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Introduction

• We proposed a stochastic gradient algorithm on a specific
manifold for matrix regression in:

• Regression on fixed-rank positive semidefinite matrices: a
Riemannian approach, Meyer, Bonnabel and Sepulchre,
Journal of Machine Learning Research, 2011.

• Compete(ed) with (then) state of the art for low-rank
Mahalanobis distance and kernel learning

• Convergence then left as an open question
• The material of today’s presentation is the paper

Stochastic gradient descent on Riemannian manifolds,
IEEE Trans. on Automatic Control, September 2013.
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Classical example

Linear regression: Consider the linear model

y = xT w + ν

where x ,w ∈ Rd and y ∈ R and ν ∈ R a noise.

• examples: z = (x , y)

• loss (prediction error):

Q(z,w) = (y − ŷ)2 = (y − xT w)2

• cannot minimize expected risk C(w) =
∫

Q(z,w)dP(z)

• minimize empirical risk instead Ĉn(w)=1
n
∑n

i=1 Q(zi ,w).



Gradient descent

Batch gradient descent : process all examples together

wt+1 = wt − γt∇w

(
1
n

n∑
i=1

Q(zi ,wt )

)

Stochastic gradient descent: process examples one by one

wt+1 = wt − γt∇wQ(zt ,wt )

for some random example zt = (xt , yt ).

⇒ well known identification algorithm for Wiener systems,
ARMAX systems etc.



Stochastic versus online

Stochastic: examples drawn randomly from a finite set
• SGD minimizes the empirical risk

Online: examples drawn with unknown dP(z)

• SGD minimizes the expected risk (+ tracking property)

Stochastic approximation: approximate a sum by a stream of
single elements



Stochastic versus batch

SGD can converge very slowly: for a long sequence

∇wQ(zt ,wt )

may be a very bad approximation of

∇w Ĉn(wt ) = ∇w

(
1
n

n∑
i=1

Q(zi ,wt )

)

SGD can converge very fast when there is redundancy

• extreme case z1 = z2 = · · ·



Some examples

Least mean squares: Widrow-Hoff algorithm (1960)

• Loss: Q(z,w) = (y − ŷ)2

• Update: wt+1 = wt − γt∇wQ(zt ,wt ) = wt − γt (yt − ŷt )xt

Robbins-Monro algorithm (1951): C smooth with a unique
minimum⇒ the algorithm converges in L2

k-means: McQueen (1967)

• Procedure: pick zt , attribute it to wk

• Update: wk
t+1 = wk

t + γt (zt − wk
t )



Some examples

Ballistics example (old). Early adaptive control

• optimize the trajectory of a projectile in fluctuating wind
• successive gradient corrections on the launching angle
• with γt → 0 it will stabilize to an optimal value



Another example: mean

Computing a mean: Total loss 1
n
∑

i‖zi − w‖2

Minimum: w − 1
n
∑

i zi = 0 i.e. w is the mean of the points zi

Stochastic gradient: wt+1 = wt − γt (wt − zi) where zi
randomly picked2

2what if ‖‖ is replaced with some more exotic distance ?
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Learning on large datasets

Supervised learning problems: infer an input to output
function h : x 7→ y from a training set

Large scale problems: randomly picking the data is a way to
handle ever-increasing datasets

Bottou and Bousquet helped popularize SGD for large scale
machine learning3

3pointing out there is no need to optimize below approximation and
estimation errors (for large but finite number of examples)
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Notation

Expected risk:

C(w) := Ez(Q(z,w)) =

∫
Q(z,w)dP(z)

Approximated gradient under the event z denoted by H(z,w)

EzH(z,w) = ∇(

∫
Q(z,w)dP(z)) = ∇C(w)

Stochastic gradient update: wt+1 ← wt − γtH(zt ,wt )



Convergence results

Convex case: known as Robbins-Monro algorithm.
Convergence to the global minimum of C(w) in mean, and
almost surely.

Nonconvex case. C(w) is generally not convex. We are
interested in proving
• almost sure convergence
• a.s. convergence of C(wt )

• ... to a local minimum
• ∇C(wt )→ 0 a.s.

Provable under a set of reasonable assumptions



Assumptions

Learning rates: the steps must decrease. Classically∑
γ2

t <∞ and
∑

γt = +∞

The sequence γt = t−α, provides examples for 1
2 < α ≤ 1.

Cost regularity: averaged loss C(w) 3 times differentiable
(relaxable).

Sketch of the proof
1 confinement: wt remains a.s. in a compact.
2 convergence: ∇C(wt )→ 0 a.s.



Confinement

Main difficulties:

1 Only an approximation of the cost is available
2 We are in discrete time

Approximation: the noise can generate unbounded
trajectories with small but nonzero probability.

Discrete time: even without noise yields difficulties as there is
no line search.

SO ? : confinement to a compact holds under a set of
assumptions: well, see the paper4 ...

4L. Bottou: Online Algorithms and Stochastic Approximations. 1998.



Convergence (simplified)

Confinement
• All trajectories can be assumed to remain in a compact set
• All continuous functions of wt are bounded

Convergence

Letting ht = C(wt ) > 0, second order Taylor expansion:

ht+1 − ht ≤ −2γtH(zt ,wt )∇C(wt ) + γ2
t ‖H(zt ,wt )‖2K1

with K1 upper bound on ∇2C.



Convergence (simplified)

We have just proved

ht+1 − ht ≤ −2γtH(zt ,wt )∇C(wt ) + γ2
t ‖H(zt ,wt )‖2K1

Conditioning w.r.t. Ft = {z0, · · · , zt−1,w0, · · · ,wt}

E [ht+1 − ht |Ft ] ≤ −2γt‖∇C(wt )‖2︸ ︷︷ ︸
this term ≤ 0

+ γ2
t Ez(‖H(zt ,wt )‖2)K1

Assume for some A > 0 we have Ez(‖H(zt ,wt )‖2) < A. Using
that

∑
γ2

t <∞ we have∑
E [ht+1 − ht |Ft ] ≤

∑
γ2

t AK1 <∞

As ht ≥ 0 from a theorem by Fisk (1965) ht converges a.s. and∑
|E [ht+1 − ht |Ft ]| <∞.



Convergence (simplified)

E [ht+1 − ht |Ft ] ≤ −2γt‖∇C(wt )‖2 + γ2
t Ez(‖H(zt ,wt )‖2)K1

Both red terms have convergent sums from Fisk’s theorem.
Thus so does the blue term

0 ≤
∑

t

2γt‖∇C(wt )‖2 <∞

Using the fact that
∑
γt =∞ we have5

∇C(wt ) converges a.s. to 0.

5as soon as ‖∇C(wt)‖ is proved to converge.
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Connected Riemannian manifold
Riemannian manifold: local coordinates around any point

Tangent space:

Riemmanian metric: scalar product 〈u, v〉g on the tangent
space



Riemannian manifolds

Riemannian manifold carries the structure of a metric space
whose distance function is the arclength of a minimizing path
between two points. Length of a curve c(t) ∈M

L =

∫ b

a

√
〈ċ(t), ċ(t))〉gdt =

∫ b

a
‖ċ(t)‖dt

Geodesic: curve of minimal length joining sufficiently close x
and y .

Exponential map: expx (v) is the point z ∈M situated on the
geodesic with initial position-velocity (x , v) at distance ‖v‖ of x .



Consider f :M→ R twice differentiable.

Riemannian gradient: tangent vector at x satisfying

d
dt
|t=0f (expx (tv)) = 〈v ,∇f (x)〉g

Hessian: operator ∇2
x f such that

d
dt
|t=0〈∇f (expx (tv)),∇f (expx (tv))〉g = 2〈∇f (x), (∇2

x f )v〉g .

Second order Taylor expansion:

f (expx (tv))− f (x) ≤ t〈v ,∇f (x)〉g +
t2

2
‖v‖2gk

where k is a bound on the hessian along the geodesic.



Riemannian SGD onM
Riemannian approximated gradient: Ez(H(zt ,wt )) = ∇C(wt )
a tangent vector !

Stochastic gradient descent onM: update

wt+1 ← expwt
(−γtH(zt ,wt ))

wt+1 must remain onM!
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Convergence

Using the same maths but on manifolds, we have proved:

Theorem 1: confinement and a.s. convergence hold under
hard to check assumptions linked to curvature.

Theorem 2: if the manifold is compact, the algorithm is proved
to a.s. converge under painless conditions.

Theorem 3: same as Theorem 2, where a first order
approximation of the exponential map is used.



Theorem 3

Example of first-order approximation of the exponential map:

The theory is still valid ! (as the step→ 0)
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General method

Four steps:

1 identify the manifold and the cost function involved
2 endow the manifold with a Riemannian metric and an

approximation of the exponential map
3 derive the stochastic gradient algorithm
4 analyze the set defined by ∇C(w) = 0.



Considered examples

• Oja algorithm and dominant subspace tracking
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• Amari’s natural gradient
• Learning of low-rank matrices
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Oja’s flow and online PCA
Online principal component analysis (PCA): given a stream
of vectors z1, z2, · · · with covariance matrix

E(ztzT
t ) = Σ

identify online the r -dominant subspace of Σ.

Goal: reduce online the dimen-
sion of input data entering a pro-
cessing system to discard lin-
ear combination with small vari-
ances. Applications in data
compression etc.



Oja’s flow and online PCA

Search space: V ∈ Rr×d with orthonormal columns. VV T is a
projector identified with an element of the Grassman manifold
possessing a natural metric.

Cost: C(V ) = −Tr(V T ΣV ) = Ez‖VV T z − z‖2 + cst

Riemannian gradient: (I − VtV T
t )ztzT

t Vt

Exponential approx: RV (∆) = V + ∆ plus orthonormalisation

Oja flow for subspace tracking is recovered

Vt+1 = Vt − γt (I − VtV T
t )ztzT

t Vt plus orthonormalisation.

Convergence is recovered within our framework (Theorem 3).



Considered examples

• Oja algorithm and dominant subspace tracking
• Positive definite matrix geometric means
• Amari’s natural gradient
• Learning of low-rank matrices
• Decentralized covariance matrix estimation



Filtering in the cone P+(n)

Vector-valued image and tensor computing
Results of several filtering methods on a 3D DTI of the brain6:

Figure: Original image “Vectorial" filtering “Riemannian" filtering

6Courtesy from Xavier Pennec (INRIA Sophia Antipolis)



Matrix geometric means

Natural geodesic distance d in P+(n).

Karcher mean: minimizer of C(W ) =
∑N

i=1 d2(Zi ,W ).

No closed form solution of the Karcher mean problem.

A Riemannian SGD algorithm was recently proposed7.

SGD update: at each time pick Zi and move along the
geodesic with intensity γtd(W ,Zi) towards Zi

Convergence can be recovered within our framework.

7Arnaudon, Marc; Dombry, Clement; Phan, Anthony; Yang, Le Stochastic
algorithms for computing means of probability measures Stochastic
Processes and their Applications (2012)



Considered examples
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• Positive definite matrix geometric means
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Amari’s natural gradient

Considered problem: zt are realizations of a parametric
model with parameter w ∈ Rn and pdf p(z; w). Let

Q(z,w) = −l(z; w) = − log(p(z; w))

Cramer-Rao bound: any unbiased estimator ŵ of w based on
the sample z1, · · · , zk satisfies

Var(ŵ) ≥ 1
k

G(w)−1

with G(w) the Fisher Information Matrix.



Amari’s natural gradient

Fisher Information (Riemannian) Metric at w :

〈u, v〉w = uT G(w)v

Riemannian gradient of Q(z,w) = natural gradient

−G−1(w)∇w l(z,w)

Exponential approximation: simple addition Rw (u) = w + u.
Taking γt = 1/t we recover the celebrated

Amari’s natural gradient: wt+1 = wt − 1
t G−1(wt )∇w l(zt ,wt ).

Fits in our framework and a.s. convergence is recovered



Considered examples

• Oja algorithm and dominant subspace tracking
• Positive definite matrix geometric means
• Amari’s natural gradient
• Learning of low-rank matrices
• Decentralized covariance matrix estimation



Mahalanobis distance learning
Mahalanobis distance: parameterized by a positive
semidefinite matrix W (inv. of cov. matrix)

d2
W (xi , xj) = (xi − xj)

T W (xi − xj)

Learning: Let W = GGT . Then d2
W simple Euclidian squared

distance for transformed data x̃i = Gxi . Used for classification



Mahalanobis distance learning

Goal: integrate new constraints to an existing W
• equality constraints: dW (xi , xj) = y
• similarity constraints: dW (xi , xj) ≤ y
• dissimilarity constraints: dW (xi , xj) ≥ y

Computational cost significantly reduced when W is low rank !



Interpretation and method
One could have projected everything on a horizontal axis ! For
large datasets low rank allows to derive algorithm with linear
complexity in the data space dimension d .

Four steps:

1 identify the manifold and the cost function involved
2 endow the manifold with a Riemannian metric and an

approximation of the exponential map
3 derive the stochastic gradient algorithm
4 analyze the set defined by ∇C(w) = 0.



Geometry of S+(d , r)

Semi-definite positive matrices of fixed rank

S+(d , r) = {W ∈ Rd×d ,W = W T ,W � 0, rank W = r}

Regression model: ŷ = dW (xi , xj) = (xi − xj)
T W (xi − xj),

Risk: C(W ) = E((ŷ − y)2)

Catch: Wt − γt∇Wt ((ŷt − yt )
2) has NOT same rank as Wt .

Remedy: work on the manifold !
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• Positive definite matrix geometric means
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• Learning of low-rank matrices
• Decentralized covariance matrix estimation



Decentralized covariance estimation

Set up: Consider a sensor network, each node i having
computed its own empirical covariance matrix Wi,0 of a process.

Goal: Filter the fluctuations out by finding an average
covariance matrix.

Constraints: limited communication, bandwith etc.

Gossip method: two random neighboring nodes communicate
and set their values equal to the average of their current values.
⇒ should converge to a meaningful average.

Alternative average why not the midpoint in the sense of
Fisher-Rao distance (leading to Riemannian SGD)

d(Σ1,Σ2) ≈ KL(N (0,Σ1) || N (0,Σ2))



Example: covariance estimation

Conventional gossip at each step the usual average
1
2(Wi,t + Wj,t ) is a covariance matrix, so the algorithms can be
compared.

Results: the proposed algorithm converges much faster !



Conclusion

We proposed an intrinsic SGD algorithm. Convergence was
proved under reasonable assumptions. The method has
numerous applications.

Future work includes:
• better understand consensus on hyperbolic spaces
• speed up convergence via Polyak-Ruppert averaging

w t =
∑t−1

i=0 wi : generalization to manifolds non-trivial
• tackle new applications: online learning of rotations


