
Stochastic Gradient Learning

in Neural Networks
Léon Bottou

AT&T Bell Laboratories, Holmdel, NJ 07733 USA
phone: (908) 949 6364, email: leonb@neural.att.com

Abstract

Many connectionist learning algorithms consists of minimizing a cost of the form

C(w) = E(J(z,w)) =

∫

J(z,w)dP (z)

where dP is an unknown probability distribution that characterizes the problem to learn, and
J , the loss function, defines the learning system itself. This popular statistical formulation
has led to many theoretical results.

The minimization of such a cost may be achieved with a stochastic gradient descent
algorithm, e.g.:

wt+1 = wt − εt∇wJ(z,wt)

With some restrictions on J and C, this algorithm converges, even if J is non differentiable
on a set of measure 0. Links with simulated annealing are depicted.

Résumé

De nombreux algorithmes connexionnistes consistent à minimiser un coût de la forme

C(w) = E(J(z,w)) =

∫

J(z,w)dP (z)

où dP est une distribution de probabilité inconnue qui caractérise le problème, et J , le critère
local, décrit le système d’apprentissage lui même. Cette formulation statistique bien connue
a donné lieu à de nombreux résultats théoriques.

La minimisation d’un tel coût peut être accomplie au moyen d’un algorithme de descente
stochastique de gradient, par exemple:

wt+1 = wt − εt∇wJ(z,wt)

Au prix de quelques restrictions sur C et J , cet algorithme converge, même si J n’est pas
dérivable sur un ensemble de mesure nulle. Des liens avec les méthodes de recuit simulé sont
également soulignés.

Keywords: Learning, Loss function, Stochastic gradient, Convergence

Topic: Theory

1 Introduction

Many neural network learning algorithms explicitly minimize a cost function. The back-
propagation technique, for example, uses a gradient descent algorithm for minimizing the
“Mean Squared Error” criterion.

Since the cost function is an average over all training examples, the computation of its
gradient requires a loop over all the examples. In the total gradient descent algorithm, the
weights then are updated once after each sweep over the training set. Proper learning rates
ensure that this algorithm converges to a local minimum of the cost function.

The stochastic gradient descent algorithm however has been shown to be faster, more
reliable, and less prone to reach bad local minima than standard gradient descent. In this
algorithm, the weights are updated after the presentation of each example, according to the
gradient of the loss function, i.e. the value of the cost for this example only (Le Cun, 1987).

The convergence of such stochastic algorithms actually has been studied for a long time
in adaptive signal processing (Benveniste, Metivier and Priouret, 1987); most proofs however
seldom extend to such non linear cases. A convergence theorem for the stochastic back-
propagation algorithm for one hidden layered networks finally was formulated in (White,
1989) (theorems 3 and 4).

This paper extends these results to a wide family of connectionist algorithms.
First of all, we present a framework for the study of stochastic gradient descent. The case

of certain cost functions, non differentiable at certain points, is discussed.
In the next section, a couple of learning algorithms are shown to comply with this frame-

work. For example, Rosenblatt’s Perceptron, MacQueen’s K-Means and Kohonen’s LVQ2 can
all be seen as stochastic gradient descent on various cost functions.

In the fourth section, we formulate two convergence theorems. Proofs for these theorems
are available in (Bottou, 1991). These theorems are completed by a discussion of the links
between stochastic gradient and simulated annealing.

2 Stochastic Gradient

2.1 Framework

Consider, for instance, the problem of classifying patterns x into two classes y = ±1. We
assume that there is a relationship between a pattern and its class, embodied by some proba-
bility distribution over the patterns and the classes dp(x, y). If we know this distribution, we
know the conditional probabilities p(y|x) as well, and we can solve immediately the problem
using the Bayes decision rule. Learning means “Acquiring enough knowledge about dp(x, y)
from the examples to solve the classification problem”.

An Adaline (Widrow and Hoff, 1960) actually learns by (i) selecting a class of discriminant
functions, the linear functions f(x,w) = wT x, and (ii) defining a measure of the quality of
the system, the mean squared error:

C(w) =
〈

(y − f(x,w))2
〉

The brackets denote the average value, over all possible examples, of the squared difference
between the output and the actual class. The Adaline cost function thus is

CAdaline(w) =

∫

(y − f(x,w))2dp(x, y)

Let us extend this approach to the general problem of learning: Consider a function,
J(z,w), the loss function, that measures the cost incurred by a system defined by some
parameter w processing an observation z. In the case of an Adaline again, this function is
equal to (y−wT x)2 and measures how well the output y for pattern x is approached. Learning
consists of finding the parameter w∗ that minimizes the following cost:

C(w) = E(J(z,w)) =

∫

J(z,w)dp(z) (1)

Since the distribution dp(z) is unknown, practical algorithms always consider instead an
“empirical distribution” defined by the training set. Certain algorithms aim at controlling
the effects of this approximation by introducing additional “regularization terms” in the loss
function (Vapnik, 1982). This work does not address such problems. We assume that the
loss function J(z,w) is defined, and that we can draw independent random examples from a
distribution dp(z).

This framework is the basis of classical statistical inference theory. Hundreds of practical
algorithms (Tsypkin, 1971) have been derived.

It is therefore natural that many connectionist learning algorithms minimize some instance
of this general cost function. Several examples are given in the next section. It is surprising
however that most of them share the same optimization algorithm.

2.2 Stochastic gradient

Minimizing the general cost (1) apparently is not a difficult problem. If the training set is
finite, the distribution dP (z) is discrete,

dP (z) =
N

∑

i=1

1

N
δ(z − zi)

C(w) =
1

N

N
∑

i=1

J(zi, w) (2)

and we can explicitly apply the gradient descent algorithm. Each iteration involves a sum
over the N examples zi.

wt+1 = wt − εt∇wC(wt)

= wt − εt

∫

∇wJ(z,wt)dP (z)

= wt − εt

1

N

N
∑

i=1

∇wJ(zi, wt) (3)

The gain εt is either a positive scalar or a symmetric positive definite matrix. This algorithm
is sometimes called the total gradient algorithm. It is known to converge to a local minimum
of the cost.

Learning however often requires a training set large enough to contain precise informations
about the real phenomenon. Each iteration of algorithm (3) involves a burdening computation
of the average of ∇wJ(z,w) over the entire training set.

In the stochastic gradient descent algorithm the average behavior of the algorithm replaces
this costly averaging operation. Each iteration of the stochastic gradient algorithm consists
in drawing an example z at random and applying the parameter update rule:

wt+1 = wt − εt∇wJ(z,wt) (4)

Such stochastic approximations have been introduced in (Robbins and Monro, 1951). They
are widely used for adaptive signal processing. The general convergence results of gradient
descent however do not apply to stochastic gradient descent; the specific study of their con-
vergence usually is fairly complex (Benveniste, Metivier and Priouret, 1987).

Nevertheless, algorithm (4) offers several theoretical and practical advantages over the
total gradient algorithm (3):

• The convergence is much faster when the examples are redundant. Only a few examples
are needed to perform, on average, the equivalent of one full sweep of the total gradient
method over the training set.

Consider, for example, a training set composed of several copies of the same examples. A
total gradient algorithm wastefully computes the average of many identical gradients;
a stochastic algorithm gets a good estimate of this average after considerably fewer
operations.

• The total gradient (3) converges to a local minimum of the cost function. The algorithm
then cannot escape this local minimum, which is sometimes a poor solution of the
problem.

In practical situations, the gradient algorithm may get stuck in an area where the cost
is extremely ill conditionned, like a deep ravine of the cost function. This situation
actually is a local minimum in a subspace defined by the largest eigenvalues of the
Hessian matrix of the cost.

The stochastic gradient algorithm (4) usually is able to escape from such bothersome
situations, thanks to its random behavior (Bourrely, 1989).

• Most training sets are finite. Algorithm (4) thus converges to a minimum of the empirical
cost (2). This cost hopefully is related to the actual problem. If the training set is not
large enough, however, “overfitting” occurs (Vapnik, 1982).

Sometimes, however, (e.g. in adaptive filtering problems), examples are provided on
the fly. Conceptually, we can draw at each iteration a new independent example z

from an unknown distribution dP (z) that embodies the laws of Nature. Algorithm (4)
then minimizes the actual cost, which is the expectation of the loss function over this
unknown distribution. 1

2.3 Variations

The stochastic gradient algorithm (4) may be further generalized to the following algorithm

wt+1 = wt − εtH(wt) (5)

1The algorithm thus is consistent if it converges to a global minimum. Unfortunately, it may converge to
a local minima. The ability of the stochastic algorithm to escape some local minima is an important step
towards consistency. (cf. 4.2).

where H(w) is a random function of w whose expectation is the gradient of the cost:

∀w, E(H(w)) = ∇wC(w) (6)

In particular, if the loss function J(z,w) is differentiable, choosing H(w) equal to its
gradient ∇wJ(z,w) for some random example z, gives algorithm (4).

We may also choose H(w) equal to the average of the gradient of the loss over a couple
of random examples, instead of using one example only for each iteration. Using such “small
batches” is a common practice in some implementations of the back-propagation algorithm.

Finally, we can apply algorithm (4) even if the loss function J(z,w) is not differentiable on
a subset of measure 0 of the parameter space. The derivative of J on those points may be re-
placed by any value, provided that the equality E(∇w(J(z,w))) = ∇wC(w) = ∇wE(J(z,w))
is still valid. This equality is guaranteed to be true if the increases of J are bounded around
each point (z,w) by an integrable function Φ(., .).

∀x,w, ∃Φ integrable, η > 0 ∀h, |h| < η

1

|h|
(J(x,w + h) − J(x,w)) < Φ(x,w) (7)

3 Examples

Many connectionist learning procedures actually use a stochastic gradient algorithm for min-
imizing an explicit or implicit cost function.

Several algorithms have been designed as the minimization of an explicit cost function.
Most of the time, a stochastic gradient descent algorithm is used. This class includes Adalines,
Multi-Layered Networks, feed-forward networks that uses special units, like Radial Basis
Functions, and algorithms minimizing special cost functions (e.g. Mutual Entropy Criterions,
Maximum of Likelihood training).

Some algorithms however are not based on the minimization of a cost function. In many
cases however, we can prove that a cost function exists, and that the algorithm merely min-
imizes it with a stochastic gradient descent. The following three sections give examples of
this:

3.1 Rosenblatt’s Perceptron

Rosenblatt’s Perceptron (Rosenblatt, 1957) is a linear discriminant device. A pattern x is
recognized as a member of class y = +1 if wT x is positive, as a member of class and y = −1
otherwise. Weights w are updated only if a misclassification occur, using the following formula:

wt+1 = wt + 2ε ywT
t x

Actually this formula is stochastic gradient descent applied to the following cost,

CPerceptron(w) =

∫

−(y − θ(wT x))wT x dP (x)

where function θ(t) is equal to 1 if t > 0, to −1 otherwise. Although the loss function
−(y−θ(wTx))wT x is not differentiable when wT x = 0, it meets condition (7) if x is integrable
for measure dP , and one may apply algorithm (4). We get the following algorithm:

wt+1 = wt + εt(y − θ(wT
t x))x

This algorithm is exactly Rosenblatt’s Perceptron algorithm. In particular the weights remain
unchanged if the pattern is well classified.

3.2 K-Means

K-Means (MacQueen, 1967) is a popular clustering algorithm. It dispatches K centroids w(k),
in order to find clusters in a set of points. At each iteration, a point x is considered, and the
nearest centroid w− is adapted according to the MacQueen formula:

w−
t+1 =

t − 1

t
w−

t +
1

t
x

This algorithm is the stochastic gradient minimization of the quantification error, i.e. the
error on the position of the points if we replace them by the nearest centroid:

CKmeans =

∫

K

Min
k=1

(x − w(k))2 dP (x)

Again, the loss function is not differentiable on points located on the Voronöı boundaries
of the set of centroids. The loss however meets condition (7) if x and x2 are integrable for
measure dP . On other points, the derivative of the loss is the derivative of the distance to
the nearest centroid w−. We can apply the stochastic gradient descent algorithm:

w−
t+1 = w−

t + εt(x − w−
t)

This algorithm is equivalent to Mac Queen formula if we choose εt = 1
t
. This choice of εt

meets the usual conditions
∑∞

i=0 εt = ∞ and
∑∞

i=0 ε2
t < ∞.

3.3 Kohonen’s LVQ2 rule

Kohonen’s LVQ2 rule (Kohonen, Barna and Chrisley, 1988) is a powerful pattern recognition
algorithm. Like K-Means, it uses a fixed set of reference points w(k). A class y(k) is associated
with each point. An unknown pattern x is recognized as a member of the class associated
with the nearest reference point.

For an example pattern x, let us denote by w− the nearest reference point and by w+ the
nearest reference point among those associated with the right class y. These two points are
adapted as follows:

if w+ 6= w− and (x − w+)2 < (1 + δ)(x − w−)2

w−
t+1 = w−

t − εt(x − w−
t)

w+
t+1 = w+

t + εt(x − w+
t)

where δ is a small positive number: If the pattern is misclassified, and if a good reference
point is in the vicinity, the algorithm pushes the nearest (wrong) reference w− away from the
pattern, and pulls the nearest good reference w+ towards the pattern.

Consider the following loss function:

if w+ = w− i.e. x is well classified

JLvq2((x, y), w) = 0

if (x − w+)2 < (1 + δ)(x − w−)2

JLvq2((x, y), w) =
(x − w+)2 − (x − w−)2

δ(x − w−)2

otherwise

JLvq2((x, y), w) = 1

and the corresponding cost function:

CLvq2(w) =

∫

JLvq2((x, y), w) dP (x, y)

This cost function appears to be a convenient approximation of the expectation of the number
of misclassifications achieved by the system (Bottou, Denker and Guyon, 1991). As usual,
JLvq2 is not differentiable, but meets condition (7) if x and x2 are integrable for measure dP .
Applying algorithm (4) gives the following algorithm:

if w+ 6= w− i.e. x is misclassified

if (x − w+)2 < (1 + δ)(x − w−)2

w−
t+1 = w−

t − εtΓ1(x − w−
t)

w+
t+1 = w+

t + εtΓ2(x − w+
t)

where

Γ1 = 1
δ(X−w−)2

, Γ2 = Γ1
(X−w+)2

(X−w−)2

This algorithm is equivalent to LVQ2. The two scalar coefficients Γ1 and Γ2, merely modify
the proper schedule for decreasing the learning rate εt.

4 Convergence

This section presents convergence results for algorithm (5) under condition E(H(w)) =
∇wC(w), (6).

These results are valid for any probability measure dP (z): The stochastic gradient al-
gorithm actually minimizes the expectation of the loss function defined over the probability
distribution from which the examples are drawn at each iteration.

• If the examples are randomly drawn from a training set, we minimize the expectation
of the loss function over the discrete probability distribution defined by the training
set. In other words, the empirical cost (2) is minimized. This is the usual notion of
convergence.

• If we can obtain a new random example at each iteration, algorithm (5) minimize the
expectation of the loss function over a probability distribution that embodies the laws
of Nature for this problem. In other words, if we have a infinite ℵ0 number of examples,
the cost over future examples is minimized.

Sufficient conditions for convergence are explicited in two theorems. They address the
convergence of wt to extremal points of the cost C(w). These points may be local minima,
or even maxima.

Figure 1: If H(w) is to steep, the algorithm diverges.

In order to complete these results, we present arguments that establish a link between
stochastic gradient descent and simulated annealing. Although not rigorous, this argument
explains the ability of stochastic gradient descent to escape local minima for finally reaching
a good minimum.

4.1 Sufficient Conditions

The proof of the following theorems uses a method introduced by (Gladyshev, 1965), and
widely used in the mathematical study of adaptive signal processing. We first consider a
discrete Lyapunov function and prove that this function is a quasi-martingale. It therefore
converges with probability 1. We then look for the properties of the limit. Details are given
in (Bottou, 1991).

4.1.1 Convex case

The first result applies to functions C(w) that have a single minimum w∗. In addition, we
require that

∀ε > 0, Inf
|w−w∗|>ε

(w − w∗)∇wC(w) > 0

All strictly convex functions meet these requirements. The above formula just means that
the gradient of the cost is oriented towards the right direction. We thus avoid dealing with
sinuous ravines, flat areas, and pathological situations around the optimum. This condition
actually is a classical requirement for convex optimization.

Theorem 1 For any measure dP (z), if the cost C(w) = E(J(z,w)) is continuous, differen-
tiable and has a unique minimum w∗, if this minimum fulfills the following condition,

∀ε > 0, Inf
|w−w∗|>ε

(w − w∗)∇wC(w) > 0

and if the following assertions are true, then (wt) defined by algorithm (5) converges to w∗

with probability 1.

i) ∀w, E(H(w)) = ∇wC(w)

ii)
∞
∑

t=1

εt = ∞,
∞
∑

t=1

ε2
t < ∞

iii) ∃A,B, ∀w, E(H(w)2) < A + B(w − w∗)2

Assertion i) has been discussed in section 2.3. Assertion ii) is a very classical assumption
on the schedule of the learning rates εt. Assertion iii) means that the standard deviation of
the random function H(w) does not grow faster than linearly 2 with the parameters w.

This latter assertion is easy to understand. If H(w) takes too large values, and if εt does
not decrease quickly enough, each iteration of algorithm (5) jumps on average too far over
the solution w∗. The algorithm diverges (cf. Figure 1).

4.1.2 General case

Most cost functions used in neural networks however are not convex, and have both local and
global minima. These minima sometimes are entire portions of the weight space. It is thus
impossible to tell whether wt converges to a particular point. The following result shows that
C(wt) converges and that ∇wC(wt) converges to 0.

Theorem 2 For any measure dP (z), if the cost C(w) = E(J(z,w)) is differentiable up to
the third derivatives, with bounded second and third derivatives,
and if the following assertions are true,

i) ∀w, E(H(w)) = ∇wC(w)

ii)
∞
∑

t=1

εt = ∞,

∞
∑

t=1

ε2
t < ∞

iii) ∃A,B, ∀w, E(H(w)2) < A + BC(w)

iv) ∃Cmin, ∀w, Cmin < C(w)

then C(wt) converges with probability 1 and ∇wC(wt) converges to 0 with probability 1.

Assertions i), ii) and iii) are essentially similar to those of the previous theorem. Assertion
iv) states that C(w) must be larger than some value Cmin. This assertion hopefully is true if
we want to minimize C(w).

If we denote by d(w,Sing(C)) the distance between w and the set of extremal points of
C, and if we assume that

∀ε > 0, Inf
d(w,Sing(C))

∇wC(w) > 0

then (wt), defined by algorithm (5), converges to the set of extremal points of C.
The assumption however means that the cost retains a non zero slope when w becomes

large. This not exactly true in the case of back-propagation, because sigmoids have flat
asymptotes. This is consistent with experiments: Weights tend to become large and diverge,
unless we constrain them with a weight decay, twisted sigmoids, or more frequently, by using
smaller target values than the sigmoid asymptotes.

4.2 Link with Simulated Annealing

This latter result only addresses the convergence of the algorithm to the set of extrema of
the cost function. This set also includes maxima. Indeed, we may start the algorithm on a
maximum w0 of the loss function J(z,w) for some example z0. Consider then a trivial training

2This assertion may be relaxed to a higher degree polynomial, at the expense of more stringent constraints
on the learning rates ε.

Figure 2: Two points in parameter space, surrounded by two balls. Arrows denote the
gradients of the cost function. Left: An ordinary point. Right: A local maximum.

set composed of this example only. Since the gradient of the loss always is zero, algorithm
(4) is trapped.

This is however unlikely to happen: When the training set becomes large the algorithm
introduces a noise which cancels this unstable situation. Unless the loss function J(zi, w0) is
extremal for all examples in the training set, algorithm (4) can escape the trap.

Clearly, these theorems miss a mild hypothesis about the noise resulting from the distri-
bution dP (z). The algorithm actually behaves like a simulated annealing (Kirkpatrick, Gelatt
and Vecchi, 1983), whose temperature is controlled by the learning rate εt. We give here a
non rigorous argument explaining this analogy.

Let us denote qt(w) the density of probability of wt defined by algorithm (5). By theorem
2, the support of qt(w) converges to the set of extrema of C(w).

Consider a small ball B around some point in w space, and suppose εt is small enough to
neglect quantity εtH(w) compared to the radius of the ball. Only points wt located on the
surface of the ball are likely to enter or leave the ball during the next iteration.

Each point wS of the surface of the ball creates an infinitesimal increase εtqt(wS)H(wS).NdwS ,
of the probability Qt of the ball. Vector N is a normal vector to the surface of the ball.

The difference Qt+1 − Qt thus is proportional to the mean flow of quantity qt(w)H(w)
through the surface ∂B of the ball:

Qt+1 − Qt = εtE

(
∫

∂B
qt(wS)H(wS).NdwS

)

= εt

∫

∂B
qt(wS)∇wC(wS).NdwS

= εt

∫

B
div(qt(w)∇wC(w))dw

= εt

∫

B
∇wqt(w).∇wC(w) + qt(w) div∇wC(w))dw

This equation gives informations about the stability of Qt around the extrema of C(w) (cf.
fig. 2).

• Around a local minimum, div C(w) is positive, and ∇wC(w) is almost zero. If Qt is non
zero, Qt+1 − Qt is positive and Qt increases.

• Around a local maximum, div C(w) is negative, and ∇wC(w) is much smaller. If we
neglect the term ∇wqt(w)∇wC(w), we have Qt+1 −Qt ≤ −KQt. The quantity Qt thus
decreases exponentially.

Suppose that εt decreases slowly enough to allow qt to reach an equilibrium and to per-
manently stay at the equilibrium. This is a quasi-static equilibrium assumption similar to the
simulated annealing assumptions. We thus have Qt+1 − Qt = 0, i.e.

∇wqt(w).∇wC(w) + qt(w) div∇wC(w) = 0

We can thus describe the properties of qt at equilibrium:

• When the curvature of C(w) is positive, div∇wC(w) is positive. If qt(w) 6= 0, its
gradient ∇wqt(w) is oriented in the opposite direction of the gradient ∇wC(w). The
deeper a minimum w0, the larger its probability qt(w0).

• When the curvature of C(w) is negative, div∇wC(w) is negative. If qt(w) 6= 0, its
gradient ∇wqt(w) is oriented in the direction of the gradient ∇wC(w). The density
qt(w0) on the maximum w0 should thus be large. This contradicts the stability study.
Therefore, qt(w) is zero.

This equilibrium is unstable if the density qt is zero in the positive curvature area of
some attraction basins. The noise introduced by the stochastic algorithm circumvents such
an instable equilibrium. When εt decreases, we reach a global minimum, or at least a very
good local minimum.

Apparently, under some mild assumption on dP (z), algorithm (5) converges to a very good
local minimum of C(w). The deeper the minimum, the larger the probability to converge to
it. As far as I know, there is no rigorous proof of that fact.

5 Conclusion

Stochastic gradient descent is a powerful optimization algorithm. It converges even when the
loss function is non differentiable everywhere. In addition it can escape local minima and
reach a better minimum.

This result applies to a wide class of connectionist algorithms. Many neural network
learning algorithms indeed can be expressed as stochastic gradient descent of an explicit or
implicit cost function.

Acknowledgments

This work has been carried out at Laboratoire de Recherche en Informatique, Université de
Paris XI, during my thesis. I was supported by DRET grant No 87/808/19.

References

Benveniste, A., Metivier, M., and Priouret, P. (1987). Algorithmes adaptatifs et approxima-
tions stochastiques. Masson.

Bottou, L. (1991). Une Approche théorique de l’Apprentissage Connexionniste: Applications
à la Reconnaissance de la Parole. PhD thesis, Université de Paris XI, 91405 Orsay cedex,
France.

Bottou, L., Denker, J., and Guyon (1991). Correct, robust and convenient classifier cost
functions. Submitted to NIPS*91.

Bourrely, J. (1989). Parallelization of a neural network learning algorithm on a hypercube.
In Hypercube and distributed computers. Elsiever Science Publishing.

Gladyshev, E. (1965). On stochastic approximations. Theory of Probability and its Applica-
tions, 10:275–278.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing.
Science, 220:671–680.

Kohonen, T., Barna, G., and Chrisley, R. (1988). Statistical pattern recognition with neu-
ral network: Benchmarking studies. In Proceedings of the IEEE Second International
Conference on Neural Networks, volume 1, pages 61–68, San Diego.

Le Cun, Y. (1987). Modèles Connexionnistes de l’Apprentissage. PhD thesis, Université
Pierre et Marie Curie, Paris, France.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate observa-
tions. In LeCam, L. M. and Neyman, J., editors, Proceedings of the Fifth Berkeley Sym-
posium on Mathematics, Statistics, and Probabilities, volume 1, pages 281–297, Berkeley
and Los Angeles, (Calif). University of California Press.

Robbins, H. and Monro, S. (1951). A stochastic approximation model. Ann. Math. Stat.,
22:400–407.

Rosenblatt, F. (1957). The perceptron: A perceiving and recognizing automaton. Technical
Report 85-460-1, Project PARA, Cornell Aeronautical Lab.

Tsypkin, Y. (1971). Adaptation and Learning in automatic systems. Academic Press.

Vapnik, V. (1982). Estimation of dependences based on empirical data. Springer Verlag.

White, H. (1989). Learning in artificial neural networks: A statistical perspective. Neural
computation, 1(4):425–464.

Widrow, B. and Hoff, M. E. (1960). Adaptive switching circuits. In IRE WESCON Conv.
Record, Part 4., pages 96–104.

