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Stochastic Geometric Coverage Analysis in mmWave Cellular

Networks with Realistic Channel and Antenna Radiation Models

Mattia Rebato, Student Member, IEEE, Jihong Park, Member, IEEE, Petar Popovski, Fellow, IEEE, Elisabeth De

Carvalho, Senior Member, IEEE, Michele Zorzi, Fellow, IEEE

Abstract—Millimeter-wave (mmWave) bands will play an im-
portant role in 5G wireless systems. The system performance
can be assessed by using models from stochastic geometry that
cater for the directivity in the desired signal transmissions as well
as the interference, and by calculating the signal-to-interference-
plus-noise ratio (SINR) coverage. Nonetheless, the accuracy of the
existing coverage expressions derived through stochastic geome-
try may be questioned, as it is not clear whether they capture the
impact of the detailed mmWave channel and antenna features. In
this study, we propose an SINR coverage analysis framework that
includes realistic channel model and antenna element radiation
patterns. We introduce and estimate two parameters, aligned
gain and misaligned gain, associated with the desired signal beam
and the interfering signal beam, respectively. The distributions
of these gains are used to determine the distribution of the
SINR which is compared with the corresponding SINR coverage
calculated via system-level simulations. The results show that
both aligned and misaligned gains can be modeled as exponential-
logarithmically distributed random variables with the highest
accuracy, and can further be approximated as exponentially
distributed random variables with reasonable accuracy. These
approximations can be used as a tool to evaluate the system-
level performance of various 5G connectivity scenarios in the
mmWave band.

Index Terms—Millimeter-wave, channel model, antenna radi-
ation pattern, large-scale cellular networks, stochastic geometry.

I. INTRODUCTION

Millimeter-wave (mmWave) frequencies can provide 20-

100 times larger bandwidth than current cellular systems.

To enjoy this benefit in 5G cellular systems, the significant

distance attenuation of the desired mmWave signals needs

to be compensated by means of sharpened transmit/receive

beams [2], [3]. The directionality of mmWave transmissions

can induce intermittent yet strong interference to the neigh-

boring receivers. The sharpening of the directional beams

reduces the probability of interference from the mainlobe,

while increasing the signal strength within the mainlobe. This
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has a significant impact on the statistics of the signal-to-

interference-plus-noise ratio (SINR) across the network.

In this paper, we incorporate the experimental models for

mmWave channels and antenna radiations into the tools of

stochastic geometry. This results in a sufficiently realistic

framework for system-level analysis of mmWave systems.

Fig. 1 illustrates the framework, which can be seen as a semi-

heuristic, as it bridges the gap between a very theoretical study

at a large scale (stochastic-geometric analysis), and practical

measurements at a small scale. The novelty of our work

compared to the existing works on mmWave SINR coverage

analysis is summarized in the following subsections.

A. Background and Related Works

The SINR coverage of a mmWave cellular network has

been investigated in [4]–[11] using stochastic geometry, a

mathematical tool able to capture the random interference

behavior in a large-scale network. Compared to traditional cel-

lular systems using sub-6 GHz frequencies, the major technical

difficulty of mmWave SINR coverage analysis comes from

incorporating their unique channel propagation and antenna

radiation characteristics in a tractable way, as detailed next.

1) Channel gain model: mmWave signals are vulnerable

to physical blockages, which can lead to significant distance

attenuation under non-line-of-sight (NLoS) channel conditions

as opposed to under line-of-sight (LoS) conditions. This is

incorporated in the mmWave path loss models by using

different path loss exponents for LoS and NLoS conditions.

Besides this large-scale channel gain, there exists a small-scale

fading due to reflections and occlusions by human bodies.

In order to capture this, while maximizing the mathematical

tractability, one can introduce an exponentially distributed gain

as done in [8]–[11]. This implies assuming Rayleigh fading,

which is not always realistic, particularly when modeling the

sparse scattering characteristics of mmWave signals [8].

At the cost of making analytical tractability more difficult,

several works have detoured this problem by considering

generalized small-scale channel gains that follow a gamma

distribution (i.e., Nakagami-m fading) [4]–[6] or a log-normal

distribution [7]. Nevertheless, such generic fading models have

not been compared with real mmWave channel measurements,

and may therefore either overestimate or underestimate the

actual channel behaviors.

2) Antenna gain model: Both base stations (BSs) and user

equipments (UEs) in 5G mmWave systems are envisaged to

employ planar antenna arrays that enable directional transmis-

sions and receptions. A planar antenna array comprises a set
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Fig. 1: An illustration of our mmWave network model (top) and the channel model of each link with the transmitter/receiver antenna radiation model (bottom):
(a) With the ISO element pattern, antenna gain parameters come from our previous work [1]; (b) With the 3GPP element pattern, antenna gain parameters
follow from the 3GPP specifications [12]. For both element radiation patterns, channel parameters are obtained from a measurement-based mmWave channel
model provided by the NYU Wireless Group [13].

of patch antenna elements placed in a two-dimensional plane.

The radiation pattern of each single antenna element is either

isotropic or directional, which are hereafter denoted as ISO

and 3GPP element patterns, respectively. By superimposing

the radiation of all the antenna elements, a planar antenna

array is able to enhance its radiation in a target direction while

suppressing the radiation in other directions.

The 3GPP element pattern is incorporated in the antenna

gain model provided by the 3GPP [12]. Compared to the

ISO element pattern, the directional antenna elements in the

3GPP element pattern enable element-wise beam steering,

thereby yielding higher mainlobe and lower sidelobe gains,

i.e., increased front-back ratio1, as visualized in Fig. 1b. Such

benefit diminishes as the beam steering direction becomes

closer to the plane of the antenna array. In order to solve this

problem, the 3GPP suggests to equip each BS with 3-sectored

antenna arrays [12], thus restricting the beam steering angle

to ±60◦.

The said radiation characteristics and antenna structure

of the 3GPP element pattern complicate the antenna gain

analysis. For this reason, most of the existing approaches based

on stochastic geometry [1], [5]–[11], [16] still resort to the ISO

element pattern. This underestimates the front-back ratio of the

actual cellular system, degrading the accuracy in the mmWave

SINR coverage analysis. Furthermore, the antenna gains are

commonly approximated by using two constants obtained from

the maximum and the second maximum lobe gains [5]–[11]. It

is unclear whether such an approximation is still applicable for

the mmWave SINR coverage analysis with realistic radiation

patterns. By approximating the original system model with a

simplified one, whose performance is determined by a mathe-

1The front-back ratio is the difference expressed in decibels between the
gain of the mainlobe and the second maximum gain. This ratio increases with
the number of antenna elements [14], [15].

matically convenient intensity measure, tractable yet accurate

integral expressions for computing area spectral efficiency

and potential throughput are provided in [17]. The considered

system model accounts for many practical aspects which are

typically neglected, e.g., LoS and NLoS propagation, antenna

radiation patterns, traffic load, practical cell associations, and

general fading channels. However, a measurement-based chan-

nel characterization is missing.

Recently, a few studies [18] and [19] incorporate the impact

of directional antenna elements on the stochastic geometric

SINR coverage analysis, by approximating the element radia-

tion pattern as a cosine-shaped curve under a one-dimensional

linear array structure. Compared to these works, we consider

two-dimensional planar arrays, and approximate the combined

array-and-channel gain as a single term, as detailed in the

following subsection.

3) Aligned/misaligned gain model: In order to solve the

aforementioned issue brought by inaccurate channel gains, one

can use measurement-based channel gain models, such as the

models provided by the New York University (NYU) Wireless

Group [13], which are operating at 28 GHz as described

in [13], [20]–[22]. However, the NYU channel gain model

requires a large number of parameters, and is thus applicable

only to system-level simulators with high complexity, as done

in our previous study [23].

In our preliminary work [1], we simplified the NYU chan-

nel gain model via the following procedure so as to allow

stochastic geometric SINR coverage analysis.

(i) We separated the path loss gains from the small-scale

fading, and treated them independently in a stochastic

geometric framework. The fading term can be considered

as representative of propagation effects when the user

moves locally, and is independent of the link distance.
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(ii) For each downlink communication link, we combined

the channel gain and the antenna gain into an aggregate

gain. The aggregate gain is defined for the desired com-

munication link as aligned gain and for an interfering

link as misaligned gain, respectively.

(iii) We applied a curve fitting method to derive the distribu-

tions of the aligned/misaligned gains.

(iv) Finally, we derived the distribution of a reference user’s

SINR, which is a function of path loss gains and

aligned/misaligned gains, by applying a stochastic ge-

ometric technique to the path loss gains and then by

exploiting the aligned/misaligned gain distributions.

The limitation of our previous work [1] is its use of the

ISO element pattern in step (ii). This results in excessive

sidelobe gains, particularly including backward propagation,

which are unrealistic. To fix this problem, in this study we

also apply the 3GPP element pattern to the aforementioned

aligned/misaligned gain model, thereby yielding a tractable

mmWave coverage expression that ensures high accuracy,

comparable to the results obtained from a system-level sim-

ulator. Moreover, instead of signal-to-interference ratio (SIR)

as considered in [1], we focus on the SINR evaluation by

incorporating also the impact of the noise power.

A recent work [16] is relevant to this study. While ne-

glecting interference, it firstly considers a simplified keyhole

channel, and then introduces a correction factor. The aggregate

channel gain thereby approximates the channel gain under the

mmWave channel model provided by the 3GPP [24]. Com-

pared to this, using the NYU channel model [13], we addi-

tionally consider a realistic antenna radiation pattern provided

by the 3GPP [12]. In addition, we explicitly provide the SINR

coverage probability expression using these realistic channel

and antenna models, as well as its simplified expression.

B. Contributions and Organization

The contributions of this paper are summarized below.

• Accurate distributions of aligned and misaligned gains

are provided (see Remarks 1-4), which reflect the NYU

mmWave channel model [13] and the 3GPP mmWave

antenna radiation model [12].

• Considering the ISO element pattern, following from our

preliminary study [1], the aligned gain is shown to follow

an exponential distribution, despite the scarce multipath

in mmWave channels (Remark 1). On the other hand, we

show that the misaligned gain can be approximated with a

log-logistic distribution (Remark 3) having a heavier tail

than the exponential distribution, which can be lower and

upper bounded by a Burr distribution and a log-normal

distribution, respectively.

• In contrast, for the 3GPP element pattern, we show that

both aligned and misaligned gains independently follow

an exponential-logarithmic distribution (Remarks 2 and

4), which has a lighter tail compared to the exponential

distribution.

• Applying these aligned and misaligned gain distributions,

the downlink mmWave SINR coverage probabilities with

the ISO and 3GPP element patterns are derived using

stochastic geometry (Propositions 1 and 2).

In spite of the exponential-logarithmical distribution of the

aligned/misaligned gains of the 3GPP element pattern, it is

still possible, in the SINR calculation, to approximate both

gains independently using exponential random variables with

proper mean value adjustment (Remark 5 and Fig. 12),

yielding a further simplified (though slightly less accurate)

SINR coverage probability expression (Proposition 3). The

feasibility of the exponential approximation under the 3GPP

element pattern comes from the identical tail behaviors of

both aligned/misaligned gains, that cancel each other out

during the SINR calculation. Following the same reasoning,

this approach provides a similar approximation under the ISO

element pattern that leads to the different tail behaviors of both

the aligned/misaligned gains due to the low front-back ratio

obtained with isotropic elements (see Fig. 12 in Sect.V).

The remainder of this paper is organized as follows. Sec-

tion II describes the channel model and antenna radiation

patterns. Section III proposes the approximated distributions

of aligned and misaligned gains. Section IV derives the

SINR coverage probability. Section V validates the proposed

approximations and the resulting SINR coverage probabilities

by simulation, followed by our conclusion in Section VI.

II. SYSTEM MODEL

In this study, we consider a downlink mmWave cellular

network where both BSs and UEs are independently and ran-

domly distributed in a two-dimensional Euclidean plane. Each

UE associates with the BS that provides the maximum average

received power, i.e., minimum path loss association. The UE

density is assumed to be sufficiently large such that each BS

has at least one associated UE. Multiple UEs can be associated

with a single BS, while the BS serves only a single UE per

unit time slot according to a uniformly random scheduler, as

assumed in [1], [8], [11] under stochastic geometric settings.

Out of these serving users in the network, we hereafter focus

on a reference user that is located in the origin of the area

considered, and is denoted as the typical UE. This typical

UE’s SINR is affected by the antenna array radiation patterns

and channel gains, as described in the following subsections.

A. Antenna Gain

Each antenna array at both BS and UE sides contributes to

the received signal power, according to the radiation patterns

of the antenna elements that comprise the antenna array. The

amount is affected also by the vertical angle θ, horizontal angle

φ, and polarization slant angle ζ, as described next.

1) Element radiation pattern: For each antenna element

in an antenna array, we consider two different radiation

patterns: isotropic radiation and the radiation provided by the

3GPP [25]. The element radiation pattern A
(z)
E (θ, φ) (dB)

for superscript z ∈ {ISO, 3GPP} specifies how much power

is radiated from each antenna element towards the direction

(θ, φ).
Following our preliminary study [1], with the ISO element

pattern, each antenna element radiates signals isotropically
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with equal transmission power. Hence, for all θ ∈ [0, 180◦]
and φ ∈ [−180◦, 180◦], the ISO element radiation pattern is

given as

A
(ISO)
E (θ, φ) = 0 dB. (1)

The 3GPP element pattern is realized according to the

specifications in [12], [25] and [26]. First, differently from

the previous configuration, it implies the use of three sectors,

thus three arrays, placed as in traditional mobile networks2.

Second, the single element radiation pattern presents high

directivity with a maximum gain in the main-lobe direction

of about 8 dBi. The 3GPP AE of each single antenna element

is composed of horizontal and vertical radiation patterns.

Specifically, this last pattern AE,V (θ) is obtained as

AE,V (θ) = −min

{

12

(

θ − 90

θ3dB

)2

, SLAV

}

, (2)

where θ3dB = 65◦ is the vertical 3 dB beamwidth, and

SLAV = 30 dB is the side-lobe level limit. Similarly, the

horizontal pattern is computed as

AE,H(φ) = −min

{

12

(

φ

φ3dB

)2

, Am

}

, (3)

where φ3dB = 65◦ is the horizontal 3 dB beamwidth, and

Am = 30 dB is the front-back ratio. Using together the

previously computed vertical and horizontal patterns we can

compute the 3D antenna element gain for each pair of angles

as

A
(3GPP)
E (θ, φ) = Gmax −min {− [AE,V (θ) +AE,H(φ)] , Am} ,

(4)

where Gmax = 8 dBi is the maximum directional gain of the

antenna element [12]. The expression in (4) provides the dB

gain experienced by a ray with angle pair (θ, φ) due to the

effect of the element radiation pattern.

2) Array radiation pattern: The antenna array radiation

pattern A
(z)
A (θ, φ) determines how much power is radiated

from an antenna array towards the steering direction (θ, φ).
Following [25], the array radiation pattern with a given ele-

ment radiation pattern A
(z)
E (θ, φ) is provided as

A
(z)
A (θ, φ) = A

(z)
E (θ, φ) + AF(θ, φ). (5)

The last term AF(θ, φ) is the array factor with the number n
of antenna elements, given as

AF(θ, φ) = 10 log10

[

1 + ρ
(

∣

∣a · wT
∣

∣

2 − 1
)]

, (6)

where ρ is the correlation coefficient, set to unity by assuming

the same correlation level between signals in all the transceiver

paths [25]. Since it represents the physical specifications of the

array, AF is equally computed for both ISO and 3GPP models.

The term a ∈ C
n is the amplitude vector, set as a constant

1/
√
n while assuming that all the antenna elements have equal

amplitude. The term w ∈ C
n is the beamforming vector, which

includes the mainlobe steering direction, to be specified in

2We note that, even if three sectors are present in each BS site, only a
single sector is active and transmitting in each time instant.

Section II-B2. This last term depends on the considered pair

of angles (θ, φ), although, for ease of notation, we are not

reporting this dependency in the equation. Further explanation

of the relation between array and element patterns can be

found in [15] and [25].

In Fig. 2a we report a comparison of the two continuous

element radiation patterns (i.e., AE). The figure permits to

understand the difference between the ISO element pattern

showing a fixed gain and the 3GPP element pattern providing

8 dBi directivity. As a consequence of the element pattern

used, we can see the respective shape of the array radiation

pattern (i.e., AA) in Fig. 2b. The plot permits to see the

reduction of undesired sidelobes and backward propagation

when considering the 3GPP curve with respect to the ISO

element pattern. Furthermore, shape and position of the main

and undesired lobes vary as a function of the steerable di-

rection. Further definitions and accurate examples for these

concepts can be found in [15].

3) Field pattern (i.e., antenna gain): Finally, applying the

given antenna array pattern A
(z)
A (θ, φ), we obtain the antenna

gain for the channel computations. This gain consists of a

vertical field pattern F(z)(θ, φ) and a horizontal field pattern

G(z)(θ, φ), with the polarization slant angle ζ. For simplicity,

in this study we consider a purely vertically polarized antenna,

i.e., ζ = 0. Following [26], the vertical and horizontal field

patterns are thereby given as follows

F(z)(θ, φ) =

√

A
(z)
A (θ, φ) cos(ζ) =

√

A
(z)
A (θ, φ), (7)

G(z)(θ, φ) =

√

A
(z)
A (θ, φ) sin(ζ) = 0. (8)

B. Channel gain

Following the system-level simulator settings [13], we di-

vide the channel gains into two parts: (i) path loss that depends

on the link distance; and (ii) the channel gain multiplicative

component. The latter gain is affected not only by the channel

randomness but also by the antenna array directions. The

following channel gain computation aspects are independent

of the different radiation pattern considered, thus they are valid

for both ISO and 3GPP.

The antenna array direction is determined by the BS-UE

association. To elaborate, for each associated BS-UE link,

denoted as the desired link, their beam directions are aligned,

pointing their main-lobe centers towards each other. As a

consequence, for all non-associated BS-UE links, denoted as

interfering links, the beam directions can be misaligned. In

order to distinguish them in (ii), we define aligned gain and

misaligned gain as the channel gain for the desired link and for

an interfering link, respectively. The definitions of path loss

and aligned/misaligned gains are specified in the following

subsections.

1) Path loss: By definition, the set of BS locations follows

a homogeneous Poisson point process (HPPP) Φ with density

λb. At the typical UE, the desired/interfering links can be in

either LoS or NLoS state. To be precise, from the perspective

of the typical UE, the set Φ of all the BSs is partitioned into

a set of LoS BSs ΦL and a set of NLoS BSs ΦN . According

to the minimum path loss association rule, the desired link
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Fig. 2: Illustrations of the element radiation gains and the array radiation gains for the ISO and 3GPP element patterns, with respect to the horizontal steering
angle φ ∈ [−180◦, 180◦] while the vertical steering angle θ is fixed at 90◦.

can be either LoS or NLoS, specified by using the subscript

i ∈ {L,N}. Likewise, the LoS/NLoS state of each interfering

link is identified by using the subscript j ∈ {L,N}.

For a given link distance r, the LoS and NLoS state proba-

bilities are pL(r) = e−0.0149r and pN (r) = 1−pL(r) [5], [13],

[20]. Here, compared to the system-level simulator settings

in [13], [20], we neglect the outage link state induced by severe

distance attenuation. This assumption does not incur a loss

of generality for our SINR analysis, since the received signal

powers that correspond to outage are typically negligibly

small.

When a connection link has distance r and is in state

j ∈ {L,N}, transmitted signals passing through this link

experience the following path loss attenuation

ℓj(r) = βjr
−αj , (9)

where αj indicates the path loss exponent and βj is the path

loss gain at unit distance [13], [27].

2) Aligned and misaligned gains: In both ISO and 3GPP

element patterns, for a given link, a random channel gain is

determined by the NYU channel model that follows mmWave

channel specific parameters [13], [20] based on the WIN-

NER II model [28]. These parameters are summarized in

Tab. I, and discussed in the following subsections. In this

model, each link comprises K clusters that correspond to

macro-level scattering paths. For cluster k ≤ K, there exist

Lk subpaths, as visualized in Fig. 1. Moreover, the first cluster

angle (i.e., φk, k = 1) exactly matches the LOS direction

between transmitter and receiver in the simulated link.

Given a set of clusters and subpaths, the channel matrix of

each link is represented as

H(z) =
K
∑

k=1

Lk
∑

l=1

gklF
(z)
RX

(

φRX
kl

)

uRX

(

φRX
kl

)

F
(z)
TX

(

φTX
kl

)

u∗
TX

(

φTX
kl

)

(10)

Tab. I: List of notations and channel parameters considered in the NYU
mmWave network simulator [21].

Notation Meaning: Parameters

f Carrier frequency: 28 GHz

Φb BS locations following a HPPP with density λb

pL(r) LoS state probability at distance r: pL = e−0.0149r

xo, x Serving and interfering BSs or their coordinates

αj Path loss exponent, with j ∈ {L,N}: αL = 2, αN = 2.92

βj Path loss gain at unit distance: βL = 10−7.2, βN = 10−6.14

ℓj(r) Path loss at distance r in LoS/NLoS state

nTX, nRX # of antennas of a BS and a UE

G(z)
o , G(z)

x Aligned and misaligned gains, with z ∈ {ISO, 3GPP}
f
(z)
Go

, f
(z)
Gx

Aligned and misaligned gain PDFs

K # of clusters ∼ max{Poiss(1.8), 1}
Lk # of subpaths in the k-th cluster ∼ DiscreteUni[1, 10]

φRX
kl , φTX

kl Angular spread of subpath l in cluster k [13]:

φ
(·)
k ∼ Uni[0, 2π], ∀k 6= 1, φ

(·)
kl = φ

(·)
k + (−1)lskl/2

skl ∼ max{Exp(0.178), 0.0122},
gkl Small-scale fading gain: gkl =

√
Pkl exp(−j2πτklf)

τkl Delay spread induced by different subpath distances.

Pkl Power gain of subpath l in cluster k [20]:

Uk ∼ Uni[0, 1], Zk ∼ N (0, 42), Vkl ∼ Uni[0, 0.6],

Pkl = P ′
kl/
∑

P ′
kl, P

′
kl = U

τkl−1
k 10−0.1Zk+Vkl/Lk, τkl = 2.8

where gkl is the small-scale fading gain of subpath l in cluster

k, and uRX and uTX are the 3D spatial signature vectors of

the receiver and transmitter, respectively. Note that u∗
TX stands

for the complex conjugate of vector uTX. Furthermore, for

brevity, we use subscript or superscript TX (RX), referring

to a transmitter (receiver) related term. Moreover, φRX
kl is the

angular spread of horizontal angles of arrival (AoA) and φTX
kl

is the angular spread of horizontal angles of departure (AoD),

both for subpath l in cluster k [13]. Note that, for ease of
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computation, we consider a planar network and channel, i.e.,

we neglect vertical signatures by setting their angles to 90◦

(i.e., π/2 radian). Finally, F
(z)
TX and F

(z)
RX are the field factor

terms of transmitter and receiver antennas, respectively and

they are computed as in (7) with z ∈ {ISO, 3GPP}.

We consider directional beamforming where the mainlobe

center of a BS’s transmit beam points at its associated UE

(we recall that φ1 is the mainlobe center angle as shown in

the channel illustration of Fig. 1), while the mainlobe center

of a UE’s receive beam aims at the serving BS. We assume

that both beams can be steered in any directions. Therefore,

considering the ISO element pattern, we can generate a beam-

forming vector for any possible angle in [0, 360◦]. Instead,

with the three-sectors consideration adopted in the 3GPP

element pattern, the beamforming vectors for any possible

angles are mapped within one of the three sectors, thus using

an angle in the interval [0, 120◦].

At the typical UE, the aligned gain G
(z)
o is its beamforming

gain towards the serving BS at xo. With a slight abuse of

notation for the subscript xo, G
(z)
o is represented as

G(z)
o = |wT

RXxo
H(z)

xo
wTXxo

|2 (11)

=

∣

∣

∣

∣

∣

K
∑

k=1

Lk
∑

l=1

gklF
(z)
RX

(

wT
RXxo

uRXxo

)

F
(z)
TX

(

u∗
TXxo

wTXxo

)

∣

∣

∣

∣

∣

2

(12)

where wTXxo
∈ C

nTX is the transmitter beamforming vector

and wT
RXxo

∈ C
nRX is the transposed receiver beamforming

vector computed as in [14], [15]. Their values contain in-

formation about the mainlobe steering direction and both are

computed using the first cluster angle φ1 as

wT
TX = [w1,1, w1,2, . . . , w√

nTX,
√
nTX

], (13)

where wp,r = exp (j2π [(p− 1)∆V Ψp/λ+ (r − 1)∆HΨr/λ]),
for all p, r ∈ {1, . . . ,√nTX}, Ψp = cos (θs), and

Ψr = sin (θs) sin (φ1). The terms ∆V and ∆H are the

spacing distances between the vertical and horizontal

elements of the array, respectively. Then, angles θs and φs

are the steering angles and θs is kept fixed to 90◦. We assume

all elements to be evenly spaced on a two-dimensional plane,

thus it equals ∆V = ∆H = λ/2. The same expression can be

used to compute the receiver beamforming vector wRX with

the exception that its dimension is nRX.

Similarly, the typical UE’s misaligned gain G
(z)
x is its

beamforming gain with an interfering BS at x

G(z)
x = |wT

RXx
H(z)

x wTXx
|2 (14)

where wTXx
and wRXx

respectively are the transmitter and

receiver beamforming vectors. It is noted that both G
(z)
o and

G
(z)
x incorporate the effects not only of the mainlobes but

also of all the other sidelobes. We highlight that even if both

aligned and misaligned gain definitions are valid for both the

ISO and 3GPP configurations, the gains will have a different

distribution in the two radiation patterns.

C. SINR definition

The typical UE is regarded as being located at the origin,

which does not affect its SINR behaviors thanks to Slivnyak’s

theorem [29] under the HPPP modeling of the BS locations. At

the typical UE, let xo and all the x ∈ Φi respectively indicate

the associated and interfering BSs as well as their coordinates.

We note that the set Φi represents BS locations following a

HPPP with density λi, i ∈ {L,N}.

Using equations (9), (12), and (14), we can represent SINRi

as the received SINR at the typical UE associated with xo ∈
Φi, i ∈ {L,N}, which is given by

SINRi =
G

(z)
o ℓi(r

i
xo
)

∑

x∈ΦL/xo

G
(z)
x ℓL(rLx ) +

∑

x∈ΦN/xo

G
(z)
x ℓN (rNx ) + σ2

,

(15)

where the term rixo
denotes the association distance of the

typical UE associating with xo ∈ Φi and along similar lines,

rix denotes the association distance of a generic UE associating

with x ∈ Φi and i ∈ {L,N}. Knowing that the typical UE is

located in the origin o, rx is equals to ‖x‖. Here, we assume

that each BS transmits signals with the maximum power PTX

through the bandwidth W . In (15), SINRi is normalized by

PTX. The term σ2 denotes the normalized noise power σ2 that

equals σ2 = WN0/PTX where N0 is the noise spectral density

per unit bandwidth.

III. ALIGNED AND MISALIGNED GAIN DISTRIBUTIONS

Starting from the expressions derives in the previous section,

it is practically infeasible to further approximate aligned and

misaligned gains using analytic methods, as analyzing each

of their subordinate terms is a major task in itself, as shown

by related works. Therefore, in this section we focus on the

aligned gain G
(z)
o in (12) and the misaligned gain G

(z)
x in (14)

with ISO and 3GPP element patterns, and aim at deriving their

distributions.

Following the definitions in Sect. II-B, the aligned gain G
(z)
o

is obtained for the desired received signal when the angles

of the beamforming vectors wTXxo
and wRXxo

are aligned

with the AoA and AoD of the spatial signatures uTXxo
and

uRXxo
in the channel matrix H(z)

xo
. The misaligned gain G

(z)
x

is calculated for each interfering link with the beamforming

vectors and spatial signatures that are not aligned.3 Fig. 1

shows an example of misalignment between the beam of

the desired signal (yellow or green colored beam) and the

interfering BSs beams (red colored beams).

In the following subsections, using curve fitting with the

system-level simulation, we derive the distributions of the

aligned gain G
(z)
o and the misaligned gain G

(z)
x .

A. Aligned gain distribution

Running a large number of independent runs of the NYU

simulator we empirically evaluated the distribution of the

3At the typical UE, the serving BS’s beamforming is aligned with the
typical UE, whereas the beamforming vectors of interfering BSs are de-
termined by their own associated UEs that are uniformly distributed. For
this reason, each interfering BS’s beamforming has a circularly uniform
orientation. Consequently, in (14), the angles of the beamforming vectors
wTXx and wRXx as well as the angles of the spatial signatures uTX and uRX

are not aligned with the angles of G
(z)
o , which are independent and identically

distributed (i.i.d.) across different interfering BSs.
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Fig. 3: Fitting of the aligned gain G
(ISO)
o with the ISO element pattern.

The empirical PDF of G
(ISO)
o is obtained by the NYU mmWave network

simulator [21], and is fit with the exponential distribution in Remark 1
(nRX = 64, nTX = 256).

aligned gain G
(z)
o . From the obtained data samples we have

noticed that G
(z)
o is roughly exponentially distributed G

(ISO)
o ∼

Exp(µo) when an ISO element pattern is used. Indeed, the

signal’s real and imaginary parts are approximately indepen-

dent and identically distributed zero-mean Gaussian random

variables. This exponential behavior finds an explanation in

the small-scale fading effect implemented in the channel model

using the power gain term Pkl computed as reported in Tab. I.

We report in Fig. 3 an example of the exponential fit of the

simulated distribution. The fit has been obtained using the

curve fitting toolbox of MATLAB.

For the purpose of deriving an analytical expression, it is

also interesting to evaluate the behavior of µo as a function

of the number of antenna elements at both receiver and

transmitter sides. For this reason, in our analysis we consider

the term µo as a function of the number of elements. We show

in Fig. 4 the trend of the parameter µo versus the number of

antenna elements at the transmitter side nTX and at the receiver

side nRX. Again, using the MATLAB curve fitting toolbox, we

have obtained a two-dimensional power fit where the value of

µo can be obtained as in the following remark.

Remark 1. (Aligned Gain, ISO) At the typical UE, under

the ISO antenna model, the aligned gain G
(ISO)
o can be

approximated by an exponential distribution with probability

density function (PDF)

f
(ISO)
Go

(y;µo) = µoe
−µoy (16)

where µo = 0.814
(nTXnRX)0.927

.

This result provides a fast tool for future calculations.

Indeed, the expression found for the gain permits to avoid

running a detailed simulation every time. We note that

from a mathematical point of view the surface of the term

µo(nTX, nRX) is symmetric. In fact, the gain does not depend

individually on the number of antennas at the transmitter or

receiver sides, but rather on their product, so we can trade the

complexity at the BS for that at the UE if needed.

By contrast, using the 3GPP element pattern, we have

noticed that the data samples of G
(3GPP)
o can no longer be

approximated as an exponentially distributed random variable.

Instead, an exponential-logarithmic distribution provides the

most accurate fitting result with the simulated desired gain,

validated by simulation as shown in Fig. 5.

Remark 2. (Aligned Gain, 3GPP) At the typical UE, and

Fig. 4: Fitting of the aligned gain distribution parameter µo with the ISO

element pattern, with respect to the number of antenna elements nTX and nRX.
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Fig. 5: Fitting of the aligned gain G
(3GPP)
o with the 3GPP element pattern.

The empirical PDF of G
(3GPP)
o fits with the exponential-logarithmic distribu-

tion in Remark 2. It no longer fits with an exponential distribution, as opposed
to the ISO element pattern’s (nRX = 64, nTX = 256).

adopting the 3GPP element pattern, the aligned gain G
(3GPP)
o

can be approximated by an exponential-logarithmic distribu-

tion with PDF

f
(3GPP)
Go

(y; bo, po) =
1

− ln(po)

bo(1− poe
−boy)

1− (1− po)e−boy
. (17)

where the parameters bo and po are specified in Tab. II.

Exponential-logarithmic distributions are often used in the

field of reliability engineering, particularly for describing

the lifetime of a device with a decreasing failure rate over

time [30]. Its tail is lighter than that of the exponential

distribution, which is explained by the 3GPP element pattern’s

high directivity and sidelobe attenuation that mostly yield a

higher aligned gain than the ISO element pattern’s aligned

gain.

An exponential-logarithmic distribution is determined by

using two parameters bo and po, as opposed to the ISO element

pattern’s exponential distribution with a single parameter µo.

Precisely, the distribution is given by a random variable that

is the minimum of N independent realizations from Exp(bo),
while N is a realization from a logarithmic distribution with

parameter 1−po. Due to its generation procedure, the relation-

ship between the two parameters and the number of antenna

elements is not representable with a simple function in a way

to be generalized as done in Remark 1 for the ISO element

pattern. In particular, due to the extreme characteristics of

the gain, even a small variation in the well-fitted parameters

yields a significant change in the fitting accuracy. For this

reason, obtaining a good-fit of the parameters that can be

generalized requires an exhaustive search, with an extremely

large number of combinations. Therefore, for 16 practically

possible combinations of nTX and nRX, the appropriate values
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Tab. II: Aligned gain’s exponential-logarithmic distribution parameters
(bo, po) with the 3GPP element pattern for different nTX and nRX. The
table is symmetric, so we hereafter report only the upper triangular part.

(bo, po)
nTX

4 16 64 256

nRX

4 (0.002, 0.112) (4e-4, 0.075) (0.0001, 0.0713) (7.84e-5, 0.15)

16 − (2e-4, 0.15) (8.24e-5, 0.511) (1.93e-5, 0.1223)

64 − − (1.84e-5, 0.15) (4.83e-6, 0.089)

256 − − − (1.96e-6, 0.1126)
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10
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10
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D

F
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Fig. 6: Fitting of the aligned gain G
(ISO)
x with the ISO element pattern.

The empirical PDF of G
(ISO)
x is obtained by the NYU mmWave network

simulator [21], and is fit with the log-logistic distribution in Remark 3
(nRX = 64, nTX = 256).

of bo and po are provided in Tab. II by curve-fitting of the

system-level simulation results.

B. Misaligned gain distribution

Following the same procedure as used for the aligned gain

with the NYU simulator, we extract the distribution of the mis-

aligned gain G
(z)
x under the ISO and 3GPP element patterns.

With the ISO element pattern, we found that the G
(ISO)
x PDF

displayed in Fig. 6 has a steep decreasing slope in the vicinity

of zero, while showing a heavier tail than the exponential

distribution. This implies that the occurrence of strong interfer-

ence is not frequent thanks to the sharpened mainlobe beams,

yet is still non-negligible due to the interference from sidelobes

that include the backward propagation. We examined possible

distributions satisfying the aforementioned two characteristics,

and conclude that a log-logistic distribution provides the most

accurate fitting result with the simulated misaligned gain.

Remark 3. (Misaligned Gain, ISO) At the typical UE, and

using ISO antenna elements, the misaligned gain G
(ISO)
x can

be approximated by a log-logistic distribution with PDF

f
(ISO)
Gx

(y; a, b) =

(

b
a

) (

y
a

)b−1

(

1 +
(

y
a

)b
)2 (18)

where the values of a and b are provided in Tab. III.

A log-logistic distribution is given by a random variable

whose logarithm has a logistic distribution. The shape is

similar to a log-normal distribution, but has a heavier tail [31].

For a similar reason addressed after Remark 2, a log-logistic

distribution is determined by two parameters a and b, and their

relationship with the number of antenna elements is difficult

to generalize. We instead report the appropriate values of a
and b for 16 combinations of nTX and nRX in Tab. III.

Next, with the 3GPP element pattern, we identified the

G
(3GPP)
x PDF in Fig. 7. Using the simulated data samples

Tab. III: Misaligned gain’s log-logistic distribution parameters (a, b) with the
ISO element patterns for different nTX and nRX.

(a, b)
nTX

4 16 64 256

nRX

4 (3.28, 0.877) (2.51, 0.743) (2.11, 0.722) (1.92, 0.709)

16 − (3.49, 0.656) (3.28, 0.612) (2.89, 0.589)

64 − − (2.55, 0.57) (1.98, 0.551)

256 − − − (1.45, 0.547)
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Fig. 7: Fitting of the aligned gain G
(3GPP)
x with the 3GPP element pattern.

The empirical PDF of G
(3GPP)
x fits with the exponential-logarithmic distribu-

tion in Remark 4. It no longer fits with a log-logistic distribution, as opposed
to the ISO element pattern’s (nRX = 64, nTX = 256).

we have performed a test on the decay of the tail in order

to understand if the behavior was heavy tailed. It turns out

that the PDF of G
(3GPP)
x has a lighter tail than the exponential

distribution, which is far different from the heavy-tailed G
(ISO)
x

distribution. In this case, we found that the misaligned gain

G
(3GPP)
x fits well an exponential-logarithmic distribution, as

also used for the aligned gain G
(3GPP)
o in Remark 2.

Remark 4. (Misaligned Gain, 3GPP) At the typical UE,

and adopting the 3GPP element pattern, the misaligned gain

G
(3GPP)
x can be approximated by an exponential-logarithmic

distribution with PDF

f
(3GPP)
Gx

(y; bx, px) =
1

− ln(px)

bx(1− pxe
−bxy)

1− (1− px)e−bxy
. (19)

where the values of parameters bx and px are provided

in Tab. IV.

Although both G
(3GPP)
o and G

(3GPP)
x can be described by

using exponential-logarithmic distributions, these two results

come from different reasons, respectively. For G
(3GPP)
o , it

follows from the higher mainlobe gains than under the ISO el-

ement pattern that yields the exponentially distributed G
(ISO)
o .

For G
(3GPP)
x , on the contrary, its light-tailed distribution origi-

nates from attenuating sidelobes, reducing the interfering prob-

ability. For these distinct reasons, the distribution parameters

(bo, po) for G
(3GPP)
o and (bx, px) for G

(3GPP)
x are different, as

shown in Tab. II and Tab. IV. Moreover, we note that in order

to precisely fit both the distributions for the 3GPP case, due

to the particular behavior of both tail and slope parts we have

studied several well known distributions. We have evaluated

the accuracy by measuring the root-mean-square error (RMSE)

and obtained Tab. V. By evaluating the RMSE, we have

concluded that the exponential-logarithmic distribution was the

most accurate distribution, among the ones evaluated, for both

G
(3GPP)
o and G

(3GPP)
x .

The fitting plots of both aligned and misaligned gains,
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Tab. IV: Misaligned gain’s exponential-logarithmic distribution parameters
(bx, px) with the 3GPP element patterns for different nTX and nRX.

(bx, px)
nTX

4 16 64 256

nRX

4 (4.428, 4.3e-5) (0.7967, 3.7e-5) (0.288, 6.8e-5) (1.2e-04, 1.5e-9)

16 − (0.2873, 6.5e-5) (0.024, 3.6e-5) (0.075, 7.4e-7)

64 − − (0.2316, 1.5e-4) (0.0133, 2.34e-5)

256 − − − (0.2406, 2.7e-4)

Tab. V: Minimized RMSE for aligned and misaligned gains under different
fitting distributions (for the case when the fitted distribution shape was unable
to match the data, we marked it as avoid).

Distribution Type
Minimized RMSE

Go Gx

Exponential 1.99e-6 7.46
Exponential-logarithmic 4.11e-7 0.51

Burr 4.26e-6 1.74
Log-logistic − 1.63
Log-normal − −
Log-Cauchy − 0.56

Gamma − 0.80
Weibull 4.27e-6 0.63

Rayleigh − −
Nakagami − 1.04

Lévi − 1.73

respectively Figs. 3–5 and Figs. 6–7, permit to see the approx-

imation error which is introduced due to the fitting procedure.

However, we note that we are plotting the curves using a log-

scale for the y-axis, thus when the PDF becomes smaller even

if the error gap looks bigger, the real error may be smaller.

Note that G
(ISO)
x is often considered as a Nakagami-m or

a log-normal distributed random variable [5]–[7]. In Sect. V,

we will thus compare our proposed distributions for G
(z)
x with

them. For a fair comparison, for a Nakagami-m distribution

with nTX = 256 and nRX = 64, we will use its best-

fit distribution parameters obtained by curve-fitting with the

system-level simulation, which are given with the PDF as

follows.

f
(ISO)
Gx

(y;m, g) =
2mm

Γ(m)gm
y2m−1 exp

(

−m

g
y2

)

,

{

m = 0.099

g = 50.53

(20)

With this PDF, we will observe in Sect. V that a Nakagami-

m distribution underestimates the tail behavior of G
(ISO)
x too

much, thereby leading to a loose empirical upper bound for

the SINR coverage probability.

Likewise, for a log-normal distribution with nTX = 256
and nRX = 64, we will consider the following PDF with the

parameters.

f
(ISO)
Gx

(y;σ, µ) = 1

yσ
√
2π

exp
(

− (log y−µ)2

2σ2

)

,

{

σ = 2.962

µ = 0.908
(21)

Under the ISO element pattern, it will be shown in Sect. V

that a log-normal distribution is a better fit than a Nakagami-

m distribution, yet it still underestimates the interference,

yielding an empirical upper bound to the SINR coverage

probability.

As an auxiliary result, we will also provide the result with

a Burr distribution [32]. This overestimates the tail behavior

of G
(ISO)
x , leading to the empirical lower bound of the SINR

coverage probability. For this, we will consider the following

PDF under nTX = 256 and nRX = 64.

f
(ISO)
Gx

(y; c, k) = ckyc−1

(1+yc)k+1 ,

{

c = 0.692

k = 0.518
(22)

IV. MMWAVE SINR COVERAGE PROBABILITY

In this section, we aim at deriving the closed-form expres-

sion of the SINR coverage probability CSINR(T ), defined as the

probability that the typical UE’s SINR is no smaller than a tar-

get SINR threshold T > 0, i.e., CSINR(T ) := Pr(SINR ≥ T ).
In the first subsection, utilizing the aligned/misaligned gains

provided in Sect. III, we derive the exact SINR coverage

expressions under ISO and 3GPP element patterns. In the

following subsection, applying a first-moment approximation

to aligned/misaligned gains, we further simplify the SINR

coverage expressions.

A. SINR Coverage

Let rixo
denote the association distance of the typical UE

associating with xo ∈ Φi. By using the law of total probability,

CSINR at the typical UE can be represented as

CSINR(T ) = Pr
(
SINR ≥ T, xo ∈ ΦL
︸ ︷︷ ︸

SINRL≥T

)
+ Pr

(
SINR ≥ T, xo ∈ ΦN
︸ ︷︷ ︸

SINRN≥T

)

(23)

= ErLx0

[

Pr
(
SINRL ≥ T |rLxo

)]

+ErNxo

[

Pr
(
SINRN ≥ T |rNxo

)]

.

(24)

In (24), two expectations are taken over the typical UE’s
association distance rixo

. The PDF of rixo
is given by [10]

as

frixo
(r) := f|xo|,i(r, xo ∈ Φi) (25)

= 2πλi(r)r exp

(

− 2πλb

[ ∫ r

0

vpi(v)dv +

∫ (rαiβi′/βi)
1

α
i′

0

vpi′(v)dv

])

(26)

where λi(r) = λbpi(r), and i′ indicates the opposite LoS/N-

LoS state with respect to i.

For the ISO element pattern, the typical UE’s SINR coverage

probability CSINR(T ) in (24) is then derived by exploiting

frixo
(r) while applying Campbell’s theorem [29] and the

G
(ISO)
o distribution in Remark 1.

Proposition 1. (Coverage, ISO) At the typical UE, and consid-

ering arrays with ISO radiation elements, the SINR coverage

probability CSINR(T ) for a target SINR threshold T > 0 is

given as

CSINR(T ) =
∑

i∈{L,N}

∫ ∞

0

fr
xi
o
(r) exp

(−µoTr
αiσ2

βi

)

× LIL
i

(
µoT

ℓi(r)

)

LIN
i

(
µoT

ℓi(r)

)

dr, (27)

where LIj
i
(r) is the Laplace transform of the interference from

BSs ∈ φj , for j ∈ {L, N}, to the typical UE and is given

in (28) with z = ISO.
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Sketch of the Proof: Starting from the SINR joint probability

in (24) and applying the SINR definition we obtain an ex-

pression which depends on the CCDF F
(ISO)
Go

(y;µo). Then,

applying Remark 1, which provides a channel gain expression

with specific distribution, together with Slyvnyak’s theorem

and the mutual independence of PPPs ΦL
i and ΦN

i we obtain

the final coverage expression. The detailed proof is provided

in Appendix I. �

Note that 1/µo is the mean aligned gain in Remark 1. The

misaligned gain PDF f
(ISO)
Gx

(y) and its corresponding parame-

ters are provided in Remarks 3 and 4 as well as in Tab. III. As

opposed to the standard method where the exponential random

variables can be found in both desired and interfering links,

the misalignment gain in our interfering link follows a log-

logistic distribution. This does not allow to further expand the

expression as done in the standard method, yet the expression

can easily be calculated numerically as done in [19], which is

far simpler than the system-level simulation complexity. Then,

the term pi is the LoS/NLoS channel state probability defined

in Sect. II-B.

For the 3GPP element pattern, following the same pro-

cedure and G
(3GPP)
o distribution in Remark 2, we obtain

CSINR(T ) as shown in the following proposition.

Proposition 2. (Coverage, 3GPP) At the typical UE, and

considering arrays with 3GPP radiation elements, the SINR

coverage probability CSINR(T ) for a target SINR threshold

T > 0 is upper bounded as

CSINR(T ) ≤
∑

i∈{L,N}

∫ ∞

0

fr
xi
o
(r)

ln (po)
ln

(

1− (1− po)

× exp

(−boTr
αiσ2

βi

)

LIL
i

(
boT

ℓi(r)

)

LIN
i

(
boT

ℓi(r)

))

dr, (29)

where the Laplace transform LIj
i
(r) for j ∈ {L,N} is given

in (28) with z = 3GPP at the bottom of this page.

Sketch of the Proof: The first step of the demonstration is

equivalent to the one in Proposition 1 with the only difference

that G
(3GPP)
o follows an exponential-logarithmic distribution

with the CCDF F (y; bo, po) = ln
(

1− (1− po) e
−boy

)

/ln po.

Then, differently from the previous proposition, Jensen’s in-

equality is used to obtain an upper bound of the SINR coverage

probability. The remainder of the proof follows the Proof of

Proposition 1. For completeness, the detailed derivation is

provided in Appendix II. �

It is worth noting that the Laplace transform expression

in (28) is used for both ISO and 3GPP element patterns,

i.e., in Propositions 1 and 2. Here, the element pattern is

differentiated only by the distribution of the misaligned gain

f
(z)
Gx

(g) contained therein. For different element patterns and

their fitting results, we can thus change f
(z)
Gx

(g) accordingly

while keeping the rest of the terms, thereby allowing us to

quickly compare the resulting SINRs. This is an advantage of

the analysis, that avoids redundant calculations.

B. Simplified SINR coverage

In this subsection, our goal is to further simplify the SINR

coverage probability expressions in Propositions 1 and 2. To

this end, we revisit a channel-antenna gain approximation

approach that is commonly used with stochastic geometric

analysis, as done in [5]–[11]. This approach relies on ap-

proximating the channel gain based on its first-moment value,

and may therefore be less accurate compared to the simulated

result.

Nevertheless, with a slight refinement, we conjecture that

such a simple approach can still provide a tight approximation,

also for the 3GPP element pattern. In fact, the only major

difference, with respect to the ISO case is the presence of a

high front-back ratio, which in turn is due to the directivity

gain considered. With this purpose in mind, we elaborate the

approximation procedures of the channel and antenna gains

as follows. For the channel gain, instead of directly using the

realistic channel model, we consider a first-order approximated

Rayleigh fading channel with the mean value that is identically

set as that of the realistic channel model. For the antenna gain,

as illustrated in Fig. 2b, we approximate the continuous array

gain using only two constants, i.e., mainlobe gain M
(z)
s and

sidelobe gain m
(z)
s . The mean aligned gain Υ

(z)
o and the mean

misaligned gain Υ
(z)
x are determined by these two antenna gain

constants that are specified by the ISO and 3GPP element

patterns, as detailed in the following remark.

Remark 5. (Simplified Aligned/Misaligned Gains) For a given

antenna array radiation pattern z ∈ {ISO, 3GPP}, we consider

the following channel and array radiation approximations.

• Rayleigh fading channel gain – Both the aligned gain

G
(z)
o and the misaligned gain G

(z)
x at the typical UE

independently follow an exponential distribution, i.e.,

G(z)
o ∼ Exp(1/Υ(z)

o ) and G(z)
x ∼ Exp(1/Υ(z)

x ). (30)

• Piece-wise constant array gain – The average channel

gains Υ
(z)
o and Υ

(z)
x , taken from [5], are given as:

Υ(z)
o = M

(z)
TX M

(z)
RX and (31)

Υ(z)
x =























M
(z)
TX M

(z)
RX w.p. ϕTX

2π
ϕRX

2π

M
(z)
TX m

(z)
RX w.p. ϕTX

2π (1− ϕRX

2π )

m
(z)
TXM

(z)
RX w.p. (1− ϕTX

2π )ϕRX

2π

m
(z)
TXm

(z)
RX w.p. (1− ϕTX

2π )(1− ϕRX

2π ),

(32)

L
I
j
i

(r) = exp



−2πλb

∫ ∞

0





∫ ∞
(

βjr
αi

βi

) 1
αj

[

1− exp

(

−
ℓj(v)µoTg

ℓi(r)

)]

vpj(v)dv



 f
(z)
Gx

(g)dg



 (28)
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where the mainlobe gain M
(z)
s and the sidelobe gain m

(z)
s

are set as

M (ISO)
s = ns (33)

M (3GPP)
s = 100.8ns (34)

m(z)
s = 1/sin2

(

3π

2
√
ns

)

, (35)

and ns with s ∈ {TX,RX} denotes the number of the

transmit/receive antenna elements.

With the ISO element pattern, it is noted that the said

simplified model becomes identical to the model considered

in [10]. In this case, the sidelobe gain m
(z)
s in (35) is obtained

from the array’s 3 dB beamwidth4 that equals
√

3/ns.

With the 3GPP element pattern, by constrast, the mainlobe

gain in (34) is 100.8 ≈ 6.31 times higher than in the ISO

radiation case, due to its maximum 8 dBi directivity gain

at each antenna element as discussed in Section II-A. The

sidelobe gain in (35) is computed in the same manner for

both ISO and 3GPP element patterns, yet has the different

physical meanings for each case as detailed next.

Following [10], the sidelobe gain in (35) with the ISO

element pattern corresponds to the second maximum lobe gain,

as shown in Fig. 8. On the contrary, (35) with the 3GPP

element pattern is mostly below the second maximum lobe

gain. This implicitly captures the 3GPP element pattern’s

sidelobe reduction as shown in Fig. 8.

Unlike the ISO element pattern, it is noted that (35) with

the 3GPP element pattern approximates the third maximum

lobe gain on average, but is not always identical to the

third maximum value. In fact, due to the element-wise beam

steering, the antenna gain under the 3GPP element pattern

is not symmetrical about the steering angle, so each lobe’s

gain can only be ordered for a given steering angle, as further

explained in [15].

Finally, utilizing the aligned and misaligned gains in Re-

mark 5, we obtain the simplified SINR coverage probability.

Proposition 3. (Simplified Coverage) Using the simplified

aligned and misaligned gains in Remark 5, the simplified SINR

coverage probability ĈSINR(T ) at the typical UE with a target

4Note that the previously defined θ3dB and φ3dB parameters were deter-
mined by the 3 dB beamwidth of the element radiation pattern, whereas ϕs

is given by the 3 dB beamwidth of the array radiation pattern.
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Fig. 8: Comparison between the array radiation gains with the ISO and 3GPP

element patterns and their piece-wise constant approximated gains given in
Remark 5, with respect to the horizontal steering angle φ ∈ [−180◦, 180◦]
while the vertical steering angle θ is fixed at 90◦.

SINR threshold T > 0 is given by

ĈSINR(T ) =
∑

i∈{L,N}

∫ ∞

0

fr
xi
o
(r) exp

(

− Trαiσ2

βiM
(z)
TX M

(z)
RX

)

× L̂IL
i

(

T (ℓi(r))−1

M
(z)
TX M

(z)
RX

)

L̂IN
i

(

T (ℓi(r))−1

M
(z)
TX M

(z)
RX

)

dr, (36)

where L̂Ij
i
(t) is given at the bottom of this page.

Proof: See Theorem 1 in [10]. �

In the next section, we will validate that this simplified SINR

coverage expression becomes accurate for the 3GPP element

pattern, as conjectured at the beginning of this subsection.

V. NUMERICAL RESULTS AND COMPARISONS

In this section, by using the NYU mmWave network

simulator [21], we validate our analytical mmWave SINR

coverage expressions with the ISO element pattern in Propo-

sition 1 and the expression with the 3GPP element pattern

in Proposition 2, as well as their simplified SINR coverage

expressions proposed in Proposition 3. For easier comparison,

the channel-antenna configurations considered in this section

are categorized as four models as summarized in Tab. VI. The

antenna configurations are illustrated in Fig. 8, and the channel

configurations are detailed in Sect. II-B and Remark 5. Other

simulation parameters are: carrier frequency f = 28 GHz,

L̂
I
j
i

(s) = exp

(

− 2πλb

∫ ∞
(

βj
βi

rαi

) 1
αj

[

ϕTXϕRX

4π2
F
(

M
(z)
TX M

(z)
RX

)

+
ϕTX

2π

(

1−
ϕRX

2π

)

F
(

M
(z)
TX m

(z)
RX

)

+
(

1−
ϕTX

2π

) ϕRX

2π
F
(

m
(z)
TX M

(z)
RX

)

+
(

1−
ϕTX

2π

)(

1−
ϕRX

2π

)

F
(

m
(z)
TX m

(z)
RX

)

]

vpj(v)dv

)

(37)

where F (x) = sxv−αiβi/(1 + sxv−αiβi).
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Tab. VI: List of the channel-antenna configurations considered in Sect. V.

Configuration Channel Antenna element radiation Array radiation

Model 1 [1] NYU [13] ISO continuous main/sidelobes

Model 2 NYU [13] 3GPP [12] continuous main/sidelobes with smaller sidelobe radiations

Model 3 [10] Rayleigh − piece-wise constant main/sidelobes (M(ISO) or m(ISO))

Model 4 Rayleigh − piece-wise constant main/sidelobes (M(3GPP) or m(3GPP))
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Fig. 9: SINR coverage probability with the ISO element pattern under
Model 1 for different misaligned gain fitting distributions: (i) the log-logistic

distribution in Remark 3, (ii) the Nakagami-m distribution in (20), (iii) the
log-normal distribution in (21), and (iv) the Burr distribution in (22). The
aligned gain is fitted with the exponential distribution in Remark 1, and
{nTX, nRX} = {256, 64}.

bandwidth W = 500 MHz, BS density λb = 100 BSs/km2

and transmission power PTX = 30 dBm.

Figs. 9 and 10 show the SINR coverage probability with the

ISO element pattern under Model 1. In Fig. 9, the coverage

probability obtained from the NYU network simulator fits well

our proposed coverage expression in Proposition 1 that utilizes

the aligned gain’s exponential distribution in Remark 1 and

the misaligned gain’s log-logistic distribution in Remark 3.

The proposed SINR coverage probability expression is also

compared to the SINR coverage probabilities with the mis-

aligned gain’s Nakagami-m and log-normal distributions that

are commonly used in stochastic geometric mmWave SINR

coverage analysis [5]–[7]. It shows that both Nakagami-m
and log-normal distributions given respectively in (20) and

(21) underestimate the interference tail behaviors, therefore

yielding empirical upper bounds for the SINR coverage prob-

ability. Another misaligned gain’s Burr distribution given in

(22) by contrast yields an empirical lower bound for the SINR

coverage probability. All these bounds are too loose to approx-

imate the simulated SINR coverage probability, emphasizing

our appropriate choice of the misaligned gain’s log-logistic

distribution.

Fig. 10, by comparing the curves with the antenna element
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Fig. 10: SINR coverage probability with the ISO element pattern under
Model 1. The aligned gain is fit with the exponential distribution in Remark 1,
and the misaligned gain is fitted with the log-logistic distribution in Remark 3,
for {nTX, nRX} = {64, 16} and {256, 64}.

configuration {nTX, nRX} = {64, 16} and the curves with

{nTX, nRX} = {256, 64}, shows that the increase in the

number of antenna elements not only yields a higher SINR but

also makes the SINR coverage probability expression in Propo-

sition 1 more accurate. The latter is because the front-back

ratio increases with the number of antenna elements [14], [15].

Following a similar reasoning as discussed after Remarks 2

and 4, this reduces the impact of the high-order statistics on

the alignment and misaligned gains, and thereby Proposition 1

becomes more accurate.

Next, Fig. 11 illustrates the SINR coverage probability

with the 3GPP element pattern under Model 2. We observe

that the simulated coverage probability fits well with our

proposed coverage expression in Proposition 1 that utilizes

the exponential-logarithmic distributions of aligned and mis-

aligned gains in Remarks 2 and 4, respectively. As seen by

comparing Fig. 11 to Fig. 10, the SINR coverage probability

with the 3GPP element pattern is higher than the coverage

probability with the ISO element pattern. This is because of the

3GPP element pattern’s higher front-back ratio that provides

higher directivity, thereby increasing the aligned gain. It also

provides lower interference that decreases the misaligned gain,

consequently yielding a higher SINR. These results highlight

the presence of different performance trends as the network’s
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density increases. This means that it is possible to accurately

identify an optimal deployment density of the BSs. We have

further studied this aspect in [15].

Finally, Fig. 12 illustrates the simplified SINR coverage

probability expressions provided in Proposition 3 under Mod-

els 3 and 4 that are specified in Remark 5. As conjectured

at the beginning of Sect. IV-B, the simplified SINR coverage

probability expressions become more accurate approximations

for the 3GPP element pattern than for the ISO element pattern.

Precisely, the maximum difference between the simulated

and the analytic SINR coverage probabilities are obtained as

7.7% with the 3GPP element pattern and as 9.5% with the

ISO element pattern in Fig. 12b. This originates from both

aligned and misaligned gains’ identical tail behaviors that fol-

low an exponential-logarithmic distribution. These high-order

behaviors are thus canceled out during the SINR calculation,

and the first-order statistics thereby becomes dominant, from

which the first-moment approximation used in the simplified

SINR coverage expressions benefit. On the contrary, with ISO

element pattern, the aligned gain and misaligned gains have

different tail behaviors as provided in Remarks 1 and 3,

and the corresponding simplified SINR coverage probability

expression therefore becomes less accurate.

Moreover, the figure describes the benefit of the non-

simplified SINR coverage probability expressions provided in

Propositions 1 and 2 respectively under Models 1 and 2.

In contrast to the simplified expressions that are plausible

only with the 3GPP element pattern, the non-simplified SINR

coverage probability expressions well approximate the simu-

lated SINR coverage probabilities with both 3GPP and ISO

element patterns, so long as the number of antenna elements

is sufficiently large, as seen by comparing Figs. 12a and 12b.

In addition, with a slight increase in complexity, these non-

simplified SINR coverage probability expressions are more

accurate than the simplified expressions, and so are appropriate

for investigating ultra-reliable scenarios as considered in [33]–

[36], which prefer to maximize accuracy rather than improving

analytical tractability. It is also noted again that the simplified

aligned and misaligned gains in Remark 5 are only applicable

for the SINR calculation. Thus, the non-simplified aligned and

misaligned gains in Remarks 1-4 are still useful, for instance

when deriving the mmWave interference distribution [37] or

calculating the mmWave signal-to-noise ratio (SNR) under a

noise-limited regime [37], [38].

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this study we have highlighted the impact of realistic

mmWave channel behaviors and element patterns on the

downlink SINR coverage probability in a large-scale mmWave

network, via the NYU mmWave network simulator [21] under

the 3GPP element pattern model [25]. By introducing the

aligned and misaligned gains, we have provided an analyt-

ical model that captures such realistic channel-antenna gain

characteristics, thereby deriving the SINR coverage probability

expressions.

Especially for the 3GPP element pattern, arguably the

most practical antenna configuration, we proposed a further
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Fig. 11: SINR coverage probability with the 3GPP element pattern under
Model 2. The aligned and misaligned gains are fit independently with the
exponential-logarithmic distributions in Remarks 2 and 4, respectively, for
{nTX, nRX} = {64, 16} and {256, 64}.

simplified SINR coverage probability expression. This relies

only on the exponentially distributed aligned and misaligned

gains, which are known to be the simplest random variables

for deriving the SINR coverage probability expressions.

With a slight increase in complexity, we have also provided

non-simplified SINR coverage probability expressions as well

as the corresponding aligned and misaligned gain distributions.

These analytic expressions are versatile, and thus are expected

to be exploited in more generic scenarios that particularly

necessitate a higher accuracy, which could be an interesting

topic for further research. Furthermore, with the proposed

analytic framework, an extension of this work could be to

investigate other mmWave network settings such as different

carrier frequencies, channel/antenna models, and an uplink

scenario. Besides, beyond the specific examples treated in the

paper, our proposed methodology approach can be applied to

study other cases.

APPENDIX I – PROOF OF PROPOSITION 1

Consider the joint probability Pr
(

SINR ≥ T, xo ∈ Φi

)

=
Pr

(

SINRi ≥ T
)

in (24) when the typical UE associates with a

BS in state i ∈ {L,N}. Applying the SINR definition in (15)

to (24), it is recast as follows.

Pr
(

SINRi ≥ T
)

= Erixo
,IL

i
,IN

i

[

Pr

(

G
(ISO)
o ℓi(rixo

)

(ILi + INi ) + σ2
≥ T

)

]

(38)

= Erixo
,IL

i
,IN

i

[

Pr

(

G
(ISO)
o ≥

T (ILi + INi + σ2)

ℓi(rixo
)

)]

(39)

= Erixo
,IL

i
,IN

i

[

F
(ISO)
Go

(

T (ILi + INi + σ2)

ℓi(rixo
)

;µo

)]

(40)

The last step is because the innermost probability in (39)

corresponds to G
(ISO)
o ’s CCDF F

(ISO)
Go

(y;µo) with y that equals

T (ILi + INi + σ2)/ℓi(rixo
).

Next, applying F
(ISO)
Go

(y;µo) = exp(−µoy) in Remark 1 to

(40), we obtain
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Fig. 12: Comparison between the SINR coverage probability expressions under Models 1 and 2 and their simplified expressions under Models 3 and 4. The
simulated curves are obtained only under Models 1 and 2 without simplifying the channel-antenna configurations.

(40) = Erixo
,IL

i
,IN

i

[

exp

(

−µoTσ2

ℓi(rixo
)

)

exp

(

−µoTILi
ℓi(rixo

)

)

exp

(

−µoTINi
ℓi(rixo

)

)]

(41)

= Erixo

[

e
− µoTσ2

ℓi(rixo
)
EIL

i

[

e
− µoTILi

ℓi(rixo
)

]

EIN
i

[

e
− µoTINi

ℓi(rixo
)

]]

. (42)

The last step is firstly because rixo
is independent of ILi and of

INi , according to Slyvnyak’s theorem [29]. It is additionally

because ILi and of INi are mutually independent owing to the

Markov property for the PPPs ΦL
i and ΦN

i [29]. The innermost

two expectation terms in (42) can be represented using the

Laplace transform LX(s) := EX [esX ]. Then, the outermost

expectation can be calculated using rixo
’s PDF frixo

in (26),

yielding

(42) =

∫ ∞

0
frixo

(r) exp

(

−µoTσ2

ℓi(r)

)

LIL
i

(

µoT

ℓi(r)

)

LIN
i

(

µoT

ℓi(r)

)

dr.

(43)

Lastly, in what follows we expand LIj
i
(s) with s =

µoT/ℓ
i(r) in (43), i.e., the Laplace transform of the interfer-

ence from the BSs in Φj for j ∈ {L,N} when xo ∈ Φi.

Following the interference expression in (15), its Laplace

transform is represented as follows

L
I
j
i

(s) = EΦj ,Gx



exp



−s
∑

x∈Φj

G
(ISO)
x ℓj(rx)







 (44)

(a)
= EΦj





∏

x∈Φj

EGx

[

exp
(

−sG
(ISO)
x ℓj(rx)

)]



 (45)

(b)
= exp

(

− 2πλb

∫ ∞
(

βjr
αi

βi

) 1
αj

(

1−EGx

[

e−sG
(ISO)
x ℓj(v)

])

vpj(v)dv

)

,

(46)

step (a) follows from the fact that G
(ISO)
x is independent of

Φj and from i.i.d. G
(ISO)
x ’s. Step (b) comes from applying

the probability generating functional (PGFL) of a HPPP [29].

Since the interfering BS locations and G
(ISO)
x ’s are indepen-

dent, (46) is recast as follows

(46) =

exp

(

− 2πλbEGx





∫ ∞
(

βjr
αi

βi

) 1
αj



1− e
−µoTG

(ISO)
x ℓj(v)

ℓi(r)



 vpj(v)dv





)

.

(47)

The innermost expectation can be calculated using Gx
(ISO)’s

PDF f
(ISO)
Gx

(y; a, b) in Remark 3. Combining this result

with (43) and (24) and applying the law of total probability

completes the proof. �

APPENDIX II – PROOF OF PROPOSITION 2

Replacing the exponentially distributed G
(ISO)
o by the

G
(3GPP)
o in the joint probability calculation eq. (38), we get

Pr
(

SINRi ≥ T
)

= Erixo
,IL

i
,IN

i

[

Pr

(

G
(3GPP)
o ℓi(rixo

)

(ILi + INi ) + σ2
≥ T

)

]

(48)

= Erixo
,IL

i
,IN

i

[

F
(3GPP)
Go

(

T (ILi + INi + σ2)

ℓi(rixo
)

; bo, po

)]

.

(49)

Similarly as before, the last step is because the innermost

probability corresponds to G
(3GPP)
o ’s CCDF F

(3GPP)
Go

(y; bo, po)
with y that equals T (ILi + INi + σ2)/ℓi(rixo

).

Next, applying F
(3GPP)
Go

(y; bo, po) =
ln(1−(1−po)e

−boy)
ln po

in

Remark 2 to (49), we obtain
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(49) = Erixo
,IL

i
,IN

i

[

1

ln(po)
ln

(

1− (1− po) exp

(

−boTσ2

ℓi(rixo
)

)

exp

(

−boTILi
ℓi(rixo

)

)

exp

(

−boTINi
ℓi(rixo

)

))]

(50)

≤ Erixo

[

1

ln(po)
ln

(

1− (1− po)e
− boTσ2

ℓi(rixo
)

EIL
i

[

e
− boTILi

ℓi(rixo
)

]

EIN
i

[

e
− boTINi

ℓi(rixo
)

])]

. (51)

The last step is firstly because rixo
is independent of ILi and

of INi , according to Slyvnyak’s theorem [29]. Additionally

because ILi and of INi are mutually independent owing to the

Markov property for the PPPs ΦL
i and ΦN

i [29]. However,

differently from the proof of Proposition 1, here we used

Jensen’s inequality to derive an upper bound of (50). This

permits to bring the expectations inside the logarithm, thanks

to the fact that CCDF of G
(3GPP)
o is a concave function. Then,

the outermost expectation can be calculated using rixo
’s PDF

frixo
in (26), yielding

(51) =

∫ ∞

0

fr
xi
o
(r)

ln (po)
ln

(

1− (1− po)

× exp

(

−boTrαiσ2

βi

)

LIL
i

(

boT

ℓi(r)

)

LIN
i

(

boT

ℓi(r)

))

dr. (52)

To conclude the proof, the Laplace transforms are used as

in eq. (46) of the proof of Proposition 1, where the interfering

gain G
(ISO)
x is replaced with the respective G

(3GPP)
x . �

REFERENCES

[1] M. Rebato, J. Park, P. Popovski, E. de Carvalho, and M. Zorzi, “Stochas-
tic Geometric Coverage Analysis in mmWave Cellular Networks with a
Realistic Channel Model,” in Proc. IEEE Glob. Commun. Conf. Mobile

Wireless Netw. (Globecom MWN), Singapore, Dec. 2017.
[2] W. Roh, J. Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and

F. Aryanfar, “Millimeter-wave beamforming as an enabling technology
for 5G cellular communications: theoretical feasibility and prototype
results,” IEEE Commun. Mag, vol. 52, no. 2, pp. 106–113, Feb. 2014.

[3] 3GPP TR 38.803, “TR for Study on New Radio Access Technology:
RF and co-existence aspects,” Tech. Rep., 2017.

[4] H. Wang, K. Huang, and T. A. Tsiftsis, “Base station cooperation in
millimeter wave cellular networks: Performance enhancement of cell-
edge users,” IEEE Transactions on Communications, vol. 66, no. 11,
pp. 5124–5139, Nov 2018.

[5] T. Bai and R. W. Heath, “Coverage and Rate Analysis for Millimeter-
Wave Cellular Networks,” IEEE Trans. Wireless Commun., vol. 14,
no. 2, pp. 1100–1114, Feb. 2015.

[6] J. G. Andrews, T. Bai, M. N. Kulkarni, A. Alkhateeb, A. K. Gupta,
and R. W. Heath, “Modeling and Analyzing Millimeter Wave Cellular
Systems,” IEEE Trans. Commun., vol. 65, no. 1, pp. 403–430, Jan. 2017.

[7] M. Di Renzo, “Stochastic Geometry Modeling and Analysis of Multi-
Tier Millimeter Wave Cellular Networks,” IEEE Trans. Wireless Com-

mun., vol. 14, no. 9, pp. 5038–5057, Sept 2015.
[8] J. Park, S. L. Kim, and J. Zander, “Tractable Resource Management With

Uplink Decoupled Millimeter-Wave Overlay in Ultra-Dense Cellular
Networks,” IEEE Trans. Wireless Commun., vol. 15, no. 6, pp. 4362–
4379, June 2016.

[9] Y. Li, J. G. Andrews, F. Baccelli, T. D. Novlan, and C. Zhang, “Design
and Analysis of Initial Access in Millimeter Wave Cellular Networks,”
IEEE Trans. Wireless Commun., vol. 16, no. 10, pp. 6409–6425, Oct.
2017.

[10] A. K. Gupta, J. G. Andrews, and R. W. Heath, “On the Feasibility of
Sharing Spectrum Licenses in mmWave Cellular Systems,” IEEE Trans.

Commun., vol. 64, no. 9, pp. 3981–3995, Sep. 2016.
[11] J. Kim, J. Park, S. Kim, S. L. Kim, K. W. Sung, and K. S. Kim,

“Millimeter-Wave Interference Avoidance via Building-Aware Associ-
ations,” IEEE Access, vol. 6, pp. 10 618–10 634, Feb. 2018.

[12] 3GPP TR 38.900 v14.2.0, “Technical Specification Group Radio Access
Network; Study on channel model for frequency spectrum above 6 GHz,”
Tech. Rep., 2016.

[13] M. Akdeniz, Y. Liu, M. Samimi, S. Sun, S. Rangan, T. Rappaport, and
E. Erkip, “Millimeter Wave Channel Modeling and Cellular Capacity
Evaluation,” IEEE J. Sel. Areas Commun, vol. 32, no. 6, pp. 1164–1179,
June 2014.

[14] D. Tse and P. Viswanath, Fundamentals of Wireless Communication.
New York, USA: Cambridge University Press, 2005.

[15] M. Rebato, L. Resteghini, C. Mazzucco, and M. Zorzi, “Study of
Realistic Antenna Patterns in 5G mmWave Cellular Scenarios,” in Proc.

IEEE Int. Conf. Commun., Reliability, and Modeling Symposium, Kansas
City, USA, May 2018.

[16] M. N. Kulkarni, E. Visotsky, and J. G. Andrews, “Correction
Factor for Analysis of MIMO Wireless Networks With Highly
Directional Beamforming,” Nov 2017. [Online]. Available: http:
//arxiv.org/abs/1710.07369

[17] M. D. Renzo, W. Lu, and P. Guan, “The Intensity Matching Approach: A
Tractable Stochastic Geometry Approximation to System-Level Analysis
of Cellular Networks,” IEEE Transactions on Wireless Communications,
vol. 15, no. 9, pp. 5963–5983, Sept 2016.

[18] X. Yu, J. Zhang, M. Haenggi, and K. B. Letaief, “Coverage analysis for
millimeter wave networks: The impact of directional antenna arrays,”
IEEE Journal on Selected Areas in Communications, vol. 35, no. 7, pp.
1498–1512, July 2017.

[19] N. Deng and M. Haenggi, “A novel approximate antenna pattern for
directional antenna arrays,” IEEE Wireless Communications Letters, pp.
1–1, 2018.

[20] M. K. Samimi and T. S. Rappaport, “3-D statistical channel model for
millimeter-wave outdoor mobile broadband communications,” in Proc.

IEEE Int. Conf. Commun. (ICC), June 2015, pp. 2430–2436.

[21] M. Mezzavilla, S. Dutta, M. Zhang, M. R. Akdeniz, and S. Rangan,
“5G MmWave Module for the ns-3 Network Simulator,” in Proceedings

of the 18th ACM International Conference on Modeling, Analysis and

Simulation of Wireless and Mobile Systems, ser. MSWiM ’15. New
York, NY, USA: ACM, 2015, pp. 283–290.

[22] R. Ford, M. Zhang, S. Dutta, M. Mezzavilla, S. Rangan, and M. Zorzi,
“A Framework for End-to-End Evaluation of 5G mmWave Cellular
Networks in ns-3,” in Proceedings of the Workshop on ns-3, ser. WNS3
’16. New York, NY, USA: ACM, 2016, pp. 85–92.

[23] M. Rebato, M. Mezzavilla, S. Rangan, and M. Zorzi, “Resource Shar-
ing in 5G mmWave Cellular Networks,” in Proc. IEEE INFOCOM

Millimeter-Wave Netw. Workshop (mmNet), Apr. 2016, pp. 271–276.

[24] 3GPP, “Study on Channel Model for Frequencies from 0.5 to 100 GHz,”
Tech. Rep. version 14.2.0., Sep. 2017.

[25] 3GPP TR 37.840 v12.1.0, “Technical Specification Group Radio Access
Network; Study of Radio Frequency and Electromagnetic Compatibility
requirements for Active Antenna Array System base station,” Tech. Rep.,
2013.

[26] 3GPP TR 36.873 v12.4.0, “Technical Specification Group Radio Access
Network; Study on 3D channel model for LTE,” Tech. Rep., 2017.

[27] T. S. Rappaport, Y. Xing, G. R. MacCartney, A. F. Molisch, E. Mellios,
and J. Zhang, “Overview of Millimeter Wave Communications for Fifth-
Generation (5G) Wireless Networks – With a Focus on Propagation
Models,” IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 6213–
6230, Dec 2017.

[28] P. Kyosti and et al., “WINNER II channel model,” Technical Report

IST-WINNER D1.1.2 ver 1.1, Sept. 2007.

[29] M. Haenggi, Stochastic Geometry for Wireless Networks. Cambridge
Univ. Press, 2013.

[30] R. Tahmasbi and S. Rezaei, “A Two-parameter Lifetime Distribution
with Decreasing Failure Rate,” Comput. Stat. Data Anal., vol. 52, no. 8,
pp. 3889–3901, Apr. 2008.

[31] S. Bennett, “Log-Logistic Regression Models for Survival Data,” J. R.

Stat. Soc. Ser. C. Appl. Stat., vol. 32, no. 2, pp. 165–171, 1983.

[32] I. W. Burr, “Cumulative frequency functions,” The Annals of Mathemat-

ical Statistics, vol. 13, no. 2, pp. 215–232, 1942.

[33] P. Popovski, J. J. Nielsen, C. Stefanovic, E. de Carvalho, E. G. Ström,
K. F. Trillingsgaard, A. Bana, D. Kim, R. Kotaba, J. Park, and R. B.
Sørensen, “Wireless Access for Ultra-Reliable Low-Latency Communi-
cation (URLLC): Principles and Building Blocks,” IEEE Netw., vol. 32,
no. 2, pp. 16–23, Mar. 2018.

[34] M. Bennis, M. Debbah, and H. V. Poor, “Ultra-reliable and low-latency
wireless communication: Tail, risk and scale,” 2018. [Online]. Available:
http://arxiv.org/abs/1801.01270



0090-6778 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2019.2895850, IEEE

Transactions on Communications

16

[35] J. Park, D. Kim, P. Popovski, and S.-L. Kim, “Revisiting Frequency
Reuse towards Supporting Ultra-Reliable Ubiquitous-Rate Communica-
tion,” Proc. IEEE WiOpt Wksp. SpaSWiN, Paris, France, May 2017.

[36] M. Giordani, M. Rebato, A. Zanella, and M. Zorzi, “Coverage and
connectivity analysis of millimeter wave vehicular networks,” Ad Hoc

Networks, vol. 80, pp. 158 – 171, 2018.
[37] M. Rebato, M. Mezzavilla, S. Rangan, F. Boccardi, and M. Zorzi,

“Understanding Noise and Interference Regimes in 5G Millimeter-Wave
Cellular Networks,” in 22th European Wireless Conference, May 2016.

[38] H. Shokri-Ghadikolaei, C. Fischione, and E. Modiano, “Interference
model similarity index and its applications to millimeter-wave networks,”
IEEE Transactions on Wireless Communications, vol. 17, no. 1, pp. 71–
85, Jan 2018.


