# Stochastic gradient descent on Riemannian manifolds

Silvère Bonnabel<sup>1</sup>
Centre de Robotique - Mathématiques et systèmes
Mines ParisTech

SMILE Seminar Mines ParisTech Novembre 14th, 2013



<sup>&</sup>lt;sup>1</sup>silvere.bonnabel@mines-paristech

#### Introduction

- We proposed a stochastic gradient algorithm on a specific manifold for matrix regression in:
- Regression on fixed-rank positive semidefinite matrices: a Riemannian approach, Meyer, Bonnabel and Sepulchre, Journal of Machine Learning Research, 2011.
- Compete(ed) with (then) state of the art for low-rank
   Mahalanobis distance and kernel learning
- Convergence then left as an open question
- The material of today's presentation is the paper Stochastic gradient descent on Riemannian manifolds, IEEE Trans. on Automatic Control, September 2013.

#### Outline

- Stochastic gradient descent
  - Introduction and examples
  - SGD and machine learning
  - Standard convergence analysis (due to L. Bottou)
- 2 Stochastic gradient descent on Riemannian manifolds
  - Introduction
  - Results
- 3 Examples

# Classical example

#### Linear regression: Consider the linear model

$$y = x^T w + \nu$$

where  $x, w \in \mathbb{R}^d$  and  $y \in \mathbb{R}$  and  $\nu \in \mathbb{R}$  a noise.

- examples: z = (x, y)
- loss (prediction error):

$$Q(z, w) = (y - \hat{y})^2 = (y - x^T w)^2$$

- cannot minimize expected risk  $C(w) = \int Q(z, w) dP(z)$
- minimize empirical risk instead  $\hat{C}_n(w) = \frac{1}{n} \sum_{i=1}^n Q(z_i, w)$ .



### Gradient descent

Batch gradient descent: process all examples together

$$w_{t+1} = w_t - \gamma_t \nabla_w \left( \frac{1}{n} \sum_{i=1}^n Q(z_i, w_t) \right)$$

Stochastic gradient descent: process examples one by one

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \gamma_t \nabla_{\mathbf{w}} \mathbf{Q}(\mathbf{z}_t, \mathbf{w}_t)$$

for some random example  $z_t = (x_t, y_t)$ .

 $\Rightarrow$  well known identification algorithm for Wiener systems, ARMAX systems etc.

#### Stochastic versus online

Stochastic: examples drawn randomly from a finite set

SGD minimizes the empirical risk

**Online**: examples drawn with unknown dP(z)

SGD minimizes the expected risk (+ tracking property)

**Stochastic approximation:** approximate a sum by a stream of single elements

#### Stochastic versus batch

SGD can converge very slowly: for a long sequence

$$\nabla_w Q(z_t, w_t)$$

may be a very bad approximation of

$$\nabla_{w} \hat{C}_{n}(w_{t}) = \nabla_{w} \left( \frac{1}{n} \sum_{i=1}^{n} Q(z_{i}, w_{t}) \right)$$

SGD can converge very fast when there is redundancy

• extreme case  $z_1 = z_2 = \cdots$ 

## Some examples

Least mean squares: Widrow-Hoff algorithm (1960)

- Loss:  $Q(z, w) = (y \hat{y})^2$
- Update:  $w_{t+1} = w_t \gamma_t \nabla_w Q(z_t, w_t) = w_t \gamma_t (y_t \hat{y}_t) x_t$

**Robbins-Monro algorithm** (1951): C smooth with a unique minimum  $\Rightarrow$  the algorithm converges in  $L^2$ 

k-means: McQueen (1967)

- Procedure: pick  $z_t$ , attribute it to  $w^k$
- Update:  $w_{t+1}^k = w_t^k + \gamma_t(z_t w_t^k)$

### Some examples



#### Ballistics example (old). Early adaptive control

- · optimize the trajectory of a projectile in fluctuating wind
- successive gradient corrections on the launching angle
- with  $\gamma_t \rightarrow 0$  it will stabilize to an optimal value

### Another example: mean

Computing a mean: Total loss  $\frac{1}{n} \sum_{i} ||z_{i} - w||^{2}$ 

**Minimum**:  $w - \frac{1}{n} \sum_{i} z_{i} = 0$  i.e. w is the mean of the points  $z_{i}$ 

**Stochastic gradient**:  $w_{t+1} = w_t - \gamma_t(w_t - z_i)$  where  $z_i$  randomly picked<sup>2</sup>

2.4 2.2 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4

#### Outline

- 1 Stochastic gradient descent
  - Introduction and examples
  - SGD and machine learning
  - Standard convergence analysis (Bottou)
- Stochastic gradient descent on Riemannian manifolds
  - Introduction
  - Results
- 3 Examples

### Learning on large datasets

**Supervised learning problems:** infer an input to output function  $h: x \mapsto y$  from a training set

**Large scale problems**: randomly picking the data is a way to handle ever-increasing datasets

**Bottou and Bousquet** helped popularize SGD for large scale machine learning<sup>3</sup>

<sup>&</sup>lt;sup>3</sup>pointing out there is no need to optimize below approximation and estimation errors (for large but finite number of examples)

#### Outline

- 1 Stochastic gradient descent
  - Introduction and examples
  - SGD and machine learning
  - Standard convergence analysis (due to L. Bottou)
- Stochastic gradient descent on Riemannian manifolds
  - Introduction
  - Results
- 3 Examples

#### **Notation**

#### **Expected risk:**

$$C(w) := E_z(Q(z, w)) = \int Q(z, w) dP(z)$$

**Approximated gradient** under the event z denoted by H(z, w)

$$E_z H(z, w) = \nabla (\int Q(z, w) dP(z)) = \nabla C(w)$$

Stochastic gradient update:  $w_{t+1} \leftarrow w_t - \gamma_t H(z_t, w_t)$ 

### Convergence results

**Convex case**: known as Robbins-Monro algorithm. Convergence to the global minimum of C(w) in mean, and almost surely.

**Nonconvex case**. C(w) is generally not convex. We are interested in proving

- almost sure convergence
- a.s. convergence of  $C(w_t)$
- ... to a local minimum
- $\nabla C(w_t)$  → 0 a.s.

Provable under a set of reasonable assumptions



## **Assumptions**

Learning rates: the steps must decrease. Classically

$$\sum \gamma_t^2 < \infty \quad \text{and} \quad \sum \gamma_t = +\infty$$

The sequence  $\gamma_t = t^{-\alpha}$ , provides examples for  $\frac{1}{2} < \alpha \le 1$ .

**Cost regularity**: averaged loss C(w) 3 times differentiable (relaxable).

#### Sketch of the proof

- $\bullet$  confinement:  $w_t$  remains a.s. in a compact.
- 2 convergence:  $\nabla C(w_t) \rightarrow 0$  a.s.



#### Confinement

#### Main difficulties:

- 1 Only an approximation of the cost is available
- We are in discrete time

**Approximation**: the noise can generate unbounded trajectories with small but nonzero probability.

**Discrete time**: even without noise yields difficulties as there is no line search.

**SO ?**: confinement to a compact holds under a set of assumptions: well, see the paper<sup>4</sup> ...

<sup>&</sup>lt;sup>4</sup>L. Bottou: Online Algorithms and Stochastic Approximations. 1998 3 2 2 2 2

### Convergence (simplified)

#### Confinement

- All trajectories can be assumed to remain in a compact set
- All continuous functions of w<sub>t</sub> are bounded

#### Convergence

Letting  $h_t = C(w_t) > 0$ , second order Taylor expansion:

$$h_{t+1} - h_t \le -2\gamma_t H(z_t, w_t) \nabla C(w_t) + \gamma_t^2 \|H(z_t, w_t)\|^2 K_1$$

with  $K_1$  upper bound on  $\nabla^2 C$ .

### Convergence (simplified)

We have just proved

$$h_{t+1} - h_t \le -2\gamma_t H(z_t, w_t) \nabla C(w_t) + \gamma_t^2 \|H(z_t, w_t)\|^2 K_1$$

Conditioning w.r.t.  $F_t = \{z_0, \dots, z_{t-1}, w_0, \dots, w_t\}$ 

$$E[h_{t+1} - h_t|F_t] \le \underbrace{-2\gamma_t \|\nabla C(w_t)\|^2}_{\text{this term } \le 0} + \gamma_t^2 E_z(\|H(z_t, w_t)\|^2)K_1$$

Assume for some A > 0 we have  $E_z(\|H(z_t, w_t)\|^2) < A$ . Using that  $\sum \gamma_t^2 < \infty$  we have

$$\sum E[h_{t+1} - h_t|F_t] \leq \sum \gamma_t^2 AK_1 < \infty$$

As  $h_t \ge 0$  from a theorem by Fisk (1965)  $h_t$  converges a.s. and  $\sum |E[h_{t+1} - h_t|F_t]| < \infty$ .



## Convergence (simplified)

$$E[h_{t+1} - h_t|F_t] \le -2\gamma_t \|\nabla C(w_t)\|^2 + \gamma_t^2 E_z(\|H(z_t, w_t)\|^2) K_1$$

Both red terms have convergent sums from Fisk's theorem. Thus so does the blue term

$$0 \leq \sum_t 2\gamma_t \|\nabla C(w_t)\|^2 < \infty$$

Using the fact that  $\sum \gamma_t = \infty$  we have<sup>5</sup>

 $\nabla C(w_t)$  converges a.s. to 0.

<sup>&</sup>lt;sup>5</sup>as soon as  $\|\nabla C(w_t)\|$  is proved to converge.



#### Outline

- 1 Stochastic gradient descent
  - Introduction and examples
  - SGD and machine learning
  - Standard convergence analysis
- Stochastic gradient descent on Riemannian manifolds
  - Introduction
  - Results
- 3 Examples

### Connected Riemannian manifold

Riemannian manifold: local coordinates around any point

#### Tangent space:



**Riemmanian metric**: scalar product  $\langle u, v \rangle_g$  on the tangent space



#### Riemannian manifolds

**Riemannian manifold** carries the structure of a metric space whose distance function is the arclength of a minimizing path between two points. Length of a curve  $c(t) \in \mathcal{M}$ 

$$L = \int_{a}^{b} \sqrt{\langle \dot{c}(t), \dot{c}(t) \rangle_{g}} dt = \int_{a}^{b} ||\dot{c}(t)|| dt$$

**Geodesic**: curve of minimal length joining sufficiently close *x* and *y*.

**Exponential map**:  $\exp_x(v)$  is the point  $z \in \mathcal{M}$  situated on the geodesic with initial position-velocity (x, v) at distance ||v|| of x.

Consider  $f: \mathcal{M} \to \mathbb{R}$  twice differentiable.

**Riemannian gradient**: tangent vector at x satisfying

$$\frac{d}{dt}|_{t=0}f(\exp_x(tv)) = \langle v, \nabla f(x) \rangle_g$$

**Hessian**: operator  $\nabla_x^2 f$  such that

$$\frac{d}{dt}|_{t=0}\langle \nabla f(\exp_x(tv)), \nabla f(\exp_x(tv))\rangle_g = 2\langle \nabla f(x), (\nabla_x^2 f)v\rangle_g.$$

#### Second order Taylor expansion:

$$f(\exp_x(tv)) - f(x) \le t\langle v, \nabla f(x) \rangle_g + \frac{t^2}{2} ||v||_g^2 k$$

where k is a bound on the hessian along the geodesic.

### Riemannian SGD on M

Riemannian approximated gradient:  $E_z(H(z_t, w_t)) = \nabla C(w_t)$  a tangent vector !

Stochastic gradient descent on  $\mathcal{M}$ : update

$$w_{t+1} \leftarrow \exp_{w_t}(-\gamma_t H(z_t, w_t))$$

 $w_{t+1}$  must remain on  $\mathcal{M}!$ 



#### Outline

- Stochastic gradient descent
  - Introduction and examples
  - SGD and machine learning
  - Standard convergence analysis
- Stochastic gradient descent on Riemannian manifolds
  - Introduction
  - Results
- 3 Examples

### Convergence

Using the same maths but on manifolds, we have proved:

**Theorem 1**: confinement and a.s. convergence hold under hard to check assumptions linked to curvature.

**Theorem 2:** if the manifold is compact, the algorithm is proved to a.s. converge under painless conditions.

**Theorem 3:** same as Theorem 2, where a first order approximation of the exponential map is used.

#### Theorem 3

Example of first-order approximation of the exponential map:



The theory is still valid! (as the step  $\rightarrow$  0)



#### Outline

- Stochastic gradient descent
  - Introduction and examples
  - · SGD and machine learning
  - Standard convergence analysis
- 2 Stochastic gradient descent on Riemannian manifolds
  - Introduction
  - Results
- 3 Examples

#### General method

#### Four steps:

- 1 identify the manifold and the cost function involved
- endow the manifold with a Riemannian metric and an approximation of the exponential map
- 3 derive the stochastic gradient algorithm
- **4** analyze the set defined by  $\nabla C(w) = 0$ .

### Considered examples

- Oja algorithm and dominant subspace tracking
- Matrix geometric means
- Amari's natural gradient
- Learning of low-rank matrices
- Consensus and gossip on manifolds

### Oja's flow and online PCA

Online principal component analysis (PCA): given a stream of vectors  $z_1, z_2, \cdots$  with covariance matrix

$$E(z_t z_t^T) = \Sigma$$

identify online the r-dominant subspace of  $\Sigma$ .

**Goal**: reduce online the dimension of input data entering a processing system to discard linear combination with small variances. Applications in data compression etc.



### Oja's flow and online PCA

**Search space**:  $V \in \mathbb{R}^{r \times d}$  with orthonormal columns.  $VV^T$  is a projector identified with an element of the Grassman manifold possessing a natural metric.

**Cost**: 
$$C(V) = -\text{Tr}(V^T \Sigma V) = E_z ||VV^T z - z||^2 + cst$$

Riemannian gradient:  $(I - V_t V_t^T) z_t z_t^T V_t$ 

**Exponential approx**:  $R_V(\Delta) = V + \Delta$  plus orthonormalisation

Oja flow for subspace tracking is recovered

$$V_{t+1} = V_t - \gamma_t (I - V_t V_t^T) z_t z_t^T V_t$$
 plus orthonormalisation.

Convergence is recovered within our framework (Theorem 3).



### Considered examples

- Oja algorithm and dominant subspace tracking
- Positive definite matrix geometric means
- · Amari's natural gradient
- Learning of low-rank matrices
- Decentralized covariance matrix estimation

# Filtering in the cone $P^+(n)$

Vector-valued image and tensor computing
Results of several filtering methods on a 3D DTI of the brain<sup>6</sup>:



Figure: Original image "Vectorial" filtering

"Riemannian" filtering

<sup>6</sup>Courtesy from Xavier Pennec (INRIA Sophia Antipolis) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( ) → ( )

### Matrix geometric means

Natural geodesic distance d in  $P_+(n)$ .

**Karcher mean**: minimizer of  $C(W) = \sum_{i=1}^{N} d^2(Z_i, W)$ .

No closed form solution of the Karcher mean problem.

A Riemannian SGD algorithm was recently proposed<sup>7</sup>.

**SGD update**: at each time pick  $Z_i$  and move along the geodesic with intensity  $\gamma_t d(W, Z_i)$  towards  $Z_i$ 

Convergence can be recovered within our framework.

<sup>&</sup>lt;sup>7</sup>Arnaudon, Marc; Dombry, Clement; Phan, Anthony; Yang, Le *Stochastic algorithms for computing means of probability measures* Stochastic Processes and their Applications (2012)

### Considered examples

- Oja algorithm and dominant subspace tracking
- Positive definite matrix geometric means
- Amari's natural gradient
- Learning of low-rank matrices
- Decentralized covariance matrix estimation

## Amari's natural gradient

#### Natural gradient works efficiently in learning

SI Amari - Neural computation, 1998 - MIT Press

When a parameter space has a certain underlying structure, the ordinary **gradient** of a function does not represent its steepest direction, but the **natural gradient** does. Inform geometry is used for calculating the **natural** gradients in the parameter space of ... Cité 1358 fois - Autres articles - Les 19 versions

**Considered problem:**  $z_t$  are realizations of a parametric model with parameter  $w \in \mathbb{R}^n$  and pdf p(z; w). Let

$$Q(z, w) = -I(z; w) = -\log(p(z; w))$$

**Cramer-Rao bound:** any unbiased estimator  $\hat{w}$  of w based on the sample  $z_1, \dots, z_k$  satisfies

$$\operatorname{Var}(\hat{w}) \geq \frac{1}{k} G(w)^{-1}$$

with G(w) the Fisher Information Matrix.



# Amari's natural gradient

Fisher Information (Riemannian) Metric at w:

$$\langle u, v \rangle_w = u^T G(w) v$$

Riemannian gradient of Q(z, w) = natural gradient

$$-G^{-1}(w)\nabla_w I(z,w)$$

**Exponential approximation**: simple addition  $R_w(u) = w + u$ . Taking  $\gamma_t = 1/t$  we recover the celebrated

Amari's natural gradient:  $w_{t+1} = w_t - \frac{1}{t}G^{-1}(w_t)\nabla_w I(z_t, w_t)$ .

Fits in our framework and a.s. convergence is recovered

### Considered examples

- Oja algorithm and dominant subspace tracking
- Positive definite matrix geometric means
- Amari's natural gradient
- Learning of low-rank matrices
- Decentralized covariance matrix estimation

### Mahalanobis distance learning

**Mahalanobis distance**: parameterized by a positive semidefinite matrix W (inv. of cov. matrix)

$$d_W^2(x_i, x_j) = (x_i - x_j)^T W(x_i - x_j)$$

**Learning**: Let  $W = GG^T$ . Then  $d_W^2$  simple Euclidian squared distance for transformed data  $\tilde{x}_i = Gx_i$ . Used for classification



# Mahalanobis distance learning

**Goal**: integrate new constraints to an existing W

- equality constraints:  $d_W(x_i, x_i) = y$
- similarity constraints:  $d_W(x_i, x_i) \le y$
- dissimilarity constraints:  $d_W(x_i, x_i) \ge y$



Computational cost significantly reduced when W is low rank!



### Interpretation and method

One could have projected everything on a horizontal axis! For large datasets low rank allows to derive algorithm with linear complexity in the data space dimension *d*.



### Four steps:

- 1 identify the manifold and the cost function involved
- endow the manifold with a Riemannian metric and an approximation of the exponential map
- 3 derive the stochastic gradient algorithm
- 4 analyze the set defined by  $\nabla C(w) = 0$ .



# Geometry of $S^+(d,r)$

### Semi-definite positive matrices of fixed rank

$$S^+(d,r) = \{ W \in \mathbb{R}^{d \times d}, W = W^T, W \succeq 0, \text{rank } W = r \}$$

**Regression model**:  $\hat{y} = d_W(x_i, x_j) = (x_i - x_j)^T W(x_i - x_j),$ 

**Risk**:  $C(W) = E((\hat{y} - y)^2)$ 

Catch:  $W_t - \gamma_t \nabla_{W_t} ((\hat{y}_t - y_t)^2)$  has NOT same rank as  $W_t$ .

Remedy: work on the manifold!

### Considered examples

- Oja algorithm and dominant subspace tracking
- Positive definite matrix geometric means
- Amari's natural gradient
- Learning of low-rank matrices
- Decentralized covariance matrix estimation

### Decentralized covariance estimation

**Set up:** Consider a sensor network, each node i having computed its own empirical covariance matrix  $W_{i,0}$  of a process.

**Goal:** Filter the fluctuations out by finding an average covariance matrix.

Constraints: limited communication, bandwith etc.

**Gossip method**: two random neighboring nodes communicate and set their values equal to the average of their current values. ⇒ should converge to a meaningful average.

**Alternative average** why not the midpoint in the sense of Fisher-Rao distance (leading to Riemannian SGD)

$$d(\Sigma_1, \Sigma_2) \approx \textit{KL}(\mathcal{N}(0, \Sigma_1) \mid\mid \mathcal{N}(0, \Sigma_2))$$

### Example: covariance estimation

**Conventional gossip** at each step the usual average  $\frac{1}{2}(W_{i,t}+W_{j,t})$  is a covariance matrix, so the algorithms can be compared.

Results: the proposed algorithm converges much faster!



### Conclusion

We proposed an intrinsic SGD algorithm. Convergence was proved under reasonable assumptions. The method has numerous applications.

#### Future work includes:

- better understand consensus on hyperbolic spaces
- speed up convergence via Polyak-Ruppert averaging  $\overline{w}_t = \sum_{i=0}^{t-1} w_i$ : generalization to manifolds non-trivial
- tackle new applications: online learning of rotations