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Experiments were conducted in which the behavior of scalar interfaces in turbulent jets was
examined, using laser-induced fluorescence (LIF) techniques. The experiments were carried
out in a high Schmidt number fluid (water), on the jet centerline, over a jet Reynolds number

range of 1000<Re<24 000, Both two-dimensional scalar data, c(rt) at fixed x/d, and one-
dimensional scalar data, c(t) at fixed x/d and rix, were analyzed using standard one- and two-
dimensional fractal box-counting algorithms. Careful treatment was given to the handling of
noise. Both long and short records as well as off-centerline measurements were also
investigated. The important effect of threshold upon the results is discussed. No evidence was
found of a constant (power-law) fractal dimension over the range of Reynolds numbers
studied. On the other hand, the results are consistent with the computed behavior of a simple
stochastic model of interface geometry.

1. INTRODUCTION

The proposals of Mandelbrot'" to account for the sto-
chastic geometry of turbulent interfaces in terms of power-
law fractal similarity generated considerable hope in the tur-
bulence community. The proposed formalism held the
promise of an alternate interpretation of a variety of impor-
tant quantities in turbulence related to energy spectra and
dissipation as well as a description of the behavior of the
interfacial surface of scalars and mixing down to molecular
diffusion scales (e.g., Gouldin' and Sreenivasan etaL.6 ). The
availability of scalar concentration and image data from sev-
eral turbulent flows in our laboratory led us to a search for a
power-law fractal description, i.e., a similarity scaling
wherein the number of elements N(A), of an extent A, re-
quired to cover the scalar interface would be given by

N(A) -x D (1)

In the work presented here, we report on the results of
our investigations on the behavior of scalar interfaces in tur-
bulent jets using laser induced fluorescence (LIF) tech-

niques and a fractal box-counting algorithm to analyze the
data. In the time since this work was begun, results have
appeared in the literature of experimental measures of frac-

tals in turbulent shear flows by several investigations. See,
for example, Sreenivasan and Meneveau,7 Sreenivasan et
al,6 and Prasad and Sreenivasan.8 -9 They report that, in a
variety of turbulent flows, including turbulent jets, scalar
isoconcentration surfaces exhibit a constant fractal dimen-
sion in a small neighborhood of about D = 2.36.

I1. APPARATUS AND PROCEDURE

The experiments were carried out utilizing the facility
shown in Fig. 1. A large rectangular water tank of about two
cubic meters volume acted as the (discharge) reservoir.
Large windows on all sides of the tank provided optical ac-
cess. To establish the flow, the jet plenum was filled with
water tagged by a fluorescent laser dye (sodium fluores-
cein), and air was sonically metered to drive the jet fluid at

constant velocity through a 2.54mm (0.1 in.) diam nozzle at

the base of the plenum. The beam from an argon ion laser
was passed through appropriate optics and aligned radially
through the centerline of the jet. A beam stop prevented
reflections from the opposite window. In the two-dimension-
al measurements, a line segment centered on the jet axis, at

x/d 300, was imaged onto a linear photodiode array. The
array was then scanned during a run, providing streak image
data of concentration in one spatial dimension versus time
(cf. Dimotakis et al.,'0 Dahm," Green and Losi,'2 and
Dahm and Dimotakis' 3 ).

For the single-point measurements, the laser beam op-
tics were designed to generate a small Gaussian waist at the
focus. A low laser power of 1.0 W was used to avoid heating
of the dyed fluid in the very small focal volume and to pre-
vent saturation. The plenum dye concentration was kept less
than 10 -6 M. Consequently, the much lower concentrations
at the measuring station did not significantly attenuate or
steer the beam. The resulting signal to noise was limited pri-
marily by the 12-bit dynamic range of the A/D converter,
rather than shot noise from the low fluorescence intensity.

The single-point measurements were made utilizing a
lowf # lens to collect light from a very short segment cen-
tered at the waist of the focused laser beam (on thejet center-
line, at x/d 1000) onto a photomultiplier tube, yielding sin-
gle-point concentration values versus time. An optical
low-pass filter eliminated background laser light, passing
only the frequency-shifted fluorescence. A slit spatial filter
defined the length of the laser line segment sampled. The slit
width was chosen such that the sampling volume was rough-
ly cubic in shape, about 80 ,um on each side. The use of the
slit rather than a pinhole ensured that any small beam move-
ments in the vertical direction did not alter the measurement
volume. The long Rayleigh range and latitude in the depth of
field minimized the effect of motion in either of the two hori-
zontal directions. Data acquisition was computer con-
trolled. The signal amplifier incorporated a three-pole But-
terworth filter, with a cutoff frequency set slightly under 10
kHz. The data were sampled at 20 kHz for all the runs.
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FIG. 1. Experimental apparatus.

III. RESULTS AND DISCUSSION

The single-point scalar concentration measurements

were made as a function of time on the jet centerline, for a

range of Reynolds numbers from 2940 to 23 400. The Reyn-

olds number used here is defined as

Re = uod/v, (2)

where u0 is the jet nozzle velocity, d is the jet nozzle diame-
ter, and v is the kinematic viscosity. Careful consideration
was given to the treatment of noise. Specifically, power spec-
tra of the data were calculated, allowing the optimal (least-
mean-squared error) Wiener filter (Wiener,"4 Press et al.,'5

Dowling,"6 and Dowling et al."7) to be obtained. The data
were then convolved with the Wiener kernel to obtain the

optimally estimated signal, consistent with the detection
noise level in each run. Sample concentration power spectra,
S, (f ), before and after the filtering process, are compared

in Fig. 2. The normalization time rL is the large scale pas-
sage time, 6 / U, where 5 is the local visual jet diameter and
QI is the mean centerline velocity calculated from the decay
law reported by Chen and Rodi'8 (cf. Dowling'6 ).

In order to apply the Wiener filter effectively, the data
were intentionally oversampled. This is clearly seen by the
extent of the noise floor in the unfiltered spectrum of Fig. 2.
Note that the signal-to-noise ratio (SNR) is a function of
frequency, since the total power spectrum increases with de-
creasing frequency, while the noise is well described as
white, or of constant level. We recognize that there are not
only requirements of spatial and temporal resolution on such
measurements, but also what we could call "SNR resolu-
tion," located roughly at the intersection of the signal spec-
trum and the noise floor. In the single-point measurements
discussed here, spatial resolution was typically the most re-
strictive of the three.

The Wiener-filtered data were subsequently threshold-
ed and transitions, or crossings of the threshold value, were
located. The threshold value chosen was the local mean con-

centration c. This is an unambiguous choice: it is close to
both the mode of the concentration PDF and the value

where the most transitions are obtained. From the vantage

point of scalar diffusion, c is also the value toward which the

local scalar field is driven by the diffusion process (scalar
dissipation). The effect of the choice of alternate thresholds
on the results is, however, an important issue and is dis-
cussed below.

The resulting record of transition locations was then
processed using a one-dimensional fractal box-counting al-
gorithm. The box-counting algorithm determines the num-
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FIG. 2. Demonstration of the Wiener filter.
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ber N of "tiles" (contiguous, constant length segments) re-
quired to cover the transition locations on a record, as a
function of the tile size A. The logarithm of N(A) may then
be plotted as a function of log(A). The logarithmic deriva-

tive,

D(A) e-d log[N(A) ]/d log(A), (3)

which is equal to minus the slope of the curve on this log-log
plot, is then interpreted as the associated (local scale) fractal

dimension.
As a demonstration of the box-counting algorithm uti-

lized, a record was generated numerically of a Cantor set
(with a necessarily finite range of scales) and processed. The
result of the calculation is included in Fig. 3. The calculated
points are connected with straight lines in the plots to aid the
eye. The constant slope region is clearly visible, although
there is some fluctuation about the expected analytic value of
0.631. This may correspond to the oscillations observed by
Smith et al."' in numerical calculations of the fractal dimen-
sion for this set. The deviation at the smallest values of A is
attributable to the lack of smaller features in this representa-
tion of the Cantor set. At these smallest scales, transitions
occupy an entire box on the line containing the set, while in a
true Cantor set, the transitions have zero measure. Thus
there are fewer transitions than there ought to be and this
reduces D(A) for small 2. At the largest scales, with A ap-
proaching the finite record length, there are no gaps between
transitions of the size of the record or larger. As a result,
large gaps are under-represented and D(2) rises. The devia-
tions from the power-law fractal similarity behavior at the
two extremes are therefore a consequence of the finite range
of scales represented in the record and not an artifact of the
processing.

The log-log plots of N(2) and plots of the resulting
D(A) for our high resolution, single-point on-axis concen-
tration measurements in the jet, using a threshold value
equal to the mean concentration, are shown in Figs. 4 and 5.
The length scale, estimated from the calculated mean (cen-
terline) velocity, has been expressed in absolute length (me-
ters).
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FIG. 4. Log-log tiling plots of centerline data for four Reynolds numbers
(x/d = 100). Note that log,(6/m) n - 1.0.

If the data were characterized by a constant (power-
law) fractal behavior, one would observe a horizontal region
on the curves in Fig. 5. As can be seen, there is no evidence of

a constant value on the D(A) plots, other than the limiting
values of 0 and 1. It is for this reason that we denoted the
logarithmic derivative of the N(2) curve by D(A) [Eq.
(3) 1, rather than simply D. The observed smooth variation
in D(2) occurs over a range of equivalent spatial scales from
below the Kolmogorov scale (see the discussion below), up
to the outer large scales of the flow. The limiting value of I at
the large tile sizes indicates that every tile of sufficient length
covers transitions. This is to be expected for scales on the
order of thejet diameter (about I I cm for the data in Fig. 5),
or larger, since over such a distance (or corresponding time)
a crossing of the mean concentration level is almost certain.
Failure to reach an asymptotic value of unity would indicate
that either the data record was of insufficient length to cap-
ture the largest scales of the flow, or that the processing
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FIG. 3. Calculation for the Cantor set.
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FIG. 5. Corresponding D(A) plots for Fig. 4. Here again log,(&/m)
,1.0. For small scales, see the text.
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algorithm stopped at a tile size shorter than the largest
scales.

Note that all four curves in Fig. 5 merge in the vicinity of
80 lum. This is consistent with our estimate of the spatial
resolution of these measurements. To see how this relates to
the spatial resolution requirements for this flow, we can esti-
mate the Kolmogorov2 0 scale directly from its definition in
terms of the mean energy dissipation rate, i.e.,

AK = W(v3 /E) . (4)

Using the result of Friehe et al.2 ' for the dissipation rate e on
the centerline of a turbulent jet (cf. Dowling' 6 ), i.e.,

- 4
c = 48 (U3 Id)

0 - 0) )x(i dX
(5)

the Kolmogorov scales for these measurements are found to
range from roughly 50 to 250,um. By similarity arguments,
the velocity field spatial scale where the action of viscosity
will become important, say A2, will be some multiple of AK

Normalized energy spectra are found to break from a con-

stant power law at a wave number k, such that kAK IZ

(e.g., Chapman 2 2 ). This yields an estimate of

A,, = ir/k - 25AK. (6)

The smallest expected scalar diffusion (Batchelor23 ) scale
A.- is smaller yet by a factor of Sc112 , or 25-30 in this case,

yielding an estimate for A., very close to AK (in water).
These estimates are corroborated by the gas phase experi-
ments of Dowling"6 as well as the measurements in water by
Buch and Dahm24 and suggest that the smallest diffusion
scales may have been resolved in these experiments, at least

at the lower Reynolds numbers.

As mentioned previously, earlier measurements were
also made using a 512 pixel linear photodiode array, yielding
line images versus time (two-dimensional streak data). The
images were recorded at Reynolds numbers of 1000, 2000,
and 3000, and were centered on the jet axis, spanning about a
tenth of the local jet diameter (at x/d = 300). The local
Kolmogorov scale was resolved in each case. These data
were analyzed in several ways. First, the individual time re-
cords of each of the 512 pixels of the array were processed
using the box-counting algorithm discussed previously. The
results matched those of the single-point data. Next, the 512
element line images were processed separately, providing us
with spatial results without invoking Taylor's hypothesis.
Once again, while the dynamic range of the data is limited by
the number of pixels in the array, we find a similar behavior
(Fig. 6).

In addition to the one-dimensional box-counting algo-
rithm, a two-dimensional tiling program was also employed
on the streak image data. For those data, the data acquisition
rate of the linear array was adjusted to be proportional to the
local flow velocity, providing a two-dimensional streak im-
age. This minimized changes in the stretching between the
spatial and temporal dimensions with changes in Reynolds
number. The results are shown in Fig. 7. Note that since this
result uses two-dimensional tiling, D(X) is now bounded by
the limiting values of I and 2. Qualitatively, the results from
the line images and the full streak images are similar. Never-
theless, there is a small and systematic quantitative differ-
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FIG. 6. Line image results.

ence-the slopes of the higher-dimensional data are steeper.
We believe that this difference is not an artifact.

Finally, single-point measurements were made off the
jet centerline at 77 = rix of 0.06 and 0.13, at a Reynolds num-
ber of 8600. These results are shown in Fig. 8, with a corre-
sponding centerline curve. The similarity in the three results
is noteworthy.

This ensemble of on- and off-axis, one- and two-dimen-
sional measurements is significant because it serves to exam-
ine the effect of analyzing temporal, rather than spatial,
data. If one wishes to describe a spatial scalar interface, rath-
er than an Eulerian point concentration history, some type
of assumption is required, since we have insufficient infor-
mation about the velocity field to make an exact conversion.
We have used the calculated mean centerline velocity to con-
vert the temporal data to spatial results in Fig. 5. Near the jet
centerline, we feel this is acceptable, while near the edge of
the jet, we recognize that the errors involved may not be
negligible. Rather than open the issue of how accurate this
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FIG. 7. Two-dimensional (streak image) results.
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FIG. 8.0Off-axis single-point results (Re = 8600, 77 rix).

implementation of Taylor's hypothesis may be, we note C

posteriorithat the results are insensitive to its use. The behav
ior is qualitatively the same for the single-point measure

ments in Fig. 5, the off-axis results in Fig. 8, which coule
exhibit the greatest variance from Taylor's hypothesis, anc
the results in Fig. 6 from true (line image data). The latter

of course, do not utilize Taylor's hypothesis at all. The two
dimensional tiling algorithm and the corresponding result
in Fig. 7 again demonstrate similar behavior.

It has been suggested (Sreenivasan and Meneveau7

that if long records are used in the box-counting algorithm
they may mask local power-law fractal behavior. We do no

find this to be the case. This issue is discussed in the Appen

dix.
The persistence of these results may be traceable to

strong stochastic character of the interfaces. In an effort to
model this behavior, we devised a simple Monte Carlo de
scription of the threshold crossings. A program was written
to produce a record of crossings that were randomly space(

with a lognormal distribution. PDF's of our measured cross

ing spacings independently show that the lognormal distr
bution is a good approximation. Two parameters, the loco
tion of the maximum and the width of the distribution, wer
allowed. Figure 9 includes the result for a Reynolds numbs

D (X) .iI

4 _ 
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0 1.0 2.0 3.0 4.0 5.0

10glo(X)

FIG. 9. Comparison of lognormal model and experiment (Re 5800).

a of 5800. The agreement between model and experiment is

I- good.
Finally, we wish to address the important issue of the

d choice of the value of the threshold. Recall that in the box-
d counting algorithm, a specific concentration value is chosen,
r, and crossings of this threshold are located. These crossings

? correspond to the passage of an isoconcentration surface
ts possessing the threshold value. For the results presented pre-

viously, the local mean concentration c was used as the
) threshold value. Recall that similar behavior is observed
, both on and off axis, despite the fact that the local (absolute)
t mean concentration changes significantly with y = rix.

l- We examined the entire range of possible thresholds for
our single-point data, both on axis and off axis at q = 0. 13.

a Three-dimensional plots of D(A) versus threshold and
:o log( () are shown in Figs. 10 and I1. A contour plot of the
e- on-axis data offers an alternate representation of the results
n in Fig. IO (Fig. 12). As can be seen, the continuous variation

d of the D(A) curves, with A persists for a rather large range of
s- threshold values on either side of the local mean concentra-
ri- tion, As the threshold is either increased or decreased, two

a- effects are observed. The sloping region shifts position,
re achieving the asymptotic value of I at progressively larger

er scales, and a bump appears at smaller values of A. While the

FIG. 10. Three-dimensional plot of
~ \ D(A) versus threshold and A for single-

point, on-axis measurements
(Re= 10 000).

1.7

Threshold (c / ~)
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FIG. 11. Three-dimensional plot of
D(A) versus threshold and A for single-

point, off-axis measurements

(Re10 000, i7=0.13).

linear scale may not make it clear, the off-axis data exhibit a

similar bump at small scales as the on-axis data, when
viewed at smaller values in logarithmic coordinates.

To investigate whether this behavior was a consequence
of the random character of the concentration signal rather

than the fluid dynamics of the turbulent jet, we processed
data of laser light scattered from a very dilute, constant con-

centration solution. These data are essentially measure-

ments of (shot) noise, possessing a white power spectrum. A
narrow Gaussian filter was used as a cutoff to eliminate the
highest frequencies. The corresponding three-dimensional

plot of D(A) for these noise data is displayed as Fig. 13. The
global behavior is very similar to Fig. 10, even though, for

the noise data, no fluid mechanics are involved.

Note that, despite the qualitative similarities, there are
several important quantitative differences between Fig. 10

and Fig. 13. The rise to the asymptotic value of 1 has a differ-
ent slope in the two plots. This slope is a measure of the width
of the distribution of scales. The scale at which the midpoint
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.20 .95

threshold (c /c)

1.70

FIG. 12. Contour plot of data in Fig. 10.

of the rise is found, which relates to the location of the maxi-
mum of the distribution, also varies. Finally, the range of
normalized concentrations is much narrower in Fig. 13 than
in Fig. 10, reflecting the very different transition PDF's in

each case. While there is no particular relationship between

these quantities for the noise data and the jet results, we do
expect that they will provide useful information in the com-

parison of fluid flows. This topic, which is somewhat beyond

the intent of the present paper, is left for future discussions.

To further understand the three-dimensional plots, we
need to consider the nature of the concentration signal we
are examining. The possible scalar values are bounded by
zero and some upper limit, and the measured concentration

time history exhibits many maxima and minima. Near the
mean, relatively few of these extrema are encountered. On

the other hand, for thresholds approaching the highest or
lowest values detected, many such turning points are found,
and they may dominate the statistics. Picture a local mini-
mum in concentration, with a roughly parabolic dependence
of c(t) in its vicinity. Imagine then a threshold level that is
slowly decreased toward the minimum value. Two threshold
crossings are encountered, which, as the threshold is
lowered, move closer together. These eventually (almost)
join before the threshold drops below the minimum (recall
that the signal is discretely sampled in time). Thus near the
turning points there can be a separation of scales; one length
is associated with the typical distance between extrema and
the other is a much smaller scale associated with the spacing
of crossings within pairs at each extremum.

This scale separation manifests itself in the D(A) plots
in two primary ways. One is the appearance of a bump at the
smallest scales, traceable to the double crossings at each ex-
tremum. This bump is indicative of a characteristic length at
that scale. The second is that the rise of D(A) to its asympto-
tic value of unity is shifted to larger scales as the threshold is
increased, or decreased, from the local mean. This is ascriba-
ble to what could be called conservation of spacing. Pairs of
crossings drop out as the threshold moves past their ex-
trema, producing a larger length scale associated with the
distance between crossings to either side of the pair. This is
enhanced by crossings within a pair coming closer together
as the threshold approaches their extremum, causing the
spaces between adjacent pairs to correspondingly increase.
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D (X)

FIG. 13. Three-dimensional plot of
D(A) for noise data.

I1.15
1.1

Both the bump at small scales and the shift in the rise are
evident in all of the three-dimensional D(A) plots.

IV. CONCLUSIONS

In this paper, we have discussed high resolution scalar
field measurements conducted in the far field of a turbulent
jet. We have examined single-point measurements, one-di-
mensional line images, two-dimensional streak images, en-
sembles of long records and short records, of on- and off-axis
data in jet flows spanning over a decade in Reynolds number.
We find no evidence that isoscalar surfaces are described by
a fractal (power-law) similarity.

There have been a number of papers documenting ex-
perimental measurements of fractal dimension in turbulent
flows, e.g., Sreenivasan and Meneveau,7 Sreenivasan et al.,6

Meneveau,2 5 Prasad and Sreenivasan,8 and Prasad and
Sreenivasan, 9 among others. These authors have concluded
that fractal (power-law) similarity is applicable to the de-
scription of scalar interfaces in a wide variety of turbulent
flows, including jets.

We should state explicitly that our results are in direct
disagreement with a significant portion of the previously
cited papers. While those authors have increasingly cau-
tioned against the use of one-dimensional data to search for
fractal behavior, they have, at the same time, offered evi-
dence in support of agreement between single-point mea-
surements, line images, and two-dimensional images. Our
examinations in this paper include the first two of the three
methods, and do not support the notion of a constant fractal
dimension. Instead, we found that, over a wide range of loca-
tions, thresholds, flow conditions, and different types of
measurements, the behavior is well modeled by lognormal
statistics.

We offer one possibility how previous researchers con-
cluded that a constant fractal dimension is appropriate
where we do not. As we have demonstrated previously, the
influence of pairs of transitions near extrema may cause a
bump or even a fairly level region in the D(A) curves at
particular selections of the threshold. The thresholds used
by Sreenivasan et al. are much lower than the local mean and
may fall in such a region. It could be that the bump feature,
particularly when finding the dimension by fitting a line to

the log-log plots, gave the appearance of a constant dimen-
sion. It was only the direct differentiation of the curves that
allowed us to generate plots such as Fig. 10, thereby discern-
ing the bump.

Additionally, there is an issue concerning the two-di-
mensional results of Sreenivasan et al. and our findings. We
have not analyzed two-dimensional spatial images at this
time. Our use of two-dimensional streak images generated
by the linear array, an approximation of spatial images,
yielded results similar to those of our other data. However,
we recognize the analysis of these data involves several as-
sumptions which preclude exact comparison, and therefore
we cannot directly confirm or deny the two-dimensional re-
sults.

Our data and analysis force us to conclude that, at least
in the far field of turbulent jets, scalar interface geometry
cannot be described in terms of a constant fractal dimension,
under any of the flow conditions we have examined in our
experiments. Further, we have found that the behavior of
isoscalar surfaces with the local mean value agrees well with
a simple, lognormal, stochastic model. For values substan-
tially different than the local mean, similar behavior is ob-
served if the boundedness of the signal is taken into account.
This suggests to us that the notion of constant fractal dimen-
sion, if applicable to the jet scalar field at all, is something of
a special case rather than the norm. These conclusions were
the reason for avoiding the word "fractal" in our title, as that
was originally coined by Mandelbrot to denote the power
law of Eq. (1). In fact, Feder credits Mandelbrot as having
retracted his original definition of a fractal. Mandelbrot's
revised and more relaxed definition is not tied to a power law
(Hausdorff-Besicovitch) dimension, but rather to a general
geometric property of similarity (Feder,2 6 p. 11). We appre-
ciate that the flow in the far field of turbulent jets is charac-
terized by a host of similarity properties, indeed spanning
the full spectrum of scales (Dowling'6 ). We note, however,
that fractal (power law) behavior is not compelled by simi-
larity.

This conclusion suggests that perhaps the premise for a
constant (power-law) fractal dimension at moderate to high
Reynolds numbers should be reexamined, i.e., the proposal
that
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N(A) oa: -D (1)

can serve as the measure of the number of elements of scale A
required to cover the scalar interface, where D is a constant.

In particular, we recognize that Eq. ( 1 ) is not dimensionally

correct, at least as it stands; only a dimensionless group can

be related to a pure number. Equation (1) could be made

dimensionally correct using either inner variable scaling,

i.e.,

N(A) - (A 1l )- , (7a)

where A , is the scalar diffusion scale, or outer scaling, i.e.,

N(A) c: (A /6) - D, (7b)

where 6 is the local jet diameter, for example. There are

difficulties with such proposals, however, especially for val-

ues of the fractal dimension D substantially different from
the corresponding Euclidean values.

At least in the inertial range where one might expect the

power-law fractal similarity to hold, it would imply either
that the inner (Kolmogorov/Batchelor) scales [Eq. (7a) ],

or the outer scales [Eq. (7b) ] are imposed on the dynamics.
Yet, the high Reynolds number dimensional analysis and
similarity scaling derived from the early Kolmogorov2 7 hy-

potheses, which yield the - spectrum power laws, is

equivalent with the assumption, among other things, that
the only variables that enter in the inertial range cascade
dynamics are the local scale A (or wave number k) and the
kinetic energy dissipation rate E. The scaling laws implied by
Eqs. ( 7a) and (7b) are inconsistent with this assumption, as
no other length scale is derivable from A and e. While addi-
tional length scales are admissible in the subsequent turbu-

lence similarity hypotheses that incorporate the intermit-

tency corrections (e.g., Kolmogorov, 28 Oboukhov,2 9 and
Gurvich and Yaglom 2 0 ), these enter through similarity laws
that are much weaker than power laws, e.g., lognormal, and
provide only small corrections to the originally proposed

- i spectrum power-law exponent. Alternatively, the origi-

nal Kolmogorov similarity proposals of a scaleless cascade
range are found to be very nearly correct (also see the related
discussion in Dimotakis,3 0 p. 482). In contrast, Eqs. (7) are

equivalent to a strong dependence of the dynamics on outer,
or inner, scales. Consequently, it would appear that a power-
law description of the statistics at the high Reynolds

numbers of interest is inappropriate, not only on the basis of
the experimental data we have presented, but also on the
basis of dimensional analysis and similarity arguments.
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APPENDIX: ASPECTS OF THE FRACTAL ANALYSIS

This appendix expands upon several topics that we feel

deserve a more detailed discussion, including aspects of the

box-counting algorithm, the treatment of noise in the data,

and the consequence of analyzing shorter data records.
There are subtle end effects that can occur with the box-

counting algorithm. If the record submitted for box counting

is a nonintegral number of a particular tile size in length, the
last tile extends past the end of the record. Some type of

weighting scheme for this fractional end tile may suggest
itself, but such weighting requires the essentially ad hoc as-

signment of the corresponding probability of a transition.
We have conducted numerical experiments utilizing the one-
dimensional Cantor set, using nonintegral numbers of tiles.
They displayed sawtooth oscillations that varied in wave-

length as a function of tile size, consistent with end effects.
We verified that various weighting schemes do not correct

the difficulty. As a result, we decided that tile sizes should be

exact factors of the total record length. This ensures that

there is always an integral number of tiles in the record, and

thus eliminates end effects of this type.
It is significant to note that, using only integral tiles, the

log[N(A) I curves must be nonincreasing with increasing
tile size. It cannot require more larger tiles than smaller ones

to cover the same transitions. Note, also, that local increases
in the log[N(2) ] curve would yield a negative fractal di-
mension for the corresponding range of scales. This is, of
course, inadmissible. As an example, imagine a record six

elements long, in which the third and fourth elements con-

tain transitions Fig. 14(a). If tiles of size 2 are placed on the
record, the central tile will cover both transitions, and N(A)

is 1. If two tiles of size 3 are laid down, then both the first tile,
covering elements one through three, and the second tile,
covering elements four through six, will cover transitions. In
that case, N(A) will be 2. This example may appear to con-
tradict the statement that the log[N(A)] curves must be

(a) i I ~ I I

I I I X I X I I I

I I I x I x I I I

(b)

N(2) = 1.0

N(3) = 2.0

N(2) = 1.50

N(3) = 1.33

Ii

i -I

I I x I x I I

FIG. 14. Dependence on tile starting location. Tiles covering transitions,
denoted by "X," are indicated by narrow rectangles .(a) Fixed starting lo-
cation. (b) Weighted average over possible starting locations.
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nonincreasing with tile size. It actually illustrates another

issue.
We note that there is no preferred starting location or

reference point when tiling a record. The apparent difficulty
in the example is a consequence of the particular choice of

starting location. If the tiling is done as many times as there
are possible starting locations, all the information available
is extracted. In the example, there are two possible starting
locations for tiles of size 2, either on even or odd elements,
and three fortiles ofsize 3 [Fig. 14(b) ]. If theresults with all
possible starting locations are ensemble averaged, we find
that N(A) is 1.5 for tiles of size 2, and 1.,3 for tiles of size 3.
The need to shift tile locations and the restriction of having
an integral number of tiles in each record suggested the
choice of tile sizes and record lengths that are powers of 2 of
the sampling unit. We have found that using just eight differ-
ent starting locations, equally spaced, does a reasonable job
of reducing the effect illustrated in Fig. 14.

In addition to these end-effect difficulties, there is the
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FIG. 16. Influence of noise on log[N(A) I curves (Re = 2940).

of th e influence of unavoidable noise in the data. It has tion of noise at the smallest scales can influence the results
i appreciated for some time that the presence of noise in a significantly. As a demonstration of this behavior, a data
al can profoundly affect the statistics of level crossings

., ic 3,2 ).Snetebxcutigagrtmuiie record from a particular run was processed unfiltered, with a
I r i ngs . t sin et he b x ou ntin ao ri thm turmoil variety of G aussian filters of differing w idths, as w ell as w ith
illustrious transitions te issues of noie important. o the optimal (Wiener) filter. The Gaussian filter, if chosen

unfiltered thisnFgl 15d displays adores regiment o with an appropriate width (which, however, is not known a
unfiltered signal and the corresponding optimally priori), may serve as an approximation to the Wiener filter.

lner-) filtered signal. Bear in mind that the unfiltered Figure 16 shows the results for no filtering, insufficient filter-
Ll appears as noisy as it does because it has been over- . ... .
pled, as dictated for an effective implementation of the ing, optimal filtering, and overfiltering. It is evident that the

ner filter. It is apparent that noise grossly affects the presence of noise in the data may result in a region of nearly
ler filter. It is apparent that noise grossly affects the c ntn lp ntelg[ ()Ipos hc a vnb
sings of the threshold (mean level), and that a proper cntn lp ntelg ()]pos hc a vnb
things of the threshold (med an enthrall c prope interpreted as two regions of somewhat constant slope. In
me sint ofnt dast offers. is essentially com ponen fact, the D(A) plots computed from these curves exhibit a
* e signal an data processing . othe that's can cuse "bump" at small scales, as previously discussed in the text.
-ings where oth sgnal addresses t threshold do e For these data, the slope at smaller scales is steeper than at

ross it. Bynot nlyad ingcrssingsintheviciniyofa larger scales, and there is a slight roll-off at the smallest val-
crossing, but also where there was no true crossing near- ues. When the noise is removed (the Wiener-filtered case),
he noise contaminates the results at scales much larger however, these constant slopes do not persist.

i might be suspected, as well as at smaller scales. Two additional points are illustrated by Fig. 16. First, as

The effect illustrated in Fig. 15 is accentuated because noted above, the contamination of the results is not limited
signal is oversampled. Nevertheless, even a small addi- to the small scales or high frequencies where the noise domi-

nates. It extends to much larger scales. The various curves
do not coincide until a scale of at least 500 or 1000 sampling

3 0 1 1 0 units. This is larger, by a factor of 20-30, than the ratio of the
Symbol signal spectrum intercept with the noise floor to the sam-

2 - Wiener-filtered pling frequency. We are forced to conclude that the influ-
ence of noise, if permitted, may encroach into scales that are
well resolved with respect to space, time, and SNR. In short,

I 8 ; 1 a large SNR is not sufficient to ensure that noise has not

affected the results. Additional care, such as use of the Wie-

o _ w X . h ner filter, is typically necessary. Second, it is evident from
Fig. 16 that either too wide or too narrow a filter kernel can
also affect the results. Filtering only the highest frequencies

9 out of the noise is insufficient, yielding a similar rise in N(G)
at the smallest scales as the unfiltered data. The overfiltered

result, although similar in shape to the correct curve, has

0 100 200 300 400 5 also been compromised. Thus very careful consideration
n must be given to the handling of noise in level crossing data

that are analyzed for fractal behavior.
15. Effect of noise on transitions (Re = 2940). A final issue that should be assessed is the consequence
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FIG. 17. Many individual short records (Re = 2940).

of analyzing shorter data records with the box-counti
gorithm, as was mentioned in the text. Shorter record:
been suggested (cf. Sreenivasan and Meneveau7 ) beca

the possibility that scalar interfaces might display a pa
lar power-law fractal behavior on a local length or time

but that over larger scales, fluctuations or variations

local properties could smear it out. Our record length

ied in length from about 8-70 large scale times. Such a
ber of large scales provided good statistics. We saw nc

cation the record lengths were influencing the results.
Nevertheless, we examined the behavior of short

cord lengths. Rather than ensemble averaging eith
log [N(A) ] plots or the D(A) curves for many short re(
we superimpose many separate realizations on one plot
17). The results shown are for a Reynolds number of
The individual curves do not exhibit a flat horizontala
gion, which would imply a constant fractal dimension
ditionally, the ensemble average, easily constructed b
resembles the result displayed in Fig. 5. Even shorter re
were analyzed, for the entire range of Reynolds nun
both on and off axis, and the outcome was the same i

_ cord lengths of all sizes. We conclude that record length is
not a factor in our results.
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