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Abstract
The generation of rainfall and other climate data needs a range of models depending on the time and spatial scales involved. Most of the
models used previously do not take into account year to year variations in the model parameters. Long periods of wet and dry years were
observed in the past but were not taken into account. Recently, Thyer and Kuczera (1999) developed a hidden state Markov model to account
for the wet and dry spells explicitly in annual rainfall. This review looks firstly at traditional time series models and then at the more complex
models which take account of the pseudo-cycles in the data. Monthly rainfall data have been generated successfully by using the method of
fragments. The main criticism of this approach is the repetitions of the same yearly pattern when only a limited number of years of historical
data are available. This deficiency has been overcome by using synthetic fragments but this brings an additional problem of generating the
right number of months with zero rainfall. Disaggregation schemes are effective in obtaining monthly data but the main problem is the large
number of parameters to be estimated when dealing with many sites. Several simplifications have been proposed to overcome this problem.
Models for generating daily rainfall are well developed. The transition probability matrix method preserves most of the characteristics of
daily, monthly and annual characteristics and is shown to be the best performing model. The two-part model has been shown by many
researchers to perform well across a range of climates at the daily level but has not been tested adequately at monthly or annual levels. A
shortcoming of the existing models is the consistent underestimation of the variances of the simulated monthly and annual totals. As an
alternative, conditioning model parameters on monthly amounts or perturbing the model parameters with the Southern Oscillation Index
(SOI) result in better agreement between the variance of the simulated and observed annual rainfall and these approaches should be investigated
further. As climate data are less variable than rainfall, but are correlated among themselves and with rainfall, multisite-type models have been
used successfully to generate annual data. The monthly climate data can be obtained by disaggregating these annual data. On a daily time step
at a site, climate data have been generated using a multisite type model conditional on the state of the present and previous days. The
generation of daily climate data at a number of sites remains a challenging problem. If daily rainfall can be modelled successfully by a
censored power of normal distribution then the model can be extended easily to generate daily climate data at several sites simultaneously.
Most of the early work on the impacts of climate change used historical data adjusted for the climate change. In recent studies, stochastic
daily weather generation models are used to compute climate data by adjusting the parameters appropriately for the future climates assumed.

Introduction
This paper reviews the state of research and practice in the
stochastic generation of annual, monthly and daily climate
data. One of the major gaps in the design and operation of
hydrological systems is the quantification of uncertainty as
a result of climatic variability. This applies whether the
systems are complex water resources systems or simple
planning models of catchment behaviour. For very simple
systems, analytical techniques of estimating uncertainty may
suffice but, for the majority of systems, one has to resort to
system simulation using stochastically generated data. In

addition to quantifying uncertainty, stochastically generated
data have applications such as the design and operation of
water resources systems, design of urban drainage systems
and land management changes.

Generated annual data have little direct application but
are used indirectly in disaggregation schemes to obtain
monthly data. Estimation of water demand and the
simulation of water supply systems generally need monthly
data. For rainfall-runoff and crop growth models, daily data
are required. This review covers the generation of rainfall
and climate data such as temperature, solar radiation and
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evaporation. Rainfall and climate data are measured at point
locations but are assumed to represent the surrounding areas.
In small to medium size catchments, areally averaged data
can take spatial variations into account. In large catchments,
it is necessary to model the spatial variation explicitly
especially in rainfall.

Though numerous stochastic models are available in the
literature, few have been tested adequately with regard to
characteristics at different time scales or at a number of
locations with different climates. For instance, a proper daily
model should preserve monthly and annual characteristics
in addition to preserving the daily characteristics.

In the past, data generation models assumed that there
was no variation in the model parameters between years
and only the seasonal or monthly variations within a year
were taken into account. However, there is a growing
awareness of long term persistence in the climatic data in
the form of wet and dry years or ENSO cycles, so the
parameters of the models should be varied in some way to
model the wet and dry spells. There has been very little
research on this aspect.

The generation of rainfall and other climate data needs a
range of models depending on the time and spatial scales
involved. Cox and Isham (1994) presented three broad types
of rainfall models, namely, empirical statistical models,
models of dynamic meteorology and intermediate stochastic
models, a classification based on the amount of physical
realism incorporated into the model structure. In empirical
statistical models, empirical stochastic models are fitted to
the data available. The models for the generation of annual,
monthly and daily rainfall and climate data are of this type.
In the models of dynamic meteorology, large systems of
simultaneous nonlinear partial differential equations
representing, fairly realistically, the physical processes
involved, are solved numerically. These are generally used
for weather forecasting rather than for data generation. In
intermediate stochastic models, few parameters are used to
represent the rainfall process, the parameters being intended
to relate to underlying physical phenomena such as rain cells,
rain bands and cell clusters. These types of models are used
for the analysis of data collected at short time intervals such
as hourly. The models reviewed in this paper are of the first
type only, namely, empirical statistical models.

Because of the different types of models used for different
time scales, the review is carried out for different time scales
separately. The generation of rainfall data is reviewed first
and that of climate data follows. In each section, the models
for the generation of data at a single site are reviewed first,
followed by models for a number of sites over an area.

Annual and monthly rainfall data
Surprisingly, very little work has been done since 1985 on
stochastic generation of annual and monthly rainfall data;
the year to year variations in the model parameters were
ignored and only the within-year seasonal variations in
parameters were taken into account. Long periods of wet
and dry years were observed in the past (Warner, 1987;
Srikanthan and Stewart, 1992) and this phenomenon needs
to be considered in the model structure. Recently, Thyer
and Kuczera (1999, 2000) developed a hidden state Markov
model to account for the long term persistence in annual
rainfall.

ANNUAL RAINFALL DATA AT A SITE
Thomas and Fiering (1962) were the first to propose a first
order Markov model with Wilson- Hilferty transformation
to generate streamflow data. Srikanthan and McMahon
(1985) recommended a first order Markov model
incorporating the Wilson-Hilferty transformation to generate
annual rainfall data. This model degenerates into a white
noise model when the coefficient of skewness and the lag
one auto-correlation coefficient are close to zero.

Thyer and Kuczera (1999) developed a Hidden State
Markov (HSM) model with Bayesian inference to generate
annual rainfall data for Sydney, Australia. The model
assumes that the climate is composed of two states, either a
dry state (low rainfall year) or a wet state (high rainfall year).
Each state has separate Normal annual rainfall distributions.
The transition from one state to the other is governed by the
transition probabilities. If the transition probabilities to other
states are sufficiently low then the climate may persist in
one state for a number of years. This provides an explicit
mechanism for the HSM model to simulate the influence of
a quasi-periodic phenomenon such as El Nino.

In the HSM model, the simulation of annual rainfall is a
two step process. In the first step, the state at year t is
simulated by a Markov process,

St|St-1 ~ Markov (P,p1) (1)

where P is the transition probability matrix whose elements
pij are defined by,

pij = Pr(St = i|St-1 = j) i, j = wet or dry (2)

and p1 is the probability distribution vector of the wet and
dry states at year 1.

Once the state for the year t is known, the annual rainfall
is simulated using,
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where N(µ, σ2) denotes a normal distribution with mean µ
and variance σ2.

They compared the results from the HSM model with
those from an AR(1) model and found that the dry spell
persistence identified by the HSM model produced higher
and more realistic drought risks. The Sydney rainfall data
supported strongly the assumption of a two state climate
model with the average residence time similar to the quasi-
periodicity of the ENSO phenomenon.

ANNUAL RAINFALL DATA AT A NUMBER OF SITES

Annual rainfall at a number of sites can be generated by
using a multi-site model (Matalas, 1967; Young and Pisano,
1968).

Xt = A Xt-1 + B et (4)

where Xt = (n × n) matrix of standardised annual rainfall
data for year t,

et  = (n × 1) vector of independent random deviates
with zero mean and unit variance, and

A, B = (n × n) matrices of constant coefficients to
preserve the auto-correlations and the  cross-correlations.

If the annual rainfall data are skewed, they can be
normalised using a three-parameter Log-normal
transformation. The parameters in the log domain are
obtained by using the Matalas moment transformation
equations (Matalas, 1967). Pegram and James (1972) and
Hipel (1985) suggest that the lag one cross-correlations can
be ignored. This simplifies the correlation matrices and the
solutions to A and B.

MONTHLY RAINFALL DATA AT A SITE

Thompson (1984) derived a model for monthly rainfall based
on a Poisson process of rainfall occurrence with an
independent exponentially distributed rainfall amount. The
model has two parameters and can preserve the mean and
variance of monthly rainfall explicitly. The model ignores
the skewness and the serial correlation between months. The
model was used not for data generation but to test the
homogeneity of rainfall records at a station without the need
for data from neighbouring stations.

Srikanthan and McMahon (1985) recommended the
method of fragments for the generation of monthly rainfalls.
The observed monthly rainfall data are standardised year

by year so that the sum of the monthly rainfalls in any year
equals unity. This results in n sets of fragments of monthly
rainfalls from a record of n years. The generated annual
rainfalls are disaggregated by selecting a set of fragments
at random and multiplying the annual rainfall generated by
each of the 12 fragments to give 12 generated monthly
rainfalls. A major limitation of this procedure is that the
monthly correlation between the first month of a year and
the last month of the previous year will not be preserved.
However, this problem can be avoided by choosing the
hydrological year starting with a month with the minimum
serial correlation.

Porter and Pink (1991) reported that the use of the method
of fragments resulted in the conspicuous repetition of
monthly patterns when generating data much longer than
the historical data. They proposed to obtain the monthly
fragments from a generated monthly flow sequence. It
appears that the monthly values were generated
independently at each site. Each generated annual rainfall
was disaggregated using the monthly fragments from the
generated monthly rainfall for which the generated annual
rainfall is closer to the annual value obtained from the
generated monthly rainfalls. This overcomes the problem
of repetition but does not preserve the monthly correlation
between the first month of a year and the last month of the
previous year. Maheepala and Perera (1996) proposed a
modification to the Porter and Pink (1991) model which
allows the preservation of monthly correlation across
consecutive years. They have compared this modified
procedure with the above two methods of fragments, which
use historical and synthetic fragments using streamflow data
from five rivers in Victoria. The results showed that the
modified model preserved the monthly correlations across
consecutive years. The method used for the generation of
synthetic monthly flows is not clear from Maheepala and
Perera (1996).

Since rainfall data are less variable and have smaller
skewness than streamflow data, the extended disaggregation
scheme proposed by Mejia and Rousselle (1976) can be
used to disaggregate the generated annual rainfall into
monthly rainfall. Lane (1979) developed an approach which
essentially sets to zero several parameters of the model
which are not important. The model considers one month at
a time. The seasonal values are then adjusted to match the
annual values. Stedinger et al. (1985) developed a condensed
version of the disaggregation model in which the monthly
flow sequences are described by a set of coupled regression
equations. The performance of these models to sites with a
considerable number of zero monthly rainfalls is not known.

Recently Tarboton et al. (1998) proposed a disaggregation
procedure based on nonparametric density (NPD) estimation
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which models adaptively complex relationships between
aggregate and disaggregate flows. The primary shortcoming
of the NPD procedure is that it is data and computationally
intensive. For less than 30 years of data, the NPD procedure
is not expected to disaggregate monthly data better than
parametric models.

MONTHLY RAINFALL DATA AT A NUMBER OF
SITES

Monthly rainfall data at a number of sites can be generated
by disaggregating the generated annual rainfall using the
method of fragments (Srikanthan McMahon, 1984), the
method of synthetic fragments (Porter and Pink, 1991) or
the modified method of synthetic fragments  (Maheepala
and Perera, 1996).

The extended model developed by Mejia and Rousselle
(1976) can be used to disaggregate the generated annual
rainfalls to monthly rainfalls. Here again, the condensed
form of the model developed by Lane (1979) can be used at
the expense of not preserving some of the cross correlations.
One of the main drawbacks with the disaggregation
approach is the large number of parameters to be estimated
from the historical data. The number of parameters in the
model for the generation of monthly data at N sites is 156N2

for the basic (Valencia and Schaake, 1973), 168 N2 for the
extended (Mejia and Rousselle, 1976) and 36N2 for the
condensed (Lane, 1979) schemes. Salas et al. (1980) give a
parsimony guide for disaggregation modelling.

Daily rainfall data
Long sequences of daily rainfall are required increasingly,
not only for hydrological purposes but also to provide inputs
for models of crop growth, landfills, tailing dams, land
disposal of liquid waste and other environmentally-sensitive
projects. Rainfall is generally measured at the daily time
scale and this forms the basis for monthly and annual rainfall
series. Because daily data form this basic data set, modelling
of the daily rainfall process has attracted a lot of interest in
the past.

DAILY RAINFALL DATA AT A SITE

Daily rainfall data generation models can be classified
broadly into four groups, namely, two-part models, transition
probability matrix models, resampling models and time
series models of the ARMA type.

TWO-PART MODELS

Most stochastic models of daily rainfall consist of two parts:

a model for the occurrence of dry and wet days and a model
for the generation of rainfall amount on wet days. The
seasonal variation in rainfall is an important factor and
several approaches have dealt with seasonality, assuming
that parameters vary either as a step function for each month/
season or as a periodic function (such as Fourier series) to
provide intra-annual variation of parameters.

RAINFALL OCCURRENCE MODELS

Models of rainfall occurrence are of two main types, those
based on Markov chains and those based on alternating
renewal processes.

Markov chains

Markov chains specify the state of each day as ‘wet’ or ‘dry’
and develop a relation between the state of the current day
and the states of the preceding days. The order of the Markov
chain is the number of preceding days taken into account.
Most Markov chain models referred in the literature are first
order (lag one) (Gabriel and Newmann, 1962; Caskey, 1963;
Weiss, 1964; Hopkins and Robillard, 1964; Feyerherm and
Bark, 1965, 1967; Lowry and Guthrie, 1968; Selvalingam
and Miura, 1978; Stern, 1980a,b; Garbutt et al., 1981;
Richardson, 1981; Stern and Coe, 1984). Models of second
or higher orders have been studied by Chin (1977), Coe
and Stern (1982), Gates and Tong (1976), Eidsvik (1980),
Pegram (1980) and Singh et al. (1981). The results varied
with the climate characteristics of the rainfall stations
investigated, with the statistical tests used and with the length
of record.

The Akaike information criterion (AIC), introduced by
Akaike (1974), was widely used to determine the order of
the Markov chains. Katz (1981) derived the asymptotic
distribution of the (AIC) estimator but found that the
estimator is inconsistent. The Bayesian information criterion
(BIC) proposed by Schwarz (1978) was shown to be
consistent and asymptotically optimal. However, Hurvich
and Tsai (1989) provided a correction for AIC for model
selection in small samples and the corrected AIC does not
over fit the models as the AIC tends to do.

Jimoh and Webster (1996) determined the optimum order
of a Markov chain model for daily rainfall occurrences at
five locations in Nigeria using AIC and BIC. The AIC
consistently gave a higher order for the Markov chain than
the BIC. The optimum order was also investigated by the
generation of synthetic sequences of wet and dry days using
zero-, first- and  second-order Markov chains. They found
that the first-order model was superior to the zero-order
model in representing the frequency distribution of wet and
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dry spells and there was no discernible difference between
performances of the first- and second-order models. It was
concluded that caution is needed with the use of AIC and
BIC for determining the optimum order of the Markov model
and the use of frequency duration curves can provide a
robust alternative method of model identification.

Jimoh and Webster (1999) investigated the intra-annual
variation of the Markov chain parameters for seven sites in
Nigeria. They found that there was a systematic variation
in P01 (probability of a wet day following a dry day) as one
moves northwards and a limited regional variation in P11.

A general conclusion is that a first-order model is adequate
for many locations but a second- or higher order model may
be required at other locations or during some times of the
year.

Alternating renewal process

In the alternating renewal process, the daily rainfall data is
considered as a sequence of alternating wet and dry spells
of varying length. The wet and dry spells are assumed to be
independent and the distributions may be different for wet
and dry spells. Distributions investigated include the
logarithmic series (Williams, 1947), a modified logarithmic
series (Green, 1964), truncated negative binomial
distribution (Buishand, 1977), and the truncated geometric
distribution (Roldan and Woolhiser, 1982). Roldan and
Woolhiser (1982) compared the alternating renewal process
with truncated geometric distribution of wet sequences and
truncated negative binomial distribution of dry sequences
with a first-order Markov chain. For five US stations with
20-25 years of record lengths, the first-order Markov chain
was superior to the alternating renewal process according
to the Akaike information criterion (Akaike, 1974). The
parameters of the distributions were assumed to be either
constant within seasons or to vary according to Fourier
series. One of the disadvantages of the alternating renewal
process is that the seasonality is difficult to handle. The
starting day of the sequence is usually used to determine
the season to which the sequence belongs.

Small and Morgan (1986) derived a relationship between
a continuous wet-dry renewal model with Gamma
distributed dry intervals and a Markov chain model for daily
rainfall occurrence. The Markov process model was shown
to provide a good representation in certain parts of the United
States while in other areas, where the Markov model is
inappropriate due to event clustering or other phenomena,
the Gamma model provides an improved characterisation
of the relationship between continuous and discrete rainfall
occurrence.

Foufoula-Georgiou and Lettenmaier (1987) developed a

Markov renewal model for rainfall occurrences in which
the time between rainfall occurrences were sampled from
two different geometric distributions. The transition from
one distribution to the other was governed by a Markov
chain. Smith (1987) introduced a family of models termed
Markov-Bernoulli processes that might be used for rainfall
occurrences. The process consists of a sequence of Bernoulli
trials with randomised success probabilities described by a
first-order, two-state Markov chain. At one extreme the
model is a Bernoulli process, at the other a Markov chain.

A binary discrete autoregressive moving average
(DARMA) process was first used by Buishand (1977). He
found that an alternating renewal process was superior to
the DARMA model for the data from The Netherlands but
the DARMA model looked more promising in tropical and
monsoonal areas. Chang et al. (1984) and Delleur et al.
(1989) used four seasons for two stations in Indiana (USA)
and found that either the first-order autoregressive or the
second-order moving average model was appropriate for
different seasons. Buishand (1977) pointed out that the
properties of the rainfall in New Delhi cannot be preserved
by a model with constant parameters — stochastic
parameters are required. This observation may be generally
valid for regions with monsoonal climates.

Chapman (1994) compared five models, namely, Markov
chains of orders 1, 2 and 3 (MC1, MC2 and MC3), truncated
negative Binomial distribution (TNBD) and the truncated
Geometric distribution (TGD) with separate parameter
values for each month using data from 17 Australian rainfall
stations. Three of the above models (MC1, TNBD and TGD)
were also compared with parameters varying smoothly
throughout the year according to a Fourier series having 0,
1 and 2 harmonics. The Fourier series representation with
one harmonic for parameter variation throughout the year
using the MC1 or TGD model was successful for five
stations with high rainfall in southern Australia. The monthly
MC2 model or monthly TNBD model fitted the remaining
stations best. Different record lengths appear to affect the
selection of the best model, particularly when wet and dry
spells are considered separately. For combined results,
different models were selected for the 20-year and 50-year
records in four out of ten cases, for the 20- and 100-year
records in two out of five cases, and for the 50- and 100-
year records in one case out of five. He concluded that the
prospects for regionalisation of parameters are poor unless
there is a good sample of long records. In a later study,
Chapman (1997) compared the above distributions and
Markov chain for the rainfall stations from 22 islands in the
Western Pacific. He concluded that a first-order Markov
chain or truncated geometric distribution with a Fourier
series representation for parameter variation over months
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was successful for stations with a latitude greater than 14o.
For the stations close to the Equator, the seasonal regularity
was less important and the models with individual monthly
values or constant value throughout the year performed well.

RAINFALL AMOUNT MODELS

Models used for daily rainfall amounts include the two-
parameter Gamma distribution (Jones et al., 1972;
Goodspeed and Pierrehumbert, 1975; Coe and Stern, 1982;
Richardson, 1981; Woolhiser and Roldan, 1982), mixed
Exponential distribution (Woolhiser and Pegram, 1979;
Woolhiser and Roldan, 1982, 1986), a skewed Normal
distribution (Nicks and Lane, 1989) and a truncated power
of Normal distribution (Bardossy and Plate, 1992;
Hutchinson et al., 1993). Cole and Sherriff (1972) applied
separate models to rainfalls for a solitary wet day, the first
day of a wet spell and the other days of a wet spell, while
Buishand (1977) related the mean rainfall amount on a wet
day to its position in a wet spell such as a solitary wet day,
wet day bounded on one side by a wet day and wet day
bounded on each side by a wet day. Recently, Chapman
(1998) investigated the impact of adjoining wet days on the
distribution of rainfall amounts and found that the models
which take this into account resulted generally in a better
fit than the models which lump the data together.

Chin and Miller (1980) examined the possible conditional
dependence of the distribution of daily rainfall amounts on
the occurrence of rainfall on the preceding day using 25
years of daily rainfall data at 30 stations in the continental
United States. They concluded that, except for the winter
season in the Pacific northwest, the distribution of daily
rainfall did not depend on whether the preceding day was
wet or dry.

Recently, Menabde and Sivapalan (2000) used Levy-
stable distributions to fit the storm duration and rainfall
totals. They showed that this distribution having a fat tail
fits the storm duration and amounts better than the
Exponential or Gamma in the tail. The traditional goodness-
of-fit tests may not be able to show this as the small number
of large values are outweighed by the large number of
smaller values.

Chapman (1994, 1998) compared the following five
models for rainfall amounts, the Exponential (one
parameter), the mixed Exponential (three parameters), the
Gamma (two parameters), a skewed Normal (three
parameters) and the Kappa distribution (two parameters).
Based on the AIC, the ranking of the models was consistent,
the best being the skewed Normal distribution, followed by
the mixed Exponential, the Kappa, the Gamma, and last the
Exponential. There was also consistency in the model

selected for different groups of data (solitary wet days, first
day of a wet spell etc.). He observed little variation in the
coefficient of variation between different groups and
relatively little between months. Yevjevich and Dyer (1983)
suggested that the latter feature may be a general
characteristic of daily rainfall series and this could lead to a
significant parsimony in the number of parameters to model
seasonal variations.

Wang and Nathan (2000) developed a daily and monthly
mixed (DMM) algorithm for the generation of daily rainfall.
Daily rainfall data are generated month by month using the
usual two-part model with two sets of parameters for the
Gamma distribution, one estimated from the daily rainfall
data and the other from monthly rainfall data. The monthly
total is obtained by summing the daily values generated from
the monthly Gamma parameters and adjusted for serial
correlation. The generated daily rainfalls from the daily
Gamma parameters are linearly scaled to match the serially
correlated monthly rainfalls. Results for the Lake Eppalock
catchment rainfall and for six other sites around Australia
showed that the DMM algorithm reproduced the mean,
coefficient of variation and skewness of daily, monthly and
annual rainfall. The results were examined in detail for the
Lake Eppalock catchment (in southern Australia); the
algorithm worked well in reproducing the mean, coefficient
of variation and skewness of monthly maximum daily
rainfall, but not as well for the annual maximum rainfall.
For the other six sites, the algorithm worked well in
reproducing the mean and coefficient of variation but not
as well in reproducing the skewness of the annual maximum
daily rainfall.

TRANSITION PROBABILITY MATRIX MODELS

Allen and Haan (1975) used a multi-state (7 × 7) Markov
chain model and employed a Uniform distribution for each
of the wet states except for the last, for which an Exponential
distribution was used. Due to the lack of sufficient data items
in the last class for each month, the values in this class were
lumped together and only one value of the Exponential
parameter was estimated to generate the rainfall depth in
the last class for all twelve months. Selvalingam and Miura
(1978) modified the above procedure by having twelve
parameters for the Exponential distribution, but they
obtained the parameters empirically until the model
reproduced the daily maximum monthly rainfalls adequately.
Srikanthan and McMahon (1983a, 1985) used a linear
distribution for the intermediate classes and a Box-Cox
transformation for the last state. The number of states in
each month was varied to obtain an adequate number of
items in the last state.
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Chapman (1994, 1997, 1998) compared the Srikanthan
and McMahon model with the best selected rainfall
occurrence and amount models; the latter performed better
than the former in five out of 15 twenty year records, for
two of the ten 50-year records and for none of the 100-year
records. He also found that the Srikanthan and McMahon
model, which does not use any wet day classification, was
successful in reproducing the mean, standard deviation,
skew and the number of wet days in each class.

Boughton (1999) observed that the Transition Probability
Matrix (TPM) model (Srikanthan and McMahon, 1985)
underestimates the standard deviation of annual rainfall and
proposed an empirical adjustment to match the observed
standard deviation. The adjustment factor (F) is obtained
by trial and error until the standard deviation of the generated
and observed annual rainfall matches. The generated daily
rainfall in each year is multiplied by the following ratio:

Ratioi = {M + (Ti – M)F}/Ti (5)

where M  = the observed mean annual rainfall, and
Ti  = the generated annual rainfall for year i.

This adjustment simply matches the observed standard
deviation by decreasing the rainfall in below-mean years
and increasing the rainfall in above-mean years. It does not
improve the persistence in the annual rainfalls as in Thyer
and Kuczera (1999).

RESAMPLING MODELS

Lall et al. (1996) developed a non-parametric, wet-dry spell
model for re-sampling daily rainfall at a site. All marginal,
joint and conditional probability densities of interest (dry
spell length, wet spell length, precipitation amount and wet
spell length given prior to dry spell length) are estimated
non-parametrically using at-site data and kernel probability
density estimators. The model was applied to daily rainfall
data from Silver Lake station in Utah (USA) and the
performance of the model was evaluated using a number of
performance measures. The model reproduced satisfactorily
the wet day precipitation, wet spell length and dry spell
length.

Rajagopalan et al. (1996) presented a non-homogeneous
Markov model for generating daily rainfall at a site. The
first-order transition probability matrix was assumed to vary
smoothly day by day over the year. A kernel estimator was
used to estimate the transition probabilities through a
weighted average of transition counts over a symmetric time
interval centred at the day of interest. The rainfall amounts
on each wet day were simulated from the kernel probability

density estimated from all wet days that fall within a time
interval centred on the calendar day of interest over all the
years of available data. Application of the model to daily
rainfall data from Salt Lake City, Utah, showed that the wet-
and dry-spell attributes and the rainfall statistics were
reproduced well at the seasonal and annual time scales.

Sharma and Lall (1997, 1999) used a nearest-neighbour
conditional bootstrap for re-sampling daily rainfall for
Sydney. The dry spell lengths were conditioned on the
number of days in the previous wet spell and the wet spell
lengths were conditioned on the number of days in the
previous dry spell. The rainfall amounts were conditioned
on two variables, the rainfall amount on the previous day
and the number of days from the start of the current spell.
Results from the model showed its ability to simulate
sequences that are representative of the historical record.

A limitation of the non-parametric density estimation
approach is the rather limited extrapolation of daily rainfall
values beyond the largest value recorded. The simulations
from the k-nearest-neighbour method do not produce values
that have not been observed in the historical data and this is
a major limitation if extreme values outside the available
record are of interest (Rajagopalan and Lall, 1999). Sample
sizes needed for estimating the probability density function
of interest are likely to be larger than for parametric
estimation. The non-parametric methods have been tested
on a limited range of sites and testing over a greater range
of climates is needed for broader applicability. It may be
less amenable to direct regionalisation which is done in terms
of the parameters of a parametric model.

TIME SERIES MODELS OF THE ARMA TYPE

In this approach, time series models similar to stream flow
data generation are used to generate daily rainfall data.
Adamowski and Smith (1972) used a first-order Markov
model to generate standardised daily rainfall data. The major
problem with this procedure is the cyclical standardisation
which occurs if there are numerous zero daily values. A
truncated power of Normal distribution has been suggested
to model daily rainfall (Hutchinson et al., 1993; Hutchinson,
1995). The underlying Normal distribution can be put into
a simple first-order autoregressive scheme to account for
the day-to-day persistence of wet and dry days. The lag-
one autocorrelation can be specified by matching the
conditional probability P(D|D). The correlations in the
amounts of rainfall on successive wet days from this model
were found to be much larger than the observed correlations
in the rainfall and, to a first approximation, could be ignored
(Hutchinson, 1995). Such systematic differences between
correlations based on occurrence and intensity have not been
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recognised in the applications of such models as described
in Bardossy and Plate (1992).

CONDITIONAL DAILY RAINFALL MODELS

Stochastic models of daily rainfall with annually varying
parameters usually do not preserve the variance of monthly
and annual precipitation (Buishand, 1977; Zucchini and
Adamson, 1984; Woolhiser et al., 1993; Boughton, 1999).
This underestimation may be due to real long-term trends
in rainfall, changes in the data collection techniques or in
rain gauge exposure, model inadequacies, and/or the
existence of large-scale atmospheric circulation patterns that
do not exhibit annual periodicities (Woolhiser, 1992). One
such phenomenon that has attracted recent scientific interest
is the Southern Oscillation Index (SOI). Woolhiser (1992)
proposed a technique to identify the effects of ENSO on
rainfall. The rainfall occurrence was described by a first-
order Markov chain and the mixed Exponential distribution
was used for the rainfall amount on wet days. The parameters
of the Markov chain and the mixed Exponential distribution
are perturbed by a lagged linear function of SOI.

G’i(t) = Gi(t) +biS(t-ti) (6)

where bi and ti are parameters to be estimated from the data
and S(t) is the SOI on day t. Both the parameters of the
Markov chain and the mean, m(t), of the mixed Exponential
distribution were affected by the SOI. A monthly SOI series
was used, so that S(t) is represented as a step function.

Data from 11 stations in Arizona, Idaho and Oregon (USA)
were analysed by Woolhiser (1992). Perturbing the periodic
logits of the transition probabilities resulted in a minimum
AIC for six stations, with the Arizona stations being affected
most strongly. The signs of the coefficients are fairly
consistent with previous studies, with a negative SOI leading
to more rainfall in the southwest and the opposite effect in
the Pacific northwest. The perturbed mean precipitation
resulted in the minimum AIC for all stations and the sign of
the coefficient was consistent with expectations except for
the station Bose, Indiana. The most common lag was about
90 days.

Woolhiser et al. (1993) applied the above procedure to
27 stations in California, Nevada, Arizona and New Mexico.
Perturbations of the logits of the dry-dry transition
probabilities resulted in statistically significant
improvements in the log likelihood functions for 23 stations
and perturbations of the mean daily rainfall resulted in
significant increases for 18 stations. The most common lag
identified was 90 days, suggesting the possibility of
conditional simulations of daily precipitation. Even though

the simulated rainfall sequences with model parameters
perturbed by the SOI exhibited greater monthly and annual
variances than those simulated with purely periodic
parameters, these variances were still underestimated.

Hay et al. (1991) presented a method of modelling rainfall
as a function of weather type. A Markov-based model was
used to generate temporal sequences of six daily weather
types, high pressure, coastal return, maritime tropical return,
frontal maritime tropical return, cold frontal over-running
and warm frontal over-running. Transitions from one
weather type to another weather type were modelled using
a Markov chain. The length of time, in days, a given weather
type persisted was modelled by a Geometric distribution.
Observed monthly probabilities of rainfall for each weather
type were used to classify a day as wet or dry. The rainfall
amounts were modelled using the product of an Exponential
random variable and a Uniform random variable because
an Exponential distribution alone underestimated the
variance of the daily rainfall. The rainfall amounts were
modelled as:

R = [Ii(-log(U)](1 + e) (7)

where Ii  = the mean intensity of rainfall for wet days for
the given weather type i,

U = a uniform random variable between 0 and 1,
and

e  = the error term, a Uniform random variable
between –1 and 1.

When there were less than ten days of recorded rainfall
for a given weather type and month, the rainfall amounts
were modelled using,

R = Ii(1 + e) (8)

A Monte Carlo simulation consisting of 50 replicates of 30-
year sequences reproduced daily weather type and
precipitation sequences similar to those of the observed
record.

Wilks (1989) developed a daily rainfall model in which
the parameters of the Markov chain and the Gamma
distribution were estimated separately for months in the
lower 30% (dry), middle 40% (near normal) and the upper
30% (wet) of the distribution of monthly rainfall. The
transitions among dry, near normal and wet months were
modelled by a three-state, first-order Markov chain. This
conditional model was compared to the usual unconditional
model derived from the entire data set using data from ten
North American stations. It was found that the unconditional
models produced too few dry and wet months compared to
the observations, while the conditional model reproduced
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the climatological distribution of the monthly rainfall. Wilks
used generalised likelihood ratio tests to show that the
increase from four to ten parameters per month was justified
by the data.

REGIONALISATION OF DAILY RAINFALL MODEL
PARAMETERS

The main purpose of regionalisation of model parameters
is to obtain the parameters for locations with no observation
data as input to rainfall simulation models. Geng et al. (1986)
developed empirical equations for the parameters of a two-
part model using the data from The Netherlands
(Wageningen), the Phillipines (Los Banos) and the USA
(Colombia, Boise, Miami, Phoenix and Boston).

P(W|D) = 0.75 P(W) (9)

P(W|W) = 0.25 + 0.75 P(W) (10)

b = -2.16 + 1.83 mw (11)

a = mw /b (12)

where a and b are the shape and scale parameters of a
Gamma distribution and mw is the average amount of rainfall
per wet day. They proposed that these empirical equations
allow rainfall simulation models to be used for crop growth
studies in many areas where too few weather data were
available.

Woolhiser and Roldan (1986) investigated the seasonal
and regional variability of parameters of stochastic daily
precipitation models for South Dakota, USA. Fourier series
were used to describe the seasonal variation of the five
parameters of the Markov chain mixed Exponential model
fitted to 16 rainfall stations. A concise description of
seasonal variations of parameters was obtained by using
from 15 to 27 coefficients. Semivariograms calculated for
the mean Markov chain parameters showed a nugget effect.
The large nugget variance was attributed to real differences
in precipitation regime and to inconsistencies in the records
due to methodological differences affecting small
precipitation amounts. Time of observation appeared to be
an important factor. They suggested that rainfall records for
use in regional parameter mapping must be screened
carefully to ensure consistency of data. The model
parameters for four test stations were estimated more closely
by arithmetic averages of six nearby stations than by three
other interpolation techniques, including nearest-neighbour,
spline fitting and linear interpolation. They also found that
the parameters interpolated for the four test sites were

significantly different from parameters estimated from
rainfall records.

DAILY RAINFALL DATA AT A NUMBER OF SITES

If hydrological and land management changes are required
simultaneously across regions, then the spatial dependence
between the weather inputs at different sites has to be
accommodated. This is particularly important to the
simulation of rainfall, which displays the largest variability
among meteorological variables in time and space. The
model used to generate daily rainfall at a number of sites
can be grouped broadly into three categories: conditional
models, extension of Markov-chain models and random
cascade models.

CONDITIONAL MODELS

Zucchini and Guttorp (1991) constructed a hidden Markov
model for the occurrence/nonoccurrence of rainfall at N sites
by assuming a different probability of events at the sites for
each of a number of unobservable climate states. The climate
process is assumed to follow a Markov chain. The method
was illustrated by applying it to data for one site in
Washington and to data from five sites in the Great Plains,
USA.

Bardossy and Plate (1991) developed a semi-Markov
chain model for atmospheric circulation patterns and linked
it to the occurrence of rainfall using transition probabilities.
Several series of circulation patterns and corresponding
rainfall occurrences were simulated and the statistics of the
simulated and the observed data were similar.

Wilson et al. (1992) developed a stochastic model of
weather states and daily rainfall at multiple rainfall sites.
Four classification techniques were investigated to obtain a
single index of the regional weather state for each day of
the study period. Once the weather classification scheme
was selected, the daily occurrence process of the weather
states was modelled by a semi-Markov model with either
geometrically or mixed geometrically distributed lengths
of stay in each weather state. A hierarchical modified Polya
Urn model was developed to model the rainfall occurrence
at multiple stations. The hierarchical structure comes about
by conditioning the first station on the day’s weather class,
the second station on the weather class and the occurrence/
non-occurrence of rain at the first station and so on. The
rainfall amounts were modelled using a mixed Exponential
distribution for each station within each season within each
weather class. The rainfall amounts for each station were
simulated simultaneously, based on the correlation structure
between the station amounts. The model was able to
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reproduce the probability distribution of daily rainfall
amounts reasonably well but with some downward bias.

Charles et al. (1999) extended the non-homogeneous
hidden-state Markov model (NHMM) of Hughes et al.
(1999) by incorporating rainfall amounts. The joint
distribution of daily rainfall at n sites was evaluated through
the specification of n conditional distributions for each
weather state (s = 1, …, N). The conditional distribution
consisted of regressions of inverse Normal transformed
amounts at a given site on rainfall occurrence at
neighbouring sites within a given radius (d km). An
automatic variable selection procedure was used to identify
the key neighbouring sites. The precipitation model can be
expressed as

(13)

where the )i(
ksθ  are regression parameters, ni(d) denotes the

set of indices of the key neighbouring sites for site i, )i(
sε  is

an error term modelled stochastically by assuming )i(
sε  ~
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in which F denotes the Normal cumulative distribution
function and )y(F )i(

s  is the empirical distribution function
of )i(

sy , the rainfall amount on days with r(i) = 1.
The above method was applied to a network of 30 daily

rainfall stations and historical atmospheric circulation data
in southwestern Australia. A year was divided into winter
(May – October) and summer (November – April) seasons.
A six-state NHMM was found adequate and reproduced the
dry and wet spells satisfactorily. Only the Spearman rank
inter-site correlations were compared for the rainfall
amounts. The results for the summer season were not
presented.

Pegram and Seed (1998) developed a space–time model
for the generation of daily rainfall over a 256 km2 region
near  Bethlehem, South Africa. The model has two
components,

a climate generator in the form of a three-state Markov
chain with periodically varying parameters
bins of rainfall data (a collection of historical rainfall
dates on which the various types of rain occurred).

The daily weather was classified into three types based
on the number of rain gauges reporting rainfall (see Table
1).

Starting from a known current state, the model determines

the state of the following day using the transition
probabilities. If the state is dry, assign zero rainfall to all
gauges. If the state is scattered, select an historical date at
random from the collection of scattered rain days in the
appropriate month. Look up the set of data for that date
which in the current model is the mean areal value of rainfall
and record it. If the type is general, note how many general
rain days are in the current generated sequence of general
rain days and resample the state for the day after next. If the
current state is general and the next one is other than general,
select a rain-day sequence from the sets of runs of one to
five days and record that sequence as it occurred historically.
The model will thus produce a sequence of daily averages
of rainfall based on the historical record. The actual rainfalls
that fell at all active rain gauges on rain days are obtained
from the historical data. The model is a form of extended
Bootstrap.

Bardossy and Plate (1992) developed a multi-dimensional
stochastic model for the space-time distribution of daily
rainfall linked to atmospheric circulation patterns using
conditional distributions and conditional spatial covariance
functions. The model is a transformed mutivariate first-order
autoregressive model with parameters depending on the
atmospheric circulation patterns. The negative values are
declared as dry days.

The model was applied to the rainfall data recorded at 44
stations in the Ruhr River catchment (5000 km2) using the
classification scheme of the German weather service. The
parameters were estimated from the moments of the
observations. The model reproduced the point and spatial
rainfall statistics, including rainfall covering only part of
the total area under study.

EXTENSION OF SINGLE SITE MARKOV CHAIN
MODELS

Wilks (1998) extended the familiar two-part model,
consisting of a two-state, first-order Markov chain for
rainfall occurrences and a mixed Exponential distribution
for rainfall amounts, to generate rainfall simultaneously at
multiple locations by driving a collection of individual
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Table 1. Daily weather classification (Pegram and
Seed,1998)

Dry < 3 % gauges report rain

Scattered > 3 % gauges report rain,
but < 50 % report > 5 mm rain

General > 50 % gauges report > 5 mm rain
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models with serially-independent but spatially-correlated
random numbers. Individual models are fitted to each of
the sites (k) first. The collection of individual site models is
driven by vectors of Uniform [0,1] variates ut and vt whose
elements, ut(k) and vt(k) respectively, are cross-correlated
so that corr[ut(k), ut(l)] ≠ 0 and corr[vt(k), vt(l)] ≠ 0, and
are serially and mutually independent corr[ut(k), vt(l)] =
corr[ut(k), ut+1(l)] = corr[vt(k),vt+1(l)] = 0. Non-zero
correlations among the elements of ut and vt result in inter-
site correlations between the generated rainfall sequences.

For a network of N stations, there are N(N-1) pairs of
correlations for each of the rainfall occurrence and rainfall
amount processes. The correlated uniform variates required,
ut(k),  are obtained from the Gaussian variates, wt(k), through
the transformation ut(k) = F[wt(k)] where F is the normal
cumulative function. The estimation of the correlations
between the Gaussian variates is carried out by simulation.

The model was applied to a network of 25 rainfall stations
in New York state (USA) with inter-station separations
ranging from 10 to 500 km. The model reproduced
reasonably well the various aspects of the joint distribution
of daily rainfall at the modelled stations. The mixed
Exponential distributions provided a substantially better fit
than the more conventional Gamma distribution and was
convenient for representing the tendency for smaller
amounts at locations near the edge of the wet areas. Means,
variances and interstation correlations of monthly rainfalls
were also reproduced well. In addition, the use of mixed
Exponential rather than Gamma distribution resulted in the
interannual variability being closer to that observed.

RANDOM CASCADE MODELS

Jothityangkoon et al. (2000) constructed a space-time model
to generate synthetic fields of space-time daily rainfall. The
model has two components, a temporal model based on a
first-order, four-state Markov chain which generates a daily
time series of the regionally averaged rainfall and a spatial
model based on a non-homogeneous random cascade
process which disaggregates the above regionally averaged
rainfall to produce spatial patterns of daily rainfall. The
cascade used to disaggregate the rainfall spatially is a
product of stochastic and deterministic factors; the latter
enable the model to capture systematic spatial gradients
exhibited by measured data. If the initial area (at level 0) is
assigned an average intensity Ro (in mm/day, as simulated
by the temporal model), this gives an initial volume 2

ooLR ,
where Lo is the outer length scale. At the first level, the
initial area is subdivided into four sub-areas denoted by i

1∆ ,
i = 1, …, 4. At the second level, each of the above sub-areas
is further subdivided into four further subareas denoted by

i
2∆ , i = 1, …, 16. When the process of subdivision is
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where for each j, i represents the sub-areas along the path to
the nth level sub-areas and the multipliers W are non-negative
random cascade generators with E[W] = 1. The so-called
beta-lognormal model was used for the generation of the
cascade generators W (Over and Gupta, 1994, 1996).

W = BY (16)

where B is a generator from Beta model and Y is drawn
from a Lognormal distribution (Gupta and Waymire, 1993).
To include the systematic spatial variation in the rainfall, W
in (22) is modified to include a systematic multiplier G

W = BYG (17)

with the condition that the average value of G over the
respective sub-areas is equal to 1 at every discretisation step.

The model was applied to a 400×400 km region
encompassing the Swan-Avon River Basin in the southwest
of Western Australia. The model parameters were estimated
from 11 years of daily rainfall data observed at 490 rain
gauges located in the region. The generated regionally-
averaged rainfall was disaggregated progressively down to
the scale of 12.5 km. The model was able to reproduce (1)
the spatial patterns of long-term mean daily, monthly and
annual rainfall; (2) the spatial patchiness characteristics of
daily rainfall, estimated in terms of a wet fraction; (3)
statistical characteristics relating to storm arrival and inter-
arrival times at a selected number of stations; and (4)
probability distributions and exceedence probabilities of
rainfall at selected stations for selected months. The model
under-predicted the mean number of wet days and the mean
wet spell lengths, especially during the winter months. A
possible reason given for this is the exclusion of space–
time correlations in the model.

Climate data
One major use of climate data in conjunction with rainfall
data is in computer simulation of hydrological and agri-
cultural systems. Rainfall-runoff models and crop growth
models require, in addition to rainfall, net radiation or
evaporation as a measure of energy input. In irrigation simul-
ation studies, both rainfall and evaporation are also required.
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A special characteristic that must be preserved in
stochastic modelling of climate data is the cross-correlation
between variables. The models for generating climate data
at annual, monthly and daily time intervals are reviewed in
this section.

ANNUAL AND MONTHLY CLIMATE DATA

Annual climate data for a single site and at a number of
sites can be generated by using a multi-site type model
(Matalas, 1967; Young and Pisano, 1968). Monthly climate
data can be obtained by disaggregating the generated annual
data as mentioned under monthly rainfall data, but there
does not appear to be much use for such sequences.

DAILY CLIMATE DATA AT A SINGLE SITE

Jones et al. (1972) hypothesised that daily temperature and
evaporation could be obtained from the time of the year
and the occurrence of rainfall on both the day in question
and the preceding day. Daily temperature and evaporation
were simulated by Monte Carlo type sampling from a
Normal distribution, with parameters chosen according to
the time of the year and to the state of the present and
preceding days. The main drawback with this procedure is
that the skewness, cross-correlations and auto-correlations
of daily temperature and evaporation values are ignored.

Edelsten (1976) proposed a similar model with additional
day states, which depended on temperature as well as
rainfall, and fitted a second order Markov model. He also
incorporated significant cross-correlations and auto-
correlations for minimum and maximum temperature. The
model simulated adequately most of the cross-correlations
and lag one auto-correlations. The drawback with this model
is the large number of parameters needed for a second order
Markov model (Hutchinson, 1987).

Nicks and Harp (1980) generated daily temperature and
solar radiation data using a first order Markov model
dependent on the state of the present and preceding days. A
Normal distribution was assumed for the temperature and
solar radiation whose means and standard deviations were
conditioned on the type of day and month of year. This model
can be modified to account for the skewness (Srikanthan
and McMahon, 1983b), but the modified model will not
preserve the cross-correlations.

Bruhn et al. (1980) presented a relatively parsimonious
model which modelled, on a monthly basis, only those cross-
correlations and lag one auto-correlations which were found
to be significant. The maximum and minimum temperatures
were conditioned on the wet/dry status of the preceding day
only, while the solar radiation was conditioned on the wet/

dry status of the present day only. The Normal distribution
was used for all variables since only solar radiation on dry
days appeared to deviate significantly from normality.

To reduce the number of parameters, Larsen and Pense
(1981) fitted three parameter Sine curves to the mean daily
maximum and minimum temperatures conditioned on the
wet/dry state of the present day. The residuals of these two
variables from their mean values for the two types of days
were modelled by two bi-variate Normal distributions. A
Gamma distribution for dry days and a Beta distribution for
wet days were used to model differences of solar radiation
from the theoretical clear day values, which depend on the
latitude and the time of year. The model did not take into
account the cross-correlations.

Richardson (1981) adopted a weakly stationary
multivariate model to generate the residual series of
maximum and minimum temperatures and solar radiation.
The residuals were assumed normally distributed and
conditioned only on the state of the present day. This model
preserves the cross-correlations and auto-correlations as
follows:

Xt = A Xt-1 + B et (18)

where Xt = (3 × 3) matrix of standardised daily climate data
for day t

et  = (3 × 1) vector of independent random deviates
with zero mean and unit variance

A, B = (3 × 3) matrices of constant coefficients to
preserve the auto-correations and the  cross-correlations.

The matrices A and B are determined using the matrices
of lag 0 and lag 1 correlations among the three elements of
X, using a scheme similar to that of Matalas (1967), and are
assumed to be equal for wet and dry days. A common
implementation of this algorithm treats A and B as being
constant in time and equal for all locations in the
conterminous United States (Richardson and Wright, 1984).
Wilks (1992) claims that this assumption is dubious,
particularly for those elements depending strongly on the
cross-correlations between solar radiation and temperature
variables.

Using Australian data, Guenni et al. (1990) also found no
general support for the constancy of correlation between
air temperature and solar radiation. The correlations are
dependent on season and location. They also observed weak
dependence of temperature on wet or dry status of the day
and stressed the importance of cloudiness on temperature.
An alternative, more realistic model, was recommended in
which seasonal fractional cloudiness is generated first and
then temperature and solar radiation are generated condi-
tional on the amount of cloud cover for a particular day.
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Srikanthan (1985) modified the model given by Eqn. (18)
so that it is conditional on the present and preceding days
and also takes into account the skewness through the Wilson-
Hilferty transformation. The model was applied to daily
evaporation, maximum and minimum temperatures and solar
radiation data for Melbourne. The simulated climate data
were found to have similar statistical characteristics to those
of the historical data.

Racsko et al. (1991) first reduced the four-dimensional
weather process (average daily temperature, solar hours,
rainfall and relative humidity) to a three-dimensional sub-
process because of the very high negative correlation
between the relative humidity and the temperature. Rainfall
was considered as the independent variable and modelled
first. The wet and dry spells were computed on a daily basis
but using a characteristic interval [d-14, d+14]. The seasonal
variation was handled through a Fourier series
representation. The rainfall amounts were divided into three
groups (0.1– 0.3, 0.3 – 20, > 20 mm) and modelled with a
Uniform distribution for the first group and an Exponential
distribution for the second group. An average value was
used for the third group. The average temperature and solar
hours were generated separately for wet and dry days using
a first order autoregressive model with a Normal distribution.
The cross-correlations between the average temperature and
solar hours were not modelled. The model was applied to
two sites in Hungary.

Young (1994) described a multivariate chain model for
simultaneously simulating daily maximum and minimum
temperatures and rainfall. The multivariate chain model sets
up a discriminant space defined by the daily maximum and
minimum temperatures and rainfall. Each day of the
historical data set is represented by a point in discriminant
space, located by its temperatures and rainfall amount. For
a given current day, the following day is selected randomly
from a set of nearest-neighbours. The model was tested on
daily data for Tucson and Safford, Arizona (USA), for the
period 1948–1988. A slight tendency to underestimate the
variance of monthly average temperatures was noted. The
distribution of monthly temperature extremes was
reproduced well, with the exception of a tendency to
underestimate the warmest minimum temperatures and the
coolest maximum temperatures. There was very little
difference between the simulated and observed distributions
of the diurnal range. The median and 90th percentile of
monthly rainfall were well reproduced. A tendency to
underestimate the frequency of dry months was observed.
The frequency of runs of dry and wet days of different
lengths of simulated data was found not to differ significantly
from that of the observed data.

Rajagopalan et al. (1997a) presented a nonparametric

multivariate resampling scheme for generating daily weather
variables at a site. The model samples the original data with
replacement while smoothing the empirical conditional
distribution function. Rainfall is generated from the
nonparametric wet/dry spell model (Lall et al., 1996). A
vector of solar radiation, maximum temperature, minimum
temperature, dew point temperature and wind speed is then
simulated by conditioning  the vector of these variables on
the preceding day and the rainfall amount on the day of
interest. The model was applied to 30 years of daily weather
data at Salt Lake City, Utah, USA. The results showed that
the means and the quantiles are well reproduced. The
standard deviation and coefficients of variation and
skewness are not well reproduced as the kernel methods
inflate the variance by (1 + h2) where h is the band width.
This can be corrected by appropriate scaling, but this was
not carried out. The correlations from the simulations and
historical data seem to be different in a number of cases.
Correlations with the rainfall were the most poorly
reproduced.

Rajagopalan and Lall (1999) developed a multivariate k-
nearest-neighbour method with lag one dependence for six
daily weather variables. This model improves the kernel
based approach developed above (Rajagopalan et al.,
1997a). A vector of solar radiation, maximum temperature,
minimum temperature, dew point temperature and wind
speed on a day of interest is resampled from the historic
data by conditioning through the vector of the same variables
(feature vector) on the preceding day. The re-sampling is
done from the k-nearest-neighbours in state space of the
feature vector using a weight function. The model was
applied to 30 years of daily weather data at Salt Lake City
and the results were compared with those from the
application of a multivariate autoregressive (MAR) model
similar to that of Richardson (1981). The model reproduced
satisfactorily the moments, quantiles, dry and wet spells and
the correlations for all four seasons.

DAILY CLIMATE DATA AT MULTIPLE SITES

Provided that the problems in accounting for the complicated
covariance structure in daily rainfall anomalies based on a
truncated power of Normal distribution can be overcome, it
is relatively straightforward to incorporate other weather
variables using standard multivariate normal models
(Hutchinson, 1995). This also depends on the adequacy of
the Normal distribution in modelling the remaining
variables.
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Uncertainty in model parameters
In most of the above models, the estimated parameter values
are assumed to be the  “true” values and the sampling errors
are ignored. Klemes and Bulu (1979) showed that this
traditional approach to generating stochastic data
underestimates the range of mean and variance of the likely
future sequences. Several researchers have used Bayesian
methods to overcome this deficiency.

Vicens et al. (1975) incorporated parameter uncertainty
into an annual data generation model for a single site using
Bayesian techniques. Valdes et al. (1977) extended the above
model for a multivariate case. McLeod and Hipel (1978)
claim that the above methods for the incorporation of
parameter uncertainty do not result in generated data that
resemble the historical data. McLeod and Hipel (1978)
proposed a correct method for incorporating parameter
uncertainty based on large sample theory. Thyer (2000)
undertook a full Bayesian analysis to derive the posterior
distribution of the hidden state Markov model and AR(1)
model parameters using Markov chain Monte Carlo
(MCMC) method. Recently, a full Bayesian analysis using
MCMC simulations was carried out to derive the
uncertainties in the parameters of a multisite annual data
generation model (Q. J. Wang, pers. comm.). To generate
monthly data which reflect the uncertainty in the mean and
variance correctly, Stedinger et al. (1985) developed a
condensed disaggregation model. Chaouche and Parent
(1999) used a Bayesian approach to estimate the uncertainty
in the parameters of a two-part daily rainfall model utilising
a Markov chain and a Gamma distribution.

Rainfall and climate data under
climate change scenario
Concern has increased in recent years over climate change
caused by increasing concentration of CO2 and other trace
gases in the atmosphere. A major effect of climate change
may be alterations in regional hydrological cycles and
changes in regional water availability. The use of modified
water balance models offers many advantages in evaluating
the regional impacts of global climate change (Gleick, 1989).
The main source of climate change projections is general
circulation models (GCMs). While current GCMs perform
reasonably well in simulating the present climate with
respect to annual and seasonal averages over large areas,
they are considerably less reliable in specific catchment scale
information that are necessary for hydrological studies. As
a result, climate change impact studies have had to use a
spectrum of climate change scenarios. These are generally
constructed using observed records of temperature and

rainfall, adjusted to reflect climate changes obtained from
monthly average GCM results.

ADJUSTMENT OF HISTORICAL DATA

Most of the early work on the impacts of climate change
used historical data adjusted for the climate change
(Lettenmaier and Gan, 1990; Panagoulia, 1992). Rainfall
records were multiplied by the monthly precipitation ratios
for the CO2-doubling and control runs. The monthly
temperature difference between the CO2-doubling and
control runs was added to the historic temperature data. The
potential evapotranspiration (PET) was computed using the
Penman equation for two different sets of monthly
temperature data for the CO2-doubling and control runs,
while all other variables (wind speed, humidity, solar
radiation, etc. ) in the Penman equation remained unchanged.
The monthly differences in PET were computed and the
resulting differences were then added to the historic PET
data (Panagoulia, 1992). Recently, Loaiciga et al. (2000)
created climate change scenarios as described above to
investigate the climate change impacts on a regional karst
aquifer in Texas, USA. Mimikou et al. (2000) assessed the
regional impacts of climate change on water resources by
modifying the synthetic series for climate change effects.

ADJUSTMENT OF MODEL PARAMETERS

Wilks (1992) presented a method to adapt stochastic daily
weather generation models for generation of synthetic daily
time series consistent with assumed future climates. The
climates assumed were specified by the monthly means and
variances of rainfall and temperature.

When parameters are changed in a conditional model,
certain unanticipated effects can be produced. For instance,
modifying the probability of occurrence of daily rainfall
not only changes the mean of daily temperature, but also its
variance and autocorrelation as well. Katz (1996) derived
the theoretical statistical properties of a simplified version
of WGEN (Richardson, 1981) and showed how best to
adjust the model parameters to obtain the desired climate
change.

Conclusions
Models for the generation of annual, monthly and daily
rainfall and climate data were reviewed. If the year-to-year
variations or long-term persistence are ignored, models are
available to generate annual and monthly rainfall. From past
experience, in the case of annual rainfall, a lag-one Markov
model is adequate for single site or multiple sites. In the
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case of monthly rainfall, the procedures of Porter and Pink
(1991) and Maheepala and Perera (1996) are cumbersome
and it is not clear how the synthetic monthly data were
generated. The modified disaggregation scheme proposed
by Mejia and Rousselle (1976) is an elegant option. If the
number of parameters in this scheme is too great, the
condensed version of Lane (1979) could be used. For the
months with a high coefficient of variation (> 1), an
appropriate transformation should be applied to eliminate
the generation of negative values. If the method of fragments
is not used, generating the right amount of zero monthly
rainfall will be a problem. It is not clear how this aspect
was handled by Porter and Pink (1991) and Maheepala and
Perera (1996).

There has been a lot of research on the generation of daily
rainfall at individual sites. The transition probability method
appears to preserve most of the characteristics of daily,
monthly and annual characteristics and is shown to be the
best performing model (Chapman, 1994, 1997). The main
drawback with this method is the large number of
parameters, which makes it almost impossible to regionalise
the parameters. The two-part model has been shown to
perform well by many researchers.

A shortcoming of the existing models is the consistent
underestimation of the variances of the simulated monthly
and annual totals. Recently, Wang and Nathan (2000)
constrained a two-part model within a monthly model and
it appears to perform well. Also, Boughton (1999) has
adjusted the generated daily rainfalls from the transition
probability method by a trial-and-error procedure to match
the variance of the observed annual rainfall. As an
alternative, conditioning model parameters on monthly
amounts (Wilks, 1989) or perturbing the model parameters
with the SOI (Woolhiser, 1992) may result in better
agreement between the variance of the simulated and
observed annual rainfall and these approaches show promise
for further investigation.

From the limited amount of work done in generating daily
rainfall at a several sites, the approach of Jothityangkoon et
al. (2000) appears to be promising. The approach of Wilson
et al. (1992) is hierarchical and becomes difficult to handle
for a medium to large number of stations. The method of
Bardossy and Plate (1991) uses a censored power Normal
distribution and the procedure needs to resolve the problem
of correlation based on rainfall occurrences and intensity.
The model used for rainfall amounts in Charles et al. (1999)
is not adequate and is very cumbersome. The extension of
single site Markov chain model to multi-sites (Wilks, 1998)
appears to be cumbersome in terms of the number of model
parameters and in the way the parameters are estimated.
The model used by Pegram and Seed (1998) will generate

only the rainfall values, which were present already in the
historic record.

As climate data are less variable than rainfall but correlated
among themselves and with rainfall, multi-site models have
been used successfully to generate annual data. The monthly
climate data can be obtained by disaggregating the annual
data generated. On a daily time step at a site, climate data
have been generated by using a multi-site type model
conditional on the state of the rainfall on the present and
previous days. The generation of daily climate data at a
number of sites remains a challenging problem. If daily
rainfall can be modelled successfully by truncated power
Normal distribution (Bardossy and Plate, 1992), then the
model data can be extended easily to generate daily climate
data at several sites simultaneously.

A number of techniques for incorporating parameter
uncertainty in annual and monthly models is available.
However, estimating the parameter uncertainty in daily
models remains  a challenging problem.

The greatest uncertainty in modelling climate data under
climate change conditions is the uncertainty in future climate
predictions. At present, GCMs are able to provide either
scenarios or projections of the future climate. If future
climate conditions are known with sufficient accuracy, the
stochastic climate models available now can be adapted to
generate climate for the new conditions.
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