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Abstract

To meet the ever-increasing traffic demand in modern cellular networks, deploy-

ing more BSs has imposed is a vital solution. Cellular network (re-)planning is cru-

cial to mitigate the interference and improve the network performance whenever more

base stations (BSs) are deployed or some BSs are removed. Realistic spatial modelling

for the locations of BSs and accurate quantification for their spatial relationship are

prerequisites for effective network planning.

In the first part of this thesis, we aim to describe the spatial structure of the

BSs using two scalar measures: the density of the BSs and the amount of regularity.

We investigate the use of three scalar metrics to measure the spatial relationships

among the BSs in cellular networks. We propose a geometry-based scalar metric (the

coefficient of variation (CoV) of the length of the corresponding edges of Delaunay

triangulation) to quantify the spatial regularity of the repulsive wireless networks.

This work develops new approaches for i) mapping between the internal parameters

of different point processes commonly used to generate the BS locations, ii) approxi-

mating the performance of a repulsive network based on its amount of regularity, and

iii) fitting point processes to the spatial deployment of BSs.

In the second part, we develop a novel stochastic geometry-based cellular network

planning technique that relies on the spatial structure of the network to determine the

best deployment or removal locations of the BSs. First, we apply this technique for

cell deactivation during the low demand periods. More specifically, cells are switched

off so that the remaining active cells are as far away as possible from each other, which

maximizes the spatial regularity of the network. The results show significant energy

saving and network performance enhancement. Second, we exploit this approach

for the strategic densification with UAV-BSs in cellular networks: The deployment of

multiple UAV-BSs in the presence of a terrestrial network where the UAV-BSs provide

on-demand capacity to the end users. This study provides supply-side estimation for

how many UAV-BSs are needed to support a terrestrial network so as to achieve a
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particular quality-of-service and also demonstrate where these UAV-BSs should hover.
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Chapter 1

Introduction

“A man is a scholar as long as he continues

learning, but if he stops learning and thought

that he has achieved enough knowledge, then he

becomes the most ignorant.”

—Sa’id ibn Jubayr

1.1 Motivation

The proliferation of the forefront mobile broadband communication devices such

as smartphones, laptops, and tablets as well as the most recent virtual and augmented

reality devices has led the cellular networks to leapfrog beyond their original design

of voice-centric to data-centric applications, e.g., live Internet video streaming and

broadcasting. Unsurprisingly, mobile data traffic is growing strongly year-on-year [1]

because of this paradigm shift. In the near future, the traffic of wireless and mobile

devices is expected to surpass the traffic of all wired devices, and it will probably

account for more than two-thirds of total data traffic by 2021 [2]. The challenge of

mobile data growth urges the cellular industry to prepare for 1000x fold data increase

every decade [3].

Among several approaches to cope with this data deluge, deploying more base

stations (BSs) has been recognized as a key solution, which brings the network

1
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closer to the user and results in reducing the signal attenuation and increasing the

line-of-sight probability. Clearly, all the performance metrics in cellular networks

such as signal-to-interference-(plus-noise) ratio (SI(N)R), coverage probability, and

capacity/throughput/data-rate, rely on the spatial structure of the base stations, i.e.,

depend on the distances between the transmitters and receivers. Therefore, the in-

crease in the number of BSs necessitates modelling and characterizing the spatial

configuration of the network. This leads to fully understand the relationship between

the spatial deployment of the BSs and fundamental cellular network quality metrics [4]

as well as to design and plan future cellular networks. Consequently, modelling and

analyzing the placement of BSs in wireless networks have drawn the attention of the

researchers in both industry and academia in recent years.

Fortunately, a mature field of mathematics called stochastic geometry is ready to

facilitate understanding these relationships. Stochastic geometry studies the random

statistical spatial patterns, i.e., random geometric shapes and random distribution

of points. It provides tremendous sophisticated mathematical tools such as spatial

point processes, random tessellations, and summary characteristics [4–6] that can be

used for the analysis of the wireless networks..

In the last few years, stochastic geometry has been extensively used for the analysis

of wireless cellular networks, yet it is still a new practise in the field. For example, it

has been used for modelling the network structure, fitting a real deployment of BSs to

a model, and quantifying the spatial structure of the network. Stochastic geometry

is the primary mathematical tool that is used in this thesis.

Various point processes have been investigated to model the spatial structure

of the BSs. The current literature indicates that there is no consensus among the

researchers on which point process is the most suitable or useful to mode BS locations:

researchers have different perspectives and expectations for the model they advocate.
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Indeed, a desirable point process model has four properties: 1) realistic, 2) tunable for

the full range of regularity with few controlling parameters, 3) analytically tractable,

4) computationally inexpensive and straightforward to simulate. Interestingly, it is

hard to find a model that has all these properties. For example, while the PPP is

superior in the tractability and simple to simulate, it is neither realistic nor tunable.

Investigating the suitability of different point processes to model the deployment of

the BSs is still a rich research realm.

Moreover, the amount of spatial relationship (or, equivalently, the amount/degree

of regularity/irregularity/repulsiveness) of a pattern of the spatial structure of a set

of BSs is a fundamental factor that affects the performance of a cellular network. In

fact, quantifying the amount of regularity for a set of BSs is vital to facilitate the

understanding and interpreting the relationship between the spatial structure and the

performance of a network. This understanding leads to better designing and planning

of next-generation cellular networks as we see in this thesis.

Furthermore, the regularity/irregularity degree of a pattern of the spatial struc-

ture of a set of BSs is a fundamental factor that affects the performance of a cellular

network, yet there is no precise and meaningful metric to describe it. In fact, quanti-

fying the amount of regularity (repulsiveness) for a set of BSs is vital to facilitate the

understanding and the interpretation of the relationship between the spatial structure

and the performance of a network. This understanding leads to a better designing

and planning for the next-generation cellular networks. Noteworthy, no prior work

has explored quantifying the regularity of the BSs in cellular networks using scalar

metrics. Finding a good scalar metric to quantify the regularity is a necessity; it is,

in fact, an interesting niche topic of research.

As mentioned before, the intense deployment of BSs is an important technique to
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meet the growth of the data demand. Noticeably, the distribution of the traffic de-

mand fluctuates during the day, yet cellular networks are usually designed to handle

the peak-hour traffic. Such an over-provisioning leads to a waste of capacity, energy,

and capital expenditure. The infrastructure resources of the network should be uti-

lized efficiently. To address the uneven traffic distribution, this thesis investigates

two possible approaches: the cells switch-off (CSO) during the low traffic periods,

or deploying mobile on-demand BSs, specifically, BSs mounted on unmanned aerial

vehicles (UAV-BSs). While the CSO approach reduces the operational expenditure,

the UAV-BSs approach reduces the capital expenditure.

1.2 Literature Review

To put this work in perspective, in this section we provide a brief overview of

the point processes and their use as models for the BS locations. We note that while

a plethora of models is available, there is no consensus on which model to use. More

research is indispensable to find better models.

We also provide bird’s-eye views of methods and tools for fitting mathematical

models to actual spatial point patterns. Notably, these methods and tools are rep-

resented as functions, which we refer to as function-based metrics, and the literature

lacks scalar metrics to be used to test the fitness and to measure the spatial relation-

ship between the points.

1.2.1 Point Process Models for Base Station Locations

Point processes can be classified into three categories: the completely spatial

random point process (i.e., PPP), the repulsive point processes (RPPs), and the

clustered point processes. Roughly speaking, the points of a repulsive point process
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exhibit repulsion between each other and are used to model the BS locations, while

the points of a clustered point process attract each other in the form of groups and

are more suitable to model the user locations and machine clusters [7]. In this thesis,

we confine our effort to the use of the RPPs for modelling the BS locations since they

are the most appropriate models.

Recent years have shown a trend in testing point processes for modelling the

base station locations in cellular networks. Before considering the random point

processes, the deterministic triangular lattice (TL) placement (i.e., hexagonal layout,

where their coverage regions appeared as hexagons, as shown in Figure 1.1) had been

the most popular model both in industry and academia to model the location of

the BSs. The cellular networks per se gained their name from this model. It has

been found in industry standards and used mainly for the system level simulations

due to its simplicity. However, the deployment of the BSs in real networks does

not form a perfect hexagonal layout due to the several natural and human-made

reasons such as the restrictions in the site acquisition, radio propagation environment,

landscape, terrain, topography, bodies of water, population distribution, and capacity

demand [8]. These factors prevent the network operators from placing the BSs in the

wanted locations, which results in an irregular network topology.

Owing to its analytical tractability, an entirely spatially independent random

placement (i.e., deploying BSs according to a PPP, as illustrated in Figure 1.2) is

widely accepted nowadays for modelling cellular networks instead of the traditional

TL (hexagonal layout) placement. Although this BS modelling approach has been

proposed for almost two decades [9, 10], the well-cited article by Andrews et al. [4]

and its extension for heterogeneous networks by Dhillon et al. [11] brought much

attention to modelling cellular network using PPP which later led to extensive use
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Figure 1.1: Delaunay triangulation (golden dashed lines) and Voronoi tessellation
(blue solid lines) for a spatial pattern (blue x marks) of a triangular lattice
(TL).

of the stochastic geometry tools in cellular networks. Nevertheless, this model is not

accurate since BSs are not arbitrarily placed in the real networks. The network oper-

ators spread out the BSs to the maximum possible extent during the planning phase

to reduce the interference.

That being said, it is evident that both the TL and the PPP are unrealistic models

and represent two extremes. While the TL model fails to capture the irregularity of

the real networks, the PPP approach fails to capture the spatial correlation between

the BSs. While modelling BS locations using a TL gives over-optimistic network

performance results, modelling BS locations using the PPP gives the most pessimistic

performance estimate [12]. The real deployment of the BS locations falls somewhere

in between [12–15]. Notably, both models are conceptually too simple, and they can

be characterized by a single parameter: the density.
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Figure 1.2: Delaunay triangulation (golden dashed lines) and Voronoi tessellation
(blue solid lines) for a spatial pattern (blue x marks) of a homogeneous Poisson
point process (PPP).

Because of their regularity property (more regular than a PPP, i.e., capable of

generating spatial patterns that lie between TL and PPP), researchers have enthusi-

astically embraced repulsive point processes (RPPs) to realistically model and analyze

BSs placements in cellular networks. A repulsive point process (RPP) —also called

a regular point process or, equivalently, a sub-Poisson point process— has a spatial

pattern whose points appear to repel each other as shown, for example, in Figure 1.3.

As the repelling force increases, the regularity of the spatial pattern of the points

increases.

RPPs have two varieties: soft-core processes and hard-core processes. While a

hard-core process strictly prohibits its points from being closer than a predefined

hard-core distance, a soft-core process allows its points to appear arbitrarily close to

each other with a certain probability and rules. The soft-core variety of RPPs that are
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Figure 1.3: Delaunay triangulation (golden dashed lines) and Voronoi tessellation
(blue solid lines) for a spatial pattern (blue x marks) of a repulsive point process
(RPP).

used for modelling the access points (e.g., BS locations) in wireless networks includes

1) the determinantal point process models [16–20], and 2) the family of Gibbs point

processes [13, 15, 21]. The hard-core variety of RPPs includes the Matérn hard-core

processes of type I and type II [5,22], the simple sequential inhibition (SSI) process [5],

and Poisson hard-core (PHC) process.

It is worth noting that the generation of all these RPPs is initiated by generating

entirely random spatially independent points, and then deleting specific points based

on some formula involving their mutual distances and sometimes their sequential

order. The generation methods are computationally expensive since it is also often

necessary to generate many points and calculate the distance between each pair to

select a smaller set of points as the output. Moreover, these RPPs have limited ability

to provide a very high degree of regularity [13, 23], as it is impossible to attain a TL

by removing points from a PPP, for instance. (Removing points for a point process
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is called thinning.)

1.2.2 Fitting Methods and Tools

A growing body of literature is dedicated to investigating fitting actual BS lo-

cations to point processes. Li et al., [16] tested the fitness of actual real-world BS

deployments to three different Detrimental point processes (DPP): The Gauss model,

the Cauchy model, and the generalized gamma model. In terms of coverage proba-

bility, the generalized gamma model provides the best fit because of its high repul-

siveness, and, in contrast, Gauss model provides the less precise fit because of its low

repulsiveness. In [17], Ginibre point process —another significant example of DPP

models— is accurately fitted to some real BS deployments.

Many functional summary characteristics (e.g., the nearest neighbour distribution

function, and the empty space function as well as the Ripley’s K-function and its nor-

malizations the J- and L-functions) have been used to test the fitness of the proposed

models to real BS deployments [13,15–17,21]. They are classical stochastic geometry

metrics. Besides, these tools have been used to describe the spatial structure of the

BSs and to measure the spatial relationship between them. However, they are imprac-

tical, especially for the latter purpose because they are function-based metrics that

need the addition of further scalar metrics or qualitative terms such as less (or more)

repulsive/regular (or clustered) to compare the different spatial pattern of points. It

is desirable to have a scalar metric at the first place.

The current wireless literature made some attempts regarding proposing scalar

metrics to measure the spatial relationship between the nodes. For example, Ganti

and Haenggi [24] proposed using the noise figure and the variance of nearest neighbour

distance to quantify the regularity of repulsive point process in the context of wireless

sensor networks. Besides, Mirahsan et al., [25–27] proposed using the coefficient of
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variation (CoV) of particular random spatial properties —the CoV of the the distances

to the nearest neighbour (CN), the CoV of the areas of the cells of Voronoi tessellation

(CV), and the CoV of the length of the edges of Delaunay triangulation (CD)— to

capture the spatial structure of the users modelled using clustered point processes. In

spite of the good qualitative understanding of the spatial relationship of the patterns

formed by the point processes [5, 28] (e.g., the classification into clustered, entirely

spatially random, and repulsive point processes as well as lattices), it is apparent that

there is no comprehensive study on comparing the amount of spatial relationship of

two point processes as models for BSs deployment in a quantified way.

1.3 Scope and Objectives

The focus of this thesis is to describe the spatial structure of the BSs of any cellular

network only using two scalar measures: the density of the BSs and the quantity

of regularity. We intend to demonstrate that these two measures are much more

important than the type of the point process used to produce or model the spatial

pattern. Knowing the density and the amount of regularity allows comparing different

point processes regardless of their internal parameters. In addition, it permits fitting

real spatial patterns to models in a novel way. This thesis aims to hide the model

type and its internal parameters under the density and the amount of regularity of the

produced spatial pattern. This abstraction is even more useful if the point process has

three or more internal parameters. Proposing scalar metrics to quantify the spatial

relationship is a prerequisite to find a qualified model, to obtain and efficient fitting

procedure, to estimate the network performance, and to design the next-generation

networks. This thesis endeavours to answer the following important questions:

1. What is the most robust scalar metric to adequately quantify the regularity and
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accurately capture the network performance?

2. What is the most suitable and useful point process to model the BSs deploy-

ment?

3. Is it possible to use the proposed metrics to adjust the internal parameters of

different point processes to generate similar spatial patterns?

4. Is it possible to use the proposed metrics to fit a point process an actual de-

ployment of BSs?

5. Given that the performance and the amount of spatial regularity are known

for a network, is it possible to estimate the performance of another network

that has the same number of BSs and network parameters, but has a different

amount of spatial regularity based on the spatial regularity difference?

6. How to use the answers to the above questions toward designing and planning

the agile future wireless networks?

1.4 Contributions

This thesis fills the void in the literature by answering the research questions posed

above. The main contributions are summarized as follows:

1.4.1 Proposing Scalar Metrics to Measure the Regularity

(Irregularity)

We proposed and examine the use of the CoV1 of three random geometric proper-

ties —the area of the cells of Voronoi tessellation, the length of the edges of Delaunay

1The concept of the CoV-based metrics is explained in Chapter 2.
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triangulation, and the distances to the nearest neighbour— of a set of points (BS

locations) as metrics to quantify the regularity of a repulsive BS deployment. The

results show that the CoV of the length of the edges of Delaunay triangulation (CD)

is the best metric for measuring the amount of regularity of RPPs, for indicating the

network performance, and for fitting models to spatial point patterns.

1.4.2 Advocating Perturbed Triangular Lattice (PTL) Model

1. We investigate the suitability of three hard-core point processes (MHC-I, MHC-

II, and SSI) regarding their regularity range and the density of the generated

points as models for deployment of BSs . The results indicate that the SSI point

process is the most attractive among these hard-core point processes because of

its wide regularity range compared to the other two, while MHC-I is the worst.

However, these point processes are computationally expensive and unable to

generate point patterns with very high regularity.

2. We advocate the use of the PTL to model the BS locations because it overcomes

the limitations of the hard-core point processes and all other RPPs. The PTL

is tunable over the whole range between the deterministic TL and the PPP, and

it is computationally inexpensive. Moreover, it is simple and more realistic.

1.4.3 Creating a Novel Framework for Mapping between

Point Processes

We provide a systematic approach to adjust the internal parameters of different

point processes to produce spatial patterns with the same amount of regularity, and

to check whether two given spatial patterns are similar or not.
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1.4.4 Proposing a New Approach for Approximating the Per-

formance of the Repulsive Cellular Networks

Given a performance of a reference model (e.g., PPP-deployed network), we pro-

pose a simple approach to approximate the performance of different repulsive deploy-

ments of the BSs. In particular, we use the amount of regularity (or, specifically, the

difference in regularity between) of two spatial sets of BSs to estimate the performance

of the second set if the performance of the first set is known. The amount of regularity

is used to compare the coverage performance of different spatial deployments. We

presented a simple formula to convert the amount of regularity to average deployment

gain.2 Indeed, we demonstrate the simplicity, practicality, and effectiveness of our

approach to carrying the results of one point process into another.

1.4.5 Proposing a New Approach for Fitting Point Processes

to BSs

We propose a novel approach for fitting RPP models to actual BS deployments.

Given a real deployment of BSs, we use the CoV of the length of the edges of Delaunay

triangulation (CD) as a metric to identify how to adjust the internal parameters

of a particular point process to generate a spatial pattern equivalent to the real

deployment.

1.4.6 Devising a Novel Energy Saving Approach

We identify and address a novel CSO problem, which is based on switching off

some BSs to save energy during low-traffic periods. This CSO problem relies on

the understanding of the relationship between the spatial regularity of the BSs and

2The concept of the deployment gain is explained in Chapter 5.
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the network performance. That is to say, it is based on maximizing the network’s

performance through optimizing the spatial regularity of the remaining active BSs.

This work is the first to consider repulsive BS deployment in the CSO literature.

1.4.7 Devising Novel Strategies for Large-Scale UAV-BSs

Placement

We leverage the previous contributions to propose a novel approach for large-scale

integration of UAV-BSs with terrestrial networks. We present a strategic densification

method that is empowered by the stochastic geometry and the optimization tools to

provide the most appropriate placement for these UAV-BSs. We also provides supply-

side estimation for number UAV-BSs that are needed to densify a terrestrial network

such that it reaches a targeted network performance benchmark.

1.5 Publications

The following is a list of the publications pertaining to this thesis and produced

during the PhD program enrolment.

1.5.1 Journal Papers —Included in the Thesis

• [J4] Faraj Lagum, Sebastian Szyszkowicz, and Halim Yanikomeroglu, “A met-
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plications,” under review in IEEE Transactions on Wireless Communications.

(Submission: 06 September 2018.)

• [J3] Faraj Lagum, Irem Bor-Yaliniz, and Halim Yanikomeroglu,“Strategic den-

sification with UAV-BSs for cellular networks,” IEEE Wireless Communications
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• [J2] Faraj Lagum, Quoc-Nam Le-The, Tamer Beitelmal, Sebastian S.

Szyszkowicz, and Halim Yanikomeroglu, “Cell switch-off for networks deployed
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6, no. 2, pp. 234-237, April 2017.

• [J1] Faraj Lagum, Sebastian S. Szyszkowicz, and Halim Yanikomeroglu, “CoV-

based metrics for quantifying the regularity of hard-core point processes for

modeling base station locations,” IEEE Wireless Communications Letters, vol.

5, no. 3, pp. 276-279, June 2016.

1.5.2 Conference Paper —Included in the Thesis

• [C1] Faraj Lagum, Sebastian S. Szyszkowicz, and Halim Yanikomeroglu

“Quantifying the regularity of perturbed triangular lattices using CoV-based

metrics for modeling the locations of base stations in HetNets,” IEEE 84th

Vehicular Technology Conference (VTC-Fall), Montreal, QC, 2016, pp. 1-5.

1.5.3 Journal Papers —Not Included in the Thesis

• [J2] Mohamed Alzenad, Amr El-Keyi, Faraj Lagum, Halim Yanikomeroglu,

“3-D Placement of an unmanned aerial vehicle base station (UAV-BS) for

energy-efficient maximal coverage,” IEEE Wireless Communications Letters,

vol. 6, no. 4, pp. 434-437, Aug. 2017.

• [J1] Quoc-Nam Le-The, Tamer Beitelmal, Faraj Lagum, Sebastian S.

Szyszkowicz, Halim Yanikomeroglu, “Cell switch-off algorithms for spatially
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vol. 6, no. 3, pp. 354-357, June 2017.

1.6 Organization of the Thesis

The remainder of the thesis is divided into two parts: theoretical investigations

(Chapter 2, Chapter 3, Chapter 4, and Chapter 5) and practical applications (Chap-

ter 6 and Chapter 7). In Chapter 2, we explore three stochastic geometry properties

of a set of points to use them as measures of the spatial relationship. In Chapter 3, we

apply these geometry-based metrics to three hard-core point processes to test their

suitability for BS modelling. In Chapter 4, we advocate the PTL to model the BS

locations and present how to use the regularity metrics to map the parameter of one

spatial model to another. In Chapter 5, we show that the CoV of the length of the

edges of Delaunay triangulation is the best metric for measuring the spatial regularity

of the BSs and capturing the network performance. Using this metric, we propose

simple novel approaches to approximate the network performance and fit repulsive

point processes to BS locations. Chapter 6 and Chapter 7 leverage the results of

the three previous chapters by presenting two novel and practical use cases for the

regularity metrics. While Chapter 6 presents a CSO approach, Chapter 7 presents a

variety of UAV-BSs placement strategies. Finally, a conclusion and a potential future

research directions are presented in Chapter 8.
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Chapter 2

Geometry-Based Scalar Metrics to

Quantify the Spatial Relationship among

the Locations of the Base Stations

“If you can’t measure it, you can’t improve it.”

—Peter Drucker

2.1 Introduction

Due to the dependence of the network performance on the BS locations [13],

the amount of spatial relationship (or, equivalently, the amount/degree of regular-

ity/irregularity/repulsiveness) of the spatial structure of BSs is an important char-

acteristic of wireless cellular networks. Motivated by the lack of an adequate scalar

metric to describe the spatial structure of these BSs, we propose using the coefficient

of variation (CoV) of particular geometric properties of the BS locations as scalar met-

rics to quantify their regularity [25–27]. (We call these metrics the geometry-based

or, equivalently, the CoV-based regularity metrics.) These scalar metrics are useful as

network performance indicators as shown in the next chapters. Functional summary

characteristics such as the nearest neighbour distribution function, the empty space

function, and the Ripley’s K-function are widely used in the literature [13,15–17,21,29]

18
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as metrics to capture the spatial structure of wireless networks. However, these met-

rics are functions, and therefore we still need to quantify the difference between them.

Qualitative terms such as less (or more) repulsive [5, 17, 24, 30] are also used in the

literature to compare the amount of regularity of RPPs. Therefore, finding a precise

and meaningful scalar metric to quantify the spatial regularity is a necessity [24].

In this chapter, we introduce three spatial properties of a set of points that can

be used to quantify the spatial relationship among the points of the set (measure

the regularity of the BSs), which are the distances to the nearest neighbour, the

areas of the cells of Voronoi tessellation, and the edges of Delaunay triangulation. In

Chapter 3, Chapter 4, Chapter 5, we examine these spatial properties to find the best

among them for capturing the spatial structure of the BSs.

2.2 The Coefficient of Variation

The coefficient of variation (CoV) of a random variable or set of scores (i.e., quan-

tities or numbers) of a data is defined as the ratio of its standard deviation to its mean.

The CoV is an important measure of variability, spread, or dispersion. It is a unitless

alternative to the other measures of variability such as the variance and the standard

deviation [31, 32]. Therefore, it is appropriate to compare the measurements from

different observations regardless of their units. Unlike the variance and the stan-

dard deviation, the CoV also is suitable to compare data sets with largely different

means [32]. To formally define the CoV, we first introduce the mean and the standard

deviation.

The average of a set of scores {y1, y2, ..., yn} is called the mean of the observations

or the mean of the population. It is obtained by dividing the sum of all observations

by the number of the observations. The mean is usually denoted by µ, and it is
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formally defined by

µ =
1

n

n
∑

i=1

yi . (2.1)

The standard deviation is the square root of the average squared differences

(deviations) of the scores from their mean value [31], i.e., it is the square root of the

variance. The standard deviation is denoted σ, and it is computed as

σ =

√

√*
,

1

n − 1

n
∑

i=1

(yi − µ)2+-. (2.2)

Formally, the CoV (denoted by C) of a set of observations {y1, y2, .....yn}, i.e.,

scores or quantities, is defined to be the ratio

C =
σ

µ
, (2.3)

where σ and µ are the standard deviation and the mean, respectively.

A small CoV indicates that the scores tend to be close to each other (close to the

mean of the population). On the other hand, a large CoV indicates that the scores are

spread out over a wider range of values. Clearly, when the CoV is zero, it indicates

that the scores have equal values, i.e., no variability.

As mentioned above, the CoV is a dimensionless quantity. Thus, it allows the

comparison of distributions obtained with different units. In this thesis, we use the

CoV of different geometric properties to measure the variability of the spatial pattern

of points. These geometric properties have different units: meters (m) and meters

square (m2). To demonstrate this dimensionless advantage, for example, consider the

distances (in meters) between 10 users and their serving BS:

308 252 340 113 330 238 330 407 347 293
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For this set of data, the mean distance is µ = 295.8 meters, the standard devi-

ation is σ = 76.231 meters, and the CoV is C = 0.2577. Assume that this data is

transformed to feet. Since there are approximately 3.25 feet in a meter, the set of

data becomes:

1001 819 1105 367.25 1072.5 773.5 1072.5 1322.75 1127.75 952.25

Now, the mean distance is µ = 961.35 feet, the standard deviation is σ = 247.75

feet. However, the CoV is C = 0.2577; it is as before [31].

Another advantage is that the CoV can be used to compare the variability between

two sets of data if their means widely differ [32]. It gives full information about the

vriability of the sets of data and no other measures are required. On the other hand,

the standard deviation have a meaning only in the context of the mean value of the

data. For example, consider two sets of data generated using two Gaussian random

variables, as shown in Figure 2.1. The mean, standard deviation, and CoV values of

these two sets of data are (µ1 = 10, σ1 = 2.4, C1 = 0.24) and (µ1 = 100, σ1 = 5,

C2 = 0.05), respectively.

The first set of data has a smaller standard deviation and larger CoV compared

to the second set of data. Using the standard deviation and in the absence of the

context of the mean value, it may appear that the second set of data has higher

variability than the first set of data, but indeed the variability of the first set of data

is higher (C1 > C2). Higher standard deviation value does not necessarily indicate

higher variability, unless the compared sets of data have the same mean.
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µ1 = 10, σ1 = 2.4, and C1 = 0.24

µ2 = 100, σ2 = 5, and C2 = 0.05

Figure 2.1: Probability density functions of two sets of data generated using two
Gaussian random variables with mean, standard deviation, and CoV values
(µ1 = 10, σ1 = 2.4, C1 = 0.24) and (µ2 = 100, σ2 = 5, C2 = 0.05), respectively.

2.3 Geometry-Based (CoV-Based) Regularity

Metrics

The CoVs of three geometric properties have been introduced in [25–27] to mea-

sure the clustering of mobile user locations. We propose using these metrics to mea-

sure the amount of regularity of the BS locations. Each metric is normalized by a

constant factor so that the CoV of the PPP is always equal 1.

2.3.1 The CoV of the Distances to the Nearest Neighbour

The distance to nearest neighbour have long been used for to quantify the spa-

tial relationship in point patterns, e.g., in the ecology where the points represent a

population of animals or plants [33] and more recent in sensor networks where the

points represent the nodes [24].
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Figure 2.2: An arbitrary spatial point pattern (blue “x” marks). The golden arrows
indicate the distance from each point (at the arrow tail) to its nearest neighbour
(at the arrowhead). Double-headed arrows means the points pair are the nearest
neighbour of each other.

Taking the CoV of the distribution of the distance from every point to its nearest

neighbour [34, 35], the CoV-based metric is

CN =
1

kN
· σN
µN
, kN =

√

4 − π
π
� 0.5227, (2.4)

where µN is the mean and σN is the standard deviation of the nearest neighbour

distances; and kN is a normalization factor derived1 from [34]. Figure 2.2 depicts a

set of points with their nearest neighbour.

1 In [25], the value for kN is erroneously given as 0.653.
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2.3.2 The CoV of the Areas of Voronoi Tessellation Cells

The Voronoi cell Ci of a point xi belongs to a spatial point pattern X =

{

x1, x2, . . . , xn(X)

} ⊂ Rd, where n(X) = |X| is the number of the points, consists of

all locations that are closer to the point xi than any other point x j ∈ X. This can be

expressed formally [5, 6, 36] as

Ci =

{
y ∈ Rd : | |y − xi | | ≤ | |y − x j | |, ∀ i , j

}
. (2.5)

The Voronoi tessellation is a subdivision of the space of the spatial point pattern X

into the Voronoi cells [5, 6]. Figure 2.3 demonstrates patterns of points with their

Voronoi tessellation (blue solid lines).

Considering the areas of the cells of the Voronoi tessellation of a set of points, the

CoV of the distribution of the areas of the Voronoi cells is another CoV-based metric,

which is then

CV =
1

kV
· σV
µV
, kV � 0.529, (2.6)

where µV is the mean and σV is the standard deviation of the Voronoi cell areas, and

kV is a normalization factor [25].

2.3.3 The CoV of the Lengths of Delaunay Triangulation

Edges

The Delaunay triangulation of a set of points in a plane can be constructed by con-

necting the points that have contiguous Voronoi cells [5]. The Delaunay triangulation

(golden dashed lines) of different spatial patterns is illustrated in Figure 2.3.
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Taking the edges of the Delaunay triangulation [5] of a set of points, the CoV-

based metric is

CD =
1

kD
· σD
µD
, kD � 0.492, (2.7)

where µD is the mean and σD is the standard deviation of the Delaunay edge lengths,

and kD is a normalization factor [25].

(Note that in order to eliminate the edge effect, Delaunay edges between points

on the border of the considered region should not be taken into consideration when

calculating the CD. Similarly, the Voronoi cell areas and the nearest neighbour dis-

tances of the border points should not be taken into consideration when calculating

the CV and CN, respectively.)

Figure 2.3 shows realizations of four different network layouts with different

amounts of regularity as measured using the CD metric. The perfect hexagonal layout

(Figure 2.3(a)) has CD = 0 (completely regular). At the other end of the RPPs scale,

the PPP (Figure 2.3(d)) has CD = 1 (a completely random layout). In general, the

CoV-based metrics take the value of 0 for a triangular lattice and 1 for a PPP. Values

between 0 and 1 are found for RPPs, as will be seen in the next chapters, while

values above 1 are found for point processes with clustering [25]. Practical models

for the BS locations should have a CoV between 0 and 1. As the BSs spread out,

the regularity increases. With the aid of one of the geometry-based metrics, we can

distinguish different spatial patterns in a quantitative manner.

For a stationary spatial pattern, the geometry-based metrics are density indepen-

dent, and their values do not change under a dilation transformation, i.e., enlargement

or reduction of a spatial pattern by a given factor. That is to say:

• the spatial pattern properties are preserved under dilation, where a resized

spatial pattern with a particular scaling factor has the same amount of regularity
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Figure 2.3: Delaunay triangulation (golden dashed lines) and Voronoi tessellation
(blue solid lines) of a spatial pattern (blue plus marks) with different amounts
of regularity as quantified using CD.
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as the original spatial pattern.

• If we select a fixed size (fixed area or borders) polygonal window that is rep-

resenting a sub-region within a whole region and then resize the whole spatial

pattern, the density of the points inside the polygon changes proportionally with

the scaling factor, but the amount of regularity as measured using the geometry-

based metrics remains constant. A tiny variation may happen because of the

edge effect.

• Two spatial patterns which are generated using a particular point process with

the same normalized parameters but with different densities have on the average

equal amount of regularity.

In short, the metrics CV, CD, and CN are unit-less quantities and are invariant

under scaling of the measured point process, and can thus be adjusted independently

of its density λ.

The three geometric properties are also meaningful in the context of BS locations:

the Voronoi tessellation represents the cell area associated with each BS under the

assumption the users always connect to the nearest BS [37], while the Delaunay trian-

gulation connects each BS to its strongest interfering BSs, and the nearest neighbour

characterizes the dominating interfering BS and has been of interest in measuring the

regularity of RPPs [24].

2.4 Concluding Remarks

We proposed three different CoV-based metrics to measure the amount of regular-

ity of spatial point processes used in cellular networks to model the locations of BSs.

These metrics have many theoretical and practical application in cellular networks
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as shown in this thesis. Indeed, these metrics are also applicable for measuring the

spatial relationship to all stationary point processes, in any field of study.



Chapter 3

Hard-Core Point Processes for Modelling

the Locations of Base Stations

“The beginning of knowledge is the discovery of

something we do not understand.”

—Frank Herbert

3.1 Introduction

In this chapter1, we examine three hard-core point processes for modelling the

locations of the BSs regarding the spatial regularity range and the point generation

efficiency. We use the CoV-based metrics, introduced in Chapter 2, for measuring the

regularity. These hard-core point processes are already proposed in wireless literature

to model BS locations [5,22,30,38,39], which are Matérn hard-core processes of type

I (MHC-I), Matérn hard-core processes and type II (MHC-II), and simple sequential

inhibition (SSI) process [5]. Other RPPs used in the literature include determinantal

point process models [16, 17], and the family of Gibbs point processes [13, 15]. RPPs

are also useful for modelling heterogeneous networks (HetNets) [14] and wireless sen-

sor networks [24].

1This chapter has been published in the IEEE Wireless Communication Letters [23].
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3.1.1 Contributions

We evaluate three geometry-based metrics, introduced in Chapter 2, for measur-

ing the regularity of three common hard-core point processes in wireless literature.

These point processes have only two tuning parameters: the density and the hard-core

distance. This chapter’s contributions are as follows:

1. We evaluate the use of three geometry-based metrics for quantifying the amount

of regularity,

2. we show that the geometry-based metrics are capable of measuring the amount

of regularity of RPPs and that the CoV of the nearest neighbour distance is the

most sensitive metric among them, and

3. we compare the hard-core point processes as models for BS locations in terms

of the achievable range of regularity.

The rest of this chapter is organized as follows: In Section 3.2, three hard-core

point processes are introduced. In Section 3.3, the geometry-based metrics are eval-

uated for quantifying the regularity of simulated realizations of the hard-core point

processes. Finally, we compare one geometry-based metric with function-based met-

rics in Section 3.4, before drawing conclusions in Section 3.5.

3.2 Hard-Core Point Processes

A spatial point process X on a domain W produces random realizations of points

(x1, x2, ) in the 2-dimensional plane (xi ∈ R2). For a single realization, the number

of points falling in a set B ⊂ W ⊆ R2 is is a random variable denoted by n(B), or
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Figure 3.1: The density ratio of MHC-I, MHC-II, and SSI as a function of r̃.

sometimes denoted by n(X). Different realizations have on average the same number

of points.

A hard-core point processes X is a RPP where two points are strictly prohibited

from being closer than a predefined hard-core distance r >0 apart [5,22,37]. Formally,

a hard-core point processes can be expressed as

X =
{
xi ∈ R2 : ‖xi − x j ‖ ≥ r; i , j; i, j ∈ Z+

}
, (3.1)

where ‖·‖ is the Euclidean distance.

In this section, we describe three hard-core point processes. In general, generation

of these three hard-core point processes begins with generating a PPP, and then re-

moving points that violate the hard-core condition. Different ways of removing points

(removing points is called thinning) lead to different RPPs with different densities.
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3.2.1 Matérn Hard-Core Process of Type I (MHC-I)

The MHC-I is generated as follows: From a PPP Φ with density λP, simultane-

ously remove all points that are closer than r from each other. The MHC-I can be

expressed as

XI =

{
xi ∈ Φ : ‖xi − x j ‖ ≥ r, ∀x j ∈ Φ; i , j; i, j ∈ Z+

}
, (3.2)

The density of the MHC-I is [5]

λ = λPe−λPπr
2

, (3.3)

and its normalization by λP is

λ

λP
= e−πr̃

2

, (3.4)

where r̃ = r
√
λP is the normalized hard-core distance.

3.2.2 Matérn Hard-Core Process of Type II (MHC-II)

The MHC-II is generated by following three steps: First, generate a PPP Φ with

density λP. Second, associate a mark Ui which is an independent uniform random

variable on [0,1] to each point xi ∈ Φ. Then, simultaneously remove all points that

have higher marks than their neighbours within a distance r. The MHC-II can be

written as

XII =

{
xi ∈ Φ : Ui < Uj, ∀x j ∈ Φ∩B(xi, r)\{xi} ; i , j; i, j ∈ Z+

}
, (3.5)
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where B(xi, r) is a ball with centre xi and radius r. The density of the MHC-II is [5]

λ =
1 − e−λPπr

2

πr2
, (3.6)

and its normalized density is

λ

λP
=

1 − e−λPπr
2

−λPπr2
=

1 − e−πr̃
2

πr̃2
. (3.7)

3.2.3 Simple Sequential Inhibition (SSI)

Given the required density of points λP in a domain, candidate points are gen-

erated sequentially using a PPP. Points are discarded if they are within a distance r

from any previously accepted point. The process terminates when the required den-

sity is attained or when adding more point becomes impossible [5,40]. The density of

the accepted points is λ. We are not aware of any closed-form expression for the SSI

density. Therefore, we conduct a curve-fitting, and we find a good fit for our results:

λ

λP
= min

{
1, 0.61r̃−1.79

}
. (3.8)

The density ratios as a function of r̃ for MHC-I, MHC-II, and SSI, given by (1)–(3),

are shown in Figure 3.1.
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Figure 3.2: The CoV of the areas of the Voronoi tessellation cells as a function of
the normalized hard-core distance for hard-core point processes.

3.3 Evaluation of CoV-based Metrics for Hard-

Core Point Processes

We generate spatial patterns of BS locations using the point processes defined

in Section II and measure their amount of regularity using the metrics defined in

Chapter 2.

The density λ is fixed to be 100 points in a 1 km2 square domain. r̃ is swept

over a wide range to change the regularity of the RPP, which is captured using the

CoV-based metrics presented in Chapter 2. For each RPP and metric combination, a

Monte-Carlo simulation is performed with 1000 realizations. The ensemble mean of

the CoV-based metrics of the resulting points as a function of r̃ is shown in Figures 3.2,

3.3, and 3.4.
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r̃ = r ·
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Figure 3.3: The CoV of the lengths of the Delaunay triangulation edges as a function
of the normalized hard-core distance for hard-core point processes.
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Table 3.1: CoV-based metrics floor for hard-core point processes

CV CD CN

CoV floor

MHC-I 0.84 0.91 0.62

MHC-II 0.49 0.63 0.33

SSI 0.27 0.42 0.13

We observe that the SSI process has the widest CoV ranges2 and achieves the

highest density ratio, making it the most attractive hard-core RPP. Conversely, the

MHC-I process is the least desirable among the investigated RPPs. It has the lowest

density ratio, making it inefficient in generating a given number of points, and its

CoV values fluctuate in a narrow range around 1. We interpret this behaviour as

being caused by the nature of the MHC-I process itself: Removing all points that

violate the hard-core condition creates large holes in the generated pattern when the

hard-core distance is large, causing some of the remaining points to cluster, relatively

speaking. Since cluster processes were shown [25] to have CoVs greater than 1, this

clustering increases the CoV value of MHC-I.

Our results also show that (i) the amount of regularity of hard-core point processes

is tunable and can be quantified using CoV-based metrics and (ii) the useful tuning

range of these RPPs is r̃ <1, i.e., where the CoVs are sensitive to changes in r̃.

The ranges of the CoV-based metrics are summarized in Table I. The CN metric

provides the widest value range, making it the most sensitive to changes in the amount

of regularity of the RPP.

2Indeed, in [30], SSI is observed to be more regular than MHC-II.
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3.4 Comparison of CN with two Function-Based

Metrics

In this section, we choose CN to examine its relationship to two function-based

metrics: the Ripley’s K-function and the coverage probability —a network perfor-

mance metric.

3.4.1 Ripley’s K-Function

Ripley’s K-function3 K (r) is defined as the ratio of the mean number of extra

points within distance r from a typical point (not included in the counting) to the

density of the spatial pattern [22,24]. It can characterize the regularity or clustering

of a point process. The L-function, L(r) =
√

(K (r)/π), is a normalized form of K (r).

While L(r) = r for a PPP, a spatial pattern with L(r) < r is repulsive.

As shown in Figure 3.5, a hard-core RPPs with the same CN value have similar

L-function and hard-core distance r, apart from the MHC-I in the second regime (in

which the CoV value increases with r̃). This indicates that matching RPPs using

Ripley’s functions is not always possible as the curves can have very different shapes.

3.4.2 Coverage Probability

The coverage probability P(γ) is the probability that a typical user achieves a

signal-to-interference ratio (SIR) higher than a given SIR threshold γ. We compare

the downlink coverage probability where the BSs are deployed according to hard-

core point processes introduced in Section 3.2 with different amounts of regularity

3The Ripley’s K-functions of MHC-I and MHC-II are known in a complicated integral form [22].
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as measured using CN. The following assumptions are used to evaluate the coverage

probability: (i) The average density is 100 BSs in 1 km2, (ii) all BSs transmit the

same power, (iii) mobile users are uniformly distributed over the entire domain and

each of them is associated to its nearest BS, (iv) the frequency reuse factor is 1, (v)

all channels have Rayleigh fading with mean 1, and (vi) the thermal noise is ignored.

We also assumed two channel models: one with a path loss exponent of α = 3 and 6

dB lognormal shadowing, and one with α = 4 and no shadowing.

Figure 3.6 shows that different hard-core RPPs with the same CN in different

channel environments behave alike regarding coverage probability. This is true even

for MHC-I in the second regime.

CN is an additional factor that affects the network performance. A spatial pattern

with a low CN value has a better performance than one with a high CN value. BSs

deployed according to the same density and CN have very similar SIR performance,

regardless of the chosen hard-core point process.

3.5 Concluding Remarks

• We found that CN is the most sensitive to the regularity of RPPs (i.e., most

sensitive to the change of the internal parameters of the RPPs).

• We observe that different BS location models with the same density and CN

value have very similar SIR performance. In Chapter 4 and Chapter 5, we

conduct more investigations to find the best regularity metric for measuring the

regularity and for capturing the network performance.

• Our results also show that the MHC-I process is undesirable for modelling points

with regularity, whereas both the MHC-II and SSI processes are useful when
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their normalized hard-core distance is less than 1, SSI being the best in terms

of the range of regularity and density ratio.

• Given real deployments of BS locations, an interesting extension is to investigate

whether the CoV-based metrics could work as a tool for fitting them to RPP

models. Chapter 5 considers this research direction.

• Another extension could include investigating other RPPs. In Chapter 4, we

examine the PTL to model the spatial deployment of the BSs, and, in Chapter 5,

we examine Strauss point process.



Chapter 4

Perturbed Triangular Lattice for

Modelling the Locations of Base Stations

“Essentially, all models are wrong, but some

are useful.”

—George Box

4.1 Introduction

In Chapter 3, we evaluated three hard-core point processes for modeling BS lo-

cations: the Matérn hard-core processes of type I and type II [5, 22], and the simple

sequential inhibition (SSI) process [5]. In Chapter 3, we also used three CoV-based

metrics (introduced in Chapter 2) to quantify the regularity of these hard-core point

processes. (As mentioned before, these metrics were originally proposed in [25–27]

for measuring the attraction in clustered point processes.) All these hard-core point

processes are based on generating independent points, and then removing certain

points based on some formula involving their mutual distances and sequential order.

Therefore, one important limitation of these RPPs is their inability to provide very

high regularity [13,23], as it is not possible to obtain a TL from thinning a PPP. It is

also often necessary to generate a large number of points (and evaluate the distance

between each pair), in order to obtain a smaller number of points at the output,

41
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making these methods computationally costly.

In order to overcome these limitations, in this chapter,1 we advocate the use of the

perturbed triangular lattice (PTL), which can be tuned over the whole range between

the deterministic TL and the PPP [15,42], for modelling the locations of the BSs. The

PTL can be scaled with different densities for different simulation scenarios without

changing the regularity of the deployment. Recently, the uniform PTL is found to be

tractable in [42]. The PTL is also a simple model to simulate; as a consequence, it is

practical and widely used in the industry [15].

4.1.1 Motivation

One of the challenges in BS location modelling is how to adjust the internal

parameters of different models to produce spatial patterns with the same amount of

regularity, or to check whether two given spatial patterns are similar or not. The

first step to overcome this challenge is to find good metrics for the regularity of a

spatial pattern in order to precisely define where it lies between the TL and the PPP.

The second step, which is the focus of this chapter, is to use these metrics as an

intermediate stage to map different models to each other.

4.1.2 Contribution

The main contribution of this chapter is proposing a novel approach for mapping

between different RPPs using CoV-based metrics. Specifically, we find a simple and

accurate formula for mapping between the uniform PTL and the Gaussian PTL.

We show that the CoV-based metrics are suitable for quantifying the regularity of

PTL lattice models. Similar to Chapter 3, where we found that different hard-core

1This chapter has been published in the IEEE 84th Vehicular Technology Conference (VTC2016-
Fall) [41].
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models with the same CoV-based metric value and density have very similar network

performance, here we show that this is true for different PTLs as well.

The rest of this chapter is organized as follows: In Section 4.2, perturbed triangular

lattice models are introduced. In Section 4.3, we measured the regularity of the

perturbed triangular lattices using the CoV-based metrics to quantify regularity. We

proposed new a approach using the CoV-based metrics for mapping between two PTL

models in Section 4.4. Finally, we draw the conclusions in Section 4.5.

4.2 Perturbed Triangular Lattices Models for Base

Stations Placement

In the cellular network context, the triangular lattice (TL) is often used to model

the layout of BSs. The Voronoi tessellation of the TL produces hexagonal cells.

(Erroneously, it is sometimes also called the hexagonal lattice. Indeed, the hexagonal

lattice is the dual of the Triangular Lattice [43].) We use the triangular lattice term

throughout this thesis. The PTL is a result of independent random displacement of

the points from their original locations. In this section, we present two kinds of the

perturbed triangular lattices: Gaussian PTL and uniform PTL.

Triangular Lattice Beginning with a unit square lattice with integer coordinates

(a, b) ∈ Z2, a triangular lattice can be produced by transforming the points using

the generator matrix G =


1 0

1
2

√
3
2


and scaling the coordinates by a factor η, which

is the distance between any two nearest neighbour points. The TL has points with

coordinates
{(

ηa + 1
2ηb,

√
3
2 ηb

)

, (a, b) ∈ Z2
}

. (4.1)
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The TL has density λ = 1
det(G)

η−2 = 2√
3
η−2.

Stationary Triangular Lattice Translation of all the lattice points by a common

vector
(

sx, sy
)

uniformly distributed over the Voronoi cell of the origin point (0, 0)

results in a stationary point process [13]. For the triangular lattice, the Voronoi cell

is a regular hexagon2 with two vertical sides,3 centred at the origin with side length

η/
√

3. The stationary triangular lattice has coordinates

{(

ηa + 1
2ηb + sx,

√
3
2 ηb + sy

)

, (a, b) ∈ Z2
}

, (4.2)

where
(

sx, sy
)

is uniformly distributed over the aforementioned hexagon. All PTL

models are assumed to be stationary in this thesis.

Perturbed Triangular Lattices For any perturbed lattice, each point is indepen-

dently displaced by random vector
(

x (a,b), y(a,b)

)

[5]. The PTL has coordinates

{(

ηa + 1
2ηb + sx + x (a,b),

√
3
2 ηb + sy + y(a,b)

)

, (a, b) ∈ Z2
}

, (4.3)

where
{(

x (a,b), y(a,b)

)}

is a set of independent and identically distributed vectors. The

distribution from which the vectors are drawn characterizes the type of PTL.

In this thesis, we study two kinds of perturbation: Gaussian and uniform. The

uniform PTL is one where the displacement vectors are uniformly distributed over a

disc of radius R, which controls the amount of perturbation and can be normalized

as R̃ = Rη−1 to be independent of the density. Similarly, the Gaussian PTL is one

where the displacement coordinates x (a,b) and y(a,b) are each taken independently from

2It is simpler to generate a stationary square lattice, where the Voronoi cell is a square, and then
transform it into a stationary triangular lattice using the generator matrix G.

3If a random rotation is introduced to generate an isotropic triangular lattice, the hexagon no
longer has a two vertical sides. They would have a tilted position according to the rotation angle.
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a Gaussian distribution with mean 0 and standard deviation σ, which controls the

amount of perturbation, and can be normalized as σ̃ = ση−1 to be independent of

the density.

An interesting observation about the uniform perturbation on a disc is that the

model can work either as a soft-core or as a hard-core model depending on the pertur-

bation regime. It is a hard-core model in the regime R̃ < 0.5 (the hard-core distance

is then h = (1 − 2R̃)η) and is a soft-core model after that. The Gaussian PTL is

always a soft-core model.

4.3 Measuring the Regularity of Perturbed Lat-

tices

In this section, we consider a wireless cellular network with the BS placement

modelled by the two PTL models introduced in Section 4.2. The normalized param-

eters, R̃ for uniform PTL and σ̃ for Gaussian PTL, are swept from 0 to 2 in order to

change the regularity of the models. (Indeed, the produced spatial pattern appears

as if it is a PPP when the normalized parameters are higher than or equal to 2.) For

each model, we measure the amount of regularity using the three CoV-based metrics

introduced in Chapter 2. For each particular R̃ and σ̃ values, we perform a Monte-

Carlo simulation with 1000 realizations, each with 500 BSs placed over a 1 km2 square

area. The CoV-based metrics as a function of R̃ and σ̃ are shown in Figures 4.1, 4.2,

and 4.3.

A good fit for the relationship between the CD metric and normalized parameters

(R̃ and σ̃) of the uniform and Gaussian PLT is

CD ≈ 1 − e−2.17R̃1.095

, (4.4)
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Figure 4.1: The normalized CoV of the distance to the nearest neighbour as a
function of the normalized perturbations.

CD ≈ 1 − e−4.189σ̃
1.0465

. (4.5)

As the perturbation parameters increase, the CoV-based metrics converge to 1

and the two models converge to the PPP. In other words, both models are able to

span the whole range between the TL (CN = CV = CD = 0) and, asymptotically,

the PPP (CN,CV,CD → 1). A particular spatial pattern has different CN, CV, and

CD values. Figure 4.4 shows the parametric curves of the relationships between the

CoV-based metrics.
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Figure 4.2: The normalized CoV of the areas of the Voronoi tessellation cells as a
function of the normalized perturbations.
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Figure 4.4: The relationship between different CoV-based (CN, CV, and CD) metrics
of different PTL models.
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4.4 Mapping Between Uniform PTL and Gaussian

PTL Models Using the CoV-Based Metrics

4.4.1 Mapping

In a novel framework, we use the CoV-based metrics as an intermediate step for

mapping between the uniform PTL and the Gaussian PTL. Using the simulation

results from the previous section, for each CoV-based metric at a particular value,

we find the corresponding internal parameter values R̃ and σ̃, for the uniform PTL

model and the Gaussian PTL model, respectively. Parametrized curves describing

the relationship between R̃ and σ̃ using the three CoV-based metrics are shown in

Figure 4.5. We find a good approximate fitting for all the three parametrized curves

to be

σ̃ ≈ 0.53R̃. (4.6)

This means that a spatial pattern generated by the uniform PTL with any pertur-

bation value R̃ is almost equivalent in terms of regularity to another spatial pattern

generated by the Gaussian PTL with perturbation value σ̃ = 0.53R̃. Moreover, the

two spatial patterns —when they are used to model BS locations— are also almost

equivalent in terms of the network performance, as we will show in the next subsec-

tion.

4.4.2 Downlink Coverage Probability

We now validate that a pair of spatial patterns generated by uniform PTL and

Gaussian PTL have similar network performance and regularity (as measured using
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Figure 4.5: The relationship between R̃ and σ̃ that gives equal CoV-metrics value.

the CoV-based metrics) if their internal parameters are simultaneously adjusted ac-

cording to (4.6). A useful wireless network metric that we use to compare the network

performance of different spatial deployments of BSs is the downlink coverage proba-

bility P(γ), which is the probability that a typical user’s signal-to-interference ratio

(SIR) exceeds a threshold γ.

We consider a 100 macro BS (one tier) wireless network placed over a 1 km2 square

area with simple network setup assumptions as follows. We consider two path-loss

models: one with path-loss exponent α = 3 and lognormal shadowing of Xg = 6 dB,

and the other with α = 4 and Xg = 0 dB. We will refer to these two path-loss models in

Table I as CH1 and CH2, respectively. All the BSs transmit identical power, operate

at the same frequency (the frequency reuse factor is 1), and are equipped with one

antenna. 1000 mobile users are uniformly distributed over the network region. Each

user is associated with its nearest serving BS. All the links experience independent
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Rayleigh fading with mean 1. We ignore the thermal noise. We use a simple network

setup, similarly to [13], because our emphasis is on the validation of the mapping

between the two PTL models.

Figure 4.6 shows that uniform PTL and Gaussian PTL have similar downlink

coverage probability when their parameters are matched according to (4.6). Figure 4.6

also shows that the coverage probability curves of the PPP and TL represent the lower

and the upper network performance bounds, respectively.

Figures 4.7 and 4.8, each for a specific path-loss model, show in detail the difference

between the coverage probability curves and the PPP coverage probability curve.

As defined in [13, Def. 9], this SIR difference is the deployment gain G(pt ), where

pt ∈ (0, 1) is the target coverage probability. Table I summarizes the comparison

between the two PTL models matched according to (4.6). The gap ∆SIR50% is the

dB difference in SIR between the coverage probability curves of the matched uniform

PTL and the Gaussian PTL at a coverage probability of 50%. The matched models

have similar CoV-based metrics values and negligible ∆SIR50% for the two path-loss

models. In fact, the difference in SIR between the matched uniform and Gaussian

PTL is never more than 0.104 dB.

4.5 Concluding Remarks

• We proposed a novel approach for mapping between uniform PTL and Gaussian

PTL using CoV-based metrics as an intermediate step.

• After measuring the regularity of PTL models using three metrics, we found

a simple relation between the internal parameters of these two PTL models in



52

-20 -15 -10 -5 0 5 10 15 20

SIR Threshold γ (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ov
er
ag
e
P
ro
b
ab

il
it
y
P
(γ
)

← Xg: 0 dB,
α : 4.

Xg: 6 dB, →
α : 3.

TL
PPP

Uniform PTL, R̃2 = 0.375.

Gaussian PTL, σ̃2 = 0.53R̃2.

Uniform PTL, R̃4 = 0.65138.

Gaussian PTL, σ̃4 = 0.53R̃4.

Figure 4.6: The coverage probability for different PTL models for different pertur-
bation values and channel environments.



53

0 1 2 3 4 5

Deployment gain G(pt) (dB)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
ar
ge
t
co
ve
ra
ge

p
ro
b
ab

il
it
y
p
t

TL

Uniform PTL, R̃1.

Uniform PTL, R̃2.

Uniform PTL, R̃3.

Uniform PTL, R̃4.

Uniform PTL, R̃5.
Gaussian PTL, σ̃1

Gaussian PTL, σ̃2

Gaussian PTL, σ̃3

Gaussian PTL, σ̃4

Gaussian PTL, σ̃5

PPP

Figure 4.7: The difference in SIR between the curves of the coverage probability
of different spatial patterns and the PPP coverage probability (the deployment
gain). Path-loss model α = 3 and Xg = 6 dB.

0 1 2 3 4 5 6

Deployment gain G(pt) (dB)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
ar
ge
t
co
ve
ra
ge

p
ro
b
ab

il
it
y
p
t

TL

Uniform PTL, R̃1.

Uniform PTL, R̃2.

Uniform PTL, R̃3.

Uniform PTL, R̃4.

Uniform PTL, R̃5.
Gaussian PTL, σ̃1

Gaussian PTL, σ̃2

Gaussian PTL, σ̃3

Gaussian PTL, σ̃4

Gaussian PTL, σ̃5

PPP

Figure 4.8: The difference in SIR between the curves of the coverage probability
of different spatial patterns and the PPP coverage probability (the deployment
gain). Path-loss model α = 4 and Xg = 0 dB.
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Table 4.1: Summary of the comparison between the matched uniform PTL and
Gaussian PTL.

Uniform PTL

R̃1 R̃2 R̃3 R̃4 R̃5

R̃ 0.219 0.375 0.503 0.651 1.000

CD 0.323 0.517 0.650 0.760 0.888

Gaussian PTL

σ̃1 σ̃2 σ̃3 σ̃4 σ̃5

σ̃ 0.116 0.198 0.266 0.345 0.530

CD 0.341 0.539 0.663 0.763 0.885

∆SIR50% [dB] CH1 -0.003 0.055 0.051 -0.023 0.003

CH2 0.038 0.104 0.101 -0.057 -0.013

order to generate two very similar spatial processes in terms of regularity and

network performance. Therefore, considering only one type of PTL is enough

since the other shows very similar performance.

• This chapter advocates modelling the placement of different types of BSs in

HetNets using one of the PTL models, because of their simple and efficient

implementation, their full regularity range (from the TL to the PPP), and their

prevalence in industry and in recent wireless literature.

• Next chapter involves fitting RPP models to real BS location data to using the

CoV-based regularity metrics and estimating the network performance based

on the difference in the amount of regularity.

• Ultimately, we would like to describe the spatial structure of any wireless net-

work using only two scalars: the density of the BSs and a regularity metric

value.



Chapter 5

Towards the Best Metric for Measuring

the Spatial Relationship among the Base

Stations and Its Applications

“There is no knowledgeable person, but there is

another person with more knowledge.”

—The Qur’an, 12:76

5.1 Introduction

In the previous chapters, we proposed a geometry-based scalar metrics to quantify

the spatial regularity of the repulsive wireless networks. In this chapter,1 we aim to

find the best metric among them. The results show that coefficient of variation (CoV)

of the length of the corresponding edges of Delaunay triangulation is the most appro-

priate metric for measuring the regularity and it is robust for estimating the network

performance. Using the best proposed regularity metric, this chapter develops new

approaches for 1) approximating the performance of a repulsive network based on its

amount of regularity and 2) fitting point processes to the spatial deployment of BSs.

Base station locations in wireless networks should be modelled via repulsive point

processes with an amount of regularity that is tunable between that of a triangular

1This chapter is under review in IEEE Transactions on Wireless Communications [44].
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lattice and that of a homogeneous Poisson point process (PPP). However, the non-

Poisson point processes (e.g., repulsive point processes including lattices) are much

more complicated than the PPP to analyze due to the interaction among the points

(BS locations). These models are much less investigated in the cellular networks

literature due to the absence of a unified analytical framework to compute the cov-

erage probability. For the non-Poisson networks, derivation of an exact closed-form

expression for the coverage probability is either difficult or impossible to attain.

Interestingly, as observed in Figure. 4.6 as well as in the literature [8,13,45–48], the

coverage probability curves of different BS deployments appear to be a horizontally

shifted version of each other. This shift is a difference in the SIR threshold (in dB)

along the x-axis. Guo and Haenggi [13] considered a PPP-deployed network as a

reference and called this horizontal gap as the deployment gain. It is obtained mainly

by deploying the BSs more regular than a PPP.

As a side note, the horizontal gap between the coverage curves is also called the

“SIR gain”, which is a more general term than the deployment gain since not only the

deployment of the BSs is affected the horizontal gap, but also the channel model and

the network parameters. The path loss exponent and fading also has some effect on the

SIR gain. Other technologies such as employing MIMO (multiple-input and multiple-

output), sophisticated directional antennas, and interference cancellation methods

may affect the SIR gain as well. Nevertheless, the SIR gain mainly depends on the

spatial configuration of the network. That is why we need a metric that only depends

on the spatial structure of the network such as the regularity gain, which is introduced

in Section 5.4. Of course, the comparison of the performance of the networks with

different spatial configuration must be made under the same network parameters and

channel model.
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5.1.1 Contribution

The first contribution of this chapter is proposing a novel approach for approx-

imating the performance of the repulsive cellular networks based on the amount of

regularity of its BSs. Given a performance of a reference model (e.g., PPP-deployed

network) is known, we proposed a simple approach to approximate the performance

of different repulsive deployments of the BSs. In particular, we use the difference

in the amount of regularity between the two deployments of BSs to estimate the

performance of the unknown network when the performance of the other network is

known. Second, we propose a novel approach for fitting RPP models to actual BS

deployments. Given a real deployment of BSs, we used the CD metric to know how

to adjust the internal parameters of a particular point process to generate a spatial

pattern equivalent to the real deployment. Finally, we show that the spatial structure

of the actual deployment of BSs is locally regular.

The rest of this chapter is organized as follows. In Section 5.2, the performance

metrics are presented. In Section 5.3, Strauss point process model is introduced

and its regularity is measured using using the geometry-based regularity metrics. In

Section 5.4, we quantify the deployment gain using the regularity metrics. Section 5.5

presents how the best geometry-based regularity metric can be used for fitting BSs to

point processes. Section 5.6 demonstrates the local regularity of the spatial structure

of the BSs. Finally, we draw the conclusions in Section 5.7.
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5.2 Performance Metrics

5.2.1 Downlink Coverage Probability

A useful wireless network metric that we use to compare the network performance

of different spatial deployments of BSs is the downlink coverage probability P(γ),

which is the probability that a typical user’s SI(N)R exceeds a threshold γ.

5.2.2 The Deployment Gain

Definition 1 (Deployment gain [13, Def. 9]): The deployment gain is the difference

in the SIR between the coverage curves of the given point set and the PPP at a given

target coverage probability pt.

The deployment gain can be defined as [45]

G(pt )
∆
=

F̄−1
SIR

(pt )

F̄−1
SIRref

(pt )
, pt ∈ (0, 1), (5.1)

where F̄−1
SIR

is the inverse of the CCDF of the SIR and pt is the target coverage

probability. The average deployment gain Ĝ is approximately equal to the deployment

gain at a target coverage probability pt = 0.5, i.e., Ĝ ≈ G(0.5) [13]. Throughout this

thesis, we focus on the average deployment gain.
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5.3 Strauss Point Process as Model for Base Sta-

tion Placement

5.3.1 Strauss Process

The Strauss process is an important class of Gibbs processes where it is obtained

by shaping the distribution of PPP using a density function of the form

f (X) = c βn (X)γs (X) . (5.2)

where n(X) is the number of the points in X, s(X) is the number of point pairs that

are closer than a hard-core distance r apart. 0 ≤ γ ≥ 1 is the interaction parameter.

β > 0 is a parameter and c > 0 is a normalization constant. While the case γ = 1

produces a PPP with intensity λP = β, the case γ = 0 gives Poisson hard-core process

(PHCP). We found a good fitting for PHCP density ratio, which is

λ

λP
=

1 − e−2.25r̃1.73

2.25r̃1.73
, (5.3)

where r̃ = r
√
λP is the normalized hard-core distance.

5.3.2 Measuring the Regularity of the Strauss Point Process

Models

We consider wireless cellular networks where the locations of the BSs are modelled

using the Strauss point process. In this section, the density of the point processes

is 500 points (BSs) placed over a 1 km2 square area. Similar to the previous two

chapters, we sweep the internal parameters of the Strauss point process and measure
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Figure 5.1: The normalized CoV of (a) the distance to the nearest neighbour (CN),
(b) the areas of the Voronoi tessellation cells (CV), and (c) the lengths of the
Delaunay triangulation edges (CD) as a function of the interaction parameter
and the normalized hard-core distance r̃ for Strauss process.
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its regularity using the CoV-based metrics defined in Chapter 2. At each particular

increment in a parameter value, we perform a Monte-Carlo simulation with 1000

realizations.

Figure 5.1 shows the CoV-based metrics as a function of the interaction parameter

γ and the normalized hard-core distance r̃ of the Strauss point process. The Strauss

point process has a regularity floor similar to the hard-core point processes, investi-

gated in Chapter 3. On the other hand, the PTL models can span the whole range

between the TL (CN,CV,CD = 0) and, asymptotically, the PPP (CN,CV,CD → 1),

as shown in Chapter 4 (Figs. 4.1–4.3). Clearly, the PTL models have full regularity

range advantage unlike the Strauss and hard-core point processes. Therefore, the

PTL is still our model of choice.

5.4 Quantifying the Deployment Gain Using the

Regularity Metrics

As mentioned before, the SIR distributions of different cellular networks have sim-

ilar shape regardless of the underlying spatial configuration of the BSs. Consequently,

the SIR distribution of an arbitrary (real or simulated) repulsive BS deployment can

be estimated relative to a known SIR distribution of a reference model. That is to

say; knowing the SIR distribution of a reference model, we can determine the SIR dis-

tribution of an arbitrary network by computing its average deployment gain through

the regularity difference (regularity gain) and then shift the SIR curve of the reference

model accordingly. One point on the CCDF distribution is enough to determine the

whole graph since all curves are similar [8, 13, 45–48].
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This approach obviates the need to tackle less tractable models or to repeat cum-

bersome simulations. It brings the closed-form expressions of the Poisson point pro-

cess to non-Poisson real deployments after add/subtract (in dB) a constant to reflect

the average deployment gain.

Definition 2 The regularity gain2 is the difference in the amount of the spatial regu-

larity/irregularity between a PPP-deployed network and an arbitrary network deploy-

ment.

Formally, we define the regularity gain, when the CD metric is used for the measure-

ment, as

ΓD = Cref
D − CD, (5.4)

Not unexpectedly, we consider a PPP-deployed network (i.e., Poisson deployment

of BSs) as a reference model since many studies chose it as a reference model.

In this section, we first examine three CoV-based metrics to know which is the

most robust to be used for approximating and comparing the performance of cellular

networks of different spatial deployments. Then, we use the difference in regularity

between two spatial sets of BSs, as measured using the most robust metric, to estimate

the performance of one set of BSs if the performance of the other set is known.

5.4.1 Data

Here we measure the average deployment gain and the regularity of actual (real-

world) and artificial (simulated) spatial patterns of BS.

2We mimicked the name of deployment gain in [13]. The regularity gain can also be called the
repulsion gain.
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The data of the actual deployment of the BSs is obtained from the Sitefinder

database,3 which represents real BS developments in the UK. The data is publicly

released by Ofcom —the communications regulator authority in the UK. In this chap-

ter, we consider only the locations of macro BSs (GSM band 900 MHz) that belong

to the operator Vodafone. From this data, we selected 36 small sets of BSs that rep-

resent the locations of real spatial deployments of BSs in different regions. These sets

are selected from the database as follows. We assumed that each point (BS location)

in the database to be a centre of a rectangular area.4 Then, we extracted the points

within each rectangular area —including the BS at the centre— and denoted it as a

set of BSs. Since the number of the BSs in the rectangular areas is not equal because

of the change in the geographical location and the underlying population density,

we only select the rectangular areas that have at least 60 BSs inside. The average

number of the BSs in a rectangular area is 64 and the maximum is 65.

For the simulated data, we construct the artificial spatial patterns of BS locations

using the point processes described in Section 3.2, Section 4.2, and Section 5.3. As

in the previous section, we sweep with a fixed step size increment the parameters of

the models to change the regularity of the produced spatial patterns. We measure

the performance and the amount of regularity of these spatial patterns using the

regularity metrics of Chapter 2.

5.4.2 System Model

We consider simple network setup assumptions as follows. All the BSs transmit

identical power, operate at the same frequency (the frequency reuse factor is 1),

3The Sitefinder database of the locations of BSs is available at
http://www.ofcom.org.uk/static/sitefinder/Sitefinder-May-2012.zip

4We converted the geographic coordinates (latitude, longitude) of the BSs to the Cartesian co-
ordinates (x, y) before using them in the simulation.
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and are equipped with one antenna. Mobile users are uniformly distributed over

the network region. Each user is associated to its nearest serving BS. All the links

experience independent Rayleigh fading with mean 1. We ignore the thermal noise.

We consider different combinations for the path-loss model parameters as follows.

The path-loss exponent α and the lognormal shadowing of Xg dB pairs are (2.5, 6

dB), (2.5, 0 dB), (3, 6 dB), (3, 0 dB), (3.5, 6 dB), (3.5, 0 dB), (4, 6 dB), (4, 0 dB), and

(4.5, 6 dB). We consider rectangular geographical areas of 1500 m×1050 m. Users are

uniformly distributed within a central area of 900 m × 630 to reduce the edge effect

on the network performance calculation. We execute the experiment for 1000 Monte

Carlo simulation runs.

5.4.3 Results

In Figs. 5.2–5.4, we draw parametric curves of the relationship between the amount

of the regularity and the average deployment gain of different simulated (modelled

using point processes presented in Section 3.2, Section 4.2, and Section 5.3) and actual

deployments of BSs for different channel parameters.

On each of these figures, we also plot a linear regression (greed solid line) for

the discrete points that represent the average deployment gain of the real spatial

deployments of BS sets.

Note that, for the SP, we sketch the average deployment gain as a function of the

interaction parameter γ at a fixed normalized hard-core distance r̃ = 0.5.

Figs. 5.2–5.4 show that regardless of the metric type, the repulsive point processes

of the same variety have the same network performance (average deployment gain)

when they have the same amount of regularity. The soft-core and the hard-core
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Figure 5.2: The relationship between the regularity as measured using the CN

metric and the deployment gain G(pt ) at a target coverage probability pt =

0.5 of different simulated and actual deployments of BSs for different channel
parameters: The path-loss exponent α and shadowing Xg.
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Figure 5.3: The relationship between the regularity as measured using the CV

metric and the deployment gain G(pt ) at a target coverage probability pt =

0.5 of different simulated and actual deployments of BSs for different channel
parameters: The path loss exponent α and shadowing Xg.
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Figure 5.4: The relationship between the regularity as measured using the CD

metric and the deployment gain G(pt ) at a target coverage probability pt =

0.5 of different simulated and actual deployments of BSs for different channel
parameters: The path-loss exponent α and shadowing Xg.
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point processes have slightly different network performance even when they have the

same amount of regularity. When the regularity is quantified using the CD metric,

we observe that 1) the performance gap between the soft-core and the hard-core

point processes is negligible, and 2) the performance of the two varieties of the RPPs

is similar to the performance of the linear regression of the real BSs deployment.

Therefore, the CD metric is the most robust and the best indicator for the network

performance. In Chapter 6 and Chapter 7, we use the CD metric to facilitate the

planning of the next generation cellular networks: the cells switch-off (CSO) during

the low traffic periods and deploying mobile on-demand BSs mounted on unmanned

aerial vehicles (UAV-BSs).

We note that the effect of the shadowing on the deployment gain is negligible.

Indeed, the shadowing only causes a right or left shift to all coverage curves includ-

ing the baseline model (i.e., the PPP) as shown in Figure 4.6. In other words, the

shadowing introduces almost equal shift to the coverage curves, but its effect on the

deployment gain is negligible (within 0.1 to 0.2 dB difference), taking into consid-

eration a PPP-deployed network of the same network parameter is considered as a

reference. For the similar network configuration, the deployment gain depends on the

spatial structure of the BSs and the path loss exponent.

For measurement using the CD metric, a good approximation for the relationship

between the deployment gain and the amount of regularity is

G(0.5) ≈ −cα(CD)2 + cα, (5.5)

where α is the path-loss exponent and c ≈ 1.06 is a constant. The value of the constant

c may slightly change depending on the simulation environment and the path-loss

exponent. The chosen value for the constant c is the average over all considered
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channel models.

For α = 4 and using (5.5), we can estimate that the performance of a repulsive net-

work of an amount of regularity CD = 0.8 (or, equivalently, regularity gain ΓD = 0.2)

is approximately 1.52 dB better than a PPP-deployed network of the same network

configurations.

5.5 Fitting Base Station Locations to Repulsive

Point Processes

In this section, we introduce a simple, yet accurate, approach for fitting point

processes to locations of BSs in cellular networks. This approach uses the CoV-

based metrics as fitting tools. In particular, we consider fitting PTLs to spatial point

patterns of real and simulated data using the CD metric. The fitting procedure is as

follows.

Step 1: Identify a bounded geographical region (window) of a real-world (or simu-

lated) repulsive deployment of BSs. Then, measure its density and its regularity

using the CD metric.

Step 2: Choose a targeted point process, whether it is a soft-core or a hard-core

model, that could achieve the measured regularity value. (In this section, we

select the PTL models since they span all range of regularity.) Choosing the

appropriate model requires in advance investigation of all candidate point pro-

cesses with respect to their type and regularity range as measured using the

CoV-based metrics.

Step 3: Finally, tune the internal parameters of the targeted model to generate
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Figure 5.5: Two similar (the amount of regularity CD = 0.75 and density λ = 38.73
BSs/ km2) spatial deployments of BSs. (a) real (actual) data extracted from
the Sitefinder database. It consists of 61 BSs distributed over 1500 m × 1050 m
region centred at (51.5157◦N, −0.1395◦W). (b) A realization using Gaussian
PTL (σ̃ = 0.3357).
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Figure 5.6: Two similar (the amount of regularity CD = 0.38 and density λ = 38.73
BSs/ km2) spatial deployments of BSs. (a) Simulated data using SSI (hard-core
distance r = 131.35 m). (b) A realization using uniform PTL (R̃ = 0.26).
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a spatial pattern that has equal regularity value and BSs density as the given

deployment. A fast adjustment of the internal parameters of a model requires a

prior knowledge about the relationship between them and the regularity value.

(We investigated the relationship between the internal parameters and the reg-

ularity ranges of different RPPs in Section 5.3.2 and in the previous chapters.)

Since we consider fitting PTL models to point patterns, we can use (4.4) and

(4.5) to map regularity values onto model parameters, and vice versa. If such

equations are not available, figures such as Figure 3.2, Figure 3.4, Figure 3.3,

Figure 4.1, Figure 4.2, Figure 4.3, and Figure 5.1 or lookup tables (not presented

in this thesis) can be used for mapping as well.

Next, we give two fitting examples: one using real data of points set, and another

using spatial point pattern generated by the SSI model.

Example 1 In the first example, we choose the Gaussian PTL as the targeted

fitting model, and we use a real spatial point pattern extracted from the Sitefinder

(see footnote 3) database. Figure 5.5(a) visualize this set of points. It consists of

61 BSs distributed over an area of 1500 m × 1050 m, which is centred at (51.5157◦N,

−0.1395◦W). For this pattern of points, we find that the density λ = 38.73 BSs/ km2,

the amount of regularity CD = 0.75. For Gaussian PTL, the parameter σ̃ can be

obtained by solving (4.4) for the given CD value. We find that σ̃ ≈ 0.3357 for the

corresponding fitted model. Figure 5.5(b) visualize a Gaussian PTL realization of

the real set of points in Figure 5.5(a). (Indeed, we iteratively generate different

realizations using Gaussian PTL of σ̃ = 0.3357 until we got the value of CD that

exactly match the regularity of the real spatial pattern. This step is not necessary if
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Table 5.1: Summary of London Local Regularity information

Scale of observation Area Density λ CD

large-scale 73.5 km × 73.5 km 0.354 BSs/ km2 CD = 1.99

medium-scale 10.5 km × 10.5 km 6.376 BSs/ km2 CD = 1.58

small-scale 1.5 km × 1.5 km 38.22 BSs/ km2 CD = 0.83

we want to conduct Monte Carlo simulation since the average value of the CD metric,

for all realizations, will be the same.)

Example 2 In the second example, we use a hard-core point process to generate

a simulated pattern of points. Then, we fit a uniform PTL to this simulated data.

Specifically, we use SSI point process, where its density λ = 38.73 BSs/ km2 and its

hard-core distance r = 131.35 m. Figure 5.6(a) illustrates a simulated set of points

generated using SSI, and Figure 5.6(b) depicts an equivalent realization using uniform

PTL. The amount of regularity of the spatial point pattern of Figure 5.6(a) is CD =

0.38. This amount of regularity can be mapped to a perturbation distance R̃ ≈ 0.26

of uniform PTL using (4.4).

5.6 The Heterogeneous Regularity of the Base

Stations

In this section, we consider the spatial structure of a set of BSs in London, UK,

from three scales of observation (regions) as illustrated in Figure 5.7. They are

a large-scale of observation which is a geographical region of 73.5 km × 73.5 km as

shown in Figure 5.7(a), medium-scale of observation which is a geographical region
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(c) Small-scale (CD = 0.83)

Figure 5.7: The BSs belong to the Vodafone operator. The regions are (a) 73.5 km×
73.5 km, (b) 10.5 km × 10.5 km , and (c) 1.5 km × 1.5 km. They are centred
at (51.5136◦N, 0.1342◦W), London, UK. The small-scale region is an enlarged
version of the central area (golden square) of the medium-scale region, which
itself is an enlarged version of the central area (red square) of the large-scale
region.
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of 10.5 km × 10.5 km as shown in Figure 5.7(b), and small-scale of observation which

is a geographical region of 1.5 km× 1.5 km as shown in Figure 5.7(c). The small-scale

region is an enlarged version of the central area (golden square in Figure 5.7(b)) of

the medium-scale region, which itself is an enlarged version of the central area (red

square in Figure 5.7(a)) of the large-scale region. The centre of the observations is

[51.5136◦N, 0.1342◦W], London, UK. The BSs belong to the Vodafone operator. The

data is retrieved from the Sitefinder website as aforementioned in Section 5.4.

In London, UK, the amount of the spatial relationship among the BSs changes with

the scale of the observation as shown in Figure 5.7. The information of Figure 5.7

is summarized in Table 5.1. The amount of the spatial relationship of the large-

scale of observation, medium-scale of observation, and small-scale of observation are

CD = 1.99, CD = 1.58, and CD = 0.83, respectively.

While the BSs deployment is regular at a small-scale of observation, it could seem

clustered as a large-scale. For example, the BSs at a city scale exhibit repulsion

among each other, but at a country/state scale their spatial distribution may appear

clustered, especially in the sparsely populated countries. In other words, the deploy-

ment of the BSs of a large-scale geographical region can be partitioned into different

smaller areas of locally regular structure although the large-scale (global) structure

of these BSs may look like clustered. We call this observation the heterogeneous reg-

ularity of the BSs. Figure 5.7 also shows that the density of the BSs in London is

not a constant at a large-scale of observation. The density of the BSs increases as we

move from the suburban to the dense urban areas. (This variation in the density of

the BSs is most likely because of the variation of population’s density since there is

a strong correlation between population and the BSs densities [49].) This change in

density of the BSs makes them appear clustered in large-scale scenarios and causes

the variation in the amount of the spatial regularity. At a small-scale of observation,
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the local structure of the BSs is regular (repulsive) because the BS density is almost

constant. The spatial structure of the BSs deployment tends to change with the scale

of observation if their density is not constant.

Based on the aforementioned observations, it is invalid to model the BSs in large-

scale scenarios with the existing clustered point processes since the locations of the

points in their clusters are completely random rather than being repulsive. It is more

appropriate to have new models of clusters of repulsive points to maintain the local

regularity of the BSs deployment. To this end, a combination of repulsive spatial

patterns of different densities and amount of spatial regularity can be used to model

such a large-scale scenario. Finding such models is beyond the scope of this research.

In this thesis, our focus is only on local structures where the average density of the

macro BSs in the deployment remains constant.

The concept of the heterogeneous regularity is applicable to the small cells (e.g.,

micro-, pico-, and femtocells) deployments as well, but maybe with a different defi-

nition of the scale of observation. Like the deployment of the macro cells, small cells

have repulsive local structure and may appear clustered in the large-scale scenario.

For example, small cells overlaid by a particular macro BS have local regularity, but

they may appear clustered on a city scale.

5.7 Concluding Remarks

• We tested three geometry-based metrics for quantifying the spatial relationship

of a set of points and for capturing the network performance. We showed that

the CD metric is the most accurate indicator for the network performance: a

difference in the regularity can be directly interpreted as a difference in the

network performance.
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• We proposed a novel approach to approximate the performance of the repulsive

networks compared to a reference model based on the difference in the amount

of regularity.

• We devised a new approach for fitting point processes to the spatial deployment

of BSs using CD metric.

• We showed that the actual deployment of the BSs is locally regular. However,

however, at a larger scale, the BSs may appear clustered around towns. Further

research is necessary to find more realistic models for this phenomenon.

• In this chapter, we modelled the location of the BSs using PTLs and mapped

other models to them because of their simple and efficient implementation, their

full regularity range (from the TL to the PPP), and their prevalence in the

industry and in recent wireless literature. This chapter supports the conclusion

of Chapter 4, which is the PTL is our model of choice.
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Chapter 6

Cell Switch-Off for Networks Deployed

With Variable Spatial Regularity

“If you define the problem correctly, you almost

have the solution.”

—Steve Jobs

6.1 Introduction

Wireless cellular networks have seen an unprecedented growth in data traffic de-

mand. This demand requires an increase in the number of base stations (BSs) in

order to alleviate the network’s capacity shortage during the peak traffic. While

many of these BSs are underutilized during low traffic periods, BSs are the most sig-

nificant consumers of cellular network power. BSs are responsible for 57% of power

consumption in cellular networks, yet this energy consumption of these BSs is al-

most independent of their traffic load [50–53]. Each BS absorbs an average of 25

MWh per year, which may approximately cost $3,000 per year [52]. Clearly, energy

consumption raises the concern of cellular network operators regarding operational

expenditure (OPEX). Another aspect is the impact of the carbon footprint associated

with cellular networks on the environment. This urges the researchers to innovate new

techniques to make the cellular networks more energy-efficient. Turning off some BSs

79
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while maintaining good service quality during low-traffic periods is an opportunistic

energy-efficient approach [54, 55]. It would save a remarkable amount of energy, and

hence reduce both the network’s OPEX and greenhouse gas emissions [56]. The en-

ergy saved is proportional to the number of the switched-off BSs. This approach is

called cell switch-off (CSO) [56], which is an important topic under the umbrella of

green communications [50–53,56].

In the current CSO literature, most authors consider the TL (i.e., the hexagonal

layout): the most regular arrangement for BSs deployment. Recently, a few works

such as [57, 58] have modelled the BS locations using the PPP. The PTLs span the

entire range between the TL and the PPP. Therefore, we employ a PTL for modelling

the BS locations in this chapter.1 To the best of our knowledge, The RPPs have not

been used to model the BS locations in the CSO context.

6.1.1 Motivation

In Chapter 3 and Chapter 4, we show that “the regularity maximizes the coverage

probability” [24]. This is confirmed in [23] and [13] for cellular networks by show-

ing that the best signal-to-interference ratio (SIR) distribution is achieved when BSs

are placed on the perfect regular TL; the worst is found when the BSs are deployed

according to a PPP. The higher the regularity of the BS deployment, the better

the coverage probability and SIR distribution. Ideally, the network operators would

maintain the coverage requirement or even improve it while saving the energy and

its expenditure during low-traffic demand by switching off some BSs. In practise,

they may only want to avoid a drastic drop in network coverage. Regardless of the

operator’s intention, the intuitive approach to attaining the best possible coverage

quality is to maximize the regularity of the remaining active BSs. Although there

1This chapter has been published in the IEEE Wireless Communication Letters [59].



81

is no explicit research stream focusing on regularity maximization in CSO, this has

been done in some previous CSO literature. Some works that use hexagonal layout

propose regular static CSO patterns that maintain regularity and provide best possi-

ble coverage probability – this is the case in [60], for example. As for a PPP-deployed

network, Cho and Choi [57] propose a “repulsive cell activation strategy” that thins

out (switches off) some of the BSs, resulting in a hard-core RPP.

6.1.2 Contribution

Our main contribution in this chapter is that we identify and study a novel CSO

problem that has not been previously addressed in the literature. Starting with BSs

deployed with a variable amount of spatial regularity, we focus on maximizing the

network’s performance through maximizing the spatial deployment regularity of the

remaining active BSs. As a starting point to solve this problem, we propose simple

and intuitive, yet practical, algorithms that perform better than random switch off,

particularly for highly irregular BS deployments. The performance of these algorithms

is compared to upper and lower bounds. They are much better than random CSO,

particularly for highly irregular BS deployments. Finally, we apply one of these

algorithms to a real set of BSs.

The rest of the chapter is organized as follows: In Section 6.2, the research problem

is defined. In Section 6.3, simple CSO algorithms are proposed. In Section 6.4,

we defined the system setup. We evaluate the performance of the algorithms in

Section 6.5. Finally, we draw conclusions in Section 6.6



82

6.2 CSO as a Regularity Maximization Problem

Given a set of BSs deployed using a repulsive spatial model, we consider switching

off some of them in order to save energy during low-traffic periods while maximizing

the network performance of the remaining active BSs. An important wireless network

performance metric worth maximizing is the coverage probability, which depends on

the SIR distribution. The network performance can be maximized by increasing the

spatial regularity of the active BSs.

In the preceding chapters, we have mathematically quantified the regularity of

a spatial layout of BSs in a rigorous way using CoV-based scalar metric(s). Among

these metrics, we choose the CoV of the lengths of Delaunay triangulation edges (CD)

to measure the change in regularity resulting from applying the CSO algorithms. As

shown in the preceding chapters, as CD decreases, the spatial regularity increases

(i.e., irregularity decreases). That means minimizing CD leads to maximizing the

regularity. The metric CD is presented in detail in Chapter 2.

6.2.1 The Problem Statement in Brief

Given a set A of N BSs, which can be modelled using an RPP, we aim to switch

off L BSs and leave the remaining M = N − L BSs active such that their regularity is

maximized, thus also maximizing the coverage probability. Our objective is to select

the active BSs to be as far apart from one another as possible. The CSO percentage

is

ρ =

(

L

N

)

× 100%. (6.1)

One way to ensure the active BSs are spread out as far as possible is to maximize the

nearest neighbour distance for each BS. This is called the p-dispersion problem [61],

which is usually formulated as mixed-integer linear programming and has been known
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to be NP-hard [61]. Kuby’s [62] formulation for the p-dispersion problem can be

written as

maximize r, (6.2a)

subject to
∑

j∈A
z j = M, (6.2b)

r ≤ di j (1 + D(1 − zi) + D(1 − z j )), ∀ i, j ∈ A, i < j, (6.2c)

z j ∈ {0, 1} ∀ j ∈ A. (6.2d)

Here, r = min
i< j
{di, j } is the smallest separation distance between any pair of active BSs,

where di, j = ‖xi − x j ‖ is the distance between a BS i and j ∈ A. (For simplicity, we

refer to the BSs and their locations by the indexes.) The Boolean variable z j indicates

whether a BS at location j is switched off or not. M is the number of the required

remaining active BSs, and D is a very large constant, e.g., max
i< j
{di, j }. Constraint 6.2b

requires M BSs to be active. Constraint 6.2c holds (imposes an upper bound on the

minimum separation distance) only if BSs are active at both location i and j. Next,

we suggest several heuristic methods to deal with this problem.

6.3 Proposed Algorithms for Cell Switch-Off

Due to the difficulty of solving this problem optimally, we propose three greedy

heuristic algorithms to tackle it. Greedy algorithms are very simple and intuitive.

They make a locally optimal (greedy) iterative decision and have two native varieties:

greedy construction and greedy deletion. While the greedy construction is initialized

by an empty solution set, then points are added to the solution, the greedy deletion

is begun with all candidate points as a solution, then points are removed at each
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iteration.

The following notations are used to describe these algorithms. While dist(xi, x j )

denotes the euclidean distance between the points xi and x j , dist(x j,B) denotes the

distance between the point x j and its nearest neighbor point in the set B. The number

of points in the set of points B is written |B|. The input of the algorithms is the

set of BSs locations A = {x1, x2, ..., xN } and the desired number of active BSs M; the

output is a set B = {y1, y2, ..., yM } of active BSs with maximized regularity.

6.3.1 Greedy Construction (GC)

The solution set of the GC is initialized by selecting the two furthest points.

Then, at each iteration, a new point, the one farthest apart from all points in this

solution set, is added until the targeted number of active points M is accumulated in

the solution set [61]. Nodes that are not in the solution set are to be switched off.

Algorithm 1 illustrates the pseudo-code of the GC algorithm [61]. The complexity of

GC in terms of distance computation is at most O(N3).

Algorithm 1: Greedy construction (GC).

Input : The set of BSs locations A = {x1, x2, ..., xN } and the desired number of
active BSs M.

Output : A set B = {y1, y2, ..., yM } of active BSs with maximized regularity.

1 Find xv, xw ∈ A, such that dist(xv, xw ) = max
{
dist(xi, x j ) : xi, x j ∈ A, ∀ i, j

}
2 B ⇐ {xv, xw }; A ⇐ A \ {xv, xw }
3 while |B| < M do

4 Find xz ∈ A, such that dist(xz,B) = max
{
dist(x j,B) : x j ∈ A

}
5 B ⇐ B ∪ {xz }; A ⇐ A \ {xz }
6 end

7 return B
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6.3.2 Greedy Deletion (GD)

The GD is initialized by identifying the two closest BSs in the current solution

set and switching off the one that has the smallest distance to its second-nearest

neighbour. This iteration is repeated until the specified number of BSs is turned

off [61]. A pseudo-code is described in Algorithm 2. The complexity of GD is at most

O(N3).

Algorithm 2: Greedy Deletion (GD).

Input : The set of BSs locations A = {x1, x2, ..., xN } and the desired number of
active BSs M.

Output : A set B = {y1, y2, ..., yM } of active BSs with maximum regularity.

1 B ⇐ A
2 while |B| > M do

3 Find xv, xw ∈ B, such that

dist(xv, xw ) = min
{
dist(xi, x j ) : xi, x j ∈ B, ∀ i, j, i , j

}
4 Find xz ∈ {xv, xw }, such that

dist(xz,B \ {xv, xw }) = min
{
dist(x j,B \ {xv, xw }) : j = v,w.

}
5 B ⇐ B \ {xz }
6 end

7 return B

6.3.3 Semi-Greedy Deletion (SG)

This is very similar to the GD algorithm. The only difference is that it employs

random selection for removal between the two closest points [61]. That is to say, the

point xz ∈ {xv, xw} in Algorithm 2 is chosen randomly.

6.3.4 Random Switch-Off (RS)

BSs are randomly switched off without any rules apart from the number of BSs

required to be turned off [58].
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Moreover, separate PPP-deployed and TL-deployed networks – that have the same

density as the remaining active BSs of the partially switched-off network – are used

as a loose lower bound and a non-achievable upper bound, respectively.

6.4 Downlink System Model

6.4.1 BSs Deployment

We consider a network layout modelled using the perturbed triangular lattice

(PTL) [13,41], an RPP with variable regularity. The advantage of the PTL model is

that it covers the whole regularity range between the TL and the PPP [41], unlike

many other RPPs [23]. Generating the PTL starts with generating TL, and then

independently displacing each point (BS location) by a random independent vector.

We consider uniform displacement on a disk which leads to uniform PTL. The radius

R of the disk controls the amount of regularity. It is normalized by the inter-site

distance η of the TL as R̃ = Rη−1. The metric CD is then a function of R̃. The

density of the TL and also the PLT is λ = 2√
3
η−2. Details are presented in Chapter 4.

The BSs serve with full buffer. They transmit at the same fixed power level and

have the same operating frequency. They have one sector and one omni-directional

antenna.

6.4.2 Users Model

Independent of the network deployment, the users are modelled as a PPP. Each

user is tagged to the BS of the strongest signal power. Users have best effort service

with equal resource allocation. They receive Rayleigh faded signals.
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6.4.3 LTE Urban Macro (UMa) Scenario

Channel parameters and all other specifications follow the UMa scenario presented

in [63]. We assume the proportional fair scheduling scheme.

6.4.4 Simple Scenario

We only consider this simple scenario for calculating SIR gain to make some of the

results comparable with [45]. It has simple path loss model with a path loss exponent

of 4 and no shadowing. The thermal noise is ignored.

6.5 Results

We consider a network with 665 BSs deployed over an area of 12 km × 12 km. 10

users per BS are distributed over the whole area, but we only consider users within

the central area of 7.2 km × 7.2 km in order to eliminate the edge effects. We sweep

the BS regularity from TL (CD = 0) to PPP (asymptotically, CD → 1) using the

tunable PTL. We apply the CSO algorithms presented in Section 6.3 on these BS

deployments. With 5% steps, we switch off up to 90% of the BSs. The saved energy

is proportional to the number of turned-off BSs [60]. For brevity, only specific CSO

percentage ρ values are reported in Figures 6.1–6.5.

Figure 6.1 shows the change in the network regularity before (CD(in)) and after

(CD(out)) applying the CSO algorithms. The lower the CD value, the higher the

regularity of BSs. For BSs deployed with very high regularity, the proposed CSO

algorithms deteriorate their regularity. However, this may still be close to the best

achievable regularity if some BSs are switched off. The greedy algorithms improve the

spatial regularity when the BSs are deployed with low regularity (CD & 0.5). The line

CD(out) = CD(in) separates the graphs in Figure 6.1 into two regions: above the line,
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where the regularity is deteriorated, and below, where the regularity is improved.

6.5.1 SIR Gain

Taking a PPP-deployed network as a reference, we use the horizontal gap (SIR

gain) between the SIR distributions of the PPP- and the PTL-deployed networks as

the performance metric; specifically, the SIR gain at target probability 50 percent:

Gp(0.5) [13,45,46]. This gain is also called the deployment gain [13]. Figure 6.2 shows

the comparison between different CSO algorithms at different ρ values in terms of

the SIR gain for BSs deployed with variable amounts of regularity.

Figure 6.1 shows that as the degree of freedom increases for high ρ values, the

algorithms significantly enhance the regularity (e.g., reducing CD to around 0.4 for

GC). The SIR gain is hence improved in Figure 6.2. Being completely regular, the

TL-deployed network has an SIR gain of 3.4 dB, the highest SIR gain compared

to a PPP-deployed with simple scenario assumptions in Section 6.4.4. This 3.4 dB

is consistent with the literature [45]. In terms of regularity and SIR gain, the SG

algorithm does not perform as well. While the GD algorithm performs better for

low CSO percentage (ρ < 55%), GC dominates for higher ρ values. An interesting

observation is that even when GD performs better, GC still performs comparably

well, within a 0.1 dB SIR difference. Thus, if an operator prefer to select only one

algorithm for the entire switch-off scale, we recommend GC.

In the extension of this work [64], we tested other heuristic algorithms. We found

that GC performs very well regardless of the percentage of the switched-off BSs and

the spatial regularity of the BS locations.

Note that GD and SG usually perform poorly when they are applied on the TL,

since all points are equally spaced. Thus, we exclude from this work applying the
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Figure 6.1: Network deployment regularity before (CD(in)) and after (CD(out))
applying the CSO algorithms at different CSO percentages ρ.
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Figure 6.2: The SIR gain Gp(0.5) as a function of the network deployment regularity
before the CSO (CD(in)) at different CSO percentages ρ.
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CSO algorithms on the idealized TL deployment.

6.5.2 Network Capacity

We define the network capacity as the sum of rates of all users in the system in

bits/Hz. We normalize the capacity of each deployment by its full capacity before

the switch-off. The normalized capacity as a function of the CSO percentage for

different CSO algorithms is shown in Figure 7.5. The number of the switched-off BSs

is a function of the decrease in the network’s data traffic demand. For a network

deployed according to a PPP (see Figure 6.3(b)), if the demand drops by 20%, the

operator could switch off up to 37% of the BSs using either greedy algorithm, whilst

only 20% of the BSs could be switch off using random CSO.

6.5.3 Rate Coverage

Defining the rate coverage as the probability that a randomly located user achieves

a rate greater than the rate threshold Rth, the coverage probability for Rth = 512

kbps for two BS deployments as a function of the CSO with applying different CSO

algorithms is shown in Figure 6.4. With spatial regularity maximizing algorithms,

users achieve higher rates compared to random CSO.

6.5.4 Real BS Locations

As an example, we apply GD on a real deployment of BSs, taken from Ofcom2

and shown in Figure 6.5. As seen in Figure 6.5, when we use GD, as more BSs are

2Independent regulator and competition authority for the communications industries of the UK.
Ofcom website: https://www.ofcom.org.uk/
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Figure 6.3: Normalized network capacity for LTE UMa scenario as a function of the
CSO percentages ρ for two different network deployment in terms of regularity.
The regularity maximization gain is annotated by thick red line (b).
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Figure 6.4: Rate coverage for LTE UMa scenario as a function of the CSO percent-
ages ρ for two different network deployment in terms of regularity.
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switched off, the previously turned-off BSs are never turned back on. On the other

hand, Figure 6.6 shows that the SG has no consistent switch-off pattern.

The advantage of GC and GD is that the current solution is a subset of the

previous solution if ρ is increased and a superset if ρ is decreased. That is, the

first switched-off BS is the last to be turned on when the ρ changes. This is a

very practical feature for cellular network operators since it reduces the on-off/off-on

transitions. The disadvantage is that the accuracy of the solution may decrease for

GC if the targeted number of the BSs for switching-off is low and for GD if it is high.

6.6 Concluding Remarks

• This work expands the CSO literature by modelling BSs using RPPs.

• We shed light on a new interesting CSO problem that relates the network’s

performance improvement to the maximization of the spatial regularity of the

active cells.

• We proposed simple greedy algorithms to solve it. They are particularly ef-

fective for BSs deployed with low regularity. The SG algorithm has inferior

performance.

• Depending on the CSO percentage, the GC algorithm provides comparably

good or superior performance compared to the others. Therefore, if we want

to implement only one algorithm, we can safely implement the GC algorithm.

GD and GC algorithms are practical since the CSO always follows the same

switching pattern.

• We also applied the GD on a real BS deployment.



95

-600 -400 -200 0 200 400 600

x

-500

0

500

y

(a) ρ = 0%, CD = 0.806

-600 -400 -200 0 200 400 600

x

-500

0

500

y

(b) ρ = 25%, CD = 0.61

-600 -400 -200 0 200 400 600

x

-500

0

500

y

(c) ρ = 50%, CD = 0.46

-600 -400 -200 0 200 400 600

x

-500

0

500

y

(d) ρ = 75%, CD = 0.35

Figure 6.5: Applying the greedy deletion (GD) algorithm on real BS locations
at different CSO percentages ρ. Blue and golden towers represent the active
and inactive BSs, respectively. The BSs (GSM band 900 MHz) belong to the
Vodafone operator. The region is 1500 m × 1050 m, in London, UK, centred at
(51.5136◦N, 0.1342◦W). This data is similar to that used in [13, Fig. 1].

• With spatial regularity maximization CSO, either better network performance

is achieved or extra BSs could be turned off (i.e., saving more energy) while

maintaining the same quality-of-service (satisfying network capacity demand

and/or rate coverage) compared to random CSO.

• The regularity maximization gain is significant for highly irregular BS deploy-

ments.

• This work is extended for testing other heuristics in [64].
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Figure 6.6: Applying the semi-greedy deletion (SG) algorithm on real BS locations
at different CSO percentages ρ. Blue and golden towers represent the active
and inactive BSs, respectively. The BSs (GSM band 900 MHz) belong to the
Vodafone operator. The region is 1500 m × 1050 m, in London, UK, centred at
(51.5136◦N, 0.1342◦W). This data is similar to that used in [13, Fig. 1].



Chapter 7

Strategic Densification with UAV-BSs in

Cellular Networks

“Imagination is more important than

knowledge. Knowledge is limited. Imagination

encircles the world.”

—Albert Einstein

7.1 Introduction

Beyond their traditional military use-cases, the unmanned aerial vehicles (UAVs),

or drones, have recently found a wide variety of the civilian and commercial applica-

tions such as disaster response, photography, agriculture, retailing and e-commerce

(package delivery), law enforcement, security, and surveillance. Further, employing

the UAVs to act as flying BSs (UAV-BSs) in future cellular systems is a promising

new evolution of wireless networks for the provision of on-demand coverage and ca-

pacity. Due to their mobility, the UAV-BSs attract the attention of the researchers

to use them in the deployment of the futuristic flexible and agile mobile networks.

As mentioned before, cellular network densification (i.e., deploying more BSs) is

an essential technique to accommodate the rapidly increasing demand for high system

and per-user data rate [65–67]. Unconstrained location, easy relocation, and rapid

deployment ability make the UAV-BSs more suitable than T-BSs (terrestrial BSs)
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for temporary densification to capture a sudden rise in traffic [68]. On the contrary,

building permanent T-BSs is cost-ineffective: It requires obtaining a permit and high

site rental costs [65]. Many of these BSs become underutilized during light traffic

periods. Thus, instead of deploying excessive T-BSs to satisfy peak traffic demand,

we advocate deploying on-demand UAV-BSs.

Most recent studies focused on finding an efficient placement of UAV-BSs where

no T-BSs exist, for example, see [69–76]. With the existence of T-BSs, UAVs are

employed in [77] as a static aerial relay and in [78] as a mobile aerial relay to assist

the communication between a T-BS and a user terminal. In [79], a neural model is

used to intelligently allocate multiple UAV-BSs to capacity-strained areas in a cellular

network.

7.2 Contribution

Given a terrestrial network suffering from a temporary high demand for data

rate, this chapter1 considers strategic placement of UAV-BSs to enhance both the

capacity and the coverage probability. Inspired by improving the spatial regularity

of the BS locations maximizes the coverage probability and the performance of the

network [13, 23, 24, 59], we propose an aerial-terrestrial network planning approach

that relies on the spatial structure of the network to strategically augment (find the

best 3D locations) massive number of UAV-BSs to terrestrial network. We choose

the horizontal location of the UAV-BSs such that they improve the spatial regularity

of the network’s BSs (the T-BSs and the projection of the UAV-BS locations on

the ground). Figure 7.1 shows a graphical illustration of the strategic horizontal

placement of the UAV-BSs. As for the altitude of the UAV-BSs, each one is adjusted

1This chapter has been published in the IEEE Wireless Communication Letters [80].
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Figure 7.1: Graphical illustration of the strategic deployment of UAV-BSs in cellular
networks.

based on the horizontal distance to its nearest BS for even better network throughput

compared to random or fixed altitude cases. As such, we fill the coverage gaps and

maximize the network’s throughput.

Our main contribution is to propose the strategic placement of UAV-BSs over an

already existing terrestrial network. Notably, although we put forward this study in

the context of UAV-BS placement, it is a general large-scale network planning ap-

proach that could be used to design network densification regardless of the cell size

or type. In this work, we do not aim to find the global optimal best-performance

placement, but instead, aim to present a proof-of-concept and set in motion a novel

research framework that will warrant further investigation. This work could be envi-

sioned as the dual of the work presented in Chapter 6. They both are network planning

problems that increase the spatial regularity of the network nodes to improve the per-

formance. The problem in Chapter 6 is a cell switch-off (removal) problem, whereas

the problem presented in this chapter is a cell deployment (switch-on) problem.

The organization of this chapter is as follows: We start by presenting the place-

ment and the network performance metrics in Section 7.3. The system model is then
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considered in Section 7.4. The horizontal and the vertical strategic placement meth-

ods are presented in Section 7.5. Finally, the results and a discussion are presented

in Section 7.6. The chapter is concluded in Section 7.7.

7.3 Placement and Performance Metrics

7.3.1 Placement (Regularity) Metric

To improve the spatial regularity, we need a metric to measure it. In this chapter,

we use the edges of a Delaunay triangulation of the spatial positions of a set of BSs,

which are random quantities, as a metric to characterize the spatial organization of

that set of BSs [23, 41]. Specifically, the coefficient of variation —the ratio of the

standard deviation to the mean— of the edges of a Delaunay triangulation (CD)

is used to characterize the spatial regularity/irregularity of BS locations, which is

explained with details in Chapter 2. We should remember that as CD increases, the

spatial irregularity increases (i.e., regularity decreases).

7.3.2 Performance Metrics

Median SINR

The signal-to-interference-plus-noise-ratio (SINR) value that 50% of the users in

the system can achieve.

Normalized Network Capacity

The sum of rates of all users in the system in bits/Hz normalized by the sum-rate

of a PPP-deployed network (deployed according to a PPP) before augmenting the

UAV-BSs.
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7.4 Downlink System Model

We consider a network consisting of a set of T-BSs and a set of UAV-BSs. For

both sets, unless otherwise stated, all parameters and specifications —including the

terrestrial channel model— follow the urban macro (UMa) scenario [63]. For UAV-

BSs, we use the air-to-ground channel model in [70].

System Setup

We assume equal resource allocation scheme. Independent of network deployment,

the users are spatially distributed according to a PPP with uniform data rate demand.

Each user is connected to a BS (either aerial or terrestrial) that provides the strongest

SINR. Neither fading nor shadowing is considered in this scenario. The UAV-BSs

and the T-BSs are identical: They transmit at the same fixed power level, have the

same carrier frequency, serve with a full buffer, are equipped with a single antenna,

and so on. While each T-BS has an omni-directional antenna, a UAV-BS has a

directional antenna (due to its high altitude and high line-of-sight opportunity) to

reduce interfering with others.

Air-to-Ground Channel Model

We use a generic path loss model proposed in [70] for the air-to-ground channel.

The model considers line-of-sight (LoS) and non-line-of-sight (NLoS) links as

PLLoS = 20 log
(

4π fcdi j

c

)

+ ηLoS + D(φi j ),

PLNLoS = 20 log
(

4π fcdi j

c

)

+ ηNLoS + D(φi j ).

(7.1)
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The occurrence probability of the LoS link is given by

PLoS(θi j ) =
(

1 + α · exp
(

−β[(θi j − α]
))−1

(7.2)

and the NLoS link by PNLoS(θi j ) = 1 − PLoS(θi j ), where θi j = sin−1
(

h j/di j

)

is the ele-

vation angle (degrees) between a user i and UAV-BS j. Note that h j is the altitude of

the UAV-BS, di j = ‖ui−l j ‖ is the Euclidean distance between a user located at ui ∈ R3

and a UAV-BS located at l j ∈ R3, and fc is the carrier frequency, where c is the speed

of light. Also, ηLoS and ηNLoS (dB) are environment-dependent losses corresponding

to the LoS and NLoS links, respectively. α and β are other environment-dependent

parameters. The antenna of the UAV-BSs is perpendicular to the ground, and its

directivity gain D(φi j ) is specified [63] as

D(φi j ) = min
12

(

φi j

15◦

)2

, 20 dB
 , (7.3)

where φi j = 90 − θi j .

The probabilistic path loss can be written as

PL = PLLoS × PLoS(θi j ) + PLNLoS × PNLoS(θi j ). (7.4)

Terrestrial-BS Deployment

The deployment of the T-BSs is modelled using a PTL: a repulsive point process that

provides variable spatial regularity. As provided in Chapter 4, the uniform PTL is a

result of the independent uniform random displacement on a disk for each point (BS

location) of a triangular lattice from its original location [41].
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7.5 Strategic Placement Method

The best horizontal placement of the UAV-BSs must decrease the spatial irregular-

ity of the network, which can be achieved by spreading out (to the greatest possible

extent) the horizontal location of the new UAV-BSs from each other and from the

existing BSs. One approach to achieving the highest spatial regularity, i.e., the far-

thest distribution of the points, is to maximize the sum of the distance between the

nodes [81] as we formulate in (7.6). As for the altitude, it must be chosen such that it

provides the highest signal strength inside the targeted area without interfering with

the surrounding BSs.

Horizontal Placement

Given a set A = {a1, a2, ..., aNt
} ⊂ R2 of the locations of Nt terrestrial BSs and a set

C = {c1, c2, ..., cNd
} ⊂ R2 representing Nd predefined potential horizontal locations of

UAV-BSs, we aim to select M locations from the set C for UAV-BSs to hover over

such that the spatial regularity of all the nodes is maximized. The percentage of the

augmented UAV-BSs to the T-BSs is

ζ =

(

M

Nt

)

× 100%. (7.5)

Let the set N be the concatenation of the sets A and C. Formally, N = A‖C =

{a1, a2, ..., aNt
, c1, c2, ..., cNd

} ⊂ R2. Members of N are indexed by j, and for simplicity

we refer to them only by their indexes. The members of N with index j ≤ Nt belong

to A and those with index j > Nt belong to C.

A binary quadratic formulation for maximizing the sum of the distance between
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the nodes is as follows:

maximize
z j

∑

i∈N

∑

j∈N
wi j zi z j (7.6a)

subject to
∑

j∈N
z j = p (7.6b)

z j ∈ {0, 1}, j ∈ N (7.6c)

z j = 1, ∀ j ≤ Nt, j ∈ N . (7.6d)

The Boolean variable z j indicates whether a node location is selected. The distance

between the node i and j is defined by wi j , and of course wii = 0. The total number

of the selected nodes p = Nt + M. The constraint (7.6d) forces all terrestrial BSs to

be selected.

The problem is difficult to solve optimally on a large scale. (It is an NP-hard

as similar problems are known to be NP-hard, e.g., see [81].) Therefore, we propose

a greedy-type heuristic algorithm to deal with it. The proposed algorithm consists

of two main sets: the candidates set C and the solution set B. The candidates

set represents the possible horizontal locations of UAV-BSs, while the solution set

contains the T-BS locations as well as the already chosen UAV-BS horizontal lo-

cation. The solution set of this algorithm is initialized by the locations of the T-

BSs A. Then, at each iteration, a new UAV-BS horizontal location that is the

furthest apart from all points in this solution set is added until the required num-

ber of the UAV-BSs M is achieved. Algorithm 3 illustrates the pseudo-code of the

UAV-BSs’ horizontal placement algorithm. Its complexity at most is O(N3), where

N = |N | = Nt + Nd. A notation dist(ai, a j ) = ‖ai − a j ‖ denotes the Euclidean

distance between the points ai and a j , and the notation dist(ai,B) denotes the dis-

tance between the point ai and its nearest neighbour point in the set B. Namely,
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dist(ai,B) = min
{
dist(ai, a j ) : a j ∈ B, a j , ai, ∀ j

}
. Also, |B| indicates the number

of points in the set B. Figure 7.2 depicts the horizontal placement using Algorithm 3.

In practical implementations, a cloud-based entity [68] could be used to implement

as well as to collect, store, and manage the information required to execute this

Algorithm.

Algorithm 3: Horizontal Placement Algorithm.

Input : T-BS locations set A, candidate locations set C, and the desired number
of the UAV-BSs M.

Output : A set S = {s1, s2, ..., sM } of drone’ horizontal locations that maximize the
network regularity.

1 S ⇐ { }; B ⇐ {A}
2 while |S| < M do

3 Find cd ∈ C, such that dist(cd,B) = max {dist(ci,B) : ci ∈ C ∀ i}
4 S ⇐ S ∪ {cd }; B ⇐ B ∪ {cd }; C ⇐ C \ {cd }
5 end

6 return S

Vertical Placement

We adjust the altitude of the UAV-BSs (H = {h1, h2, ..., hM }) to provide maximum

coverage. We approximate the coverage region for each UAV-BS to be a disk. The

radius of the coverage disk R j is half the horizontal distance to the nearest neighbour

BS, either another UAV-BS or a T-BS. From [71], we observe that the optimal altitude

h j depends only on the radius of the coverage region R j and the optimal elevation

angle θopt. It can be found using [71]:

h j = k × R j tan
(

θopt
)

, (7.7)
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(a)

(b)

Figure 7.2: (a) Arbitrary T-BSs deployment (blue towers) with random candidate
location (red dots). (b) T-BSs with the projection of the UAV-BSs on the
ground (red disks) as selected from the random candidates using Algorithm 1.
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where 0 < k ≤ 1 is a scaling factor used to reduce the altitude of the UAV-BS so as

to back off the interference. In this chapter, using a line search method, we select

k = 0.6 for all UAV-BSs.

We refer to the strategic placement above as Strategy I; it is a placement based

merely on the long-time average of the user locations. To enrich the discussion, we

also introduce three slightly different placement strategies.

1) Strategy II: random horizontal placement with fixed altitude.

2) Strategy III: strategic horizontal placement, as in Algorithm 3, with random alti-

tude.

3) Strategy IV: strategic horizontal placement, as in Algorithm 3, but with further

readjustment flexibility that allows the horizontal location of the UAV-BS to be lo-

cated exactly in the centre of the user locations within its coverage region, defined by

its Voronoi cell. The altitude is then found according to (7.7).

7.6 Results

We carry out the simulation over 1000 Monte Carlo runs. We execute the ex-

periment for T-BSs deployed with four different spatial regularity values —similar to

Figure 2.3 ( [59, Figure 1])— as generated using the PTL model. We consider a net-

work of around 100 T-BSs deployed with an average inter-site distance of 500 m [63],

which is established on an approximately 4.6 km×4.6 km geographical region. An av-

erage of 2000 random users are uniformly distributed over the whole region, but only

users within the central area of 2.8 km × 2.8 km are considered in the simulation to

eliminate the boundary effects. For the same reason, the set of the candidate horizon-

tal locations of the UAV-BSs —a large set of discrete random locations— is generated

inside the convex haul of T-BS locations. Network parameters are set according to the



108

UMa scenario [63]. Since we consider an urban environment, the parameters of the

air-to-ground channel model (α, β, ηLoS, ηNLoS) are given by (9.6117, 0.1581, 1 dB,

20 dB) [70,71], respectively. Hence, the optimal elevation angle θopt = 42.44◦ [73] for

this environment, as it is found by numerically solving [71, Eq. (13)].

In Figures 7.3–7.5, each sub-figure represents a specific spatial deployment of T-

BSs with certain regularity values (CD(in)) —similar to Figure 2.3 ( [59, Figure 1])—

and depicts four placement strategies. The figures show that the performance of the

network depends on its spatial structure. In Figure 7.3, we see that the strategic

horizontal placement of the UAV-BSs improves the spatial regularity of the network

(CD(out)). As a particular case, adding more points to an entirely regular (i.e.,

hexagonal layout) or highly regular spatial pattern has to result in a deterioration of

the overall regularity, which is the case in Figures 7.3(a) and 7.3(b). However, this may

be the best achievable regularity when more points are added to a very regular spatial

pattern. (Indeed, the best placement algorithm either much improves the regularity

when the BS deployment is highly irregular or provides the least degradation in

regularity when the BS deployment is very regular.) The spatial regularity of the

network is similar for both Strategy I and Strategy IV, i.e., the average horizontal

location of the UAV-BSs over all realizations is the same for both strategies.

Figures 7.4 and 7.5 show the median SINR and the normalized sum-rate as a func-

tion of the UAV-BSs augmentation ratio2. They indicate that Strategy IV provides

best median SINR and normalized sum-rate followed by Strategy I. For example, for a

PPP-deployed terrestrial network (Figures 7.4(d) and 7.5(d)), the median SINR and

the normalized sum-rate for Strategy IV and Strategy I are (10.63 dB, 2.99) and (9.05

dB, 2.48), respectively. Remarkably, they both are much better than Strategy II (4.8

2UAV-BSs augmentation ratio could be greater than 1 (ζ > 1), i.e., more UAV-BSs than T-BSs.
Hence, we expect the performance continues to improve until it reaches either a peak —and then
declines— or a plateau; the exact behaviour critically depends on the terrestrial and aerial channel
models.
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dB, 1.85). In fact, Strategy IV simply provides further tuning to the statistical ap-

proach of Strategy I. The disadvantage of Strategy IV is that it requires instantaneous

UAV-BS movement to track the mobile users. The frequent repositioning of the UAVs

may not be energy efficient and would be computationally more expensive. (In this

strategy, the additional complexity includes the complexity of Voronoi tessellation

O(p log p), where p is the number of the BSs and the complexity of point-in-polygon

algorithm O(n log n), where n is the number of users.)

For a terrestrial network deployed according to a hexagonal layout, we observe

that adding more UAV-BSs results in a better sum-rate even for Strategy II, although

the median SINR deteriorates —look at Figure 7.4(a) and Figure 7.5(a) together.

Noteworthy, adding more nodes to an entirely regular deployment deteriorates the

regularity and the SINR but provides more capacity.

Given the required increase in the capacity, we can estimate how many UAV-

BSs are needed using Figure 7.5. For example, the sum-rate of a PPP-deployed

network (Figure 7.5(d)) can be doubled by adding UAV-BSs at the augmentation

ratio ζ = 0.48.

7.7 Concluding Remarks

This chapter has advanced the previous knowledge gained on the 3D placement of

the UAV-BSs. It provided a framework for improving network capacity by strategi-

cally placing UAV-BSs to assist a cellular network. Based on the maximization of the

spatial regularity of the network’s structure, this chapter proposed a novel large-scale

network planning approach that helps to decide where UAV-BSs hover to maintain

connectivity, fill the coverage holes and to boost network capacity. We showed that
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Figure 7.3: The CD(out) of the network as a function of the augmentation per-
centage ζ . Each sub-figure represents a specific regularity value CD(in) of the
original network deployment (similar to [59, Fig. 1]).
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Figure 7.4: The median SINR as a function of the augmentation percentage ζ for
different network deployment regularity CD(in).
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Figure 7.5: Normalized network capacity as a function of the UAV-BS augmentation
percentages ζ for different network deployment regularity CD(in).
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the best place for UAV-BSs is where their projection on the ground improves the spa-

tial regularity of the network. We observed that even the random augmentation of the

UAV-BSs enhances network throughput (yet it could be associated with deterioration

of the spatial regularity and the SINR); the strategic augmentation maximizes this

throughput. Allowing additional horizontal location adjustment based on the exact

location of the users provides further gain. However, in practise, we need to trade off

the energy consumption and computation time with the throughput reward. Future

works could extend this framework to the non-uniform distribution of the users.
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Chapter 8

Conclusion and Future Work

“Our imagination is the only limit to what we

can hope to have in the future.”

—Charles F. Kettering

8.1 Summary and Conclusion

A key enabler for the next generation cellular networks to support the explosive

growth of traffic demand is the intensive deployment of the BSs. Indeed, the efficient

utilization of this additional infrastructure requires realistic spatial modelling for the

existing BS locations, a keen understanding of their spatial relationship, and strategic

network planning. The first part of this thesis proposed several mathematical tools to

measure the spatial relationship among the BSs. The best one among these tools is

used to estimate the network performance, to fit point processes to real deployment of

BSs, and to identify the realistic model for the BS deployment. Then, in the second

part, the insights from the first part are used to propose a novel cell switch-off and

a strategic UAV-BS placement approaches. We now summarize each chapter of this

thesis and its key contributions.

In Chapter 1, we identified the two most prevalent models to simulate the spatial

geometry of the BSs in the cellular systems, which are the TL and PPP. However,

115
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real deployments of the BSs are neither perfectly regular nor completely irregular

(random). More specifically, the deployment of the cellular networks is not entirely

regular, on the one hand, because the layout of the natural and artificial physical

features (buildings, landscape, rivers, population densities, and traffic demands) of

the served geographical region prevents the operators from placing the BSs on a

triangular lattice. On the other hand, network operators tend to put the BSs as far

away as possible from each other to reduce the interference and extend the coverage.

The location of each BS is influenced by the location of the others. The BSs are not

arbitrarily deployed to follow a PPP, but they repel each other. In reality, therefore,

the spatial structure of the BSs takes place somewhere in between these two opposite

ends of the scale. To account for the repulsion of the spatial structure of the cellular

systems, it is more accurate to use repulsive point processes to model the locations

of the BSs. Chapter 1 explained thoroughly why the location of the BSs in wireless

networks should be modelled as repulsive random point processes with an amount of

regularity that is tunable between that of a TL and its counterpart, PPP. Actually,

we found out how much is difficult difficult to quantify the regularity or compare

different repulsive point processes. Chapter 1 highlighted the research directions,

scope, objectives, and contributions of this thesis.

In Chapter 2, we proposed three metrics based on the CoV of some geometric prop-

erties of the spatial distribution of the BSs to measure their regularity. We compared

these metrics in the first part of this thesis, and the best performing metric is used is

used in the following chapters for measuring the regularity, mapping point processes

to each other, approximating the network performance, and fitting BS deployments

to models.

Chapter 3 examined the geometry-based metrics and showed that these metrics

could be used as yardsticks to measure the spatial regularity of the BSs and as network
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performance indicators. Three hard-core point processes, which were used in this

test, were compared regarding their spatial regularity range and the density of the

generated points. The results show that the SSI is the best among these hard-core

point processes for modelling the BS locations.

In Chapter 4, the CoV-based metrics are used to measure the regularity of two

common types of PTL: uniform on disc and Gaussian. From these measurements, it

was possible to derive a simple formula that allows matching and interchanging the

two PTL models, within about 0.1 dB SIR error. It is a novel approach for mapping

between different point processes using CoV-based metrics as an intermediate step.

This chapter paved the way for the researchers to map the RPPs to each other.

Chapter 4 gave qualitative and quantitative arguments supporting the use of PTLs

for modelling BS deployments with any amount of spatial regularity, which is useful

notably in modelling different tiers of HetNets.

Chapter 5 concentrated on finding the best regularity metric to quantify the spatial

relationship among the BSs in wireless cellular networks and its possible applications.

The results in this chapter indicated that the CoV of the length of the edges of De-

launay triangulation of the BSs locations is the best to quantify the spatial regularity

among these BSs. The results showed that this geometry-based scalar metric is a

robust indicator for the network performance. This chapter exploited the similarity

between the coverage curves of the different BSs topologies and use the best metric

to approximate the performance of one network deployment based on a known per-

formance reference network. Using the best metric, this chapter described a novel

practical technique for fitting spatial point processes models to spatial point pattern

representing actual or simulated BSs locations. This chapter supports the results of

Chapter 4 of advocating the use of the PTLs for modelling the spatial deployment of

BSs.
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Chapter 6 considered the CSO, a promising approach to reduce the energy con-

sumption in cellular networks. This chapter set a new CSO research direction that

focused on saving energy and jointly increasing the performance of a network by

switching off some cells to maximize the spatial regularity of the remaining active

cells. The BSs were deployed with variable amounts of spatial regularity. That is to

say; this work expanded the CSO literature by modelling BSs using RPPs. Three

greedy algorithms were proposed for tackling this new problem. The results revealed

that improving the spatial regularity using a greedy algorithm leads to either (i) much

extra energy saving while maintaining network performance or (ii) saving the same

amount of energy as the random CSO with better network performance.

Chapter 7 investigated the use of UAV-BSs for the provision of on-demand high

data rates in cellular networks. While many studies have explored deploying UAV-

BSs in a green field —no existence of T-BSs, this work investigated the deployment

of UAV-BSs in the presence of a terrestrial network. The purpose of this chapter is

twofold: 1) to provide supply-side estimation for how many UAV-BSs are needed to

support a terrestrial network to achieve a particular quality of service and 2) to inves-

tigate where these UAV-BSs should hover. This chapter proposed a novel stochastic

geometry-based network planning approach that focuses on the structure of the net-

work to find strategic placement of multiple UAV-BSs in a large-scale network.

8.2 Potential Future Works

This work could be extended in many directions. Here we propose two important

extensions. First is to use the hard-core point processes as CSO algorithms and to use

the greedy algorithms as hard-core models for the BSs locations. Second is to extend

the UAV-BSs strategic placement framework to the non-uniform demand scenario.
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8.2.1 New Hard-Core Models and CSO Algorithms

An important observation is that there is a strong similarity between the hard-

core point processes presented in Chapter 3 for modelling the BSs locations and the

greedy algorithms presented in Chapter 6 as CSO algorithms. Indeed, we can employ

greedy algorithms (greedy construction (GC), greedy deletion (GD), and semi-greedy

deletion (SG)) to generate new hard-core point processes. On the other hand, we

can use the generating algorithms of well-known hard-core point processes (MHC-I,

MHC-II, SSI) to work as CSO algorithms.

While the hard-core distance controls the number of the removed points (density)

and the degree of repulsion in the hard-core point processes, the number of the points

that are recommended to be removed controls the density and the degree of repulsion

of the remaining points in the greedy algorithms.

Greedy algorithms would generate spatial patterns with higher regularity than

the hard-core point processes MHC-I, MHC-II, and SSI. It would be interesting to

investigate using greedy algorithms as models for the BSs deployments and to find

analytical expressions for the SINR and the coverage probability. Such mathematical

expressions should be functions of the number of the removed points (i.e., switched

off cells) from the original PPP model. Before that, we need to determine the proba-

bility distribution function of the distance between any typical user and the BSs as a

function of the number of the removed points. Another interesting research problem

is to examine the suitability of the hard-core point processes as CSO algorithms.
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Figure 8.1: Graphical illustration of UAV-BS deployment in a wireless cellular
networks with spatially heterogeneous user distribution.

8.2.2 Large-Scale UAV-BS Deployment in Wireless Cellu-

lar Networks with Spatially Heterogeneous Traffic De-

mand

In Chapter 7, we proposed a large-scale network planning framework that depends

on the network structure —which is equivalent to placement based on the long-term

averaging of the user locations— to strategically augment massive number of UAV-

BSs into a terrestrial network. Our work in Chapter 7 is confined to the uniform

data demand over a whole geographical region. However, it is important to study the

non-uniform traffic demand.

Many ways are possible to handle the non-uniformity of the traffic demand. One

method could be by assigning weights to the users based on their data rate demand.
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Another method is modelling the non-uniform demand as clusters of users. In the

latter case, we can employ machine learning-based tools to place the UAV-BSs at

the cluster head. (Indeed, the operator would reap more benefits in the non-uniform

(e.g., cluster user distribution) scenario since UAV-BSs could locate directly above

the cluster head. This results in better network performance and fewer number of

UAV-BSs would be used to serve the same number of users.) Adjusting the altitude of

the UAV-BS should be based on the size of the cluster, which can reduce interference

and fine-tune the links between users and the UAV-BS assigned to their cluster.

Therefore, we may also need a sophisticated heuristic algorithm to adjust the altitude

in the non-uniform scenario. The extension of our previous work to non-uniform user

distribution would further advance the 3D placement of the UAV-BSs.
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