van der Houwen, G.A.M. KamSteeg.Xemper, 
F.E.J. Kruseman Aretz, W.L. van der Poel, J.P. Schaap
Kruseman, M.V. Wilkes, G. Zoutendijk. MC-25 Informatica 
Sympasium. 1971. 
38 W.A. Verloren van Themaat. Automatic analysis of Dutch 
compound words. 1972. 
39 H. Bavinck. Jacobi series and approximation. 1972. 
40 H.C. Tijms. Analysis of (s,S) inventory models. 1912. 
41 A. Verbeck. Superextensions of topological spaces. 1972. 
42 W. Vervaat. Success epochs in Bemoulli trials (with applica· 
lions in number theory). 1912. 
43 F.H. Ruymgaart. Asymptotic theory of rank tests for 
independence. f973. 

44 H. Bart. Meromorphic operator valued functions. 1973. 
45 A.A. Balkema. Monotone transformations and limit laws. 
1973. 
46 R.P. van de Riel. ABC ALGOL, a portable langua.ze for 
formula manipulation systems, part I: the language. 1973. 
47 R.P. van de Riel. ABC ALGOL, a portable language for 
formula manipulation systems, part 2: ihe compiler. 1973. 
48 F.E.J. Kruseman Aretz, P.J.W. ten Hagen, H.L. 
Oudshoom. An ALGOL 60 compiler in ALGOL 60, text of the 
MC-compiler for the EL-X8. 1913. 
49 H. Kok. Connected orderable spaces. 1974. 
50 A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck, C.H.A. 
Koster, M. Smtzoff, C.H. Lindsey, L.G.L.T. Meertens, R.G. 
Fisker (eds.). Revised report on the algorithmic language 
ALGOL 68. 1976. 
51 A. Hordijk. Dynamic programming and Markov potential 
theory. 1974. 
52 P.C. Baayen (ed.). Topological structures. 1974. 
53 M.J. Faber. Metrizability in generalized ordered spaces. 
1974. 
54 H.A. Lauwerier. Asymptotic anolysis, part /. 1974. 
55 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part/: 
theory of designs, finite geometry and coding theory. 1974. 
56 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 2: 
graph theory, foundations, partitions and combinatorial 
geometry. 1914. 
51 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 3: 
combinatorial group theory. 1974. 
58 W. Albers. Asymptotic expansions and the deficiency con
cept in statistics. 1975. 
59 J.L. Mijnheer. Sample path properties of stable processes. 
1975. 
60 F. Gtibel. Queueing models involving buffers. 1975. 
63 J.W. de Bakker (ed.). Foundations of computer science. 
1975. 
64 W.J. de Schipper. Symmetric closed categories. 1975. 
65 J. de Vries. Topological tronsformation groups, I: a categor
ical approoch. 1915. 
66 H.GJ. Pijls. Logically convex algebras in spectral theory 
and eigenfanction expansions. 1976. 
68 P.P.N. de Groen. Singularly perturbed differential operators 
of second order. 1976. 
69 J.K. Lenstra. Sequencing by enumerative methods. 1977. 
70 W.P. de Roever, Jr. Recursive program schemes: semantics 
and proof theory. 1976. 
71 J.A.E.E. van Nunen. Contracting Markov decision 
processes. 1976. 
72 J.K.M. Jansen. Simple periodic and non-periodic Lomt! 
functions and their applications in the theory of conical 
waveguides. 1977. 
73 D.M.R. Leivant. Abso/Uleness of intuitionistic logic. I 979. 
74 H.J.J. te Riele. A theoretical and computational study of 
generalized aliquot sequences. 1976. 
75 A.E. Brouwer. Treelike spaces and related connected topo· 
logical spaces. 1977. 
76 M. Rem. Associons and the closure statement. 1976. 
11 W.C.M. Kallenberg. Asymptotic optimality of likelihood 
ratio tests in exponential families. 1978. 
78 E. de Jonge, A.C.M. van Rooij. Introduction to Riesz 
spaces. 1977. 
79 M.C.A. van Zuijlen. Emperical distributions and rank 
statistics. 1977. 
80 P.W. Hemker. A numerical study of stiff two-point b{Jundary 
problems. 1977. 
81 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer 
science II, part I. 1976. 
82 K.R. Apt, J.W. de Bakker (eds.). Foundations of compUler 
science II, part 2. 1976. 
83 L.S. van Benthem Jutting. Checking Londau's 
"Grundlagen" in the AUTOMATH system. 1979. 
84 H.L.L. Busard. The translation of the elements of Euclid 
from the Arabic into Lotin by Hermann of Carinthia (?), books 
vii-xii. 1977. 
85 J. van Mill. Supercompactness and Wallman spaces. 1977. 
86 S.G. van der Meulen, M. Veldhorst. Torrix /, a program· 
ming S}'Slem for OJ!erations on vectors and matrices over arbiw 
trary fields and of variable size. 1978. 
88 A. Schrijver. Matroids and linking systems. 1977. 
89 J.W. de Roever. Complex Fourier transformation and 
analytic functionals with unbounded carriers. 1978. 



90 LP.J. Groenewegen. Characterization of optimal strategies 
in dynamic games. ll)8 I. 
91 J.M. Geysel. Transcendence in fields of positive characteris
tic. 1979. 
92 P.J. Weeda. Finite generalized Markov programming. 1979. 
93 H.C. Ttjms, J. Wessels (eds.). Markov decision theory. 
1977. 
94 A. Bijlsma. Simultaneous approximations in transcendental 
number theory. 1978. 
95 K.M. van Hee. B'!)'esian control of Markov chains. 1978. 
96 P.M.B. Vitanyi. UnJenm'!)'er systems: structure, languages, 
and growth functions. 1980. 
97 A. Federgruen. Markovian control problems; functional 
equations and algorithms. 1984. 
98 R. Geel. Singular perturbations of hyperbolic type. 1978. 
99 J.K. Lenstra, A.H.G. Rinnooy Kan, P. van Emde Bo8ll 
(eds.). Interfaces between computer science and operations 
research. I oJ78. 
100 P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed
ings bicentennial congress of the Wiskundig Genootschap, part 
1. 1979. 
IOI P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed
ings bicentennial congress of the Wiskundig Genootschap, part 
2. 1979. 
:g~8~. van Dulst. Reflexive and superreflexive Banach spaces. 

103 K. van Ham. Classifying infinitely divisible distributions 
by functional equations. 1~78. 
104 J.M. van Wouwe. Go-spaces and generalizations of metri
zability. 1979. 
105 R. Helmers. Edgeworth expansions for linear combinations 
of order statistics. 1982. 
:~9~. Schrijver (ed.). Packing and covering in combinatorics. 

I 07 C. den Heijer. The numerical solution of nonlinear opera
tor equations by imbedding methods. 1979. 
108 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of 
computer science Ill, part 1. 1979. 
109 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of 
computer science Ill, part 2. 1979. 
110 J.C. van Vliet. ALGOL 68 transput, part /: historical 
r""iew and discussion of the implementation model. 1979. 

:;t:o!·';;;:;. r;;J: ALGOL 68 transput, part II: an implemen-

112 H.C.P. Berbee. Random walks with stationary increment.t 
and renewal theory. 1979. 
113 T.A.B. Snijders. Asymptotic optimality theory for te.tting 
problem.. with restricted alternatives. 1979. · 
114 A.J.E.M. Janssen. Application of the Wigner distribution to 
harmonic analysis of generalized stochastic processes. 1979. 
115 P.C. Baayen, J. van Mill (eds.). Topological structures 11, 
part I. 1979. 
116 P.C. Baayen, J. van Mill (eds.). Topological structures 11, 
part 2. 1979. 
117 P.J.M. Kallenberg. Branching processes with continuous 
state space. 1979. 
118 P. Groeneboom. Large d""iations and asymptotic efficien
cies. 1980. 
119 F.J. Peters. SJ"!'se matrices and substructures, with a not1el 
implementation offinite element algorithms. 1980. 
120 W.P.M. de Ruyter. On the asymptotic analysis of /arge
sca/e ocean circulation. 1980. 
121 W.H. Haemers. Eigenvalue techniques in design and graph 
theory. 1980. 
122 J.C.P. Bus. Numerical solution of systems of nonlinear 
equations. 1980. 
123 I. Yuhasz. Cardinal functions in topology - ten years later. 
1980. 
124 R.D. Gill. Censoring and stochastic integrals. 1980. 
125 R. Eising. 2-D systems, an algebraic approach. 1980. 
126 G. van der Hoek. Reduction methods in nonlinear pro
gramming. 1980. 
127 J.W. Klop. Combinatory reduction systems. 1980. 
128 A.J.J. Talman. Variable dimension fixed point algorithms 
and triangulations. 1980. 
129 G. van der Laan. Simplicialfixed point algorithms. 1980. 
130 P.J.W. ten Hagen, T. Hagen, P. Klint, H. Noot, H.J. 
Sint, A.H. Veen. JLP: intermediate language for pictures. 
1980. 

131 R.J.R. Back. Correctne.ts preserving program refinements: 
proof theory and applications. 1980. 
132 H.M. Mulder. The interval function of a graph. 1980. 
133 C.A.J. Klaassen. Statistical performance of location esti
mators. 1981. 
134 J.C. van Vliet, H. Wup'ler (eds.). Proceedings interna
tional conference on ALGOl 68. 1981. 
135 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof 
(eds.). Formal methodS in the study of language, part I. 1981. 
136 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof 
(eds.). Formal methodS in the study of language, part II. 1981. 
137 J. Telgen. Redundancy and linear programs. 1981. 
138 H.A. Lauwerier. Mathematica/ models of epidemics. 1981. 
139 J. van der Wal. Stochastic dynamic programming. succes
sive approximations and nearly optimal strategies for Markov 
decision processes and Markot1 games. 1981. 
140 J.H. van Geldrop. A mathematical theory of,f,,ure 
i98'i.1nge economies without the no..critical-point rypothesis. 

141 G.E. Welters. Abel-Jacobi isogenies for certain types of 
Fano threefolds. 1981. 
142 H.R. Bennett, D.J. Lutzer (eds.). Topology and order 
structures, part I. 1981. 
143 J.M. Schumacher. Dynamic feedback in finite- and 
infinite-dimensional linear systems. 1981. 
144 P. Eij15enraam. The solution of initial value problems using 
;n:s7.al art1hmetic; formulation and analysis of an algorithm. 

145 A.J. Brentjes. Multi-dimensional continued fraction algo
rithms. 1981. 
146 C.V.M. van der Mee. Semigroup and factorization 
methods in transport theory. 1981. 
:~~r·"· Tigelaar. Identification and informative sample size. 

148 L.C.M. Kallenberg. linear programming and finite Mar
kovian control problems. 1983. 
149 C.B. Huijsmans, M.A. Kaashoek, W.A.J. Luxernburg, 
W.K. Vietsch (eds.). From A to Z, proceedings of a symposium 
in honour of A. C. Zaanen. 1982. 
150 M. Veldhorst. An analysis of sparse matrix storage 
schemes. 1982. 
151 R.J.M.M. Does. Higher order asymptotics for simple linear 
rank statistics. 1982. 
:~i2~.F. van der Hoeven. Projections of lawless sequences. 

153 J.P.C. Blanc. Application of the theory of boundary value 
problems in the analysis of a queueing mOdel with paired ser
vices. 1982. 
154 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational 
methods in number theory, part I. 1982. 
155 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational 
methods in number theory, part 11. 1982. 
156 P.M.G. Apers. Query processing and data allocation in 
distributed datilbase systems. 1983. 
157 H.A. W .M. Kneppers. The covariant classification of two
dimensional smooth commutative formal groups over an alge
braically closed field of positive characteristic. 1983. 
158 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of 
computer science IV. distributed systems, part I. 1983. 
159 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of 
computer science IV, distributed systems, part 2. 1983. 
160 A. Rezus. Abstract AUTOMATH. 1983. 
161 G.F. Helminck. Eisenstein series on the metaplectic group, 
an algebraic approach. 1983. 
162 J.J. Dik. Tests for preference. 1983. 
163 H. Schippers. Multiple grid methods for equations of the 
second kind with applications in fluid mechanics. 1983. 
164 F.A. van der Duyn Schouten. Markov decision processes 
with continuous time parameter. 1983. 
165 P.C.T. van der Hoeven. On point processes. 1983. 
166 H.B.M. Jonkers. Abstraction, specification and implemen
~':J~')~ techniques, with an application to garbage collection. 

167 W.H.M. Zijm. Nonnegative matrices in dynamic program
ming. 1983. 
168 J.H. Evertse. Upper bounds for.the numbers of solutions of 
diophantine equations. 1983. 
169 H.R. Bennett, D.J. Lutzer (eds.). Topology and order 
structures, part 2. 1983. 



CW/ TRACTS 
I D.H.J. Epema. Surfaces with canonical hyperplane sections. 
1984. 
2 J.J. Dijkstra. Fake topological Hilbert spaces and characteri
zations of dimension in terms of negligibility. 1984. 
3 A.J. van der Schaft. System theoretic descriptions of physical 
systems. 1984. 
4 J. Koene. Minimal cost flow in pr(H.:essing networks, a primal 
approach. 1984. 
5 B. Hoogenboom. Intertwining functions on compact lie 
groups. 1984. 
6 A.P.W. B<>hm. Data/low computation. 1984. 
7 A. Blokhuis. Few-distance sets. 1984. 
8 M.H. van Hoom. Algorithms and approximations for queue
ing systems. 1984. 
9 C.P J. Koymans. Models of the lambda calculus. 1984. 
10 C.G. van der Laan, N.M. Temme. Calculation of special 

functions: the gamma function~ the exponential integrals and 
error-like functions. t 984. 
11 N.M. van Dijk. Controlled Markov processes; time
discretizalion. 1984. 
12 W.H. Hundsdorfer. The numerical solution of nonlinear 
stiff initial value problems: an analysis of one step methods. 
1985. 
13 D. Grune. On the design of ALEPH. 1985. 
14 J.G.F. Thiemann. Analytic spaces and dynamic program
ming: a measure theoretic approach. 1985. 
15 F.J. van der Linden. Euclidean rings with two infinite 

primes. 1985. 
16 RJ.P. Groothuizen. Mixed elliptic-hyperbolic partial 
differential operators: a case-study in Fourier integral opera
tors. 1985. 
17 H.M.M. ten Eikelder. Symmetries for dynamical and Ham
iltonian systemv. 1985. 
18 A.D.M. Kester. Some large deviation results in statistics. 
1985. 

19 T.M.V. Janssen. Foundations and alf./ications of Montague 
;;~6.mar, parl l: Philosophy, framewor. , 1:omputer science. 

20 B.F. Schriever. Order depe11dence. 1986. 
21 D.P. van der Vecht. Inequalities for slOpped Brownian 
motion. 1986. 
22 J.C.S.P. van der Woude. Topological dynamix. 1986. 
23 A.F. Monna. Methods. concepts and ideas in mathematics: 
aspects of an evolution. 1986. 
24 J.C.M. Baeten. Filters and ultrajillers over definable subsets 
of admissible ordinals. 1986. 
25 A.W.J. Kolen. Tree network a11d planar rectilinear location 
theory. 1986. 
26 A.H. Veen. The miscons/rued semicolon: Reconciling 
imperative languages and dataftow machines. 1986. 
27 A.J.M. van Engelen. Homogeneous zero-dimensional abso
lute Borel sets. 1986. 
28 T.M.V. Janssen. Foundations and applications of Montague 
grammar, parl 2: Applications to natural language. 1986. 
29 H.L. Trentelman. Almost invariant subspaces and high gain 
feedback. 1986. 
30 A.G. de Kok. Production-inventory control models: approxi
mations and algorithms. 1987. 
3 l E.E.M. van Berkum. Optimal paired comparison designs for 
factorial experiments. 1981. 
32 J.H.J. Einmahl. Multivariate empirical processes. 1987. 
33 O.J. Vrieze. S1ochas1ic games with finite state and aclion 
spaces. J 987. 




