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The gravitational-wave-noise power spectrum P (w) is found for a simple cosmological model with
an “inflationary” early stage of expansion. The source of the gravitational-wave noise is quantum
fluctuations during the inflationary de Sitter stage, which are amplified by the subsequent expansion
of the Universe. The resulting spectrum P (w) is compared to a naive estimate: a thermal spectrum
at the (appropriately red-shifted) Gibbons-Hawking temperature. The two spectra are remarkably
different. Unlike the thermal spectrum, P(w) increases at low frequencies. We show that the source
of the corresponding long-wavelength perturbations is a global gravitational instability during the
inflationary de Sitter stage of expansion. An interesting consequence of the low-frequency behavior
of P(w) is that gravitational radiation contributes a constant fraction of the energy density of the

Universe, even after the time of matter domination.

I. INTRODUCTION

Probably the oldest surviving relic of the early evolu-
tion of the Universe is the stochastic background of
gravity-wave noise. Because gravity is the weakest of the
four known forces, its stochastic background decouples
from the dynamics of the Universe at very early times.
One might therefore hope that this stochastic back-
ground could tell us something about the structure of the
Universe at these early times.

In this respect, the inflationary models of the early
Universe are very predictive. The gravitational-wave
spectrum produced by these models is largely indepen-
dent of the inflationary mechanism, and was first calcu-
lated by Starobinsky.! (This was of course before the
term “inflation” had been coined and before the advan-
tages of such a period of expansion had been fully appre-
ciated and explained.) Subsequently, the dipole and
quadrupole temperature anisotropies of the microwave
background radiation induced by the long-wavelength
part of the spectrum were calculated by Rubakov, Sa-
zhin, and Veryaskin? and by Fabbri and Pollock.® This
work was further refined by Abbott and Wise,*> who ex-
amined the effects of power-law (as well as exponential)
inflation. The most detailed work to date is that of Ab-
bott and Schaefer® who have calculated the expectation
values and variances of the lowest multipole moments of
{((AT/T)?*) in spatially closed, flat, and open Friedmann
models. Graviton production in inflationary cosmology
was also considered by Abbott and Harari,” who calcu-
lated the expectation value {h;h") for metric perturba-
tions and reached conclusions similar to those presented
here.

The main result of this paper is an expression for the
gravity-wave-noise power spectrum over the complete
range of frequencies, Eq. (4.8). The unusual low-
frequency growth of this spectrum is shown to be due to
the presence of a global gravitational instability during
the de Sitter stage of expansion, and it is shown that the
Universe contains many gravitational-wave perturbations
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whose wavelength is so large that they cannot be ob-
served at the present time. However, the continued ex-
pansion of the Universe will eventually bring these wave-
lengths into view. One can show that when these gravita-
tional waves come into view within the Hubble horizon,
they contribute a constant fraction of the energy-density
of the Universe, even after the time of matter domina-
tion.

In this paper, G denotes Newton’s constant, ¢ is the
speed of light, # is Planck’s constant, and kp is
Boltzmann’s constant.

II. THE SPECTRUM OF RELIC GRAVITONS

In the first approximation, the graviton spectrum pro-
duced by an inflationary stage is entirely independent of
the mechanism that produces the inflation. The only in-
puts which are needed to find the graviton spectrum are
the classical metric of space-time, and the initial quantum
state of the gravitational perturbations. No detailed
knowledge of how the classical metric and initial quan-
tum state were produced is needed.

For convenience, one may assume that the Universe is
spatially flat, so the metric takes the form

ds?=a(t)( —cidt®’+dx?) . (2.1

Provided that one considers wavelengths which are short-
er than the present-day horizon scale, the results that one
obtains are also applicable to the spatially open and
closed cases.

The classical space-time begins as de Sitter space but
then undergoes an instantaneous phase transition at
t =t,, after which it evolves as a radiation-dominated
model until the time t =¢,. [For simplicity, we assume in
this section that ¢, is the present time #,. In Sec. IV we
will consider the effect of a stage of matter (dust) domi-
nance following the radiation stage, and there we will
have t; <t,.] The scale factor describing this model is
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a(t)=(t/t)a(t)) fort; <t <ty , 22
a()=(2—t/t))"la(t,) for t <t, . '

During the de Sitter stage ¢t <t,, the energy density p is
constant,

&37-'(—;22-=a"2(t1 it
C

and during the radiation stage ¢, <t < ¢, the energy den-
sity red-shifts adiabatically, so that p(t)=pa*(t,)/a*(1).

The scale factor a(¢) and its time derivative are con-
tinuous at ¢ =¢,, but the second time derivative of a (#) is
discontinuous. Consequently, in our model, the scalar
curvature of space-time changes discontinuously at the
phase transition. The energy density p(¢) is continuous,
but the pressure P(¢) is not: it is —p before the phase
transition and p(z)/3 afterward. This instantaneous
phase transition is a very good approximation, except at
very high frequencies, where it predicts too much gravi-
ton production. We will return to this point later.

To determine the gravitational-particle production in
this space-time, one can use the method of Bogoliubov
coefficients.® This is equivalent to calculating transmis-
sion and reflection coefficients in quantum mechanics. A
gravitational perturbation with comoving wave number k
is represented by h,w=a2(t)euv(k)¢(t)exp(ik-x), where
the polarization vector e, is constant in the coordinates
(t,x). The physical (angular) frequency of the wave is
w=ck /a(t) where k = |k |. The amplitude ¢ obeys the
equation ¢+(2d/a)¢+c’k’*p=0, where the overdot
denotes a time derivative d /dt.

The choice of a solution to the equation for ¢ corre-
sponds to the choice of an initial quantum state for the
gravitational field. In the de Sitter stage, the solution
representing a de Sitter-invariant gravitational vacuum
state is

(2.3)

i 1 # a'(t)
PloMo=2#0—2~dwo|B, | =—F 1=
272c? 1B, | 472 3 a4(t0)
2
~3X10-14 erg p 27a(t1)
em® | 10°7 ergs/cm’®

For grand-unified-theory (GUT) scale inflation with
M, =10" GeV, the quantities in the square brackets
above are approximately unity. The power spectrum
(2.7) agrees with Starobinsky’s result given in Eq. (6) of
Ref. 1, since in that paper one has

szzﬁ_G 87TGE
¢ 3c?
and
04(t1)
€q= .
0 04(t0)p

The integrated energy density f P(w)dw appears to

87Gp
3¢?

a(to)
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(2.4)
(This solution is unique provided that one requires the
graviton two-point function to have Hadamard form; or
equivalently by requiring the vacuum state to have a
finite renormalized stress-energy tensor. Formally the
graviton two-point function in this state is infrared diver-
gent, but the divergence makes no contribution to any
gauge-invariant quantity, and is harmless.’) The corre-
sponding solution to the wave equation in the radiation
stage is

a(tl)
¢, ()=

a(t)

{a,(k,t))exp[ —ick (t —¢,)]
+B,(k,t))explick (t —t )1}, (2.5)

where the Bogoliubov coefficients a, and B, of the
positive- and negative-frequency parts are determined by
the requirement that ¢ and its time derivative be continu-
ous at £ =t;. By matching the modes (2.4) and (2.5) at
t =t one obtains

a,lk,t)=14ic "kl —Le "2k U?

(2.6)
B k,t)=1c"k 2% .
The number of created gravitons of frequency w is

2
87Gp

3¢?

and the density of states is dN =w?dw/27%c>. The corre-
sponding energy density dE =P (w)d® summed over the
two polarization states is given by

2
do
@

4
do

w

2.7

-

diverge logarithmically at both high and low frequencies.
In fact the integral is cut off at both limits by physical
effects. At low frequencies, it cuts off at a frequency
equal to the present-day Hubble expansion rate. This is
because a gravitational wave of lower frequency, whose
wavelength is larger than the Hubble horizon length,
makes no contribution to the energy. Thus the assump-
tion above that the energy of a graviton is #w is only true
for frequencies greater than the present-day Hubble rate.
Below that frequency, the effective energy of a graviton is
zero. (However, see note added in proof.)

To understand the physical effect that cuts off the
power spectrum at high frequencies, one must first ask
what has produced the gravity-wave noise in this simple
model. On general grounds one expects gravitons to be
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produced whose characteristic frequency today is
[a(t,)/a(ty)1H, where the Hubble expansion rate of the
de Sitter space is H=V'87Gp/3c%. However the spec-
trum (2.7) appears to extend to much higher frequencies.
One knows that these “‘extra” gravitons are not produced
during the radiation stage of expansion, because in that
stage the wave amplitude ¥ =d¢(t)exp(ik-x) obeys the
conformally invariant equation (—0+1R)y=0 (this
equation is obeyed because in the radiation stage of ex-
pansion R =0) and no particle production takes place for
conformally coupled fields.

In fact, the high-frequency gravitons which are present
in the radiation stage after the phase transition are pro-
duced by the instantaneous change in the scalar curva-
ture at t =t;. In the same way as a sudden change in the
electric field produces photons, the rapid change in the
space-time curvature produces gravitons. Thus it is only
the high-frequency part of the graviton spectrum which
is sensitive to the speed and details of the phase transi-
tion. The highest frequency which is produced is deter-
mined by the speed of the transition. If
At =a (£ )t er — hefore ) denotes the fastest characteristic
physical time in the phase transition, then the adiabatic
theorem states that for present-day frequencies greater
than wy=[a(t,)/a(ty)]At =" the Bogoliubov coefficient
B,{w)—0 as exp(—w/w,) and no particle production
takes place.® Here tyq,. and ,q,, are the values of coor-
dinate time just before and just after the phase transition.
Had the phase transition taken place very smoothly, one
would have ended up in the adiabatic vacuum state of the
radiation stage and no high-frequency particle production
would have taken place.

The speed of the phase transition depends upon the de-
tails of the inflationary model. In the “new” inflationary
models, it takes place over a time of the order of the
GUT unification scale which is 107* H ~! for GUT-scale
inflation with M, = 10'° GeV (Ref. 10). This would give a
cutoff frequency today of around 10!'! Hz. In other
inflationary models, the phase transition takes place more
slowly, and the cutoff frequency is lower. For example,
in certain models of supersymmetric inflation, the transi-
tion from the de Sitter stage to the radiation stage of ex-
pansion takes place relatively slowly, over a time scale
(MGur/Mpiana *fic =2 MGl (Ref. 11). In these models
the high-frequency cutoff today would lie around 1 Hz.

III. LOW-FREQUENCY BEHAVIOR

In the inflationary model, the amplitude of the
gravitational-wave-noise power spectrum continues to in-
crease with decreasing frequency. This low-frequency en-
ergy is important, because the induced temperature fluc-
tuations in the microwave background radiation studied
in Refs. 2—6 are due entirely to long-wavelength pertur-
bations. In the preceding section, it was shown that
the gravitational-wave noise whose present-day frequency
is greater than [a(¢,)/a (1, )1V'87Gp/3c? is produced by
the rapid phase transition at the end of the de Sitter
stage. However this leaves open the question of how the
low-frequency gravitons were produced.

The existence of these low-frequency gravitons be-
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comes even more mysterious when one considers the
pioneering results of Parker.®!? Parker showed that for
‘“generic” cosmological expansion, the spectrum of pro-
duced particles should peak at a frequency equal to the
characteristic rate of expansion (suitably red-shifted to
the present time), and fall off at both lower and higher
frequencies. Thus for “generic” cosmological expansion,
one would expect the graviton spectrum to peak at about
107 Hz, for standard GUT inflation, and then fall off for
lower frequencies, in a manner reminiscent of a thermal
spectrum.

To emphasize this point, it is helpful to make a naive
estimate of the gravitational-wave-noise power spectrum,
based on the thermal fluctuations present during the de
Sitter stage of expansion. (It has been shown by Cande-
las, Deutch, and Sciama'? that in de Sitter space, a detec-
tor falling freely on a geodesic is accelerated against the
zero-point fluctuations of the de Sitter-invariant vacuum
state, and responds as if it were immersed in a thermal
bath at the Gibbons-Hawking temperature.'*) These
fluctuations are characterized by the Gibbons-Hawking
temperature Tgy =%k, 'H /27. Thus one would naively
expect that the gravitational-wave-noise power spectrum
after the radiation-dominated stage of expansion would
be a Planck thermal spectrum, characterized at the
present time by the red-shifted temperature
[a(t;)/a(t,)]Tgy. Yet this naive estimate yields a
power spectrum which is very different than the spectrum
obtained in Eq. (2.7).

In the case of the naive estimate, the peak of the
thermal spectrum lies at the frequency

S‘ITGp 172

3¢?

2.82 alt;)

2w al(t,)

Thus in the Rayleigh-Jeans region (frequencies below this
peak) the naive thermal spectrum is

alt,) 172
P(m)d(u=-1—i——l— 87Gp oido .
2 ¢¥alt,) | 3¢?

The naive estimate falls off with decreasing frequency, in
marked contrast with Eq. (2.7), which diverges with de-
creasing frequency.

The reason why the power spectrum continues to in-
crease at lower frequencies is because de Sitter space is
not globally stable to gravitational perturbations. This is
most easily understood if one considers complete de Sit-
ter space, with the metric

ds’=(cos7)"H —d7m*+dQ?) , (3.1

where d Q? is the metric on a unit three-sphere, the range
of 7is —7m/2<71<mw/2, and for convenience we set the
scale of H equal to unity.

In transverse-traceless-synchronous gauge, the gravita-
tional perturbations may be described by the metric

ds?=(cos7) " —d 7 +d QO+ hdx'dx’) (3.2)

where the indices i and j run over the three spatial di-
mensions, and the graviton field operator is given by
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hy= ﬁz[h,,(f)y,.‘j"’m)a,,+h;<r>n;‘">(ma,11. (3.3)

The Y;(Q) are a complete set of normalized transverse-
traceless symmetric tensor harmonics on the unit three-
sphere, and a, and a4, are creation and annihilation
operators. If 0®=V'V, denotes the wave operator on
the unit three-sphere, then the tensor harmonics Y;"(Q)
are eigenfunctions of [ with eigenvalues
—(n?42n =2).

In the de Sitter-invariant Euclidean vacuum state the
positive-frequency mode functions are

hy(T)=[2n(n +1)(n +2)]7'7
X[(n +2)cost—exp(—it)]exp[—i(n +1)7] .
(3.4)

The crucial point is that at late times, as 7—>7/2, these
mode functions approach a constant value and do not os-
cillate or vanish:

h,(m/2)=exp(—inm/2)[2n(n +1)n +2)]""2. (3.5

This means that the quantum fluctuations of the de Sitter
metric do not fall off at late times. The same behavior is
exhibited by the gravitational mode functions (2.4) of de
Sitter space in spatially flat coordinates. There, in the
late-time limit + —2¢,, the mode functions also approach
constant values and do not vanish:

1200 [82Gp |
¢ tl —>1 ck 3C2

This should be contrasted with the behavior of mode
functions in flat space or in a slowly expanding
Robertson-Walker space-time, where the mode functions
either fall off at infinity or oscillate exponentially.

The consequences of this behavior were clearly ex-
plained by Boucher and Gibbons,!® who showed that
from the global point of view, the metric of the spatial
surfaces becomes more and more badly distorted with
time. Thus, in this global sense, de Sitter space is unsta-
ble. However, the instability does not prevent the
Universe from inflating in a manner which is completely
consistent with the standard models of inflation, because
locally the space-time is stable. If any observer looks
back at the geometry of a spatial surface of fixed red-shift
in his past, he sees a smaller and smaller fraction of the
three-sphere. On this exponentially quickly diminishing
region of the three-sphere, the metric approaches that of
classical de Sitter space (plus a gauge-transformation) ex-
ponentially quickly. Thus the global instability of de Sit-
ter space is not manifest, and in a local sense one can say
that de Sitter space is stable. This is illustrated in Fig. 1.

Although the long-wavelength perturbations are not
visible during the de Sitter stage, they do become visible
after the de Sitter stage ends and the horizon scale begins
to increase. Thus it is the global instability of de Sitter
space that gives rise to the divergent low-frequency spec-
trum of gravitational-wave noise. This same global gravi-
tational instability also accounts for the peculiar behavior
of the gravitational two-point function in de Sitter space,
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~—(spatial metric)a™(t,)= %
——————— (spatial metric)a™(t))= %

(spatial me tric)a™®(ty)=

FIG. 1. Global instability/local stability of de Sitter space.
de Sitter space is shown as a hyperboloid embedded in five-
dimensional Minkowski space-time. In the absence of perturba-
tions, the spatial surfaces of constant time are three-spheres.
The effect of a gravitational perturbation on the geometry of the
spatial surfaces may be seen by scaling the spatial surfaces to a
constant volume. de Sitter space is globally unstable because at
late times, the perturbations do not die out, and so globally the
geometry does not approach that of unperturbed de Sitter space.
However an observer can only see the region within one horizon
volume. Because this volume remains constant (left-hand dia-
gram), the geometry within the horizon volume quickly ap-
proaches that of an unperturbed three-sphere (right-hand dia-
gram). Thus de Sitter space is locally stable.

which grows with increasing spatial separation.® It is
shown explicitly in Ref. 16 that this growth is due to the
constructive interference of the mode functions at late
times. This is in contrast with a generic space-time,
where the mode functions oscillate and interfere destruc-
tively, causing the two-point function to fall off.

This is also related to the well-known behavior of the
expectation value of ¢? for a minimally coupled massless
scalar field in de Sitter space, which grows linearly at late
times.!” This growth occurs because the field distribution
does not settle down to a stationary state, but continues
to move further and farther from its nominal ‘“‘equilibri-
um” value. Abbott and Harari’ have calculated the
analogous quantity for gravitons, the expectation value of
h;;h", in spatially flat coordinates (2.1) and (2.2). Unfor-
tunately this quantity is not gauge invariant, and contains
an infrared divergence which must be “removed by
hand.” This can be justified because it corresponds to
throwing away the modes which lie outside of the
present-day horizon and thus make no contribution to lo-
cally observable quantities. In fact the expectation value
of h,-jh'j in transverse-traceless synchronous gauge'® or
Feynman gauge® in spatially closed coordinates is in-
frared finite. Gauge-invariant quantities such as the ener-
gy or scalar curvatuve would not be infrared divergent,
and would not require any such regulation.

These types of gravitational instabilities (and the corre-
sponding infrared divergences) are present in all
Friedmann-Robertson-Walker models which expand fas-
ter than a(t)xt? for p>2 in conformal time.'® Thus
even in power-law inflation models* one produces low-
frequency gravitational radiation.
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IV. THE MATTER-DOMINATED STAGE
OF EXPANSION

In Sec. II we examined a simple cosmological model
consisting of an inflationary de Sitter stage for ¢t <¢,, fol-
lowed by a period of radiation dominance for ¢, <t <.
Now, let us consider the effect of an additional stage of
matter-dominated expansion, for t;<t < ) where t,
denotes the present time. We will see that this has no
effect on the power spectrum P(w) for frequencies above
~ 1071 Hz, but modifies it at lower frequencies. In fact
the dust stage of expansion is unstable in the same way as
de Sitter space, and at low frequencies this instability
causes a further amplification of the gravity-wave-noise
perturbations.

In the dust stage ¢, <t <?,, the cosmological scale fac-
tor is given by

a(=1(1+41/ty) alty) . 4.1)

For earlier times, the scale factor is given by (2.2). Table
I summarizes the cosmological model by listing the Hub-
ble expansion rate at the end of each stage of expansion.
This is defined by H(t)=a ~'da /dr=a ~*da /dt where T
is the proper time of a freely falling observer at rest in the
flat spatial coordinates. In this table the amount of
cosmological expansion that has occurred in the matter-
dominated dust stage is taken to be a (£,)/a(ty)= 10* and
the initial value of H is appropriate to GUT scale
inflation.

In the dust stage of expansion the adiabatic vacuum
state is specified by the positive-frequency mode function

172 ]
(4.2)

The mode function of the adiabatic vacuum state in the
radiation stage ?, <t <t; can be expressed as a linear
combination of ¢, and ¢J,:

¢r =adu¢du +Bdu ¢;u ’

a(ty)
a(t)
Xexp[ —ick (t —t,)] .

alty)
a(t)

1;,—1p —1,—1
1—dic ™k~ 't,

du =

(4.3)
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where the coefficients a,, and B, may be found by
matching the modes (2.4) and (4.2) and their derivatives
at t =t,. In this way, one obtains

ag, =(1+Ltic 7k et

— e 72k "5 2 )explick (£, —15)] , (4.4)

Ba=—1+c 72k “%tg 2explick (1, —1)] . (4.5)
Additional particles will be created by the dust stage of
expansion only if B,, is substantially different than zero.

One can see immediately that the dust stage of expan-
sions cannot produce additional radiation at frequencies
greater than H (ty)a(t,)/a(t,)=10"" Hz. This follows
from the adiabatic theorem discussed earlier, since the
phase transition from the radiation to the dust stage takes
place smoothly on a time-scale of the order [H (¢,)] ! at
time t,, and the frequency is subsequently red-shifted by
a factor a(tg)/a(t,).

The Bogoliubov coefficients for the transition from the
de Sitter to the dust stage are now obtained as the prod-
uct

a B a B a B
* * = {p* * * * (4.6)
B a final B a r B a du
For frequencies above
alty) [a(t,) ]
t))——= |—2— | H
®“a(t,)  |alty) (1)

the adiabatic theorem gives ay, —1 and B,,—0. Thus
for higher frequencies, including a matter-dominated
stage of expansion in our model does not change the
power spectrum from that of the simpler model con-
sidered in Sec. II. For lower frequencies, the exponential
functions appearing in a,, (4.4) and B, (4.5) are well ap-
proximated by Taylor series. One obtains, for low fre-
quencies, | B | 2=Z¢ %k % %32 The graviton
power spectrum is then given by

TABLE I. The Hubble expansion rate at each phase transition.

Time H{(t) Value Description
8 G 172
t, H= %ﬂ 8 10%/sec Begin inflation
c
f H 8% 10%/sec Begin radiation stage
t a’(z)) 2% 10712 /sec Begi
0 3 gin dust stage
a’lto) 32
a(ty) az(h) 18 R
t, 3 2107 "°/sec Present time
a(t,) a’(ty)
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4 2 2 1/2
9 # a'(t) |8gGp |" 1 alz,) H1,) 3 |alt,)
Plow)= -5 — for H(z, = H(t),
(@) 6472 3 a4(tp) 302 o alty) o or H( )<w< a(t,) (t,)
4 2 172
1 ﬁ a’(t)) | 87Gp | 1 3 |alt,) alty) |
P =——" — for = H(t At~ 4.7
(w)= 27 o (tp) 302 . or at,) (1) <w< alt) 4.7)
alty)
P(w)=0 for At7 ' <o
al(t,)

The lowest-frequency bound above appears because the energy of a graviton is #iw only for wavelengths that fit into the
present-day horizon, i.e., only for H(t,) <

It is useful to rewrite these formulas in terms of the three “most” observable quantities. These are (1) the present-day
Hubble constant H (z,), whose value is determined by measuring the red-shift and distance of receding galaxies, (2) the
ratio a(t,)/a (1) whlch determines when the Universe first became matter dominated, and which depends upon its
present- day mass density, and (3) the value of the Hubble constant H (¢,)="V 87Gp/3c? during the inflationary stage of
expansion, whose value must be determined by the theory of elementary particles. One obtains

172

2
_ 9 A o TG 1 3|aly)
P(w)= ” csH(tp)H(tl) PR forH(tp)<ca<4 (t0) (z,),
alty) a(t) |'? al(t)
Plo)=— A m w2 )L for 3122 | B o< AT, @.8)
4 3 P a(t,) 4 |alty) r al(t,)
(t)
P(w)=0 for A <w
(t,)

A graph of this power spectrum is shown in Fig. 2. For comparison we also show the naive estimate of Sec. III (a
thermal spectrum at the red-shifted Gibbons-Hawking temperature (#/27kg)[a (¢ »)1H(¢,)) and the spectrum of
a 3-K blackbody. The power spectrum (4.8) agrees with Starobinsky' in the nuddle frequency range. However, our
P(w)do is smaller than that found by Rubakov et al. in Eq. (16) of Ref. 2 by a factor of 877, since in that reference
€y =(3c*/87G)H™(1,), vo=2mw, and Hy=H (t,).

One might expect that, as the Universe expands, the graviton energy density becomes negligible in comparison to the
energy density of the matter. Surprisingly, this is not the case: at late times the gravitons make up a constant fraction
of the energy density of the Universe. To see this, consider the contribution to the graviton energy obtained by in-
tegrating (4.8). At late times, the upper frequency range
172

atty) H(t) alty) o
alty) POy

contributes to the graviton energy density a term proportlonal toa~ tp Nna (z,) and gives a vanishing contribution rel-

ative to the matter energy density which falls offas a ~ (t ). However, the lower frequency range

a(t ) B
() (t,)

H(z, )<a)<~

contributes to the graviton energy density an amount

4 2
9 # a*(t)a(ty) 3/4{alty)/ats, ) H (1y)
= | Plwddo= — 4 2(¢ -34
pm= [ Ploldo 64m* c*  aS(t,) ! f[a(zo)/a(zp)]m-m:o) @ ae
4
a*(t))
e —HY1) 4.9)

T 12872 ¢ a’(r,)a (1)

This should be compared to the classical matter energy Pgrav 3 #G .., . 3 2 2
density which is given by T 167 5 H5ty)= 167,-H (£1)¢ pianck » (4.10)

Pmatter

32 a¥ey) )

87G a(t,)alt,) (ry). where ?pp,x =5.4X 10™* sec is the Planck time. The
’ reason why this ratio becomes constant in a matter-

The ratio of the graviton energy density to the classical  dominated Universe is because the low-frequency cutoff,

matter energy density is given by determined by the horizon size, decreases quickly enough

Pmatter =
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FIG. 2. The graviton power spectrum. The power spectrum
P(w) of the stochastic graviton background is shown as a func-
tion of angular frequency w (solid line). The parameters of the
cosmological model are given in Table I and correspond to
inflation on the GUT scale. The energy density in ergs/cm® be-

tween frequencies @, and w, is given by fZ?P(m)dm. The low-

frequency cutoff corresponds to the present-day Hubble expan-
sion rate. The high-frequency cutoff is determined by the speed
of the phase transition at the end of inflation. The spectrum
changes slope at a frequency equal to the (red-shifted) Hubble
expansion rate at the time that the Universe became matter
dominated. For comparison with naive estimates, the dashed
line shows a thermal spectrum at a temperature equal to the
(red-shifted) Gibbons-Hawking temperature during the de Sitter
stage of expansion. The dotted line shows the thermal spectrum
of a 3-K blackbody.

to compensate for the adiabatic red-shifting of the gravi-
ton energy density.

V. THE INITIAL QUANTUM STATE

We now discuss briefly the dependence of the power
spectrum on the initial quantum state of the gravitational
field. It was shown in Ref. 7 that the spectrum after a
sufficient period of inflation is independent of the initial
state. This can be understood in the following way. If
the state in question lies in the Fock space obtained by
applying creation operators to the Euclidean (Gibbons-
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Hawking) vacuum state, then it must be a superposition
of states in which real gravitons of a particular energy are
present and moving through the vacuum. As time passes,
the energies of these gravitons are degraded exponentially
rapidly by the expansion, and their contribution to the
energy spectrum becomes negligible.

In fact there is a unique state which will not produce
any gravity-wave noise. This is the so-called “out” vacu-
um state, in which the mode functions at late times be-
come pure positive frequency. This state is not accept-
able, because the graviton two-point function in this state
does not have Hadamard short-distance singularities near
the light cone, and thus the state has an infinite renor-
malized stress-energy tensor: subtraction of the usual
flat-space short-distance singularities does not suffice to
regulate the ultraviolet divergences.

In Refs. 1 and 3-7 it was assumed that the initial state
was de Sitter invariant, and that the length of the de Sit-
ter stage was infinite. This corresponds to Sec. II above.
In Ref. 2 a different choice was made. There, the
inflationary stage of expansion was proceeded by an ini-
tial “Planck” radiation stage, and the initial state was
taken to be the adiabatic vacuum state in that initial radi-
ation phase. To illustrate the way in which the state
dependence of the power spectrum is shifted to unobserv-
ably low frequencies, we will consider a similar model in
which the space-time passes through three stages of ex-
pansion: an initial radiation stage for ¢; <t <t, follows
by a finite-length de Sitter stage for ¢, <t < ¢, and anoth-
er radiation stage for t; <t <t,. The scale factor is given
by Eq. (2.2) for t, <t <tg, and for earlier times is

a(t)=(t —t,)alt,)+a(t,) fort; <t <t, . (5.1)

In this model, the big-bang initial singularity occurs at
time ty;=t,—al(t,)/a(t,), and the Universe begins
inflating at time ¢,. The total amount of inflation is
determined by the ratio of the scale factor at the begin-
ning and at the end of the de Sitter stage of expansion:

a(ty)
- a(t2) '

(5.2)

In order to solve the horizon and flatness problems, L
must be very large.

The calculation of the Bogoliubov coefficients can be
done immediately because the de Sitter to radiation tran-
sition has already been studied in Sec. II. One obtains,
for the power spectrum,

1
4 2 2
# a'(t) | 87Gp | do 87Gp a(t;)
Plo)dw=27— 2(1—L?) (14022 2L L+1)72
CEO=ET 3 a%y) | 3c2 © e 02(’0)( "
a*(t;) : a’(ty)
i} i 1 81rCt;g do 1+w_28'”'GZB__2_2 . (5.3)
¢’ a*(ty) | 3c @ 3¢c® a“(ty)
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The low-frequency part of the spectrum has been altered
because the initial state was not the Euclidean vacuum
state of de Sitter space. However the additional term due
to this altered initial state becomes comparable to the
first term only for frequencies lower than

172
_1 | 87Gp a(ty)
=(L+1)"!
o=(L+D 3C2 a(to)
BrGp |2l (5.4)
3c? alty) '

If the amount of inflation (5.2) is large enough to solve
the horizon problem, then the wavelength corresponding
to this frequency also lies outside the observable horizon.
In the limit that the inflationary stage of expansion lasts
an infinite amount of time, one does indeed lose all infor-
mation about the initial state.

VI. CONCLUSION

We have shown that the spectrum of gravitons which
are produced by inflation is very different from the spec-
trum which one would expect based on naive estimates.
Almost all of the energy is contained in gravitational
waves whose wavelength is comparable to the present-
day horizon scale. Moreover, as the Universe continues
to expand, one expects gravitational waves of even longer
wavelength to come into view. The energy density con-
tained in these waves contributes a constant fraction of
the energy density of the Universe.

The source of these long wavelengths is a global gravi-
tational instability which acts during the de Sitter stage
of expansion. In this paper the effect of this instability on
the transverse-traceless (TT) gravitational-wave perturba-
tions was examined. It appears that this instability also
affects the scalar (S) and vector (V) perturbations, and
that it is the source of a logarithmic divergence in the in-
tegrated power spectrum for those two cases. It seems
unlikely that this global instability has any other (poten-
tially) observable effects, although this is not yet certain.

This type of global gravitational instability seems to
occur only for the gravitational field and for the minimal-
ly coupled massless scalar field. In the case of massive
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fields, the mass term acts to damp out the perturbations
at large distances, and there is no instability. One might
hope that the electromagnetic field, being massless, would
exhibit unstable behavior. However, the action of the
electromagnetic field is conformally invariant, and this
means that no photons can be directly produced by the
expansion of the Universe.

Note added in proof

Modes whose wavelengths are larger than cH ‘l(tp)
make no contribution to the gravity-wave energy density.
However, they contribute to the “static” background
part of the Weyl tensor. An estimate shows that this
static contribution is small compared to the average cur-
vature of space-time.

Let ¢ denote the dimensionless gravitational perturba-
tion, C the Weyl tensor, R the Riemann tensor, and T the
stress-energy  tensor. On dimensional grounds
(C?*)={(VV¢)*) whereas the stress tensor is given by
(T)Y={(V¢)?). Thus the static part of the Weyl tensor
coming from the modes outside the present-day horizon
is of the order

G H(tp)
(CH = :6‘ f [

2
o°Plw)dw
H(t))/LYalt))/a(t,)] (@)

#G HYt,))
~———2=H%t,)In
c c

lH(tP) a(t,)
L H(tl) a(tl)

I

where L is the length of the inflationary phase (5.2). The
lower limit of integration corresponds to the longest-
wavelength mode produced by the inflationary epoch.
Today, the average curvature of the Universe is of the
order R?~H"(t,)/c*. Thus even for exponentially large
values of L the ratio {C?) /R ? is of the same order as Eq.

(4.10) and is small for GUT-scale inflation.
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FIG. 1. Global instability/local stability of de Sitter space.
de Sitter space is shown as a hyperboloid embedded in five-
dimensional Minkowski space-time. In the absence of perturba-
tions, the spatial surfaces of constant time are three-spheres.
The effect of a gravitational perturbation on the geometry of the
spatial surfaces may be seen by scaling the spatial surfaces to a
constant volume. de Sitter space is globally unstable because at
late times, the perturbations do not die out, and so globally the
geometry does not approach that of unperturbed de Sitter space.
However an observer can only see the region within one horizon
volume. Because this volume remains constant (left-hand dia-
gram), the geometry within the horizon volume quickly ap-
proaches that of an unperturbed three-sphere (right-hand dia-
gram). Thus de Sitter space is locally stable.



