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SUMMARY We survey the use of Markov models from stochastic geometry as priors 

in 'high-level' computer vision, in direct analogy with the use of discrete Markov 

random fields in 'low-level' vision. There are analogues of the Gibbs sampler, ICM 

and simulated annealing, and connections with existing methods in computer vision. 

1 Introduction 

Object recognition is the task of interpreting a noisy image to identify certain 

geometrical features. An object recognition algorithm must decide whether there 

are any objects of a specified kind in the scene, and if so, determine the number 

of objects and their locations, shapes, sizes and spatial relationship. The image 

data are noisy and sometimes blurred. There is a wide field of applications, 

including industrial robot vision, document reading, interpretation of medical 

scans (Blokland, 1987), automated cytology (Miller et al., 1991 ), classification of 

astronomical features (Molina & Ripley, Chapter 13; Ripley & Sutherland, 1990) 

and identification of grain structures in materials science. 

It is increasingly acknowledged that discrete Markov random fields (MRFs) are 

not the appropriate prior models to use in object recognition. This is partly 

because geometrical shapes with smooth boundaries are unlikely to arise as 

realizations of a discrete MRF; but more importantly because the procedures that 

result from applying a discrete MRF model do not combine information 'globally' 

to identify geometrical shape. 
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This issue is familiar from the computer vision literature as the distinction 
between 'low-level' and 'high-level' vision. Low-level tasks such as segmentation, 
classification and tomographic reconstruction call for local (pixel neighbourhood) 
operations, converting the input image into another raster image. In high-level 
tasks such as object recognition and scene analysis, we have to interpret the image 
globally, reducing it to a compact description (e.g. a vector graphics representa-
tion) of the scene. · 

Alternative approaches have been described in recent studies (Dengler & Guckes, 
1992; Miller et al., 1991; Molina & Ripley, Chapter 13; Ripley & Sutherland, 1990) 
on recognizing the shape of an interesting object (hand, galaxy, mitochondrion). 
The shape is described by a flexible template, typically a polygon, with edge lengths 
and angles governed by a joint prior distribution, typically a Markov chain. 

Our own recent work (van Lieshout, 1991, 1993; Baddeley & van Lieshout, 
1991, 1992a, b) has studied the problem of detecting an unknown number of 
objects of (usually simple) shape in an unknown spatial arrangement, possibly 
overlapping each other. This requires a prior stochastic model for the spatial 
arrangement of the objects. We used the Markov object processes studied in 
stochastic geometry and spatial statistics (Baddeley & M0ller, 1989; Ogata & 

Tanemura, 1984; Ripley, 1988, 1989; Ripley & Kelly, 1977) which have a simple 
mathematical form, and for which there is a natural analogue of the Gibbs 
sampler (a spatial birth-and-death process (Baddeley & M0ller, 1989; Me'ller, 
1989; Preston, 1977; Ripley, 1979)). This allowed us to develop analogues of the 
ICM and simulated annealing algorithms. Also, some existing techniques in 
computer vision turned out to be equivalent to maximum likelihood methods. 
The use of Markov point process models was also proposed by Molina and Ripley 
(Chapter 13), Ripley (1991) and Ripley and Sutherland (1990). 

This paper describes the (possible) uses of Markov random processes of 
geometrical objects (Ripley & Kelly, 1977; Baddeley & M0'ller, 1989) as priors in 
high-level vision. We claim that the resulting techniques can be applied to various 
tasks such as object recognition, motion detection and large-scale edge detection 
and to the identification of spatial clusters in a point pattern. 

2 Maximum likelihood object recognition 

Object recognition can be formulated as a parameter-estimation problem by direct 
analogy with the formulation of segmentation and classification (Besag, Chapter 
5; Geman, 1990; Geman & Geman, Chapter 4) and in keeping with the general 
set-up of Grenander (1976, 1978, 1981). In this section, we define the object 
recognition problem, develop a simple maximum likelihood treatment, and show 
that this is very similar to some existing techniques in computer vision. 

2.1 Set-up 

The experimental data consist of an image y = (y, : t E T) where image space T is 
an arbitrary finite set. Apart from the usual two-dimensional rectangular grids, T 

could be a pair of grids (carrying left and right stereo images), a temporal 
sequence, etc. The observed value y, at pixel t ET ranges over a set V that is 
arbitrary, typically {O, 1} or {O, 1, ... , 255}. 

The class U of possible objects is an arbitrary set (object space). Typical 
examples would be the class of all polygons in rR2 or all convex polyhedra in rR3 • 

However, U need not be a class of subsets of [Rd since the specification of an 
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object may also include properties like colour or surface texture. Section 2.1 
discusses this further. Here we assume only that each object u E U determines a 
subset R(u) £ T of image space 'occupied' by the object. 

An object configuration is simply a finite set of objects 

x={x1,···,xn} 

where X; E U, i = 1, ... , n, n 2: 0. The objects may be in any spatial relation to each 
other; the number of objects is variable and may be zero. 

2.2 Noise models 

Assume that the observed image y depends on the true object configuration x 
through a known conditional probability density f(y Ix). This density describes 
the 'forward problem' of image formation and includes both the deterministic 
influence of x and the stochastic noise inherent in observing y. 

Following custom, we assume that the data pixel values y, are conditionally 
independent given x. This embraces additive and multiplicative random noise as 
well as Poisson distributed counts and more general exponential family models. 
Without loss of generality the conditional distributions of individual pixel values 
belong to a family of distributions with densities {g(. I 8): e E e} indexed by a 
parameter space 0. It follows that 

JCy Ix) = TI g(y, I elx)Ct)) (1) 
CE T 

where ecxl(t) E 0 is the parameter value of the conditional distribution of y, given 
x. Then ecxl(·) is a 0-valued image, deterministically derived from x, which we 
call the signal. 

'Additive noise' is the case where g( · I 8) is a location family of distributions. For 
example, for additive Gaussian noise g( · I 8) is a Gaussian distribution with mean 
e and fixed variance (J 2 • 

A simple example is the signal 

e<xl(t) = {e 1' 

Bo, 

if t E S(x) 

otherwise 

where 81 , 80 are known parameters ('foreground' and 'background' signal) and 
S( x) is the 'silhouette' 

n 

S(x) = LJ R(x,) 
i= 1 

formed by taking the union of all objects in the configuration. In other words, 
under this simple model, each of the objects in the configuration x is 'painted' on 
to the scene and independent random pixel noise is superimposed on the result. 

We call this a 'blur-free' independent noise model. It may seem oversimplified, 
yet we shall show that several standard techniques in computer vision are 
equivalent to assuming this model. Our practical examples will be 'blurred' models. 

2.3 Maximum likelihood estimation 

Given observation of y, the likelihood of a configuration x is defined to be 
/(x; y) = /(y Ix), and we seek 'the' maximum likelihood estimate of x 

x = argmaxx /(y Ix) (2) 
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which may be non-existent or non-unique. Specifically, note that for any blur­

free model the likelihood depends on x only through its silhouette S(x), so 
configurations with the same silhouette cannot be distinguished in likelihood. 

Since the log-likelihood is a sum of individual pixel error terms 

L(x; y) = log/(y Ix)= I logg(y, I o<x\t)) 
re T 

maximum likelihood estimation is equivalent to regression of y on the class of 
signals e<xl(-) for all possible x, with pixelwise loss function -logg(y, I·). For 

example, least squares regression is the case of Gaussian additive noise; L 1 (least 

mean absolute deviation) regression is the case of additive two-sided exponential 

noise. 
Squared error and L 1 error have been proposed as optimality criteria for object 

recognition in their own right (Lin et al., 1990; Maragos, 1988) but we see here 

that they are special cases of the maximum likelihood approach. 
It is also interesting to note that popular 'pre-processing' techniques, such as 

thresholding or gamma correction, amount to simply modifying the noise model. 
If the pixel values y, are subjected to a transformation y; = </J(y,), then the model 
( 1) is transformed into another model of the same type with g replaced by another 
density g'. This is true not only for differentiable maps <jJ but also for transforma­
tions such as 'clipping' pixel values to an interval [a, b]: 

y; = {::, 
b, 

if y, <a 

ifa::;.y,:>:.b 

if y, > b 

Treating clipped pixel data as if they arise from additive Gaussian noise is 
equivalent to assuming additive two-sided exponential noise with signal ( =mean) 

values 80 = a, 81 = b. These remarks do not hold for more complex pre-processing 
operations such as neighbourhood filtering, which interfere with the dependence 
structure of (1 ). 

2.4 Connection with mathematical morphology 

Consider a binary image (y, = 0, 1) and a noise model under which pixels in the 
background are randomly corrupted with probability q (independently of each 
other) while foreground pixels are not corrupted. Thus g(· i 6) is a Bernoulli((}) 
distribution and 60 = q, 81 = 1. 

A maximum likelihood estimator for this model is clearly 

i = {u:y, = 1 for all t eR(u)} 

= {u: R(u) s;;; Y} (3) 

where Y = { t: y, = 1} is the set of foreground pixels in the data image. This i is 
the largest solution to the ML estimating equations (2); all solutions are charac­
terized by x s;;; i and S(x) = S(i). 

The operation (3) can be recognized as the erosion operator of mathematical 

morphology (Serra, 1982) in its general form (Serra, 1988). The 'classical' erosion 
operator 8 is the special case where U = T c ~ 2 and R(u) = u + R, where R is a 
fixed subset of T. Then 

i = {u: (u + R) s;;; Y} = Y 8R 
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Thus the erosion operator is the MLE for a simple noise model. A similar 

statement about the dilation operator $ is obtained by exchanging foreground 
and background. 

2.5 Iterative methods for MLE 

It is usually impossible to solve the ML estimating equations (2) directly, and one 
has to resort to iterative approximation methods. 

The simplest form of iterative adjustment is to add or delete objects one at a 

time. We start by choosing an initial configuration, such as the empty list </J. If the 

current configuration is x, then we consider adding a new object u f/:. x, yielding 
configuration x u { u}, if the log likelihood ratio 

/(y I xu {u}) 
L(xu {u }; y) - L(x; y) =log /(y Ix) 

is sufficiently large; delete an existing object x; Ex yielding x\ {x;} if 

/(y I x\{u}) 
L(x\ {x,. }; y) - L(x; y) =log f(y Ix) 

( 4) 

(5) 

is sufficiently large. Two variations of this scheme are to visit the possible objects 
u sequentially (assuming U is discretized) applying the above rules at each step, 

or to scan the whole of U to find the object u whose addition or deletion would 

most increase the likelihood. 

Algorithm 1 ( Coordinatewise optimization). Initialize x<0l = </J or some other 
chosen initial state. When the current reconstruction is xrm-1l, visit every u E U 
sequentially in a predetermined order. If u f/;.x(m-ll and L(xCm-IJu{u}; y) 

-L(x(m- 1J; y);;;:: w, where w 2:: 0 is a fixed threshold, then add u to the con­

figuration, yielding x<'"l=x<"'- 11 u{u}. If u=x;Ex and L(x("'- 1\{x;};y) 
-L(xcm- 1>; y) ;;;:: w, then delete X; yielding x<ml = xCm-ll\{x, }. Update recursively 

until one complete scan of the image yields no changes. 

Algorithm 2 (Steepest ascent). Initialize x<0l = 0 or some other chosen initial 
state. Given x<k - 1l, determine 

a= max {L(x<k- 1\{x,.};y)-L(x<k-ll;y)} 
x;e-xf..k- l) 

and 

b =sup {L(x<k-1l u {u }; y) - L(x<k-ll; y)} 
ue U 

If max {a, b} < w, then stop. Otherwise, if b 2:: a, add the corresponding object, 

while if a > b, delete the corresponding object. 

Both algorithms increase the likelihood at each step. Assuming U is finite, they 
are guaranteed to converge in finite time to a local maximum (or if w = 0 possibly 
a cycle of states with equal likelihood). The final result depends on the initial 

state, and for Algorithm 1 on the scanning order as well. 
These algorithms bear a very strong resemblance to Besag's ICM algorithm 

(Chapter 5) except for the lack of a prior distribution. The analogy will be 

explored in Section 4. 
Generalizations of these algorithms are discussed in Section 6. 
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2.6 Relation to Hough transform 

A popular tool for detecting simple objects is the Hough transform (Davies, 1990; 

Hough, 1962; Illingworth & Kittler, 1988). Given a binary or grey-scale image, 

the (generalized) Hough transform is an integer-valued function on the object 

space 

Hy(u) = L y,, UE U (6) 
t E R(u) 

This is often interpreted as a 'vote-counting' operation: each pixel t votes with 

strength y, for all the objects that contain that pixel. The optimal match is located 

typically by finding local maxima of the Hough transform. 

The Hough transform is very similar to the log-likelihood ratio ( 4) for a 

blur-free model: 

L(xu{u};y)-L(x;y)= L z, (7) 
R(u)\S(x) 

where z, = log g(y, [ B1 ) - log g(y, [ B0 ) is the difference in goodness-of-fit at pixel 

t. In fact, this is identical to the Hough transform of image z when the new object 

u does not overlap any existing object x, Ex. For example, the Hough transform 

is the log-likelihood ratio for comparing { u}, the scene consisting of a single 

object, against the empty scene 0. When objects do overlap, the likelihood ratio 

(7) is a generalization of the Hough transform, with domain of summation 

'masked' by the silhouette of the current configuration. Equivalently, (7) is the 

Hough transform of the masked image w?"l = z, 1 { t <f S(x) }. 

The similarity between (6) and (7) is even stronger since z, is linear in y, for 

many exponential (and some non-exponential) noise models. For additive Gaus-

sian noise 

z = 81 - Bo (y _ B0 + B1) 

t 0'2 t 2 

and for Poisson noise 

81 
x, =y, log Bo -(B1 - B0 ) 

The likelihood ratio is then of the form 

L(xu{u};y)-L(x;y) =a I y, -b[R(u)\S(x)[ 
R(u)\S(x) 

in particular when u does not overlap x this is a linear adjustment of the Hough 

transform of y. 

Apart from illuminating the meaning of the Hough transform, these results 

show how to correctly interpret values of the Hough transform when the objects 

do not have equal area, e.g. in the presence of edge effects. For Gaussian or 

Poisson additive noise (say), the likelihood ratio is positive when the average 

value of y, over R(u)\S(x) exceeds a critical value. The latter is simply the 

Neyman-Pearson critical value for classifying a single observation y, as fore­

ground or background (BE {B0 , 8i}). 

Regarding the practical implementation of Algorithms 1-2, note that each 

successive addition or deletion of an object u alters (7) only on 

V(u) = {v EU: R(v) nR(u) ¥= \!'.>} 
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so that updating is required only for v e V(u). For example, in a translation model 

with U = T _= !Rd and R(u) = R 0 + u this is the central symmetrization 
V(u) = R0 E9 R0 + u. 

For the general 'blurred' model ( 1): the likelihood ratio is again similar to the 
Hough transform 

L(x u { u }; y) - L(x; y) = I. h(y,, e(x)(t), (}(XU :11:j(t)) (8) 
teZ(x,u) 

where 

h(y e w) = logg(y, I 8') 
" , g(y, I e) 

is again the difference in goodness-of-fit at pixel t and 

Z(x, u) = { t: e<xl(t) =F e 1xu :•D(t)} 

is the set of pixels where the signal is affected by the addition of object u. 

2. 7 Example 

Figure 1 shows a scanned image ('pellets') taken from the Brodatz texture album 
(Brodatz, 1966). This is a relatively easy data set for object recognition but helps 
to illustrate the theory. 

We treat the pellets as discs of fixed radius 4 pixels but with blurred 
boundaries. The grey-level histogram has two distinct peaks at value 8 and 172, 

suggesting that we can regard the background and foreground signal as roughly 
constant at these values. Assuming additive Gaussian noise, the noise variance 

was estimated by thresholding the image and taking the sample variance, giving 
an estimate of 83.1. Blurring was modelled by assuming that the original blur-free 
signal was subjected to a 3 x 3 averaging (linear) filter with relative weights 4 for 

the central pixel, 2 for horizontal and vertical neighbours, and 1 for diagonal 

neighbours. 

FIG. 1. Pellets image. 
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Fro. 2. Maximum likelihood reconstruction by steepest ascent. 

Figure 2 shows an approximate MLE computed by steepest ascent (Algorithm 

2) from an empty initial configuration. Pellets are correctly identified but there is 

'multiple response', i.e. the MLE sometimes contains clusters of objects around 

the position of each 'true' object. 

3 Markov processes of geometrical objects 

This section is an overview (with some adaptations) of the theory of random 

processes of geometrical objects ( Stoyan et al., 1987) with emphasis on Markov 

object processes (Ripley & Kelly, 1977; Baddeley & M0ller, 1989). 

3.1 Objects 

The 'objects' featuring in stochastic geometry range from simple geometrical 

figures (points, lines, discs) through plane polygons and convex compact sets to 

completely general closed sets. A given class of objects U is treated as a space in 

its own right, so that objects are regarded as points in U. 

At one extreme, simple geometrical figures can be specified by the values of a 

few parameters (giving location, orientation, etc.) so that U is isomorphic to a 

subset of !Rk. For example, a disc in IR2 can be specified by its centre (x,y) and 

radius r so that U = IR2 x IR+. At the other extreme, the space ff of all closed 

subsets of [Rd can be made into a locally compact, second countable Hausdorff 

space (lcs space) so that a random closed set can be defined as a random element 

of!!}' (Matheron, 1975). 

It is often useful to represent an object as a 'marked point', i.e. a pair (s, m) 

consisting of a point x E ~d and a 'mark' m E .II, where A is an arbitrary lcs 

space. The point s fixes the location of the object and the mark m contains all 

other information such as size and shape. A disc in IR2 can be regarded as a point 

(x, y) marked by a radius r. Objects with additional properties such as colour and 

surface texture can be represented as marked points by choosing an appropriate 

mark space .4/. For example, a grey-scale surface texture can be formalized as 
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an upper semi-continuous function [Rd-> IR+, and the space of all such functions 
is lcs. 

3.2 Poisson processes of objects 

For applications, we need only consider spatial patterns in a bounded region 
Tc !Rd. Let U be the class of compact subsets of T (with the relative myopic 
topology (Matheron, 1975)). As before, a configuration is a finite set 
x = {x1, ... 'Xn} of objects X; EU. Write n for the set of all configurations. A 
random process of objects is a random element of Q or, equivalently, a point 
process on U consisting of a finite number of 'points' with probability 1. 

The basic reference model is the Poisson object process in U with intensity µ, 
where µ is a finite measure on U. Under this model the total number of objects 
has a Poisson distribution with mean µ( U); given that exactly n objects are 
present, they are independent and identically distributed in U with probability 
distribution proporitional to µ, i.e. IP{x; E B} = Q(B) = µ(B) \µ( U) for B £ U. 

Further details can be consulted in Stoyan et al. (1987). 

3.3 Markov processes of objects 

Our interest is in constructing non-Poisson spatial processes exhibiting depen­
dence between neighbouring objects. To do this, we shall specify the probability 
density of the new process with respect to the Poisson process (thereby restricting 
attention to processes that are absolutely continuous with respect to the Poisson). 
The density is an integrable function p: Q-> [ 0, oo ). For the new process, the 
distribution of the total number of objects is 

IP{N=n}=qn=e-µCU> r ··· r p({x1> ... ,xn})dµ(x1 ) ••• dµ(xn) 
n! Ju Ju 

and given N = n, the n random objects have joint probability density 
p,,(xp ... ,xn) =e-i<CU>µ(U)"p({xp ... ,x,,})/(n!qn) with respect to the distribu­
tion of n iid objects in U with distribution Q. 

Provisionally define two objects u, v to be 'neighbours' if they overlap: 

u -v ~R(u)nR(v) ¥-0 (9) 

This can be replaced by any symmetric (u - v iff v - u) relation between elements 
of U. 

The simplest kind of spatial interaction is that which forbids objects to overlap. 
Consider a Poisson process of objects in T conditioned on the event that no pair 
of objects is overlapping. Its density with respect to the original Poisson process 

is simply 

p(x) = {
o, 
IX, 

if x,. - x for some i #- j 

otherwise 
( 10) 

where IX > O is the normalizing constant (=reciprocal of the probability that 
Poisson process has no overlapping objects). Call this a hard object process by 
analogy with the better-known hard core point process. 

Next consider a pairwise interaction 

( 11) 
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where ix, f3 > O are constants, n is the number of points in x, and 

g: U x U--+ [O, oo). The product is over all pairs of neighbouring objects x, "'x1 

with i <}. 

If g = 1 then ( 11) is simply a Poisson process with intensity [3µ; if g = 0 it is the 

hard object process ( 10). When g = y for a constant 0 < y < 1 the model is called 

a Strauss object process and the density can be written 

( 12) 

where 

i<j 

is the number of pairs of neighbouring objects (e.g. number of overlaps) in the 

configuration. This process exhibits 'repulsion' or 'inhibition' between objects, 

since s(x) tends to be smaller than under the Poisson model. The density ( 12) is 

typically not integrable for y > 1. 

Just as discrete Markov random fields are closely connected with statistical 

physics, pairwise interaction processes ( 11) also occur as models of interacting 

particle systems. The log probability density of a particular configuration x can be 

interpreted as its physical 'energy': it is the sum of a ground potential log et., a 

potential log f3 for the presence of each object x0 and an interaction potential 

log g(u, v) between each pair of neighbouring objects u, v. 

The density (11) bears a close resemblance to the distribution of a discrete 

Markov random field with pairwise interaction. However, the number of terms 

appearing in the product in ( 11) depends on the realization x. Some configura­

tions have more interaction than others. 

Note that if u E U, u ~ x with p(x) > 0, the ratio 

p(xu{u}) =/3 TI g(u,x,) 
p(x) x,-u 

(13) 

depends only on u and on the neighbours of u in x. This important property 

signifies that all interaction is 'local'. In the statistical physics interpretation, 

log p(x u { u}) - log p(x) is the energy required to add a new point u to an existing 

configuration x. In probabilistic terms, p(xu{u})/p(x) is the Papangelou condi­

tional intensity at u given the rest of the pattern x on U\ { u }, see Daley and 

Vere-Jones (1988). 

Following are definitions and results of Ripley and Kelly ( 1977) trivially 

generalized to random object processes (Baddeley & M0ller, 1989, Section 3). Let 

"' be an arbitrary symmetric relation on U. A random object process with density 

p is called a Markov object process with respect to "' if, for all x En, 

(a) p(x) > 0 implies p(y) > for ally c x; 

(b) if p(x) > 0, then 

p(xu {u }) 

p(x) 

depends only on u and nbd (u Ix) = {x;: u "'Xz }. 

The name 'Markov' is justified by the fact that a spatial version of the Markov 

property holds for such processes (Ripley & Kelly, 1977; Baddeley & M011er, 

1989; Kendall, 1990). 
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Define a configuration x En to be a clique if all members of x are neighbours 

(x; "'x1 for all i #- j). Configurations of 0 or l objects are cliques. Then the 

Ripley-Kelly analogue of the Hammersley-Clifford theorem (Ripley & Kelly, 

1977) states that a process with density p: n--+ [ 0, oo) is Markov iff 

p(x) = TI q(y) (14) 
cliques y s;; x 

for all X E il, where the product is restricted to cliques y s;; X, and q: il--+ [ 0, OCJ) is 

an (arbitrary) function. 

An example of an overlapping object model with higher-order interaction terms 

is the area interaction process defined by 

(15) 

with parameters /3 > 0, {> ~ 1 and normalizing constant oc > 0. As usual, n(x) is the 

number of objects in list x and IS(x) I is the area (or pixel count) of the silhouette. 

This model is clearly Markov; it again favours configurations with relatively few 

overlapping objects. 

3.4 Nearest-neighbour Markov object processes 

A further extension (Baddeley & M0ller, 1989) is to allow interaction behaviour 

to depend on the realization of the process. For example, in a one-dimensional 

renewal process, each point can be said to interact with its nearest neighbours to 

the left and right, regardless of how far distant these neighbours may be. In two 

dimensions, we would like to construct point processes exhibiting interaction 

between those pairs of points that are neighbours with respect to the Voronoi 

(Dirichlet) tessellation generated by the point pattern. 

Assume that for each configuration x we have a symmetric reflexive relation ,.,., 
x 

defined on x. We might prefer to think of this as a finite graph whose vertices are 

the objects x; Ex. Two consistency conditions are required on the relations ,.,., for 

different x (Baddeley & M0ller, 1989, Definition 4.7). Examples of relations 

satisfying these conditions are 

• x;,..., x1 iff x; "'x1 where ,..., is any symmetric relation on U (i.e. not depending 

on "the configuration x); 

• for points or marked points in ~ 2 , X; ,..., x1 iff X;, x1 are joined by an edge of the 
x 

Delaunay triangulation generated by x; 

• for compact sets in ~d, x,. ,.., x1 iff X; and x1 belong to the same connected 

component of the union of the objects. 

A random object process with density p shall be called a nearest-neighbour 

Markov object process (nnMp) with respect to { -: x en} if, for all x with 
x 

p(x) > 0, 

• p(y) > for all ycx; 

• the ratio p(x u { u}) /p(x) depends only on u, on nbd (u I x u { u}) = 

{x·:X· "" u} and on the relations-, "" restricted to nbd(u jxu{u}). 
1 1 xu{u} x xu{u} 

A subset y s;; x is a clique in x if all members of y are x-neighbours of one another 

(u -v for all u, v e y). 
x 
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A generalized Hammersley-Clifford theorem holds (Baddeley & M0ller, 1989): 

a process with density p is nnMp iff 

p(x) = {Ilcliques y s;; x q(y), 
0, 

if q( y) > 0 for all y s x 

otherwise 

where q: 0-+ IR+ satisfies certain regularity conditions ((11)-(12) of Baddeley & 

M0ller, 1989). 

Kendall ( 1990) proved a spatial Markov property for nnMps. 

3.5 Spatial birth-and-death processes 

The natural analogue of the Gibbs sampler in this context is a spatial birth-and­

death process (M0'ller, 1989). This is a continuous-time Markov process, whose 

states are configurations x E 0, and for which the only transitions are the birth of 

a new object (instantaneous transition from x to xu {u }) or the death of an 

existing one (transition from x to x\{x; }). Given the state x at time t, 

• the probability of a death x-+ x\ {x;} during a time interval (t, t + h ), h -+ 0, 

is D(x\ {x; }, x; )h + o(h), where D( ·, ·): Q x U-+ [O, oo) is a measurable func­

tion; 

• the probability of a birth x-+ x u { u} during time (t, t + h), where u lies in a 

given set F s U, is B(x, F)h + o(h) where B(x, ·) is a finite measure on U. 

• the probability of more than one transition during (t, t + h) is o(h). 

We will assume that B(x, ·) has a density b(x, ·) with respect to µ on U, so that 

intuitively b(x, u) is the transition rate for a birth x-+ xu { u }. 

Conditions for the existence and convergence of a spatial birth-death process 

with given transition rates were given by Preston ( 1977, Property 5 .1, Theorem 

7 .1) and slightly extended by Baddeley and M0ller (1989) and M0ller ( 1989) as 

follows. 

Theorem 1. For each n = 0, 1, ... define 

Kn= sup B(x) 
n(x) = n 

and 

6,, = inf D(x) 
n(x)=n 

Assume Ci,, > 0 for all n ~ 1. Assume either (a) that K,, = 0 for all sufficiently large 

n ::?: 0, or (b) that K,, > 0 for all n ::?: 1 and both the following hold: 

then there exists a unique spatial birth-and-death process for which B( ·) and D( ·) 

are the transition rates; this process has a unique equilibrium distribution to 

which it converges in distribution from any initial state. 

Given an object process with density p, if there exists a spatial birth-and-death 

process with rates satisfying 

b( x, u) p( x u { u}) 
---=----
D(x, u) p(x) 
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whenever p(xu {u }) > 0, then the birth-and-death process is indecomposable and 

time reversible, and its unique invariant measure is the process with density p ( cf. 

Ripley, 1979). 

For a Markov (nnMp) object process the above expression is typically easy to 

evaluate since the normalizing constant et.- is eliminated. Thus, a simulated 

realization of a Markov object process can be obtained by running a correspond­

ing spatial birth-and-death process for lqng enough. 

To simulate the birth-death process, we generate the successive states x<k) and 

the sojourn times r<k) as follows. Given x(k) = xCkl, TCk) is exponentially dis­

tributed with mean 1/(n(x<kl) + B(x<kl)), independent of other sojourn times and 

of past states. The next state transition is a death with probability n(xCkl) / 

(n(xCkl) + B(x<kl)), obtained by deleting one of the existing points with equal 

probability; otherwise the transition is a birth generated by choosing one of the 

points u1 ~ x<k) with probability density 

bH(x<kl, u1) 

B(x<kl) 

and adding u1 to the state. Running this for a 'large' time period C we take x<Kl, 

where 

K = min { k = 0, 1, 2, .. · I ;to t<i) > C} 
For a discussion of the rate of convergence see M.0ller ( 1989). 

4 Bayesian object recognition 

The Bayesian approach to object recognition is formally identical to the case of 

image segmentation. We first assign a prior probability distribution to object 

configurations x. The prior shall be one of the nearest-neighbour Markov object 

processes described in the previous section, with density p(x). Given observation 

of image y, the posterior probability density for scene x is then 

p(x \ y) ocj(y \ x)p(x) (16) 

which is also a nearest-neighbour Markov object process. The MAP estimator of 

the true configuration is 

x = argmaxxp(x \ y) = argmaxx f(y \ x)p(x) (17) 

The only unusual feature of this formulation is that ( 17) is now an optimization 

over the space n of all object configurations. 

One argument for adopting a Bayesian approach to object recognition is that 

the MLE tends to contain clusters of almost identical objects, i.e. there is 

'multiple response' to each true object, as noted in Section 2.7. This is related to 

the fact that the Hough transform has rather fiat peaks around the correct object 

positions. Multiple response is undesirable if it is important to determine the 

number of objects correctly, and if it is believed that objects do not lie extremely 

close to one another, say, if it is known in advance that objects cannot overlap. A 

standard approach in computer vision is to select one object per peak of the 

Hough transform; but this is very similar to a Bayesian approach using a prior 

model which assigns low probability to configurations in which objects are close 

to one another. 
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Assuming p( ·) > O and rewriting (17) as a penalized version of maximum 

likelihood: 

i = argmaxx [logf(y Ix) +log p(x)] ( 18) 

we interpret -logf(y Ix) as a measure of goodness-of-fit to the data, and 
- log p(x) as a penalty for the complexity of the configuration x. 

A simple prior is the Strauss process ( 12) which results in a penalty of - log fJ 
for the presence of each object x; Ex and a penalty of - log '}' for each pair of 
neighbouring objects (e.g. overlapping objects). Modifications which might be 

useful in this application are 

p(x) = 0: fI [JIRCx;ll n ylRCx;)nR(x;ll (19) 
i = 1 i <j 

and, for marked objects, to allow the interaction terms to depend on the marks. 
Regarding the choice of parameter values, note that if the raster is made finer 

(say, quadrupling the number of pixels), then the log likelihood typically in­
creases by the same factor. This suggests that to maintain the balance between f 
and p in ( 17)-( 18) the parameters log fJ and log'}' of a Strauss model should also 
be multiplied by this factor. Models such as (19) and (15), with interactions 
expressed in terms of pixel counts, do not require such adjustment. 

4.1 ICM for object recognition 

Iterative methods are needed in order to find the MAP estimator ( 17). As in 
Section 2.5, we consider algorithms which add or delete objects one at a time. 
The log-likelihood ratio criterion is now replaced by a log posterior probability 
ratio, so that we add object u to configuration x if 

lo f(y I xu {u })p(xu {u }) > 0 
g f(y I x)p(x) 

For example, taking the Strauss prior ( 12) and a blur-free signal, 

1 c Y I x u { u} )PC x u { u}) 
log =log(J+r(u;x)logy+ L z, 

f (y I x)p(x) R(u)\S(x) 

(20) 

where r(u; u) =s(xu{u})-s(x) is the number of neighbours ofu in x. The new 
term in y is a penalty against adding an object in the vicinity of existing objects. 
For the area-interaction prior ( 15) the term involving y is replaced by 
IR(u) \S(x) I log c5, so that we again obtain something very similar to the Hough 
transform. 

Algorithm 1 is now a close analogue of Besag's ICM algorithm (Chapter 5). 
We scan the (discretized) object space U and add an object u whenever the log 
posterior probability ratio (20) is positive. Equivalently, we add an object u 
whenever the posterior conditional probability that u Ex, given all other informa­
tion on U\{u}, is greater than~-

Algorithm 2 is a simple variant of ICM, at least in the discrete case. This 
algorithm is also defined when U is 'continuous' (any lsc space) but the interpre­
tation is more complex. We add a new object u at the position where the 
Papangelou conditional intensity of the posterior distribution, given the current 
configuration x on U\ { u }, is maximal, provided this is greater than ew (relative to 
the reference measure µ). 
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FIG. 3. Approximate MAP reconstruction (steepest ascent) of Brodatz pellets texture. 

Figure 3 shows the result of steepest ascent ICM for the pellet texture of 

Section 2.7. The prior was a Strauss process of overlapping discs (12) with 

log f3 = log y = - 1000. 

4.2 Sampling from the posterior 

It is possible to draw samples from the posterior distribution ( 16) since this is a 

Markov object process. 

Consider any blur-free independent noise model with g( · I ·) > 0 and a nearest­

neighbour Markov object prior. Positivity of g is needed so that the class 

K = {x:f(y I x)p(x) > O} is hereditary; that is, if a configuration x belongs to K 

the same is true for all its subsets y £ x. For some fixed k E [ 0, 1] set 

b(x, u) = f(y I x)p(x) ' 
{(

f(y Ix u {u} )p(x u {u }))k 
if f(y I x)p(x) > 0 

if f(y I x)p(x) = 0 0, 

for u rt x and death rate 

{
( _ f(y I x)p(x) )k -· i 

D(x\{u}, u) = \j(y I x\{u})p(x\{u}) ' 

b~ /n, 

if f(y I x)p(x) > 0 

if f(y I x)p(x) = 0, n(x) = n 

(21) 

(22) 

Here b~ =inf{l:x,exDCx\{x,},x1 ) IJCylx)p(x) >0,n(x) =n}. By convention, 

the infimum of the empty set equals oo. Note that by this definition b;, = b,,, 

where bn is defined as in Theorem 1. The boundary cases k = 0 ('constant birth 

rate') and k = 1 ('constant death rate') are well known in spatial statistics. It is 

widely argued (e.g. Ripley, 1977) that the constant death rate procedure should 

be preferred, as under the constant birth rate process there is a high probability 

that a newly added object will have a large death rate and thus be rapidly deleted 

again. 
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For each application, one should verify that the process just described is well 

defined. For instance, the following corollary of Theorem 1 holds (van Lieshout, 

1993). 

Lemma 1. Let y be fixed. For any blur-free independent noise model with 

g( · I ·) > 0, and any nearest-neighbour Markov object process p( ·) with uniformly 

bounded likelihood ratios 

p(xu {u }) /3 
---'---- s: < CIJ' 

p(x) 

there exists a unique spatial birth-and-death process for which (21) and (22) are 

the transition rates. The process has unique equilibrium distribution p and 

converges in distribution to p from any initial state. 

Figure 4 shows a sample from the posterior distribution for the pellets texture of 

Section 2. 7 using the same Strauss prior as for Fig. 3. 

The main advantage of sampling from the posterior distribution is the ability 

to estimate any functional of the posterior by taking a sufficient number of 

independent realizations. Examples of useful functionals are: the distribution 

(mean, variance) of the number of objects; the probability that there is no object 

in a given subregion of the image; the distribution of the distance from a given 

reference point to the nearest object and the first-order intensity ( Stoyan et al., 

1987). In the discrete case the first-order intensity at u is simply the (posterior) 

probability that u belongs to x. It can be regarded as an alternative to the Hough 

transform. 

4.3 Stochastic annealing 

A MAP solution can also be found by simulated annealing. Assume the condi­

tions of Lemma 1. For H > 0 define 

PH(x I y) oc {f(y I x)p(x) } 11H 

F1G. 4. Sample from posterior distribution for Brodatz pellets texture. 
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This is the density of a nearest-neighbour Markov object process, and the 

associated spatial birth-and-death process with rates (21 )-(22) exists and con­

verges in distribution to PH· 

As for discrete Markov random fields, H has the interpretation of 'tempera­

ture'. If U is discrete, then PH(· I y) converges pointwise as H--+ O to a uniform 

distribution on the set of MAP solutions. 

Take a sequence Hn ""' 0 and consider the corresponding family cx(n))n E f\I of 

spatial birth-death processes on K = { x: f ( y I x)p( x) > 0}. Let t,,, n E N be a 

sequence satisfying 

tn :2: t0 2 n ( 
log(~ (1 - ~))) 

l +log ( 1 - Kn(t0 )) 

where K,,(t0 ) is a certain constant determining the rate of convergence of the nth 

birth-death process (van Lieshout, 1993). Construct a time-inhomogeneous 

Markov process X,, t > 0 whose transition rates are those of x<ni during time 

interval [s,,, s,, + 1 ) where sn = t0 + · · · + tn _ 1• It is shown in van Lieshout ( 1993) 

that if the set of MAP solutions has positive reference measure, and condition (a) 

in Theorem 1 is satisfied, the sequence of birth-death processes constructed this 

way converges in total variation to a uniform distribution on the set of global 

maxima of the posterior distribution, regardless of the initial state. For details, see 

van Lieshout ( 1993). 

For the Brodatz pellet texture of Fig. 1, the results of simulated annealing are 

very similar to those of posterior sampling (Fig. 4). 

The simulation algorithm described in Section 3.5 encounters some numerical 

difficulties. Since the birth rate is an exponential function of the Hough trans­

form, it may have sharp peaks when H is small or x is suboptimal. Rejection 

sampling then becomes impractical because the acceptance probabilities are small. 

In the extreme case where H is very close to zero, the required birth-death 

process behaves like the deterministic Algorithm 2. This suggests using an 

algorithm which incorporates a search operation over U. 

One simple algorithm of this kind is to find the global maximum of birth rate 

b* = max,, bH(x, u), then locate all objects u satisfying bH(x, u) ~ ab*, where a < 1. 

Making a list of all such candidates, we proceed as if these are the only objects in 

U, computing the total birth" rate of the candidates and performing rejection 

sampling. After each transition the list of candidates has to be recomputed. This 

algorithm is an approximation to the desired birth-death process: larger values of 

a increase the speed but decrease the accuracy of the approximation. 

It is clear that, whatever strategy is adopted, there will be problems with the 

'curse of dimension', i.e. as the dimension of the object space U increases, the cost 

of searching U increases exponentially. This problem is well known in the context 

of Hough transforms; it is often named as the major limitation on their perfor­

mance, and multi-resolution strategies are usually recommended. 

We have used a multi-resolution algorithm for simulated annealing. For each 

'resolution level' m = 0, 1, ... , M conceptually divide object space U into a 

partition O/lm = { ul,m' ... ' ukm,m} such that each partition is a refinement of the 

Previous one: u. = U Ur. + 1 for all i, m. 'Conceptually' means that the sub-
'·"' J J'm 

division of a block U;"' into smaller blocks is carried out only when needed. The 

standard example is the quad tree in which the unit square is divided into 2"' x 2"' 

smaller squares at stage m. 
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Interpret each partition if/Im as a class of 'large objects' in T by defining, for 

any Vs;;; U, 

R(V) = LJ R(u) 
ue V 

Define a Hough transform on if/Im 

H~l(V) = L w, 
re R(V) 

where w is any image. This provides an upper bound for the Hough transform on 

U, provided w, :<= 0: 

H~l(V) :<!: max Rw(u) 
ue V 

Furthermore, the Hough transform at any level m is an upper bound for the 

Hough transform at level m + 1: 

Suppose we can find an image w, possibly depending on x, such that 

w, ;;;: max h(y,, ()(x)(t), e<xu{u})(t)) 
ue U 

where h is as in (8). For example, in the blur-free case, we can take 

w, = l{t 1: S(x)}(h(y,, 80 , 81 ))+ 

(23) 

where (a)+= max {a, O}. Assuming the conditions of Lemma 1 hold, we obtain a 
decreasing sequence of upper bounds on the birth rates of the stochastic annealing 

procedure. 

b(x u) ~ bCMl(x u. ) ~ · · · s; b<0l(x u. ) 
' ' iM,M ' i 0 ,0 

(24) 

Where U E UiM, M C · " · C Ui 0 ,o and 

b(ml(x, V) = [/J exp {H~l(V)}] l/H 

where p is as in Lemma 1. The maximum birth rate, and the set of locations 

where the birth rate is near to maximum, can then be determined by searching the 

multi-resolution space dynamically in the usual way. This method bears many 

resemblances to the adaptive Hough transform (Illingworth & Kittler, 1987). 
An application of this technique is shown in Fig. 5. This is a synthetic 

example modelled on the problem of identifying linear features such as long 

crystals and fission tracks in micrographs of minerals. The objects are line 

segments of variable length, so that the object space U is four-dimensional, 

making simple search methods computationally expensive. 

The signal is assumed to be a function of the distance d(t, x) from t to S(x), 

in this case linear decay 

{ 

d(t, x) 
e<xl(t) = 81 +-c-(80-81), for d(t, x) s; c; 

80 , otherwise 

Figure 5 is a simulation of this model with (arbitrary) line segments of length 

ranging between 60 and 70, foreground brightness 100, background brightness 

254, decay radius c = 4 pixel units, and additive Gaussian noise with variance 9.0. 
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F10. 5. (a) Synthetic image of blurred line segments, (b) reconstruction by steepest ascent. 

The choice of parameterization is important for the computational cost of the 
multi-resolution algorithm. We choose to parameterize segments by their length 

t, orientation p, and Cartesian coordinates (d, t) of the midpoint of the segment 
after rotation by - </J, so that d is the distance from the (arbitrary) origin 0 to the 

infinite line L containing the segment, and t is the distance from the midpoint of 

the segment to the foot of the perpendicular OL. Our multi-resolution algorithm 
splits U at level 0 into blocks of roughly constant (</J, d) with a tolerance of 1 

degree in p and 1 pixel unit in d. That is, we group together all those segments 
which lie (approximately) along a given infinite line of orientation p and distance 

d from the origin. The objects R(V) at level 0 are thickened lines, whose Hough 
transform is relatively easy to compute. 

We introduce a neighbourhood structure by defining two line segments to be 
neighbours u ~ v iff their dilations by ball of decay radius have a non-empty 

intersection. The prior model is a Strauss process with {J = 0.002 and y = 0.25. 
We applied the multi-resolution algorithm with upper bounds (24) computed 

from w, = 1/2<12 (y, - e<xl(t)) 2 • Note that the choice of pararneterization also 
means that the bounds (24) at level 0 are rather tight. The result of steepest 
ascent is given in Fig. 5. 

5 Spatial clustering and edge detection 

There are many similarities between object recogmt1on and the problem of 

identifying clusters in spatial patterns. We will briefly consider three examples: 
spatial clustering of point patterns; fitting lines to point patterns; and high-level 
edge detection. 

5.1 Clustering of point patterns 

In the simplest case, the data consist of a set of points 

y= {Y1> ... ,ym} £: T 

where T s;: IR2 (say) is the window of observation; and it is required to determine 
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the locations of an unspecified number of cluster centres x1' ... , Xn E T. Typical 

applications are the analysis of spatial pattern in the occurrence of rare diseases 

and the estimation of the positions of ancestors of the current generation of trees 

in a wood. 
The data y are now a point pattern, but otherwise the structure of the problem 

is very similar to that in Section 2. Assume y depends on the unknown pattern x 

of cluster centres through a probability density j( y I x). This is the density of a 

point process with respect to the Poisson point process on T. The analogue of 

conditional independence is the assumption that, conditional on x, the observed 

point process is a superposition of independent point processes Ncx, J of 'daughter 

points' associated with each 'parent point' x1 Ex. Then 

n 

j(y Ix)= eµ(TJ I TI [g(y 1, Ix, )e µ(TJ] (25) 
I 1 , ... ,/11 i= I 

where the sum is over all ordered partitions /1' ... , I,, of { 1, ... , m} into n 

disjoint sets (allowing I, = 0). Here y 1 = {y1: i EI}. The function g( · I x,) is the 

density of the daughter process Ncx, l. Models of this type are frequently consid­

ered in spatial statistics (Diggle, 1983; Ripley, 1981; Stoyan et al., 1987) but the 

present problem is unusual in that we are trying to estimate the parent (cluster 

centre) process. 

It is common in spatial statistics to assume that the daughter processes N<x; l 

are identically distributed up to translation: 

NCx;) = N(O) + X; 

g(z Ix,)= g(z - x, I 0) 

and that Ncoi consists of a random number of points (distribution F) which are 

iid with density h. 

We consider the special case where the number of daughters per parent has a 

Poisson distribution, so that the conditional distribution of y given x is an 

inhomogeneous Poisson process 

with intensity 

m 

f(y Ix)= efr (1 -).(u))ctu TI ,1,(yJ Ix) 
}= 1 

n 

A.(u I x) = I h(u - X;) 

i= 1 

(26) 

Then, if the parents also follow a Poisson process, the observed pattern y is a 

Neyman-Scott process and is a special case of the well-known Cox process. 

Examples are the Matern cluster process in which daughter points are uniform in 

a disc of radius r around the cluster centre, 

µ 
h(u - x,) = - 2 l{ llu - x, II ~ r} 

nr 

and the (modified) Thomas process in which the positions follow a circular 

Gaussian distribution 

1 
h(u -x1) =µ--e-llu--x;fl 2/2112 

2na 2 

(ignoring edge effects in both cases). 
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A novelty is the possibility of zero-likelihood configurations. For example, in 

the Matern process there must be a cluster centre within a distance r of each 

observed point. A maximum likelihood estimator of x must be a subset of the 
morphological closing y with respect to a disc of radius r (i.e. the r-erosion of the 
r-dilation (Serra, 1982, page 50)). 

The likelihood ratio is 

ICY I xu;u }) = .fi [1 + n h(yj - u) ] exp {- r hCv - u) dv} 

f(yj ) J=l L h(y,-x;) Ju 
z' = 1 

which can be compared to the Hough transform of image data, in the sense that 

each data point y1 votes with variable strength for a cluster centre at point u . 

. Generally, the maximum likelihood estimator :X of x may run into difficulties 

similar to those encountered in the context of object recognition. If h is smooth 
and almost flat near its maximum, and the data pattern is 'dense', the maximum 

likelihood estimate may tend to contain multiple responses to each true cluster 
point. In the clustering context, this is precisely what we wish to avoid. 

Now introduce a prior distribution for x in the form of a nearest-neighbour 
Markov point process (Section 2). The posterior probability ratio 

p(xu{u}iY)=p(xu{u}) n[l+ nh(y,-u) Jexp{-J h(v-u)dv} 

p(x I y) p(x) i= i L h(yi - X;) u 

i= 1 

is easily computable, so that we can use spatial birth-and-death processes to 
simulate from the posterior. If the function h is continuous and bounded away 

from zero, and likelihood ratios of p are uniformly bounded, then the above 
expression is bounded, so the spatial birth-death processes with constant death 

rate are well defined and converge weakly to the posterior distribution. 
It is then possible to estimate functionals of the posterior, such as the 

distribution of the number of cluster centres, the probability that there is no 
cluster in a particular region, and the first-order intensity of cluster positions. 

One can also perform simulated annealing to find the MAP estimator of x. The 

convergence results of van Lieshout ( 1993) still apply. 
Lawson ( 1993) has discussed spatial clustering from a very similar viewpoint 

but suggested using a Poisson process as the prior distribution. In this case, 
multiple responses will be suppressed if the intensity {3 of the prior is small. 

Lawson proposes a different class of Gibbs sampler techniques for simulating 
from the posterior. The parameters would be the number of cluster centres, their 

spatial coordinates, the prior intensity and some radial parameter in the Gaussian 
forward model. The idea is then to sample in turn from the conditional distribu­

tion of one parameter, given the others and the data. Approximations are 

necessary to make the procedure computationally tractable. For a review of the 
Gibbs sampler, see Besag and Green (1993) and Smith and Roberts (1993). 

5.2 Fitting curves to point patterns 

In our second example, the data again consist of a point pattern 

y = {y1 , .•• , Ym} £ T with T £ IR2 bounded, but the points are believed to lie 
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close to a curve or curves, possible not contiguous, and the objective is to estimate 

the curves. An example is the image analysis task of joining a dot pattern into a 

curvilinear boundary. An application to spatial statistics is the identification of 

ancient roads or trade routes given information about the location of archaeolog­

ical finds (pottery, coins) (Stoyan et al., 1987, p. 139). 
Let the curves be parameterized by a small number of real parameters and let 

U be the corresponding parameter space. The true curve pattern is then a 

configuration x = {x1> ... , Xn} s; U. Again, we can assume an independent cluster 

model in which each curve X; gives rise to a point pattern NCx; l and these daughter 

patterns are conditionally independent given x. Then (25) holds. 
It is no longer appropriate to assume that the daughter patterns NCx;) are 

equivalent up to translation, since, for example, the expected number of points 

may well depend on the length of the curve. However, we can assume NCx; l is 

Poisson with intensity h( • I x; ), so that the observed point pattern is again a Cox 

process (Stoyan et al., 1987, p. 138). Particular cases of interest would be the 

analogues of the Matern and Thomas models in which distance to the cluster 

centre is replaced by distance to the nearest point on the cluster curve. 

The treatment of this problem is formally equivalent to that in the previous 

section, the only difference being that the cluster parents now belong to a general 

family of objects U instead of T. The general methods of Section 4 are required 

to obtain MAP solutions. 

5.3 High-level edge detection 

Our final example is the high-level vision problem of identifying large-scale edges 

in a scene using the output of a low-level edge detector. The 'data' y consist of 

a pattern of line segments and the objective is to cluster them around a small 

number of larger line segments. 

Let W denote the set of possible outputs of the low-level edge detector. For 

example, these may be line segments restricted to have unit length ( = 1 pixel 

width) and orientation which is a multiple of 45°. As usual, U denotes the space 

of objects we are looking for, which in this case are also line segments, but have 
unrestricted length and orientation. 

Model y as a superposition of conditionally independent line segment pro­

cesses NCx; l associated with each true line segment X;. Again, it is not reasonable 

to suppose that all clusters are identically distributed up to translation (25), but 

we may assume that they are all Poisson so that y is a Cox line segment process. 
Typically, the expected number of line segments in NCx; l depends on the length 
of X;. 

The MLE and MAP estimators of x can then be determined using the 

techniques we have described above. Maximum likelihood is equivalent to maxi­
mizing 

it log(J
1 

h(y1 Ix;))-;tt h(v Ix;) dv 

where h( • Ix;) is the intensity of NCx; l. 

The possible benefits of a prior model for x include the ability to encourage 

long lines and continuity between lines, and to penalize Jines that cross one 
another. 
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6 Discussion 

6.1 Evaluation of the approach 

The ultimate objective of this study is (a) to understand the mathematical basis 
of object recognition, (b) to develop object recognition techniques which outper­

form existing ones in familiar situations and ( c) to develop techniques for 

problems where there are no satisfactory solutions. Regarding (a), we have noted 
that some popular ad hoe methods for object recognition (Hough transform, 

erosion) are maximum likelihood techniques for simple statistical models. For (b), 

we have shown that Bayesian methods perform creditably in simple template 

matching problems. Since classical methods are typically associated with maxi­

mum likelihood, it seems plausible that Bayesian methods are generally better, 
but no detailed comparison with classical methods has yet been carried out. As 

regards (c), the general formulation is flexible enough to be immediately adapt­
able to problems such as subpixel resolution of object shapes, stereo vision, pose 

estimation and motion detection. However, the algorithms put forward are 
severely limited by the dimensionality of the object space. 

6.2 Why Markov? 

An unanswered question is why the prior 'should' be a spatial Markov process. 
One reason is simplification: the Markov property implies that p(Jx)/p(x) is 

simple to evaluate, where J is a prescribed operation that changes the state x, such 
as flipping the value of a single pixel (for discrete MRFs), adding or deleting an 

object (for Markov object processes) or introducing a new mosaic fragment (for 
Arak-Surgailis processes (Arak & Surgailis, 1989)). The associated optimization 

algorithms and Gibbs sampler consist of successive applications of the operations 
J chosen deterministically or stochastically, hence they too are easy to implement. 

We may also interpret MAP estimation as penalized or regularized maximum 

likelihood and ask what kinds of penalty terms are desirable. It is interesting to 
note that the discrete MRF priors used in image segmentation (Chapters 4 and 5) 

specify positive association between neighbouring pixel values, while the Markov 
object processes used in this article exhibit negative association or inhibition 
between neighbouring objects. In the case of spatial clustering, Lawson ( 1993) 

has used Poisson priors, in which the points have zero association, and the effect 
of the prior is simply to penalize configurations with large numbers of points. 

Furthermore, it is unnecessary to 'believe' a prior Markov model, in the sense 
that good solutions may well have low probability under the prior. In the context 

of discrete MRFs, Besag (Chapter 5) and others have argued that ICM is 
preferable to stochastic annealing because we do not believe the 'global' predic­

tions of the prior, and are only using 'local' properties in the optimization. Similar 
remarks hold in the context of object recognition. 

6.3 Alternative algorithms 

The algorithms presented here are simple choices and do not do full justice to the 

theory. There are many alternatives. 
Firstly, one can expand the range of transitions J that can be considered at 

each stage of ICM or Gibbs sampling. Besides the addition and deletion of 
objects, one may also consider modifications of an existing object, e.g. translations 
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and rotations by small amounts. These are equivalent to (small) jumps in the 

object space U. The deterministic optimization algorithms necessarily converge to 
'better' solutions (in the sense of the objective function). The associated stochas­

tic algorithms simulate an interacting particle system in which the existing objects 

execute (dependent) random walks in the object space as well as the usual births 
and deaths. In stochastic annealing one expects that, near convergence and at low 

temperatures the birth and death rates are very low compared to the diffusion 
rate, so that the number of objects eventually becomes fixed and the existing 

objects follow random walks converging in distribution to their optimal positions. 

Miller et al. ( 1991) have described a related class of jump diffusions in which the 

existing objects execute diffusions in the object space. 
Secondly, where simulation is concerned, there are alternatives to rejection 

sampling of a birth and death process. Geyer and M0ller have described a version 
of the Metropolis-Hastings algorithm suited to this context. 'Auxiliary variable 

methods' such as the Swendsen-Wang algorithm (Besag & Green, 1993) could 

also be used to accelerate convergence and inspect the posterior surface more 
efficiently. Low-temperature sampling is a good compromise between stochastic 

annealing and ICM. 

6.4 Stochastic geometry and image analysis 

Finally, it is interesting to note that the standard parameterization of lines in ~ 2 

in stochastic geometry is identical to that used in the Hough transform for 

straight lines (Hough, 1962; Illingworth & Kittler, 1988). In stochastic geometry, 
this choice is dictated by properties of the 'invariant' measure for random lines. 

One may speculate that stochastic geometry can help to suggest the right 
parameterization for the Hough transform for other classes of geometrical objects, 
and, in general, suggest the right way to formulate many problems in image 
analysis. 
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