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Abstract— Mean interference power and probability of outage
in the THz band (0.1–10 THz) networks are studied. The
frequency band has potential for enabling future short range
communication systems because of the large available spec-
trum resources. This can enable huge data rates, or on the
other hand, large numbers of users sharing the resources. The
latter case is closely related to the subject of this paper on
interference modeling for dense THz networks with stochastic
geometry. We use it to estimate the average behavior of random
networks. The literature has shown convenient closed form
solutions for the mean interference power in ultrahigh frequency
band (UHF, 300 MHz – 3 GHz). Those are not always readily
applicable for the THz band. This is especially the case when THz
band is modeled with the molecular absorption and free space
path loss. Still, the mean interference power does have closed
form solutions in all cases, but in some, numerical approximations
have to be used. We provide the derivation and analysis of the
mean interference power and the outage probability. The results
are verified with computer simulations.

Index Terms— Mean interference, outage, Poisson networks,
stochastic geometry, THz communications.

I. INTRODUCTION

SPECTRUM exhaustion at the ultra high frequency

band (UHF) has caused the researchers to look for

opportunities at the millimeter waves (mmWaves) for the

upcoming 5G networks [1]. The higher frequency bands have

an advantage of the superior bandwidth, thus, data rates,

when compared to the UHF band. The costs of the higher

frequencies are the lower transmission radii for the base

stations and users. The high propagation losses, on the other

hand, enable the usage of small cells and aggressive frequency

reuse. Highly directional antennas have also been seen as a

way to decrease the path loss and cause less interference to

the surrounding users [1].

Moving even higher in frequencies brings us to the

THz band (0.1 – 10 THz). The ever increasing demand for 
the higher data rates has made the THz band very inter-

esting for a variety of applications, such very short range
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communications [2], internet of things (IoT) [3], [4], and

nanocommunications [5]. In addition to the high propagation

losses, there are also hardware challenges in generating high

power THz band signals [5], [6], but progress solving those

has been made [7]–[9]. Therefore, the superior bandwidth of

the THz band transmissions will most likely be practically

deployable in the coming decades. The systems can potentially

reach tremendous peak data rates exceeding one terabits per

second even if assuming simple pulsed communications, such

as on-off keying [6]. This can be limited by the inter-symbol

interference (ISI) caused by a time spread in the frequency

selective channel, as in the case of the THz band.

Wavelengths in the THz band are so short that the elec-

tromagnetic energy is absorbed by the atmosphere causing

huge path loss. This is caused by the THz band containing

a large number of resonance frequencies of several mole-

cules [6], [10], [11]. Most notably, the water vapor causes

severe absorption, which, however, is very predictable based

on the knowledge of the temperature and moisture of the

transmission medium. Molecular absorption causes determin-

istic frequency selective fading to wideband signals, which

is a unique feature of the THz band in comparison to the

conventional microwave bands.

THz band networks have been studied in a variety

of papers [12]–[15]. Because of the large path loss and

absorption, the theoretical network densities can be very

high [12]. We assume the number of nodes to be from less than

one to about hundred per square meter. Therefore, throughout

the paper, we assume the network to be interference limited.

There are many papers considering the molecular noise,

caused by the re-emission of the absorbed energy,

e.g., [6], [16]. This could make the dense THz band networks

also noise-dependent increasing the cumulated transmitted

energy. However, in this paper, we assume that the noise

is small in comparison to the actual transmission powers.

This assumption is also supported by our previous study,

which showed that the molecular noise is very weak if we

consider the temporal distribution of the noise, or if we

consider a case where the absorbed energy is transformed into

heat [17].

A reasonable assumption of the interference limited net-

work brings us to the main tool of this paper: the stochas-

tic geometry, which is a powerful tool for network level

problems. It can be used instead of heavy network simu-

lations. The stochastic geometry has been studied in large

numbers of papers, e.g., [18]–[29], with landmark papers by

Haenggi et al. (e.g., [18]–[20]).



The core idea of the stochastic geometry is to model

the transmitter-receiver pairs in the network as a point

process(es) [30]. The most common choice is to assume that

the nodes are Poisson distributed because of an easy handling

of the Poisson point process (PPP). It has been shown over

and over again that the stochastic geometry is very useful

when considering simple enough networks. On the other hand,

more complex, and heterogenous networks can be modeled by

superimposing multiple PPPs.

Channel power loss is usually assumed to follow simple

power law, i.e., l(r) = r−α , where l(r) is the path loss

at distance r , and α is the path loss exponent [18], [19].

This path loss model provides closed form solutions for the

aggregate interference in the network provided that the path

loss exponent is large enough [18]. This is not the case in

this paper, as we use the traditional free space path loss.

This causes some problems with the closed form solutions,

as it will be shown in Section III. Furthermore, the channel is

usually assumed to be Rayleigh fading, which provides very

useful simplifications, as, for instance, the outage probability

can be easily calculated from the closed form solution of the

aggregate interference [18].

There are a couple of works on the THz band mean

interference and signal-to-interference-plus-noise ratio (SINR)

[12]–[14]. Jornet and Akyildiz [12], Jornet [13] showed results

on the stochastic interference power based on the knowledge

of the number of nodes and the probability of the transmissions

through the symbol length and separation. On the other hand,

the work in [14] is closer to our derivation due to the

utilization of the stochastic geometry. They, however, focused

on the Mattern process, which assumes guard band around the

transmitters, ensuring minimum distance between the nodes.

This model has an advantage of not allowing the nodes to

be too close to each other. This is therefore a perfect model

to estimate the interference in the case where, e.g., access

point locations are controlled somehow to avoid interference

between them. We focus on general random networks that

can be straightforwardly modeled by the Poisson process. The

application of this model would be, e.g., a dense network of

sensors or nanosensors randomly distributed on some small

geographical area.

Because we model the THz band random networks with

the usual THz channel models, i.e., the molecular absorption

and general free space loss, the existing closed form solutions

from the literature (e.g., [18]–[20]) are no longer applicable.

Therefore, we validate all the results with the computer

simulations.

Our contributions are as follows:

• We derive the mean interference power for arbitrary

dimensional propagation space in the presence of mole-

cular absorption. This can be done in two ways, either

by utilizing the Campbell theorem [30], or by the

derivation of the Laplace transform of the aggregated

interference [18].

• Based on the mean interference level, we derive the mean

signal-to-interference ratios (SIRs). We also show the

outage probability of the desired link. This can be done

by estimating the interference distributions. We will show

Fig. 1. System model with the receiver of interest at the origin and the
corresponding transmitter on the horizontal axis.

that the interference distribution follows rather accurately

the log-logistic distribution. However, better distributions

can be found, but their parameter estimation is very

demanding.

• We expand the discussion by utilizing directional anten-

nas, a very likely transmission scheme for the higher

frequencies.

The rest of this paper is organized as follows. The sys-

tem model and its assumptions are detailed in Section II.

In Section III, we derive the stochastic interference models for

the THz band. Section IV focuses on the outage probability

calculations, and directional antennas are covered in Section V.

The simulation models for the validation are briefly described

in Section VI. The numerical results are given in Section VII.

Finally, Section VIII concludes the paper.

II. SYSTEM MODEL

A. System Geometry

An illustration of the system model is given in Fig. 1, with

three interfering transmitter-receiver node pairs as an example

in addition to the receiver of interest at the origin. Because

of the random network, the results hold for any point in

space, but placing the studied receiver at the origin makes

the notations simpler. The desired transmitter is always at a

distance r from the origin and located on the horizontal axis

in the positive direction. The interfering nodes are randomly

and evenly distributed around the origin.

We can now assume that the network follows a Poisson

point process that has very important characteristics making it

possible to model the interference as a homogenous PPP [19],

which

1) has evenly and homogenously distributed nodes.

2) is stationary, which means that the PPP is independent

of translations.

3) is simple in the sense that there cannot be multiple points

at the same location.

4) is isotropic, which means that the PPP is independent

on rotations.



The above properties make the derivations feasible. For

instance, we study the point at the origin without a loss of

generality based on the second item. With the directional

antennas, we utilize a simulation model where we rotate the

coordinate axis with respect to the transmit antenna directions.

The corresponding stochastic antenna gain is independent on

the simulation rotations, because the PPP is independent on the

rotations. The first point was already mentioned: the interfering

nodes are assumed to be distributed evenly about the origin.

The third fact mainly says that we can utilize N random points

to model an N node network. The Poisson point process has

further a couple of interesting features, which, however, are

not utilized in this paper: an independent thinning of a PPP

is PPP, and superposing multiple PPPs is PPP [19]. Technically

we do use the thinning property, since we assume an ALOHA

network (similarly as, e.g., in [18] and many others), i.e., all

the nodes transmit randomly with a probability p. In other

words, we basically make a p-fold thinning to the N node

network, i.e., we effectively have pN nodes transmitting

at the same time. Thus, the density of the network λ is

effectively pλ [18].

B. Channel Model

Throughout the paper a line-of-sight (LOS) channels are

assumed on all the links. This is a simplifying assumption

which does not have an impact on the accuracy of the models

since many of the non-LOS (NLOS) phenomena can be

included in the absorption coefficient, or in the case of channel

blocking, they can be considered as thinning processes. Thus,

they do not affect the derivations of the mean interference

level. However, they have an impact on the outage probability

and the fading characteristics of the channel that, on the

other hand, are out of scope of this paper as the aim is to

focus on the impact of the molecular absorption loss on the

mean interference modeling. The NLOS phenomena are briefly

discussed below.

The most commonly used free space path loss model in R
ds

space in the THz band is [6], [10], [31]

l(r) =
exp(−κa( f )r)

cds dsrds−1
, (1)

where κa( f ) is the absorption coefficient, ds is the dimension

of the space, r is the distance from Tx to receiver (Rx), and cds

is the volume of ds-dimensional unit ball [31]:

cds =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

π
ds
2

(ds/2)!
, ds even

1

ds !
π

ds−1
2 2ds (

ds − 1

2
)!, ds odd.

(2)

In practical applications cds = π in R
2 and cds = 4

3
π in R

3.

The absorption coefficient can be estimated based on the

databases, such as the high-resolution transmission molecular

absorption database [11]. Also, some other possible losses in

the channel can be packed into the absorption coefficient, such

as the scattering losses [32], [33], penetration losses [34],

and surface reflection/scattering losses [35]. Then the total

absorption coefficient in (1) becomes a sum over all loss

coefficients

κ( f ) = κa( f ) + κothers( f ), (3)

since the overall propagation effects are multiplied in the

frequency domain. This is valid for the loss mechanisms

represented by the transmittance given by the Beer-Lambert

law, such as the one for molecular absorption: exp(−κa( f )r)

in (1).

Several works have shown that the human body blocking

(or effectively any blocking body) can cause significant losses

in the high frequency channels [36]–[39]. This is a valid

phenomenon also in this paper as it is not likely that all

the transmitters/nodes would be in LOS condition to each

other. However, the blocking can be modeled as a blocking

probability in the stochastic models. Thus, as a thinning

process. The blocking probability will naturally have an impact

on the outage probability of the desired link. While this latter

case would have an impact on the analysis here, the blocking

probability does not affect on the mean interference level

derivations. For this reason the body blocking is not considered

in this work, but the readers can search information on it

and how it is utilized in the stochastic models in the above

references.

Knowing the path loss and assuming an interference limited

network, we can calculate the SINR γ ( f ) at frequency f as

γ ( f ) =
S( f )

N( f ) + Iaggr( f )
≈

S( f )

Iaggr( f )
, (4)

where S( f ) is the received desired signal power, N( f ) is

the noise power in the system, and Iaggr( f ) is the aggregated

interference power at the Rx. The approximation of a small

noise level is a consequence of assuming a dense network.

The signal power is given by

S( f ) = Ptx( f )GTx( f )GRx( f )l(r)

= Ptx( f )GTx( f )GRx( f )
exp(−κa( f )r)

cds dsrds−1
, (5)

where the transmit power density Ptx( f ) is mostly normalized

to unity below, and Gtx( f ) and Grx( f ) are the transmitter and

receiver antenna peak gains of the main lobes. We are mostly

interested in the isotropic antennas, where the antenna gains

are Gtx = Grx = 1, or as it will be derived below, the gains

such that they integrate to unity over the propagation space.

This is especially considered in the case of directional antennas

in Section V. This case is also illustrated in Fig. 1, where the

antenna gains are calculated from the random angles between

the transmit and receive antennas.

III. STOCHASTIC GEOMETRY FOR THz NETWORKS

Stochastic geometry is based on utilizing the stochastic

average values for the interference power, which is a summa-

tion over the interfering transmitters in the network. All the

calculations below are based on [18], [19], [24], [25], [30].

The aggregate interference of the network is

Iaggr( f ) =
∑

i∈ζ

PTxl(ri ), (6)



where ζ is a set of interfering nodes in area/volume |B| of

the network. In the path loss model, we do not consider

fading as a random process, since the molecular absorption

causes deterministic fading given the distance r . Also, the

THz transmissions are very sensitive to the existence of the

LOS path and as a consequence the usual assumption of

Rayleigh fading cannot be used, as discussed in the context

of the outage probability analysis in Section IV.

A. Modeling the Interference as a Shot Noise Process

In order to evaluate the aggregate interference in a network,

modeling the interference as a shot noise process has been

widely used (e.g., [18]). The idea in the shot noise process

is to model the noise components as Poisson distributed

time instants. Considering a spatial random process, the time

instants can be replaced with spatial locations of the nodes

and the impulse responses associated with the time instants

can be replaced by the path loss model. Then we can assume

that (6) describes the interference as a shot noise process. This

is a very handy assumption, since it allows the usage of the

well known theories to analyze the aggregate interference in

the network. Furthermore, if we assume Poisson distributed

nodes, we can easily describe the average number of nodes in

any area/volume |B| with a Poisson intensity parameter λ.

Assuming the ALOHA channel access for the nodes with

probability p to transmit, the average number of transmitting

nodes is N = pλ|B|. Thus, the transmitting nodes form a

Poisson distributed network with intensity pλ.

B. Mean Interference Power

The mean interference power can be evaluated in at least in

two different ways: with the probability generating function-

als (PGFLs), or directly with the Campbell theorem [30]. The

latter is required also in the former case detailed below. Since

the PGFLs are more general, we first focus on those. The

PGFLs can be used to calculate the moments of a function,

thus, also the mean interference power. We first calculate the

Laplace transform of the aggregate interference power as given

by [18] and [19]

LIaggr (s) = E

⎡

⎣exp

⎛

⎝−s
∑

i∈ζ

l(ri )

⎞

⎠

⎤

⎦, (7)

where unit transmit power is assumed. Since we do not have

fading as discussed above, the above equation can be written

as

LIaggr (s) = Eζ

⎡

⎣

∏

i∈ζ

exp(−sl(ri ))

⎤

⎦. (8)

The above expression is called the PGFL [18], which we

denote as

�(ν) = E

⎡

⎣

∏

x∈ζ

ν(x)

⎤

⎦, (9)

where

ν(x) = exp(−sl(rx )). (10)

The PGFL for the PPP is further given by [18]

�(ν) = exp

⎛

⎜

⎝
−

∫

Rds

(1 − ν(x))
(x)dx

⎞

⎟

⎠
, (11)

where 
(x) is the intensity function of the PPP. In the case

of a homogenous Poisson process


(x) = pcds dsλxds−1 (12)

with a fixed λ over distances (homogenous network). In the

sequel, we separate the propagation space and the node drop

space dimensions. The propagation space has quantities cds

and ds for the unit volume and the dimension of the space,

respectively. For the node drop space, we use notation cdd

for the unit volume of dd-dimensional space. This is done

because a very likely scenario for the network would be a

two dimensional node drop, but a three dimensional path loss.

Due to usage of the unit area term cdd dd , the integral over

R
dd is just an integration over the distance r . The Laplace

transform of the aggregate interference becomes

LIaggr (s)

= exp

⎡

⎢

⎣
−pcdd ddλ

∫

R
dd

(1 − exp(−sl(r)))rdd−1dr

⎤

⎥

⎦
. (13)

The above equation has closed form solutions if the path

loss exponent is larger than the dimension of the space [18].

However, because our path loss exponent follows the free

space path loss, our path loss exponent is always smaller than

the dimension of the space. Therefore, most of the solutions

have to be numerically estimated. This is not a major problem,

since it is still much faster to do the numerical computation

than complete Monte Carlo system simulation. However, there

is always a chance of reduced accuracy. This form though is

quite accurate as it will be shown in the numerical results.

The nth moment of the interference power can be calculated

as [21]

(−1)n dn

dsn
LIaggr (s)

∣

∣

∣

s=0
. (14)

The mean interference power becomes −d/ds(LIaggr (s)|s=0).

In the case of two dimensional node drop and three dimen-

sional path loss, the derivative has no closed form solution,

but it reduces to the Campbell theorem as seen below. In the

case dd = ds , (14) does have a closed form solution:

−
d

ds
LIaggr (s)

∣

∣

∣

s=0
= I ( f ) =

pλ

κa( f )
, (15)

where I ( f ) is the mean interference power at frequency f

assuming unit transmit power. This special case can also be

shown directly through the Campbell theorem where more

general closed form solution is given. In the case of unit

transmit power is not assumed, s in all the above equations

should be replaced with s = PTx( f )s [18]. Summing all the

effects, the estimates for the first two moments can be easily



estimated by calculating the derivatives of (14). Marking the

Laplace transform in (13) as

LIaggr (s) = exp(−L(s)), (16)

we can calculate rather straightforwardly the inner function

derivatives:

L ′(s = 0) = PTx( f )pλ
cdd dd

cds ds

∞
∫

0

rdd−ds

× exp(−κa( f )r)dr, (17)

and

L ′′(s = 0) = PTx( f )pλ
cdd dd

(cds ds)2

∞
∫

0

rdd−2ds+1

× exp(−2κa( f )r)dr. (18)

We can calculate the mean interference power and its vari-

ance, respectively, by plugging the above expressions into the

derivatives of (16)

I ( f ) = L ′, (19)

and

var(I ( f )) = L ′′ + (L ′)2. (20)

Similar expressions can be derived for any higher moments.

Also, directional antenna effects can be taken into account

by multiplying the transmit power with the expected antenna

gains, which is detailed in Section V.

If one is interested in the mean interference level only,

the Campbell theorem offers more straightforward way to

estimate it. It states that [30, p. 28]

E

⎛

⎝

∑

x∈ζ

f (x)

⎞

⎠ =

∫

Rds

f (x)
(x)dx . (21)

Therefore, the mean interference power becomes

I ( f ) = pcdd ddλ

∫

R
dd

exp(−κa( f )r)

cds dsrds−1
rdd−1dr. (22)

We can see that when dd = ds , the equation can be solved as

I ( f ) =
pλ

κa( f )
, (23)

or

I ( f ) = PTx( f )
pλ

κa( f )
(24)

for non-unit transmit powers. The general mean interference

power in the case ds ≤ dd becomes

I ( f ) = PTx( f )E[GRx( f )]E[GTx( f )]pλ
cdd dd

cds ds

(dd − ds)!

κ
dd−ds+1
a ( f )

,

(25)

where E[GRx( f )] and E[GTx( f )] are the expected antenna

gains, and (dd − ds)! is replaced with Ŵ(dd − ds + 1), where

Ŵ(·) is the gamma function, if non-integer path loss exponent

is utilized. If ds > dd , the mean interference level does not

have a closed form solution. Moreover, this latter case also

requires limiting the distances of the interfering nodes around

the desired receiver because of the singularity at distance zero

(and close to it in the simulation models). However, in the

cases where ds ≤ dd there is no such singularity as it can be

seen in the above expressions.

IV. OUTAGE PROBABILITY

The success probability ps( f ) of the desired transmission

can be calculated with (13) by evaluating the function at point

s = βI l(r), where l(r) is the path loss of the desired signal

and βI is the threshold for the SIR [18], i.e.,

ps( f, βI ) = P(S( f ) > βI I ( f ))

= E exp(−Iaggr( f )βl(r)−1). (26)

However, this is only true if the received power is exponen-

tially distributed, i.e., Rayleigh faded. In the other words, if the

signal power is exponentially distributed, the SIR distribution

is exactly the Laplace transform. This is not the case in

our problem. Therefore, we calculate the moments from the

derivatives of the Laplace function in (15). The difficulty is

to find a suitable distribution for the interference. This is

not an easy task, although the moments are known. Based

on our simulations, one distribution has a relatively good

fit with the simulated values: the log-logistic distribution.

It has parameters that can be mapped from the theoretical

moments with a fairly good fit. However, it fails in the cases

of very dense or thin networks. Furthermore, the log-logistic

distribution gives a good fit in the case of two dimensional path

loss, but fails to estimate the interference distribution for three

dimensional path loss. We demonstrate this in the numerical

results.

The log-logistic distribution is characterized by the proba-

bility density function [40]

f (x) =
(β/α)(x/α)β−1

(1 + (x/α)β)2
, (27)

where α is the scale parameter, and β is the shape parameter.

These can be solved numerically from the moments of the

interference distribution and the moments of the log-logistic

distribution [40]

E[Xk ] = αk kπ/β

sin(kπ/β)
. (28)

Given the the interference distribution, the outage probability

is

po(S( f ), β) = 1 − ps( f, βI ) = 1 −

S( f )/βI
∫

0

f I (x)dx, (29)

where f I (x) is the probability density function of the inter-

ference power of the desired node.

V. DIRECTIONAL ANTENNAS

Directional antennas are often envisioned being utilized in

the higher frequencies because of the large path loss, but also

because of the potential benefit of large multiple input multiple



output (MIMO) transmission gains [41]. MIMO configurations

would also be a natural way to realize directional antennas.

The above stochastic geometry analysis with isotropic

antennas means that the path loss has unity term for

the antenna gains GRx( f,,�) and GTx( f,,�) for the

Rx and Tx, respectively, in all the directions (,�), where

 is the azimuth angle and � is the elevation angle. There

have been some works on directional antennas for the stochas-

tic geometry, e.g., [28], [29].

When we take into account the directional antennas, we

have to consider two cases: 1) the total transmit power is the

same as in the isotropic case, and 2) it is different to the

total isotropic power. Both cases are rather straightforward

extensions. The expected effect of the directional antennas can

be modeled by the expected antenna gain. Assuming the same

pattern for the Tx and Rx ends, and a unit integral over the

total transmit power over the antenna radiation pattern, the

antenna gain averaged over all angles becomes

E�[GRx( f,�)]

= E�[GTx( f,�)] =
Gi

cds ds

∫

Rds

A( f,�)d�, (30)

where A( f,�) is the antenna pattern, G i is the gain compared

to the total isotropic power, and � is the azimuth/elevation

angle dependent on the dimensions of the system. The term

Gi is included just to isolate the two cases above, i.e.,

Gi = 1 for case one, and something else for the second case.

If we assume isotropic antennas, the above equation yields

an expected gain of 1/cds ds in all directions, since the total

transmit power is obtained from

PTx

∫

Rds

1

cds ds

dR
ds = PTx, (31)

as PTx sets the limit for the total transmit power (assuming

there is no additional gain).

Case one above yields the same values for the expected

antenna gains as in the isotropic case, because the total

transmit power and average radiated/receiver power are the

same due to random angles to and from the interfering

transmitters. Then results in Section VII demonstrate that

the expected interference is indeed the same if the transmit

powers are the same. Regardless of the same interference, the

antenna gain provides maxθ (GTx( f,�)) × maxθ (GRx( f,�))

times better SIR, because the desired link power is higher

(recall Fig. 1 and the assumption on the desired link antenna

directions).

If the additional expected antenna gain is less than, or larger

than the effective isotropic gain, it naturally has an impact on

the received average interference power. However, the SIR

remains the same if the antenna pattern remains the same

because the desired link power decreases or increases with the

gain. In any case, the theoretical effect of the expected antenna

gains can be included in the mean interference similarly as in

Fig. 2. Antenna patterns with (a) 2D, and (b) 3D path loss.

the case of free space path loss. The mean gain becomes

I ( f ) = pcdd ddλE[GRx( f )]E[GTx( f )]

×

∫

R
dd

exp(−κa( f )r)

cds dsrds−1
rdd−1dr. (32)

The validity of this approach will be shown in the section on

the numerical results, where we assume symmetrical antenna

response in the elevation and azimuth directions. The utilized

antenna patterns in two and three dimensional spaces are

shown in Fig. 2. The antenna gain is always assumed to

point towards the positive horizontal axis. Thus, the coordinate

axes are rotated according to the system geometry. The figure

does not take into account the actual gains in the direction

of the antenna patterns. These are not the most realistic

antenna patterns, but they allow easy validation due to their

straightforward mathematical representation. If the antenna

half beam width is /2, then the gains toward these angles

become

G2D( f,−/2 : /2) =
1


, (33)

for the two dimensional (2D) path loss, and

G3D( f,−/2 : /2) =
1

2π(1 − cos(/2))
, (34)

for the three dimensional (3D) path loss. Please notice that the

3D antenna gain is defined only about the azimuth angle  .

The property will be explained in more detail the next section,

but it is related to the fact that the simple antenna patterns can

be represented in 2D space and by scaling as above and by

scaling with the probability of the antenna pointing in certain

direction (as done below). The latter term comes from the

expression for the area of a spherical cap, which also defines

the steradian of the angle around the cone set by the antenna

half beam. Both gains reduce to isotropic gains if the antenna

half beam is set to /2 = π .

The expected antenna gains for the cases of interest become

G( f ) = G2D( f,−/2 : /2)

(



2π

)2

, (35)

for a 2D node drop and 2D path loss assuming identical

gain pattern in the both Rx and Tx. The term /2π is the



probability that the Tx/Rx points at the Rx/Tx in a 2D path

loss model. Similarly, the expected antenna gains for 2D drop

and 3D path loss, and 3D node drop and 3D path loss become,

respectively,

G( f ) = G3D( f,−/2 : /2)

(



2π

)2

, (36)

G( f ) = G3D( f,−/2 : /2)

(

1

2
(1 − cos(/2))

)2

, (37)

where 0.5(1 − cos(/2)) is the probability that the

Tx/Rx points at the Rx/Tx in the 3D path loss model. The

2D node drop with 3D path loss is similar to the 2D/2D case

because we assume the interfering links, as well as the desired

link, are parallel to the node drop plane. If the desired

link, or the interfering links, would point at random direc-

tion(s), the expected interference would be G3D( f,−/2 :

/2)
(


2π

)

1
2
(1 − cos(/2)). However, it is unlikely the links

would point in random elevation directions if all the nodes

are on a plane. The fourth case of a 3D node drop and

2D path loss model is not very likely in any realistic systems,

but the expected antenna gain can be calculated similarly as

in the 2D/2D case, but with three dimensional antenna gain

(or the same as 2D/3D).

VI. SIMULATION MODEL

As mentioned in the previous section, the simulation model

is based on two dimensional antenna patterns. This can be

done due to utilization of a dot product to calculate the angle

between the positive x-axis and the random point in space

and because of the assumed perfectly symmetrical antenna

patterns.

Regardless of the dimension of the space, the interfering

nodes are distributed evenly around the origin (i.e., the desired

receiver) from 0 to 400 cm distances. Thus, the 400 cm

radius defines the node drop area or volume as a circle or

a ball. With the parameters used in the numerical results,

even smaller radius, such as 100 cm radius (with reasonable

transmit powers), would ensure small interference contribution

from outside the simulation area. However, 400 cm radius

makes sure that no interference arrives from outside this area.

This can be seen in the numerical results, where simulation

results on the mean interference match perfectly with those

given by the theories (infinite area).

The nodes are distributed in spherical coordinates based

on the disc/sphere point picking principle to achieve an even

distribution for the nodes. In the case of isotropic antennas,

it is enough to calculate the Euclidian distances from random

points to the origin due to equal antenna gain in all directions.

The distances and the antenna gains can then be input into the

channel model

l(r) =
exp(−κa( f )r)

cds dsrds−1
GRx( f )GTx( f ) (38)

and the total interference is given by (6) with the average

number of N interfering nodes drawn from the Poisson distrib-

ution taking into account the transmit probability p, effectively

thinning the Poisson process.

In the case of directional antennas, the antenna direc-

tions (azimuth/elevation) are randomly chosen based on the

disc/sphere point picking principle again to ensure even dis-

tribution for the directions. Next we can calculate the angles

from the origin to the random points, as well as the angles

from the random points with random coordinate axes to the

origin. We have to calculate the position of the origin from

the new random coordinate axes of the interfering nodes. This

is a straightforward negation of the coordinates of the random

nodes, i.e., if every interfering node is considered to lie in

its own origin, then the original origin is at (x ′, y ′, z′) =

(−x,−y,−z) from the nodes. This, however, means all the

coordinate axes are oriented similarly. To take into account the

rotations by the random transmit angles, we apply the rotation

operation(s) to the coordinates to calculate the real location of

the original origin in the new coordinate axes. The rotations

can be done in many ways, but we utilize rotation matrices to

calculate the coordinates
[

x ′

y ′

]

=

[

cos(2π − θ) − sin(2π − θ)

sin(2π − θ) cos(2π − θ)

] [

−x

−y

]

(39)

for the 2D node drop and
⎡

⎣

x ′

y ′

z′

⎤

⎦ =

⎡

⎣

cos(2π − φ) 0 sin(2π − φ)

0 1 0

− sin(2π − φ) 0 cos(2π − φ)

⎤

⎦

×

⎡

⎣

cos(2π − θ) − sin(2π − θ) 0

sin(2π − θ) cos(2π − θ) 0

0 0 1

⎤

⎦

⎡

⎣

−x

−y

−z

⎤

⎦

(40)

for the 3D node drop, where the right-hand matrix rotates

the coordinate axes about the z-axis, and the left-hand matrix

rotates the coordinate axes about the y-axis. The subtraction

of the random angles from 2π shifts the rotation matrix

from rotating the point in the coordinate axis in the coun-

terclockwise direction to rotating the coordinate axis in the

counterclockwise direction. This is important with respect to

the point mapping, since the trigonometric functions rotate in

a counterclockwise direction. Thus, it is more convenient that

the coordinate axes rotate in this direction in this intermediate

phase. Based on the new coordinates, we can calculate the

angles from the origin to the nodes with a dot product

ϑRx = cos−1

(

x
√

x2 + y2 + z2

)

, (41)

where cos−1(·) is the inverse cosine function. Similarly, the

angles from the nodes to the origin can be calculated

ϑTx = cos−1

(

x ′

√

x ′2 + y ′2 + z′2

)

, (42)

assuming the transmitters and the receiver at the origin

are pointed at the positive x-axis (a unit vector along the

positive x-axis). Then the angles for the antenna patterns and

the Euclidian distances can be input into the path loss model.

Two dimensional antenna patterns can be used even in three

dimensional space. The reason for this is the increased proba-

bility for the higher angles due to additional degree of freedom



TABLE I

PARAMETERS USED IN THE NUMERICAL RESULTS

Fig. 3. Mean interference power versus the number of nodes in the network.

Fig. 4. The variance of the mean interference power versus the number of
nodes in the network.

provided by the elevation angle. Of course, this procedure

depends on the antenna patterns, and this assumption can only

be used with symmetric antenna patters as in our case.

VII. NUMERICAL RESULTS

Numerical results for the mean interference power (also

with directional antennas) and outage probabilities are given

in this section. The utilized parameters are given in Table I.

The given absorption coefficient is utilized for the most of

the results except for the frequency domain results where

realistic absorption coefficients are used. The results are given

without the antenna aperture term. Therefore, results represent

the interference intensity at location of the desired receiver.

A. Mean Interference Power

The mean interference power and the corresponding vari-

ance are calculated with (19) and (20) and compared against

the raw moments of the simulation data given by E[I k
sim] with

the results shown in Figs. 3 and 4, respectively. The simulation

data was obtained with the simulation model presented in the

Fig. 5. SIR versus the number of nodes in the network.

Fig. 6. Mean interference power as a function of frequency for 100 nodes
in the network.

previous section. Similarly to the directional antenna cases,

the isotropic antenna gain is assumed to sum unity over all

directions. Figs. 3 and 4 show a very good agreement between

the theory and the simulation for both the mean and the

variance. The full 3D case suffers from a larger variation

in variance caused by the relatively thinner network and in

general lower interference power because of the larger path

loss. Still, the results give a perfect match, also in the case

of SIR in Fig. 5. The SIR was calculated with the path loss

model given in (1) and with the parameters given in Table I.

The relatively short desired link distance combined with large

losses from the distant interferers leads to reasonable SIR

values for lower number of users (still hundreds), and even

to good SIR levels in the three dimensional node drop cases.

Still, a very large number of interferers causes the SIR to

drop considerably. In the next section we will see that if

the absorption is increased, the SIR will increase in some

frequencies because of the reduced interference. Secondly,

we assume that all the nodes are transmitting all the time,

which represents the worst case scenario. In reality, the SIR

would be better as the simple sensor nodes would most likely

be idle most of the time. The overall picture shows that the

medium can be shared with very large number of users because

of the large propagation loss in the channel.

B. Frequency Domain Mean Interference

The distinguishing feature of the THz band to the lower

frequency bands is the strong molecular absorption loss.

Therefore, instead of using just the fixed absorption coefficient,

Figs. 6 and 7 give the mean interference power and SIR for

100 nodes in the network as a function of frequency. The

absorption coefficients were calculated by using the HITRAN

catalogue [11] and the well known theories for the transmit-

tance [6], [10].



Fig. 7. SIR as a function of frequency for 100 nodes in the network.

Fig. 8. Outage probabilities and the simulation data for 2D node drop and
2D path loss versus the desired link’s Rx–Tx distance.

Figs. 6 and 7 show what can be expected: where the absorp-

tion is strong, the interference power drops as the atmosphere

absorbs the energy. This may or may not lead to better

SIR levels depending on the absorption experienced by the

desired link. As it can be seen in Fig. 7, deep fades in general

cause better SIR, theoretically allowing better quality point-

to-point links with fixed node density, or denser networks in

the case of fixed target SIR level. However, deep fades in the

desired link also have an impact on the link quality and can

take the SIR down even if the interference level would be low.

C. Outage Probability

The outage probabilities were calculated with (29) for the

non-fading case and with (26) for the fading case. As it was

mentioned earlier, the log-logistic distribution is not a perfect

solution for describing the general interference distribution.

A perfect distribution would be a three parameter generalized

extreme value (GEV) distribution [42], but it requires simula-

tion data for parameter fitting.

Results in Figs. 8–11 comprise the simulation results of

the probability of outage for the non-fading and the fading

cases (unit mean Rayleigh fading), as well as the theoretical

results given by the log-logistic distribution, Eq. (26), and

the GEV (with simulation aided parameters). Interestingly,

as predicted by the previous works, the Laplace transform of

the aggregate interference power gives the outage distribution

in the presence of fading also if there is molecular absorp-

tion loss.

As it was discussed above, the GEV gives a perfect

distribution for the interference distribution without fading.

A fairly good option is given by the log-logistic distribution,

Fig. 9. Outage probabilities and the simulation data for 3D node drop and
2D path loss versus the desired link’s Rx–Tx distance.

Fig. 10. Outage probabilities and the simulation data for 2D node drop and
3D path loss versus the desired link’s Rx–Tx distance.

Fig. 11. Outage probabilities and the simulation data for 3D node drop and
3D path loss versus the desired link’s Rx–Tx distance.

which can be mapped directly from the raw moments from

the theory. It gives a good fit in the case of 2D path loss

(see Figs. 8 and 9), with limitations in the accuracy in the

case of very thin networks. When using the 3D path loss

model, it mostly fails to predict the interference distribution,

particularly if the density is too low or too high. Therefore, the

interference distributions in the THz band are subject of further

investigation in the future. This is a very important issue, since

the proper distributions combined with the theories would give

all the required information on the collective network behavior.

D. Directional Antennas

Mean interference powers and SIRs for the directional

antennas are given in Figs. 12–15 based on the models in



Fig. 12. Mean interference power for 2D node drop and 2D path loss versus
the number of nodes in the network for various antenna configurations.

Fig. 13. Mean interference power for 2D node drop and 3D path loss versus
the number of nodes in the network for various antenna configurations.

Section V. There are two observations to be made from

the results. Firstly, if the effective isotropic radiated power

is the same, the directional antennas do not decrease or

increase the interference power. This is because the expected

antenna gains are equivalent in both the isotropic and the

directional antennas. An exception to this is made by the

2D node drop and 3D path loss. In this case, and with our

assumptions, the antenna patterns are parallel to the plane.

Therefore, the probability of receiving interference from the

plane is the same as with the two dimensional path loss,

however, with three dimensional path gain on the antenna.

This is clearly visible in Fig. 13, which shows approximately

10 dB larger interference power for the directional antenna

case in comparison to the isotropic case. This is a direct

consequence of the probabilities to receive interference, which

are (similarly as in (36) and (37)) /2π for the 2D case and

0.5(1 − cos(/2)) for the 3D case. In this case the expected

increase of the interference when moving to the directional

antennas is (/2π)2/[0.5(1 − cos(/2))]2 = 10.79 ≡

10.33d B with  = π/4.

In the general case, if the total power is increased or

decreased with respect to the isotropic power, it naturally has

an impact on the total interference power, as it can be seen in

Figs. 12–13 (four-fold increase and decrease in power for high

and low power cases, respectively). This leads us to the second

interesting finding: effective isotropic power has no impact on

the SIR, because we effectively scale both the desired and the

interfering links. This follows naturally from the assumption

of an interference limited network. Although the directional

antennas have no impact on the total interference power in

the network (given equal total transmit power in the isotropic

case), they do give a large gain in the SIR performance because

of the increased desired link power, which is assumed to be

perfectly aligned in these examples. As discussed earlier, this

Fig. 14. SIR for 2D node drop and 2D path loss versus the number of nodes
in the network for various antenna configurations.

Fig. 15. SIR for 2D node drop and 3D path loss versus the number of nodes
in the network for various antenna configurations.

is a very likely scenario in the THz band because of the large

path loss. Directional links will make it significantly easier

to mitigate the large losses in the channel, as it can also be

seen here. Of course, they reflect the effects of very simple

system geometry with a simple antenna pattern. Regardless

of this, the results here show that stochastic geometry can be

very efficiently used in the THz band network interference

modeling.

VIII. DISCUSSION AND CONCLUSION

We have shown that the stochastic geometry can be utilized

in the network analysis for dense THz networks, such as

nanonetworks. The moments of the interference power can be

reliably estimated based on the stochastic models presented

herein. Similarly, the outage probabilities can be estimated

based on the analysis. Still, the full evaluation of the outage

performance will require considerable future work on the inter-

ference distributions. For instance, the GEV distribution gives

a perfect fit to the simulations, but requires simulation data

for the parameter fitting. Instead, the interference distribution

should be parameterized from the theoretical moments, or

directly from the Laplace transform.

Directional antennas were also included in the analysis. This

is very important in the case of higher frequencies, as the

high loss links will almost surely require highly directional

antennas to offer reliable communications. We utilized simple

and illustrative antenna patterns, leaving room for future work

on more realistic ones. However, the antenna pattern has

no impact on the mean interference level if the effective

isotropic power remains constant. Thus, more complex antenna

patterns can be utilized in the place of very simple ones. The

directional antennas and possible side lobes do have an impact

on the interference distributions because the variance of the

interference increases. This requires further work in the future.



Another point for future work is the fading in the THz chan-

nels. The molecular absorption causes deterministic frequency

selective fading, which also causes delayed signal components.

The possible NLOS phenomena will further increase the

delayed signal components. Unlike in the lower frequencies,

these components are not summed with the LOS response, but

with later pulses because of the very short pulses lengths in

the THz band (picoseconds). Therefore, the existing models

for the fading, such as Rayleigh and Ricean models, are not

applicable. These require a lot of work in the future if NLOS

paths are modeled properly.

The overall analysis herein shows that the stochastic geom-

etry can very efficiently be used even at very high frequencies.

Many of the envisioned applications for the THz frequencies

include dense sensor networks. The stochastic geometry will

therefore offer a very good set of tools to model the interfer-

ence in those.
ACKNOWLEDGMENT

J. Kokkoniemi would like to thank the following founda-

tions for their support: Riitta ja Jorma J. Takasen säätiö, Walter

Ahlströmin säätiö, Tauno Tönningin säätiö, Ulla Tuomisen

säätiö, and Nokia Foundation.

REFERENCES

[1] T. S. Rappaport et al., “Millimeter wave mobile communications for
IEEE access cellular: It will work!” IEEE Access, vol. 1, no. 1,
pp. 335–349, May 2013.

[2] I. F. Akyildiz, J. M. Jornet, and C. Han, “Terahertz band: Next fron-
tier for wireless communications,” Elsevier Phys. Commun., vol. 12,
pp. 16–32, Sep. 2014.

[3] I. F. Akyildiz and J. M. Jornet, “The Internet of nano-things,” IEEE

Wireless Commun. Mag., vol. 17, no. 6, pp. 3–19, Dec. 2010.
[4] J. M. Jornet and I. F. Akyildiz, “The Internet of multimedia nano-things

in the terahertz band,” in Proc. Eur. Wireless Conf., 2012, pp. 1–8.
[5] I. F. Akyildiz and J. M. Jornet, “Electromagnetic wireless nanosensor

networks,” Nano Commun. Netw., vol. 1, no. 1, pp. 3–19, Mar. 2010.
[6] J. M. Jornet and I. F. Akyildiz, “Channel modeling and capacity analysis

for electromagnetic nanonetworks in the terahertz band,” IEEE Trans.

Wireless Commun., vol. 10, no. 10, pp. 3211–3221, Oct. 2011.
[7] I. Llatser, C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarćon,
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