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Abstract

As a well known fixed-point iteration algorithm for ker-

nel density mode-seeking, Mean-Shift has attracted wide at-

tention in pattern recognition field. To date, Mean-Shift al-

gorithm is typically implemented in a batch way with the

entire data set known at once. In this paper, based on

stochastic gradient optimization technique, we present the

stochastic gradient Mean-Shift (SG-MS) along with its ap-

proximation performance analysis. We apply SG-MS to the

speedup of Gaussian blurring Mean-Shift (GBMS) cluster-

ing. Experiments in toy problems and image segmentation

show that, while the clustering accuracy is comparable be-

tween SG-GBMS and Naive-GBMS, the former significantly

outperforms the latter in running time.

1. Introduction

In many computer vision applications, e.g., video track-

ing [9] and image segmentation [8], it is necessary to design

algorithms to find the clusters of a data set sampled from

some unknown distribution. Probability density estimation

(PDE) may represent the distribution of data in a given

problem and then the modes can be taken as the representa-

tives of clusters. A family of non-parametric PDE, namely

kernel density estimation (KDE) [13], is mostly applied in

practice for its ability to describe the potential distribution

in a data-driven way. Given a data set X = {xn}
N
n=1

drawn

from a population with density function f(x),x ∈ R
d, the

general multi-variable KDE with kernel k(·) is defined by

f̂k(x) =
1

NCk

N
∑

n=1

k(M2(x,xn,Σ)) (1)

where M2(x,xn,Σ) = (x−xn)T Σ−1(x−xn) is the Ma-

halanobis distance from x to xn with bandwidth matrix Σ

and Ck is a normalization constant.

To find the local maximum from a starting point y0, the

Mean-Shift (MS) optimization algorithm solves the gradi-

ent equation of (1) via the following fixed point iteration

ym =

∑N

n=1
g(M2(ym−1,xn,Σ))xn

∑N

n=1
g(M2(ym−1,xn,Σ))

(2)

where profile g(·) = −k
′

(·). The MS algorithm can be

applied to data clustering by declaring each mode of the

KDE as representative of one cluster, and assigning each

data point xn to the mode it converges to via iteration (2).

Since the algorithm does not depend on parameters such as

step sizes, the clustering is uniquely defined given the KDE,

i.e., given the bandwidth matrix Σ. Also, different ker-

nels give rise to different versions of the MS algorithm [8].

More numerical analysis and extensions of MS can be found

in [6][7][8][10][15].

To date, the MS density mode-seeking is carried out in a

batch way on the entire training set. The motivation of this

work is to effectively implement MS in an “incremental” or

“online” manner for local KDE mode-seeking. Generally

speaking, there are two reasons why incremental methods

may be useful. First, a learning or optimization algorithm

has a competitive advantage if it can immediately use all the

training data collected so far, rather than wait for a complete

training set. Second, incremental algorithms usually have

smaller memory requirements: new training examples are

used to update a “state” and then the examples are forgot-

ten. The state summarizes the information collected so far -

it typically consists of a parametric model and it thus occu-

pies a much smaller amount of memory than a full-fledged

training set. Specially, an online KDE mode-seeking algo-

rithm should be able to update a local KDE mode on each

data instance arrival by maintaining hypothesis that reflects

all the data instances seen so far.

The online KDE mode-seeking algorithm developed in

this paper is a stochastic gradient ascent variation of MS. It

is naturally motivated by the knowledge that MS is essen-

tially an adaptive step-size gradient ascent method [7]. We

show that with a slight modification of batch iteration (2),

MS can be extended into a stochastic gradient ascent algo-

rithm with time variable learning rate. The almost sure con-

vergence of our stochastic gradient MS is analyzed under

some preliminaries and the convergence speed is shown to
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be generally sub-linear. We also derive the regret bound of

our algorithm by viewing it as an online programming [17].

Furthermore, we apply our algorithm to the acceleration of

the popularly used Gaussian blurring MS (GBMS) cluster-

ing method. This is done by moving the data points at

each GBMS iteration according to stochastic gradient MS

instead of batch MS, which leads to 2-3 times speedup of

convergence for GBMS in image segmentation tasks.

The remainder of this paper is organized as follows: Sec-

tion 2 presents the algorithm development and convergence

analysis for stochastic gradient MS. Section 3 provides an

application of our algorithm to GBMS acceleration. We

conclude this work in section 4.

2. Stochastic Gradient Mean-Shift

Our stochastic gradient MS (SG-MS) is a natural online

extension of the iteration process (2). It is a stochastic gradi-

ent ascent method with adaptive learning rate for KDE (1).

We first present this algorithm and then give some main re-

sults on its asymptotical properties.

2.1. Algorithm

The formal description of SG-MS algorithm (as a func-

tion pseudocode) is given in algorithm 1. The key point

is to maintain a vector accumulator R and a scalar ac-

cumulator S that correspond to the numerator and de-

nominator in iteration (2) respectively. The algorithm

works as follows: At arrival of each sample xn, its

weighted version g(M2(ŷo
n−1

,xn,Σ))xn and the weight

g(M2(ŷo
n−1

,xn,Σ)) are integrated into R and S respec-

tively. The local mode ŷo
n is then updated as the quotient

of R and S. Note that the closer xn is to ŷo
n−1

, the more it

will contribute to the output ŷo
n.

SG-MS(Query point y0, Data set X = {xi}
N
i=1

, Band-

width Σ) {Function interface}
Let ŷo

0
= y0, initialize R ← 0, S ← 0.

for n = 1, ..., N do {Online Update}
R ← R + g(M2(ŷo

n−1
,xn,Σ))xn

S ← S + g(M2(ŷo
n−1

,xn,Σ))

ŷo
n ← R

S

end for

Return ŷo
N .

Algorithm 1: Stochastic Gradient Mean-Shift

2.2. Relation to Stochastic Gradient Optimization

It is easy to see that SG-MS can be written in an iterative

form as

ŷo
n =

∑n

s=1
g(M2(ŷo

s−1
,xs,Σ))xs

∑n

s=1
g(M2(ŷo

s−1
,xs,Σ))

.

To simplify the notations, we denote H(x,y) =
∇yk(M2(y,x,Σ)). The above iteration equation is equiv-

alent to

ŷo
n = ŷo

n−1
+ ηnΣH(xn, ŷo

n−1
) (3)

where ηn =
(

2
∑n

s=1
g(M2(ŷo

s−1
,xs,Σ))

)−1

. The itera-

tion (3) is a stochastic gradient ascent optimization [4][11]

for KDE (1) with time dependent learning rate ηnΣ.

2.3. Approximation Analysis

Bottou and Cun [4] pointed out that approximation of

stochastic gradient ascent towards local maximum of em-

pirical cost (e.g., KDE (1) in this work) on a finite data

set is hopelessly slow. Instead, they recommended concen-

trating on the convergence towards local maximum of the

expected cost. We follow this suggestion by considering the

situation where the supply of input data samples is essen-

tially unlimited (N → ∞) and randomly drawn from some

unknown density f(x). We will focus on the approximation

of SG-MS towards the local maximum y∗ of the following

expected kernel density estimation (EKDE)

fk(y) �
1

Ck

∫

k(M2(y,x,Σ))f(x)dx.

2.3.1 Preliminaries

The convergence results rely on the following assumptions:

• The EKDE function fk(y) is bounded above and three

times differential with continuous derivatives.

• In the domain of interest, the profile function g(·) is

positively bounded below and above.

∃L1, L2, L1 < g(·) < L2 (4)

• The second moment of the update term H(x,y)
should grow more than quadratic w.r.t. the norm of

y − y∗

Ex(‖H(x,y)‖2) ≤ A + B‖y − y∗‖2. (5)

• When the norm of y − y∗ is larger than a certain hori-

zon D, the gradient ∇yfk(y) points towards the y∗

sup
‖y−y∗‖2>D

(y − y∗)T∇yfk(y) < 0 (6)

• When norm of y−y∗ is smaller than a second horizon

E greater than D, the norm of the update term H(x,y)
is bounded regardless of x.

∀x, sup
‖y−y∗‖2<E

‖H(x,y)‖ ≤ K0 (7)
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2.3.2 Almost Sure Convergence

First, we introduce the following straightforward lemma on

learning rate ηn:

Lemma 1 Given the assumption (4), we have that

∞
∑

n=1

ηn = ∞ and

∞
∑

n=1

η2

n < ∞.

Based on lemma 1 and the gradient convergence theorem

in [3], we obtain the following convergence result:

Proposition 1 Given the assumptions listed in

Section 2.3.1, the random gradient sequence

{∇yfk(ŷo
n)}n=1,2,... generated by SG-MS converges

almost sure to zero.

This proposition implies that SG-MS will soon or later

reach the final convergence phase [2].

2.3.3 On Convergent Speed

We further discuss the convergent speed of SG-MS towards

y∗. Denote the ensemble mean [11] at sample time stamp

n by yo
n = E (ŷo

n), and let Q = Ex (∇yH(x,y∗)). Here

E denotes the mean under all the possible sequences on X .

The following proposition is a straightforward result by [11,

Lemma 6].

Proposition 2 If the estimated mode ŷo
n is in the vicinity of

y∗, the evolution of ensemble mean is approximated by the

following recursive equation:

yo
n = yo

n−1
+ ηnΣQ(yo

n−1
− y∗).

From proposition 2 we know that yo
n − y∗ = (I +

ηnΣQ)(yo
n−1

− y∗). Given the assumption (4), we have

that ηn → 0 as n → ∞. Therefore lim
n→∞

‖yo

n
−y∗‖

‖yo

n−1
−y∗‖

= 1,

which indicates that the convergent speed of yo
n towards y∗

is generally sub-linear [12].

It is interesting to further consider the case that ker-

nel function k(·) is piecewise linear, in which the tradi-

tional batch MS is equivalent to Newton-Raphson optimiza-

tion [10]. Since yo
n → y∗, it can be known through law of

large numbers that ηnΣ → − 1

n
Q−1 in this case. Therefore,

according to [4, Theorem 3], we may derive the following

result on L2-norm convergent speed of SG-MS:

Proposition 3 When kernel function k(·) is piecewise lin-

ear, we have that

E
(

‖ŷo
n − y∗‖2

)

=
Q−1GQ−1

n
+ O(

1

n2
)

where G = Ex(H(x,y∗)H(x,y∗)T ).

2.3.4 On Regret Bound

For online gradient ascent (or descent) optimization, the

difference between the total profit (or loss) and its opti-

mal value for an off-line fixed action is known as the re-

gret [1][17]. Here, in the context of online KDE maximiza-

tion problem, we may take the mode ŷo
n−1

as the action

at time stamp n, and k(M2(ŷo
n−1

,xn,Σ)) as the current

profit. Denote kn(x) = k(M2(x,xn,Σ)). Then the regret

of SG-MS is calculated as

RN =
1

NCk

[

N
∑

n=1

kn(ŷo
n−1

) − max
y

(

N
∑

n=1

kn(y)

)]

.

The following proposition gives a lower bound of this re-

gret:

Proposition 4 Suppose that k is concave and ∃G > 0 so

that M2(k
′

n(x),0,Σ−1) ≤ G2, then the regret of SG-MS is

bounded below as

RN ≥ −
1

2NCk

N
∑

n=1

ηnG2.

Given condition (4), we may loose the bound as

RN ≥ −
G2

4L1Ck

(

1 + log N

N

)

.

Therefore limN→∞ RN ≥ 0 holds.

2.4. A Numerical Example

As a numerical test, we employ SG-MS algorithm to

perform local KDE mode-seeking on a 2D toy data set

(shaped as shown in Figure 1(a), size 1, 821). For com-

putational simplicity, the isotropic covariance Σ = σ2I is

used throughout the rest of this paper. We start from five

initial points (represented by blue dots in Figure 1(a)) to lo-

cate the corresponding local modes using SG-MS and batch

MS separately. The modes located by SG-MS after one pass

of scanning of the whole data set are shown in red dots in

Figure 1(a), while the green ones represent those modes re-

turned by batch MS. For each initial point y0, the relative

error between the returned modes from it by SG-MS (ŷo
∗)

and batch MS (ŷb
∗) is calculated as ‖ŷo

∗ − ŷb
∗‖/‖ŷ

b
∗‖. We

plot the relative error evolving curves of SG-MS from the

five initial points in Figure 1(b). From these curves we can

see that SG-MS generally makes satisfying numerical ap-

proximation towards batch MS.

3. Application to GBMS Speedup

To show the practical usage of our SG-MS algorithm, we

apply it to the fast implementation of the Gaussian blurring
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Figure 1. Numerical test of SG-MS on a 2D toy data set. Bandwidth σ = 0.5. (a) Detected Modes by SG-MS (in red) and batch MS (in

green) from five different initial points (in blue). (b) The relative error evolving curves.

MS (GBMS) clustering method, with performance evalua-

tion on image segmentation tasks.

The GBMS [5][7] clustering method uses Gaussian ker-

nel in KDE and iteratively sharpens the data set by mov-

ing each data point according to MS. Algorithm 2 formally

presents the GBMS clustering method, which we refer to as

Naive-GBMS in the following context. Perpinan [5] proves

that Naive-GBMS converges cubically and thus is much

faster than traditional Gaussian MS [8] in which the data

set is fixed during MS calculation.

As can be seen from algorithm 2 that, at each iteration,

each point moves to the output returned by one step of batch

MS iteration. In this way the data set evolves and quickly

collapses into clusters. We claim that such a data set evolv-

ing mechanism can be improved by using our SG-MS to

more quickly sharpen the data set. This is comprehensive

since SG-MS typically shifts a point close to its correspond-

ing local mode in just one pass of data set visiting, given

that data set is abundant and thoroughly sampled. A formal

description of our stochastic gradient GBMS (SG-GBMS)

method is given in algorithm 3.

Let initial data set be X = {xn}
N
n=1

.

while Convergence is not attained do

for each xm ∈ X do

ym =
∑

N

n=1
e
−

‖xm−xn‖2

σ2 xn

∑

N

n=1
e
−

‖xm−xn‖2

σ2

end for

X ← {ym}N
m=1

end while

Clustering: connected components(X , min diff).

Algorithm 2: Gaussian Blurring Mean-Shift

We still use the toy 2D data set mentioned in 2.4 to il-

lustrate the numerical performance of SG-GBMS. The data

set evolving and final clustering results of SG-GBMS and

Let initial data set be X = {xn}
N
n=1

.

while Convergence is not attained do

for each xm ∈ X do

ym = SG-MS(xm,X , σ2I)
end for

X ← {ym}N
m=1

end while

Clustering: connected components(X , min diff).

Algorithm 3: Stochastic Gradient GBMS

Naive-GBMS are given in Figure 2. As can be seen from

Figure 2(a)∼2(c) and Figure 2(e)∼2(g) that SG-GBMS

sharpens data set faster than Naive-GBMS does. The neces-

sary iteration times before convergence are three and seven

for SG-GBMS and Naive-GBMS respectively. The final

clustering results of these two algorithms are given in Fig-

ure 2(d)&2(h), which are visually comparable. We quanti-

tatively evaluate the overall approximation performance of

SG-GBMS towards Naive-GBMS by using the following

defined ε-error rate(ε-ER)[16] :

ε-ER =
1

N

N
∑

n=1

δ

(

‖ŷo
n,∗ − ŷb

n,∗‖

‖ŷb
n,∗‖

> ε

)

where δ(x) is the delta function that equals one if boolean

variable x is true and equals zero otherwise, while ŷo
n,∗

and ŷb
n,∗ are convergent modes returned by SG-GBMS and

Naive-GBMS respectively from an initial query point xn in

X . We set ε = 0.05 in this case, and as a result the ε-ER

achieved by SG-GBMS is 0.0033.

One important application of GBMS clustering algo-

rithm is for unsupervised image segmentation. We test in

this part the performance of SG-GBMS in large size image

segmentation tasks. We follow the approaches in [8][14],

where each datum is represented by spatial-range joint fea-

tures (i, j, r, g, b), where (i, j) is the pixel location in the
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Figure 2. The data set evolving and clustering results of SG-GBMS and Naive-GBMS. The black points represent the original data set while

the red points represent the currently updated data set. We set bandwidth σ = 0.5. (a)∼(c): The data set evolving results of SG-GBMS

after one, two and three times of iteration respectively. (d) The converged clustering result of SG-GBMS after 3 times of iteration. (e)∼(g):

The data set evolving results of Naive-GBMS after one, two and three times of iteration respectively. (h) The converged clustering result

of Naive-GBMS after seven times of iteration.

image and (r, g, b) is the normalized RGB color feature.

Figure 4 shows the results by SG-GBMS and Naive-GBMS

on the color image hand (137×110) under three different

kernel bandwidths. The quantitative evaluation curves are

plotted in Figure 3, from which we can clearly see the

speedup advantage of SG-GBMS over Naive-GBMS with

bounded approximation error.
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Figure 3. Quantitative evaluation curves for the hand image. Top:

Iteration Number vs. bandwidth; Middle: Speedup Ratio vs. band-

width; Bottom: ε-ER (ε = 0.1) vs. bandwidth.

Some images from the Berkeley segmentation data set 1

are also used for evaluation. Four selected groups of seg-

mentation results are given in Figure 5. The quantitative

comparison between SG-GBMS and Naive-GBMS on these

images are listed in Table 1, from which we can see that

SG-GBMS converges faster than Naive-GBMS does. The

1http://www.eecs.berkeley.edu/Research/ Projects/CS/vision/bsds/

(a) (b) (c) (d) (e) (f)

Figure 4. Segmentation image pairs of SG-GBMS (left) and Naive-

GBMS (right) on the hand image under bandwidth σ = 0.1, 0.2

and 0.3 separately.

ε-ER introduced by SG-GBMS on the first three images are

acceptable and the segmentation results are visually compa-

rable to those by Naive-GBMS. However, SG-GBMS per-

forms poorly in clustering accuracy for the cowboy image,

as can be seen from the last column of Table 1 and Fig-

ure 5(g)&5(h). Our SG-GBMS fails to discriminate the

black and brown color regions. This failing case reminds us

that sometimes an incremental method will not be as effi-

cient as a batch method in data information extraction. This

is because decision must often be made without the benefit

of future information.

4. Conclusion and Future Work

Based on the technique of stochastic gradient optimiza-

tion, we present in this paper the SG-MS algorithm for

incremental KDE mode-seeking. Theoretically, we have

shown that SG-MS converges in sub-linear speed and

asymptotically there is no regret with respect to batch MS.

Numerical tests validate that our SG-MS typically per-

forms comparably to its batch mode counterpart, given that

enough data samples are available. We have applied SG-MS

to the algorithm speedup of GBMS. Experiments in image

segmentation show that, while the clustering accuracy of
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Table 1. Quantitative results by SG-GBMS and Naive-GBMS on four test images. (ε = 0.1)

Images House Base Dive Hawk Cowboy

Sizes 255 × 192 432 × 294 481 × 321 481 × 321
σ 0.1 0.1 0.06 0.1

Iteration SG-GBMS 9 7 22 12

Number Naive-GBMS 20 27 58 29

Speedup Ratio 2.22 3.86 2.64 2.42

ε-ER 0.053 0.095 0.035 0.749

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Selected image segmentation results. For each image

pair, the left one is by SG-GBMS and the right one is by Naive-

GBMS.

SG-GBMS and Naive-GBMS is comparable, the former al-

ways converges faster than the latter does. We expect that

SG-MS is applicable to general online optimization prob-

lems whose cost function is in a form of kernel sum. A

study on stochastic gradient robust regression method is un-

der investigation.
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