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Abstract

We study the homogenization of some Hamilton-Jacobi-Bellman equations with

a vanishing second-order term in a stationary ergodic random medium under

the hyperbolic scaling of time and space. Imposing certain convexity, growth,

and regularity assumptions on the Hamiltonian, we show the locally uniform

convergence of solutions of such equations to the solution of a deterministic

“effective” first-order Hamilton-Jacobi equation. The effective Hamiltonian is

obtained from the original stochastic Hamiltonian by a minimax formula. Our

homogenization results have a large-deviations interpretation for a diffusion in a

random environment. c© 2005 Wiley Periodicals, Inc.

1 Introduction

Homogenization of a differential equation is the process of replacing rapidly

varying coefficients (or functions) by new ones such that the solutions are close.

A simple illustration is provided by the following example: Suppose that a(x) is

a periodic or stationary random function on R satisfying a 6 a(x) 6 b for some

constants 0 < a < b < ∞. For ε > 0 one can consider the elliptic operator

Lε = d

dx
a

(
x

ε

)
d

dx
.

For small ε, Lε can be replaced by

L = d

dx
ā

d

dx
,

where ā = [E[1/a]]−1 is the “harmonic mean" of a(·). E is the expectation in the

random case or the average over a period in the periodic case. As ε → 0, solutions
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of parabolic or elliptic equations of the form

du

dt
= Lεu, u(0, x) = f (x),

or

λu − Lεu = f

are close to the corresponding solutions with Lε replaced by L.

There is a vast literature on periodic and quasi-periodic homogenization of

linear and nonlinear partial differential equations (see, for example, monographs

[1, 2, 5, 7, 10, 15] and references therein). Many results obtained in the periodic

setting are based on the existence of “correctors,” i.e., periodic solutions to an aux-

iliary problem, which arise from a formal expansion in a scaling parameter ε. In

connection with this approach for Hamilton-Jacobi type and more general equa-

tions, let us mention just several representative works [4, 6, 8, 11], where one can

find further references. It turns out [12] that for Hamilton-Jacobi equations with

stationary ergodic Hamiltonians, correctors may not exist in general. Homogeniza-

tion results for stationary ergodic environments are usually obtained by an applica-

tion of a version of the ergodic theorem (see, for instance, [3, 10, 16, 17, 19]).

In the current work we will be interested in solutions to certain Hamilton-

Jacobi-Bellman equations. These are solutions uε to equations of the type

(1.1)
∂uε

∂t
= ε

2
1uε + H

(
∇uε,

x

ε
, ω

)
, (t, x) ∈ [0,∞)× R

d,

with initial condition uε(0, x) = f (x). Here H(p, x, ω) is a convex function of p

that is a stationary random process in x . We are interested in establishing a result

of the form uε → u as ε → 0 where u is the solution of

(1.2)
∂u

∂t
= H(∇u), u(0, x) = f (x).

The solutions uε and u have natural variational representations and we will consider

these problems from this perspective. Therefore, it will not be necessary for us to

characterize these solutions as viscosity solutions.

These types of problems arise naturally if we consider questions of large de-

viations for diffusions in a random environment. More specifically, consider a

diffusion process on R
d with generator

Aω = 1

2
1+ 〈b(x, ω),∇〉,

i.e., Brownian motion with a random drift b(x, ω) that is assumed to be an ergodic

stationary process in x ∈ R
d . We are interested in considering the probabilities of

large deviations of x(t)/t as t → ∞. This amounts to establishing the limiting

behavior

lim
t→∞

1

t
log E Q

b,ω
0 [exp[〈θ, x(t)〉]] = H(θ).
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Here Qb,ω
x is the diffusion process corresponding to Aω starting from x ∈ R

d at

time 0. The above limit is supposed to exist almost surely in ω. The probabilities

of large deviations are now determined in the standard manner, the rate function

being the conjugate function I(y) defined for y ∈ R
d , by

(1.3) I(y) = sup
θ∈Rd

[〈θ, y〉 − H(θ)].

The quantity

v(t, x) = E Q
b,ω
x [exp〈θ, x(t)〉]

solves the equation

∂v

∂t
= 1

2
1v + 〈b(x, ω),∇v〉, v(0, x) = exp〈θ, x〉.

We are interested in the behavior of 1
t

log v(t, 0) as t → ∞. If we define

uε(t, x) = ε log v

(
t

ε
,

x

ε

)
,

then the problem reduces to the study of the behavior of uε(1, 0) as ε → 0. The

equation satisfied by uε is

∂uε

∂t
= ε

2
1uε + 1

2
‖∇uε‖2 +

〈
b

(
x

ε
, ω

)
,∇uε

〉
, u(0, x) = 〈θ, x〉.

This is, of course, a special case of (1.1) with

H(p, x, ω) = 1

2
‖p‖2 + 〈b(x, ω), p〉.

Remark 1.1. After our work was completed, we received a preprint [13] that deals

with more general “viscous” Hamilton-Jacobi equations and in the special case

that we consider overlaps considerably with our results. The main tools in [13]

are the uniform gradient estimate on solutions uε and the subadditive ergodic the-

orem. The approach presented in our paper is different. It is based on a direct

application of the standard ergodic theorem to obtain a uniform lower bound on

solutions and on a straightforward construction of “supercorrectors” for an upper

bound. The minimax formula for the effective Hamiltonian arises naturally in the

proof. Another characteristic feature of our method is that it does not require a

uniform gradient estimate of uε even for subquadratic Hamiltonians. The tradeoff

is that we need a stronger regularity assumption on the Hamiltonian (see (H3)) in

the next section. For instance, in the special case of

H(p, ω) = a(ω)‖p‖α

with α > 1, in addition to uniform upper and lower bounds on a, we would need

uniform continuity of a(τyω), whereas [13] would assume a uniform bound on the

gradient in y of a(τyω). Moreover, if there is a way of getting uniform gradient

bounds for perturbations of the form H(p, ω) + δ‖p‖k that are uniform in δ, we
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can easily choose k > d and put ourselves in a situation where (H4) holds. It is not

hard to let δ → 0 and recover Theorem 2.2.

2 Main Results

We consider a probability space (�,F,P) on which R
d acts as a group {τx :

x ∈ R
d} of measure-preserving transformations. P is assumed to be ergodic under

this action. Let the function H(p, ω) : R
d ×� → R be convex in p and have the

following properties:

(H1) For all p ∈ R
d , ω ∈ �,

(2.1) c1‖p‖α − c2 6 H(p, ω) 6 c3‖p‖β + c4

for some positive constants c1, c2, c3, and c4, 1 < α < β < ∞. Equiva-

lently, its convex conjugate L(q, ω), defined by

(2.2) L(q, ω) = sup
p

[〈p, q〉 − H(p, ω)],

satisfies

(2.3) c1‖q‖β ′ − c2 6 L(q, ω) 6 c3‖q‖α′ + c4

with α′ = α/(α − 1), β ′ = β/(β − 1), and possibly a different set of

constants.

(H2) H(p, τxω) is uniformly continuous in x ; i.e., for any ℓ < ∞,

(2.4) lim
δ→0

sup
‖x‖6δ

sup
‖p‖6ℓ

sup
ω

|H(p, τxω)− H(p, ω)| = 0.

It is not difficult to see, by using relation (2.2) and the bounds (2.1), that

L(q, ω) satisfies a similar estimate

(2.5) lim
δ→0

sup
‖x‖6δ

sup
‖q‖6ℓ

sup
ω

|L(q, τxω)− L(q, ω)| = 0.

For some of the results we will need stronger regularity or convexity

assumptions.

(H3) There exists a function ν(δ) → 0 as δ → 0 and C > 0 such that for

‖x‖ 6 δ and ω ∈ �

L(q, τxω) 6 (1 + ν(δ))L(q, ω)+ Cν(δ).(2.6)

Equivalently, there exists a function ν(δ) → 0 as δ → 0 and C > 0 such

that for ‖x‖ 6 δ and ω ∈ �

H(p, τxω) > (1 + ν(δ))H((1 + ν(δ))−1 p, ω)− Cν(δ).(2.7)

(H4) Assumption (H1) holds with α > d.
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(H5) Assumption (H1) holds with α > 2 and there exist functions γ (δ) > 0 and

C(δ) → 0 as δ → 0 such that for all ω ∈ �

(2.8) (1 − δ)H((1 − δ)−1 p, ω) > H(p, ω)+ γ (δ)‖p‖2 − C(δ).

For (2.8) to hold, it is sufficient that (uniformly in ω) D2 H(p, ω) > cI

on the set {p ∈ R
d : ‖p‖ > k} for some c, k > 0. Here I is the identity

matrix.

For any given ε > 0 and ω ∈ �, we consider the solution uε =
uε(t, x, ω) of equation (1.1), which we write as

(2.9)
∂uε

∂t
= ε

2
1uε + H(∇uε, τx/εω), (t, x) ∈ [0,∞)× R

d,

with the initial condition uε(0, x) = f (x). We assume that f satisfies the

following condition:

(H6) The function f is uniformly continuous on R
d . This implies that for every

δ > 0 there is a constant Kδ > 0 such that for all x, y ∈ R
d

(2.10) | f (x)− f (y)| 6 Kδ‖x − y‖ + δ.

We note that the solution uε(t, x, ω) of (2.9) is equal to εvε(t/ε, x/ε, ω),

the rescaled version of vε that solves

(2.11)
∂vε

∂t
= 1

2
1vε + H(∇vε, τxω), (t, x) ∈ [0,∞)× R

d,

with vε(0, x) = ε−1 f (εx).

We now construct the convex function H(p) that appears in (1.2). The transla-

tion group {τx : x ∈ R
d} acting on L2(�,F,P) will have infinitesimal generators

{∇i : 1 6 i 6 d} in the coordinate directions and the corresponding Laplace

operator 1 =
∑

i ∇2
i . For reasonable choices of b(ω) : � → R

d , the operator

Ab = 1

2
1+ 〈b(ω),∇〉

will define a Markov process on �. Construction of this Markov process is not

difficult. Given a starting point ω ∈ �, we define b(x, ω) : R
d → R

d by b(x, ω) =
b(τxω). This allows us to define the diffusion Q

b,ω
0 , starting from 0 at time 0, in

the random environment that corresponds to the generator

1

2
1+ 〈b(x, ω),∇〉.

The diffusion is then lifted to � by evolving ω randomly in time by the rule

ω(t) = τx(t)ω. The induced measure Pb,ω defines the Markov process on � that

corresponds to Ab. The problem of finding the invariant measures for the process

Pb,ω with generator Ab on� is very hard and nearly impossible to solve. However,
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if we can find a density ϕ > 0 such that ϕ dP is an invariant ergodic probability

measure for Ab, then we have by the ergodic theorem

lim
t→∞

1

t

∫ t

0

F(ω(s))ds =
∫

�

F(ω)ϕ(ω)dP

a.e. Pb,ω or in L1(Pb,ω) for almost all ω with respect to P.

Let us denote by B the space of essentially bounded maps from � → R
d and

by D the space of probability densities ϕ : � → R relative to P, with ϕ, ∇ϕ, and

∇2ϕ essentially bounded and ϕ in addition having a positive essential lower bound.

Let us denote by E the following subset of B × D:

(2.12) E =
{
(b, ϕ) ∈ B × D : 1

2
1ϕ = ∇ · (bϕ)

}
.

Here we assume that the equation 1
2
1ϕ = ∇ · (bϕ) is satisfied in the weak sense.

We define the convex function H on R
d by

(2.13) H(p) = sup
(b,ϕ)∈E

[
〈p,E[b(ω)ϕ(ω)]〉 − E[L(b(ω), ω)ϕ(ω)]

]
,

where E denotes the expectation with respect to P. The corresponding variational

solution of (1.2) is given by

(2.14) u(t, x) = sup
y

(
f (y)− tI

(
y − x

t

))
,

where I is related to H by the duality relation (1.3). Our main result is stated

below.

THEOREM 2.1 (Lower Bound) Assume (H1), (H2), and (H6). Let uε(t, x, ω) be

the solution of (2.9) and u(t, x) be given by (2.14). Then with probability 1 for any

ℓ, T > 0, we have

lim inf
ε→0

inf
06t6T

inf
‖x‖6ℓ

(uε(t, x, ω)− u(t, x)) > 0.

THEOREM 2.2 (Upper Bound) Assume (H1), (H2), (H6), and either (H3), (H4), or

(H5). Let uε(t, x, ω) be the solution of (2.9) and u(t, x) be given by (2.14). Then

with probability 1 for any ℓ, T > 0, we have

lim sup
ε→0

sup
06t6T

sup
‖x‖6ℓ

(uε(t, x, ω)− u(t, x)) 6 0.

Theorems 2.1 and 2.2 immediately imply the homogenization result under ap-

propriate conditions.

THEOREM 2.3 Assume (H1), (H2), (H6), and either (H3), (H4), or (H5). Then

with probability 1

(2.15) lim
ε→0

|uε(t, x, ω)− u(t, x)| = 0

locally uniformly in (t, x) ∈ [0,∞)× R
d .
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Remark 2.4. It is easy to see from the definition of H(p) that it satisfies the same

upper and lower bounds given in (2.1). We can always choose b(ω) = b a constant

vector b ∈ R
d , and P is still an ergodic invariant measure for the Markov process

with generator Ab on �. Therefore, using the dual upper bound on L , which is

uniform in ω, we get

(2.16) H(p) > sup
b∈Rd

[〈p, b〉 − E[L(b, ω)]] > c1‖p‖α − c2.

It is just as easy to note that

(2.17) H(p) 6 sup
b∈Rd

[〈p, b〉 − inf
ω

L(b, ω)] 6 c3‖p‖β + c4.

3 Outline of Proof

The first step in establishing the lower bound is the variational representation

of solutions of Hamilton-Jacobi-Bellman equations (see [9]). Let C be the set of

all bounded maps c(s, x) from [0, T ] × R
d to R

d such that sups,x ‖c(s, x)‖ <

∞. Consider the diffusion Qc
x on R

d starting from x ∈ R
d at time 0 with time-

dependent generator
1

2
1+ c(s, x) · ∇

in the time interval [0, t]. For each c ∈ C and ω ∈ � we consider

vc(t, x, ω) = E Qc
x

(
f (x(t))−

∫ t

0

L
(
c(s, x(s)), τx(s)ω

)
ds

)
,

where L(c, ω) is as in (2.2). If

v(t, x, ω) = sup
c∈C

vc(t, x, ω),

then v is the solution of

(3.1)
∂v

∂t
= 1

2
1v + H(∇v, τxω)

with v(0, x) = f (x).

There is a simple relation between v(t, y, · ) and v(t, 0, · ). If we define f y(x) =
f (x + y), then the solution of (3.1) with initial data v(0, x) = f y(x) and ω′ = τyω

is given by

(3.2) vy(t, x, ω′) = vy(t, x, τyω) = v(t, x + y, ω).

In particular,

v(t, y, ω) = vy(t, 0, τyω).

The solution uε of (2.9) with initial data f (x) is related to the solution vε of (3.1)

with initial data ε−1 f (εx) by

(3.3) uε(t, x, ω) = εvε(ε
−1t, ε−1x, ω).
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Relation (3.2) translates to

u y
ε (t, x, ω) = uε(t, x + y, τ−y/εω).

We therefore obtain the following variational expression for uε(t, x):

uε(t, x, ω) = sup
c∈C

E
Qc

x/ε

(
f (εx(ε−1t))− ε

∫ t/ε

0

L
(
c(s, x(s)), τx(s)ω

)
ds

)

= sup
c∈C

E Q
ε,c
x [ f (x(t))− ξε(t)](3.4)

where Qε,c
x is the diffusion on R

d starting from x corresponding to the generator

ε

2
1+ c(ε−1s, ε−1x) · ∇;

i.e., almost surely with respect to Qε,c
x , x(t) satisfies

(3.5) x(t) = x +
∫ t

0

c(ε−1s, ε−1x(s))ds +
√
εβ(t)

and

(3.6) ξε(t) =
∫ t

0

L
(
c(ε−1s, ε−1x(s)), τε−1x(s)ω

)
ds.

Since the supremum over c ∈ C is taken for each ω, one can choose c to depend

on ω. A special choice for c(t, x), one that depends on ω ∈ � but not on t , is the

choice c(t, x) = c(t, x, ω) = c(x, ω) = b(τxω) with (b, ϕ) ∈ E . With that choice

we can consider either the process {Qb,ω
x } on R

d or the process {Pb,ω} with values

in �. It is easy to see that for any y ∈ R
d , the translation map τ̂y on C([0, T ]; R

d)

defined by x(·) → x(·)+ y has the property

Qb,ω
y = Q

b,τyω

0 τ̂−1
y ,

which is essentially a restatement of (3.2). Since (b, ϕ) ∈ E , by the ergodic theo-

rem we have

(3.7) lim
ε→0

ε

∫ t/ε

0

b(ω(s))ds = t

∫
b(ω)ϕ(ω)dP

def= m(b, ϕ)t

and

(3.8) lim
ε→0

ε

∫ t/ε

0

L
(
b(ω(s)), ω(s)

)
ds = t

∫
L(b(ω), ω)ϕ(ω)dP

def= h(b, ϕ) t.

Both limits are valid in L1(Pb,ω) for P almost all ω. If we define A ⊂ R
d × R as

(3.9) A = {(m(b, ϕ), h(b, ϕ)) : (b, ϕ) ∈ E},
then

lim inf
ε→0

uε(t, 0, ω) > [ f (mt)− ht]



HOMOGENIZATION OF H-J-B EQUATIONS 9

for every (m, h) ∈ A. Therefore, for almost all ω with respect to P

lim inf
ε→0

uε(t, 0, ω) > sup
(m,h)∈A

[ f (mt)− ht]

= sup
y∈Rd

( f (y)− tI(y/t)) = u(t, 0).(3.10)

This is a very weak form of convergence, and work has to be done in order to

strengthen it to locally uniform convergence.

The upper bound is first obtained for linear f and then extended to general

f . By using the convex duality and the minimax theorem, the right-hand side of

(3.10) is rewritten in terms of the dual problem. If we take f (x) = 〈p, x〉, we have

established an asymptotic lower bound for uε, which is the solution

u(t, x) = 〈p, x〉 + t H(p)

of (1.2) with u(0, x) = 〈p, x〉. Here

H(p) = sup
(b,ϕ)∈E

E
[
[〈p, b(ω)〉 − L(b(ω), ω)]ϕ(ω)

]

= sup
ϕ

sup
b

inf
ψ

E
[
[〈p, b(ω)〉 − L(b(ω), ω)+ Abψ(ω)]ϕ(ω)

]

= sup
ϕ

inf
ψ

sup
b

E
[
[〈p, b(ω)〉 − L(b(ω), ω)+ Abψ(ω)]ϕ(ω)

]

= sup
ϕ

inf
ψ

sup
b

E
[
[〈p + ∇ψ(ω), b(ω)〉 − L(b(ω), ω)+ 1

2
1ψ(ω)]ϕ(ω)

]

= sup
ϕ

inf
ψ

E
[
[H(p + ∇ψ(ω), ω)+ 1

2
1ψ(ω)]ϕ(ω)

]

= inf
ψ

sup
ϕ

E
[
[H(p + ∇ψ(ω), ω)+ 1

2
1ψ(ω)]ϕ(ω)

]

= inf
ψ

ess sup
ω

[
H(p + ∇ψ(ω), ω)+ 1

2
1ψ(ω)

]
.

We have used the fact that

inf
ψ

E[ϕAbψ(ω)] = −∞

unless ϕ dP is an invariant measure for Ab, in which case it is 0. It follows that for

any δ > 0, there exists a “ψ” such that

1

2
1ψ(ω)+ H(θ + ∇ψ(ω), ω) 6 H(θ)+ δ.

The “ψ” is a weak object, and one has to do some work before we can use it as

a test function and obtain the upper bound by comparison. The interchange of inf

and sup that we have done freely needs justification.
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4 Lower Bounds

We begin with some estimates on admissible controls and uε(t, x, ω). Recall

the notation introduced in (3.5) and (3.6).

LEMMA 4.1 Assume (2.3) and (2.10). Then in the variational formula (3.4), the

supremum over C can be replaced with the supremum over the subset C∗ ⊂ C of

controls that satisfy the following condition: for each δ > 0 there is Cδ > 0, which

depends only on δ and the constants in (2.3) and (2.10), such that

(4.1) sup
x,ω

E Q
ε,c
x |ξε(t)| 6 Cδ(t +

√
εt)+ 2βδ.

In particular, for all c ∈ C∗,

(4.2) sup
x,ω

E Q
ε,c
x

[ ∫ t

0

‖c(ε−1s, ε−1x(s))‖β ′
ds

]
6 Cδ(t +

√
εt)+ 2βδ.

PROOF: There is a trivial lower bound with c ≡ 0 that can be obtained from

(2.3), (2.10), and (3.5): for every δ > 0

uε(t, x, ω)− f (x) > E Q
ε,0
x [ f (x(t))− f (x)− ξε(t)]

> −KδE Q
ε,0
x [‖x(t)− x‖] − c4t − δ

> −Kδ

√
εt − c4t − δ.(4.3)

So we need to consider only those c ∈ C for which

E Q
ε,c
x [ f (x(t))− f (x)− ξε(t)] > −Kδ

√
εt − c4t − δ.

In view of (2.10), such a c has to satisfy

(4.4) E Q
ε,c
x [Kδ‖x(t)− x‖ − ξε(t)] > −Kδ

√
εt − c4t − 2δ.

The following simple inequalities allow us to estimate E Q
ε,c
x ‖x(t)− x‖ in terms of

E Q
ε,c
x ξε(t):

E Q
ε,c
x ‖x(t)− x‖ 6 E Q

ε,c
x

[ ∫ t

0

‖c(ε−1s, ε−1x(s))‖ds +
√
εt

]
,(4.5)

E Q
ε,c
x

∫ t

0

‖c(ε−1s, ε−1x(s))‖ds(4.6)

6 t1/β

(
E Q

ε,c
x

∫ t

0

‖c(ε−1s, ε−1x(s))‖β ′
ds

)1/β ′

,

E Q
ε,c
x

∫ t

0

‖c(ε−1s, ε−1x(s))‖β ′
ds 6 c−1

1

(
E Q

ε,c
x ξε(t)+ c2t

)
.(4.7)

The last inequality follows from (2.3). Notice also that ξε(t) + c2t > 0 and is

nondecreasing for all t . Denoting E Q
ε,c
x (ξε(t)+ c2t) by 2(t), we obtain from (4.4)

that the set of controls C can be reduced to those for which

(4.8) Kδ

[
c

−1/β ′

1 t1/β2(t)1/β
′ +

√
εt

]
−2(t)+ Kδ

√
εt + (c4 + c2)t + 2δ > 0.
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The above relation is of the form A21/β ′ −2+ B > 0. By Young’s inequality this

implies that
Aβ

β
+ 2

β ′ −2+ B > 0.

Since 1/β + 1/β ′ = 1, we conclude that

2 6 Aβ + βB.

This immediately gives (4.1). Inequality (4.2) follows from (4.1) and (4.7). �

LEMMA 4.2 Assuming the bounds (2.1) and (2.3), and (2.10) on f , there is a

function c(t) → 0 as t → 0 such that for all 0 < ε 6 1,

(4.9) sup
ω

|uε(t, x, ω)− f (x)| 6 c(t).

PROOF: We start with the variational formula (3.4)

uε(t, x, ω)− f (x) = sup
c∈C∗

E Q
ε,c
x [ f (x(t))− f (x)− ξε(t)]

where C∗ is as in Lemma 4.1. From (3.5), (2.10), and (4.5) we get for every δ > 0

E Q
ε,c
x [ f (x(t))− f (x)− ξε(t)]

6 E Q
ε,c
x [Kδ‖x(t)− x‖ − ξε(t)] + δ

6 Kδ

√
εt + E Q

ε,c
x

[
Kδ

∫ t

0

‖c(ε−1s, ε−1x(s))‖ds − ξε(t)

]
+ δ.

Combining this with (4.1), we get an upper bound. Inequality (4.3) provides a

lower bound. �

The starting point for lower bounds is the ergodic theorem. Let us begin with

(b, ϕ) ∈ E and recall the definitions in (3.7) and (3.8):

m(b, ϕ) =
∫

b(ω)ϕ(ω)dP,

h(b, ϕ) =
∫

L(b(ω), ω)ϕ(ω)dP.

For the Markov process on � with generator

Ab = 1

2
1+ 〈b(ω),∇〉

ϕ dP is an ergodic invariant probability measure. By the ergodic theorem for al-

most all ω with respect to P, the corresponding diffusion on� starting from ω, i.e.,

Pb,ω, satisfies

lim
ε→0

ε

∫ t/ε

0

b(ω(s))ds = t

∫
b(ω)ϕ(ω)dP = m(b, ϕ)t,

lim
ε→0

ε

∫ t/ε

0

L(b(ω(s)), ω(s))ds = t

∫
L(b(ω), ω)ϕ(ω)dP = h(b, ϕ)t,
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in L1(Pb,ω), uniformly in any finite t-interval. We can assume that this holds for

every ω ∈ N where P(N ) = 1. In fact, by Egoroff’s theorem, given any η > 0,

there exists Nη with P(Nη) > 1 − η, such that

(4.10) lim
ε→0

sup
ω∈Nη

sup
06t6T

E Pb,ω

(∣∣∣∣ε
∫ t/ε

0

b(ω(s))ds − m(b, ϕ)t

∣∣∣∣
)

= 0

and

(4.11) lim
ε→0

sup
ω∈Nη

sup
06t6T

E Pb,ω

(∣∣∣∣ε
∫ t/ε

0

L(b(ω(s)), ω(s))ds − h(b, ϕ)t

∣∣∣∣
)

= 0.

These properties can be expressed in terms of Q
b,ω
0 as well:

lim
ε→0

sup
ω∈Nη

sup
06t6T

E Q
b,ω
0

(∣∣∣∣ε
∫ t/ε

0

b(τx(s)ω)ds − m(b, ϕ)t

∣∣∣∣
)

= 0,(4.12)

lim
ε→0

sup
ω∈Nη

sup
06t6T

E Q
b,ω
0

(∣∣∣∣ε
∫ t/ε

0

L(b(τx(s)ω), τx(s)ω)ds − h(b, ϕ)t

∣∣∣∣
)

= 0.(4.13)

LEMMA 4.3 Assume (H1) and (H6). Let (b, ϕ) ∈ E and m = m(b, ϕ), h =
h(b, ϕ). Then

(4.14) lim inf
ε→0

inf
ω∈Nη

inf
06t6T

[uε(t, 0, ω)− f (mt)+ ht] > 0.

PROOF: From the variational formula (3.4), we have for any c ∈ C,

uε(t, 0, ω) > E Q
c,ω
0

(
f (εx(ε−1t))− ε

∫ t/ε

0

L(c(s, x(s)), τx(s)ω)ds

)
.

Choose c(s, x) = c(x) = b(τxω). Since f satisfies (2.10) and

x(t) =
∫ t

0

b(τx(s)ω)ds + β(t) =
∫ t

0

b(ω(s))ds + β(t),

(4.14) follows from the ergodic theorem just as (4.10) and (4.11). �

LEMMA 4.4 Assume (H1), (H2), and (H6). Let (b, ϕ) ∈ E , m = m(b, ϕ), and

h = h(b, ϕ). Then

(4.15) lim
r→0

lim inf
ε→0

inf
ω∈Nη

inf
06t6T

inf
‖y‖6r

[uε(t, y, ω)− f (mt)+ ht] > 0.

PROOF: By Lemma 4.2, we can assume without loss of generality that t > r .

We have a process x(s) that starts from 0 having for its distribution Qc
0 = Q

b,ω
0

with c(s, x) = b(τxω). It is enough to construct a process y(s) with generator
1
2
1+ 〈ĉ(s, · ),∇〉 that starts from ε−1 y, which is close to x(s) in the sense that

ε‖y(ε−1t)− x(ε−1t)‖
and

ε

∣∣∣∣
∫ t/ε

0

L(c(s, x(s)), τx(s)ω)ds −
∫ t/ε

0

L(ĉ(s, y(s)), τy(s)ω)ds

∣∣∣∣
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are small. We will construct such a y(·) that is coupled to x(·).
Define

y(s) =
{

x(s)+ y/ε − sy/‖y‖ if 0 6 s 6 ε−1‖y‖
x(s) if s > ε−1‖y‖.

Clearly,

ε‖y(ε−1t)− x(ε−1t)‖ 6 ‖y‖ 6 r.

A simple calculation reveals

ĉ(s, z) =
{

c(s, z − y/ε + sy/‖y‖)− y/‖y‖ if 0 6 s 6 ε−1‖y‖
c(s, z) if s > ε−1‖y‖,

and ‖ĉ( · , · )‖∞ 6 ‖c( · , · )‖∞ + 1. We have

ε

∣∣∣∣
∫ t/ε

0

L(c(s, x(s)), τx(s)ω)ds −
∫ t/ε

0

L(ĉ(s, y(s)), τy(s)ω)ds

∣∣∣∣

= ε

∣∣∣
∫ ‖y‖/ε

0

L(c(s, x(s)), τx(s)ω)ds −
∫ ‖y‖/ε

0

L(ĉ(s, y(s)), τy(s)ω)ds

∣∣∣

6 2‖y‖ sup
|p|6‖c( · ,· )‖∞+1

sup
ω

|L(p, ω)|

The statement of the lemma follows from the above estimates and (4.14). �

We now turn to the proof of Theorem 2.1.

PROOF: If we want to show that uε(t, y, ω) → u(t, y) in probability, we could

translate by τε−1 y and the initial condition would be fy(x) = f (x + y). Since P is

invariant, statistically nothing would have changed. However, it is not obvious that

the convergence is almost sure. Nor is it obvious that the convergence is locally

uniform in x .

Let us remark that our proof of (4.14) depended only on the constant Kδ in

(2.10). Also note that the constant Kδ corresponding to f also works for any

translate f y(x) = f (x + y). As a result, if we decide to start from 0, but consider

for some ℓ > 1 the family { f y(x) = f (x + y) : ‖y‖ 6 ℓ} of initial functions and

their corresponding solutions u y
ε (t, x, ω), then as we saw in (4.14), for any given

η > 0, there is a set Nη, with P(Nη) > 1 − η, such that

lim
ε→0

sup
06t6T

sup
‖y‖6ℓ

sup
ω∈Nη

[ f (y + mt)− th − u y
ε (t, 0, ω)]+ = 0.

By the ergodic theorem, there is a set N with P(N ) = 1 and for ω ∈ N ,

lim
ε→0

|{x : τxω ∈ Nη, ‖x‖ 6 ℓε−1}|
|{x : ‖x‖ 6 ℓε−1}| = P(Nη) > 1 − η.

Let ω ∈ N . Then for ε 6 ε0(η),∣∣{x : τxω ∈ Nη, ‖x‖ 6 ℓε−1}
∣∣ > (1 − 2η)

∣∣{x : ‖x‖ 6 ℓε−1}
∣∣.
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In particular, if δ(η) = ℓ(3η)1/d , then every x satisfying ‖x‖ 6 ε−1ℓ is within a

distance δ(η)ε−1 of an x ′ such that τx ′ω ∈ Nη. Now from (4.15) and the relation

(3.2) it follows easily that

lim
ε→0

sup
06t6T

sup
‖x‖6ℓ

[ f (x + mt)− ht − uε(t, x, ω)]+ = 0

for ω ∈
⋃
η>0 Nη. If we denote by A ∈ R

d × R the range of (m(b, ϕ), h(b, ϕ)) as

(b, ϕ) varies over E , then it is routine to show that with

u(t, x) = sup
(m,h)∈A

[ f (x + mt)− ht],

lim
ε→0

sup
06t6T

sup
‖x‖6ℓ

[u(t, x)− uε(t, x, ω)]+ = 0

P a.s., which proves Theorem 2.1. �

5 Convex Analysis

We start with a simple estimate. For any ε > 0, there exists a constant Cε such

that

‖m‖ 6 Cε + εh

for all (m, h) ∈ A, which is a consequence of (2.3). Therefore, for any θ ∈ R
d ,

(5.1) H(θ) = sup
(m,h)∈A

[〈θ,m〉 − h]

is finite. The aim of this section is to show that, for each θ ∈ R
d , there exists a

“function” ψ(ω) = ψθ (ω) such that

1

2
1ψ(ω)+ H(∇ψ(ω), ω) 6 H(θ)

for almost all ω. The function ψ does not really exist, but W = ∇ψ exists as a

function in some L p(�) with values in R
d . Moreover, ∇ × W = 0 and

1

2
∇ · W + H(W, ω) 6 H(θ)

in the sense of distributions.

We now represent E as a limit of an increasing sequence of compact sets. We

can assume without loss of generality that L p(�,P) are all separable spaces for

1 6 p < ∞. Let L1
+ be the convex subset of ϕ ∈ L1(�,P) consisting of ϕ(·)

that satisfy ϕ(ω) > 0 a.e. P and
∫
�
ϕ(ω) dP = 1. Let {ϕj (ω)} be a countable

dense subset in L1
+ in the strong L1 topology. We will also assume that each ϕj (ω)

is smooth in the sense that ϕj (τxω) = ϕj (x, ω) is uniformly bounded above and

below (away from 0) on R
d and has two bounded continuous derivatives in x . The

bounds will be independent of ω but could and in fact will depend on j . We denote

by Dk the convex hull of {ϕj : 1 6 j 6 k}. In particular, for each k, Dk is a

compact subset of L1
+ ⊂ L1(�,P). Each ϕ ∈ Dk has uniform bounds

ϕ(ω) > ck, ‖∇ϕ‖ 6 Ck, ‖∇2ϕ‖ 6 Ck .
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Now we consider maps b : � → R
d . Set

Br = {b : sup
ω

‖b(ω)‖ 6 r},

Er,k =
{
(b, ϕ) : b ∈ Br , ϕ ∈ Dk,

1
2
1ϕ = ∇ · (b ϕ)

}
,

Ek =
⋃

r

Er,k,

E =
⋃

k

Ek .

In the definition of Er,k the equation 1
2
1ϕ = ∇ · (b ϕ) is interpreted in the weak

sense. This is sufficient to show that the Markov process Pb,ω, which is well-

defined, has ϕ dP as an ergodic invariant measure. Let us note that while each Dk

is strongly compact, each Br is weakly compact.

For each θ ∈ R
d we have

H(θ) > sup
(b,ϕ)∈Er,k

[ ∫
[〈θ, b(ω)〉 − L(b(ω), ω)]ϕ(ω)dP

]
(5.2)

= sup
ϕ∈Dk

sup
b∈Br

inf
u∈U

[ ∫
[〈θ, b(ω)〉 − L(b(ω), ω)]ϕ(ω) dP

+
∫
(Abu)ϕ(ω)dP

](5.3)

= sup
ϕ∈Dk

inf
u∈U

sup
b∈Br

[ ∫
[〈θ, b(ω)〉 − L(b(ω), ω)]ϕ(ω) dP

+
∫
(Abu) ϕ(ω) dP

](5.4)

= sup
ϕ∈Dk

inf
u∈U

[ ∫ (
1

2
1u + Hr (θ + ∇u, ω)

)
ϕ dP

]
(5.5)

= inf
u∈U

sup
ϕ∈Dk

[ ∫ (1

2
1u + Hr (θ + ∇u, ω)

)
ϕ dP

]
(5.6)

Since E ⊃ Er,k , (5.2) is obvious. On the other hand, in (5.2), b and ϕ have to be

related by 1
2
1ϕ = ∇·(b ϕ). This is taken care of by the term Abu = 1

2
1u+〈b,∇u〉

and

inf
u∈U

∫
(Abu)ϕ dP = −∞

unless 1
2
1ϕ = ∇ · (b ϕ) in the weak sense, in which case it is 0. For this we

can take any reasonable linear space U of test functions. This establishes (5.3).

The functional on the right is clearly a concave function of b ∈ Br and is upper
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semicontinuous in the weak topology in which Br is compact. It is linear and con-

tinuous in u ∈ U . We can apply the minimax theorem (see [18]) and interchange

the order of infu and supb for each fixed ϕ. We thus arrive at (5.4).

Now, the expression inside the integral is a local expression in b(ω) and the

supremum can, therefore, be taken inside the integral. Setting

Hr (ξ, ω) = sup
‖q‖6r

[〈ξ, q〉 − L(q, ω)],

we get (5.5). The expression in (5.5) is convex and continuous in u ∈ U and linear

and continuous in ϕ ∈ Dk . Moreover, Dk is compact. We can use the minimax

theorem once more to arrive at (5.6).

We have therefore proved the following:

LEMMA 5.1 Let θ ∈ R
d be given. For each integer k > 1 there exists a function

uk(ω) ∈ U such that

sup
ϕ∈Dk

∫

�

(
1

2
1uk + Hk(θ + ∇uk, ω)

)
ϕ dP 6 H(θ)+ 1

k
.

The next step is to obtain some sort of a “weak limit” u from {uk} such that

sup
k

sup
ϕ∈Dk

∫

�

(
1

2
1u + H(θ + ∇u, ω)

)
ϕ dP 6 H(θ).

The function u may not exist, but we will show that ∇u = v exists.

Let vk = ∇uk . Notice that the constant function 1 ∈ Dk for every k, so we can

choose ϕ ≡ 1. Since
∫
1u dP = 0 for any u ∈ U , we get the bound

(5.7)

∫
Hk(θ + vk(ω), ω)dP 6 H(θ)+ 1

k
.

THEOREM 5.2 The sequence {vk} is uniformly integrable in L1(�,P), and any

weak limit v of vk satisfies
∫
v dP = 0, ∇ × v = 0,

sup
ϕ∈

⋃
k Dk

∫

�

(
1

2
∇ · v + H(θ + v, ω)

)
ϕ dP 6 H(θ),

and hence also satisfies

(5.8)
1

2
(∇ · v)(ω)+ H(θ + v(ω), ω) 6 H(θ)

as a distribution.
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PROOF: Once we establish uniform integrability, the rest is routine. If v is a

weak limit point of {vk}, convexity of Hk guarantees that

sup
ϕ∈Dk

∫

�

(
1

2
∇ · v + Hk(θ + v, ω)

)
ϕ dP 6 H(θ).

Since the Dk are increasing and Hk ↑ H , we can replace Hk by H . Since
⋃

k Dk

is dense in L1
+, the uniform bound on the integrals turns into an almost sure bound

on the integrand.

Let us now establish the uniform integrability of {vk}. We can get a lower bound

on Hk from (2.3),

Hk(ξ, ω) > sup
‖y‖6k

[〈y, ξ〉 − c3 − c4‖y‖α′] = sup
06y6k

[y‖ξ‖ − c3 − c4 yα
′].

Let c be a small positive number. If ‖ξ‖ 6 (k/c)α
′−1, we pick y = c‖ξ‖1/(α′−1)

and get the lower bound

Hk(ξ, ω) > c‖ξ‖α − c3 − c4cα
′‖ξ‖α > c5‖ξ‖α − c3,

where 1/α′ + 1/α = 1 and c5 > 0 provided that c is small enough. If ‖ξ‖ >
(k/c)α

′−1, then we pick y = k and obtain for all sufficiently small c

Hk(ξ, ω) > k‖ξ‖ − c3 − c4kα
′
> k‖ξ‖ − c3 − c4kcα

′−1‖ξ‖ > c6k‖ξ‖ − c3.

From the above lower bounds we conclude that∫

‖ξ‖>A

‖ξ‖dP =
∫

‖ξ‖>A

‖ξ‖6(k/c)α′−1

‖ξ‖dP +
∫

‖ξ‖>A

‖ξ‖>(k/c)α′−1

‖ξ‖dP

6

∫

‖ξ‖>A

‖ξ‖6(k/c)α′−1

‖ξ‖α
‖ξ‖α−1

dP +
∫

‖ξ‖>(k/c)α′−1

‖ξ‖dP

6
1

c5 Aα−1

∫
[Hk(ξ, ω)+ c3]dP + 1

kc6

∫
[Hk(ξ, ω)+ c3]dP.

Setting ξ = θ + vk establishes the uniform integrability of {vk}. �

6 Upper Bounds: Preliminaries

Now we use the function v constructed in (5.8) to provide us with an upper

bound with the help of the maximum principle. The idea is, roughly speaking, to

use v(x, ω) = v(τxω) as a gradient to obtain V (x, ω) normalized by the condition

V (0, ω) = 0 for P a.e. ω. Observe that, since v ∈ Lα(�) is irrotational in the weak

sense, it has a potential V ( · , ω) ∈ W
1,α
loc (R

d) for a.e. ω. In fact,

(6.1) V (x, ω) =
∫

0→x

〈v, dz(s)〉,
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where z(s) is a path connecting 0 to x . It is now easy to estimate

‖V (x, · )− V (y, · )‖α 6 C‖x − y‖.
By our choice of the normalization,

(6.2) ‖V (x, · )‖α 6 C‖x‖.
If v were nice, the ergodic theorem would tell us that V (x, ω) = o(‖x‖) as ‖x‖ →
∞ a.s.

The function V̂ε(t, x, ω) = 〈θ, x〉 + t H(θ)+ εV (x/ε, ω) would be a superso-

lution of (1.1). Its initial value V̂ε(0, x, ω) = 〈θ, x〉 + εV (x/ε, ω) would differ

from the affine function 〈θ, x〉 by a vanishing term εV (x/ε, ω) = o(1) as ε → 0.

Moreover, setting x = 0 and using our normalization V (0, ω) = 0, we would get

by comparison that with probability 1

lim sup
ε→0

uε(t, 0, ω) 6 t H(θ) = u(t, 0),

establishing the upper bound for the affine initial data at x = 0. We shall see in

Corollary 6.8 at the end of this section that in this case the homogenization takes

place under weak hypotheses (H1) and (H2) without assuming the regularity of v.

Additional conditions will be needed to strengthen this result to the locally uniform

bound and general initial data.

At first, we need to understand the nature of the solution v. It is clear from the

lower bound on H that v ∈ Lα(�,P) where α > 1 is as in (2.1). Then for almost

all ω with respect to P, v(x, ω) = v(τxω) ∈ Lαloc(R
d) and satisfies as a distribution

on R
d ,

(6.3)
1

2
(∇ · v)(τxω)+ H(θ + v(τxω), τxω) 6 H(θ).

LEMMA 6.1 For any r > 0, there is a constant C(r) independent of ω such that

sup
x

∫

‖y−x‖6r

‖v(y, ω)‖α dy = C(r) < ∞

for almost all ω with respect to P.

PROOF: Since the proof is carried out for a fixed ω, we shall drop ω from the

notation. Let g be any compactly supported nonnegative test function such that∫
g(x)dx = 1. From (6.3) and the lower bound in (2.1) we have

∫
(∇ · v(y)+ c1‖θ + v(y)‖α − c2)g(y)dy 6 H(θ).

From this inequality we get
∫

‖v(y)‖αg(y)dy 6 C1

∫
〈(∇g)(y), v(y)〉dy + C2
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with constants C1 and C2 independent of g and ω. Let us take a g supported on

B(0, 2r) with
∫ (‖∇g‖

g

)α′

g(y)dy = C3(r) < ∞ and g(y) > c(r) > 0 on B(0, r).

Then an application of Young’s inequality yields
∫

‖v(y)‖αg(y)dy 6 C1

∫ 〈
(∇g)(y)

g(y)
, v(y)

〉
g(y)dy + C2

6
1

2

∫
‖v(y)‖αg(y)dy + C4(r),

providing us with a uniform estimate∫

B(0,r)

‖v(y)‖αdy 6 C(r).

Since replacing g(y) by g(x − y) does not change anything, the estimate is uniform

in x (which is the same as being uniform in ω). �

We now try to improve the Lα(�,P) bound on v, replacing it with a convolution

v̂δ ∈ L∞(�,P). The proof of Lemma 6.2 below is straightforward and omitted.

LEMMA 6.2 Let us define the convolution

(6.4) vδ(ω) =
∫
v(τδy ω)ρ(y)dy

where ρ(y) is a mollifier supported on ‖y‖ 6 1. Then vδ satisfies

‖vδ‖∞ 6 Cδ

for some constant Cδ. If we now define

(6.5) Vδ(x) =
∫

V (x + δy)ρ(y)dy

as the corresponding convolution of V , then ∇Vδ = vδ and

‖Vδ(0, ω)‖∞ 6 Cδ

with a possibly different Cδ. Moreover, by the ergodic theorem for any δ > 0 and

ℓ < ∞,

lim
ε→0

ε sup
|x |6ℓ

|Vδ(ε−1x, ω)| = 0 a.e. P.

Under (H3) one can use the mollified functions Vδ for comparison.

LEMMA 6.3 Assume the strong hypothesis (H3). Then for each δ > 0, there exists

a smooth v̂δ that is uniformly bounded in ω, satisfies ∇ × v̂δ = 0, E[v̂δ] = 0, and

1

2
∇ · v̂δ + H(θ + v̂δ, ω) 6 H(θ)+ ν̂(δ),

where ν̂(δ) → 0 as δ → 0.
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PROOF: We start with the convolution vδ as in (6.4). Clearly,

1

2
∇ · vδ +

∫
H(θ + v(τδyω), τδyω)ρ(y)dy 6 H(θ),

and (2.7) allows us to conclude that

1

2
∇ · vδ + (1 + ν(δ))

∫
H((1 + ν(δ))−1(θ + v(τδyω)), ω)ρ(y)dy

6 H(θ)+ Cν(δ).

The convexity of H can now be used to infer that v̂δ = vδ/(1 + ν(δ)) satisfies

1

2
∇ · v̂δ + H((1 + ν(δ))−1θ + v̂δ, ω) 6 (1 + ν(δ))−1(H(θ)+ Cν(δ)).

We can replace θ by (1 + ν(δ))θ and use the continuity of H , which is a convex

function of θ . �

Next we prove a technical lemma that will allow us to use vδ and Vδ and avoid

dealing with weak supersolutions in the comparison arguments that follow.

LEMMA 6.4 Assume (H1) and (H2). Let θ ∈ R
d and λ ∈ R be such that there

exists a mean zero irrotational vector field v ∈ Lα(�), which is a weak solution of

1

2
(∇ · v)(ω)+ H(θ + v(ω), ω) 6 λ.

Denote by V its integral normalized by the condition V (0, ω) = 0 ω-a.s. Let c ∈ C,

x(t) = x +
∫ t

0

c(s, x(s))ds + β(t), ξ(t) =
∫ t

0

L(c(s, x(s)), τx(s)ω)ds.

Then there exists rc(δ) → 0 as δ → 0, which depends only on the bound of c ∈ C,

such that

〈θ, x(t)− x〉 − tλ− ξ(t)

6 Vδ(x, ω)− Vδ(x(t), ω)+
∫ t

0

〈θ + vδ(τx(s)ω), dβ(s)〉 + rc(δ)t.

PROOF: Applying Itô’s formula to Vδ(x, ω)+ 〈θ, x〉, we get

Vδ(x(t), ω)− Vδ(x, ω)+ 〈θ, x(t)− x〉

=
∫ t

0

〈θ + vδ(τx(s)ω), c(s, x(s))〉 + 1

2
∇ · vδ(τx(s)ω)ds

+
∫ t

0

〈θ + vδ(τx(s)ω), dβ(s)〉.

(6.6)

From the relationship between H and L it is obvious that for all c and p

〈p, c〉 6 H(p, ω)+ L(c, ω).
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Thus, for every x ∈ R
d ,

〈θ + vδ(τxω), c(s, x)〉

=
∫

Rd

〈θ + v(τyω), c(s, x)〉ρδ(x − y)dy

6

∫

Rd

(L(c(s, x), τyω)+ H(θ + v(τyω), τyω))ρδ(x − y)dy.

(6.7)

Substituting this into (6.6) and using (6.3), we obtain

Vδ(x(t), ω)− Vδ(x, ω)+ 〈θ, x(t)− x〉

6 tλ+
∫ t

0

∫

Rd

L(c(s, x(s)), τyω)ρδ(x(s)− y)dy ds

+
∫ t

0

〈θ + vδ(τx(s)ω), dβ(s)〉.

Rearranging the terms and subtracting ξ(t) from both sides, we arrive at the in-

equality

〈θ, x(t)− x〉 − tλ− ξ(t)

6 Vδ(x, ω)− Vδ(x(t), ω)+
∫ t

0

〈θ + vδ(τx(s)ω), dβ(s)〉

+
∫ t

0

∫

Rd

(
L(c(s, x(s)), τyω)− L(c(s, x(s)), τx(s)ω)

)
ρδ(x(s)− y)dy ds.

Since the drift c is bounded and L satisfies (H2), the last term is bounded in abso-

lute value by rc(δ)t where

rc(δ) = sup
‖q‖6‖c( · ,· )‖∞

sup
ω

sup
‖y‖6δ

|L(q, τyω)− L(q, ω)|

tends to 0 as δ → 0. �

As the first application, we obtain an upper bound at x = 0 for affine initial data

under weak assumptions (H1) and (H2). We will need the following elementary

fact, which we state as a lemma:

LEMMA 6.5 Let g ∈ L1
loc(R

d) and 1
2
1g 6 C in the sense of distributions. Then

there exists g∗, a lower semicontinuous modification of g, such that for every δ > 0

g∗(x) > gδ(x)− C

d
δ2 for all x ∈ R

d .
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PROOF: It is a standard fact for C = 0. Subtracting a quadratic function from

g leads to the above result. �

Remark 6.6. Below when we refer to V or Vε, we shall always mean a lower

semicontinuous modification given by Lemma 6.5 and will not use the subscript ∗.

THEOREM 6.7 Assume (H1) and (H2). Let θ ∈ R
d and λ ∈ R be as in Lemma 6.4.

Let uε(t, x, ω) be the solution of (1.1) with the initial condition f (x) = 〈θ, x〉.
Then with probability 1

lim sup
ε→0

uε(t, 0, ω) 6 tλ.

PROOF: Let V be as in Lemma 6.4 and Vδ be given by (6.5). Set Vδ,ε(x, ω) =
εVδ(x/ε, ω). Using Lemma 6.4 with x = 0, rescaling, and taking the expectation

with respect to Q
ε,c
0 , we get

(6.8) E Q
ε,c
0 (〈θ, x(t)〉 − ξε(t)) 6 tλ− E Q

ε,c
0 Vδ,ε(x(t), ω)+ Vδ,ε(0, ω)+ rc(δ)t

where rc(δ) → 0 as δ → 0 for each c ∈ C.

We claim that with P probability 1

(6.9) lim
δ→0

E Q
ε,c
0 |Vδ,ε(x(t), ω)− Vε(x(t), ω)| = 0.

Let pε,c(t, y) be the probability density of x(t) under Q
ε,c
0 . Then

E Q
ε,c
0 |Vδ,ε(x(t), ω)− Vε(x(t), ω)| =

∫

Rd

|Vδ,ε(y, ω)− Vε(y, ω)|pε,c(t, y)dy.

Since c is bounded and ε > 0, pε,c(t, x, y) has sufficient regularity and decay to

imply (6.9) in view of (6.2). This allows us to pass to the limit as δ → 0 in (6.8)

for each ε > 0 and obtain

E Q
ε,c
0 (〈θ, x(t)〉 − ξε(t)) 6 tλ− E Q

ε,c
0 Vε(x(t), ω)+ Vε(0, ω).

Recalling that Vε(0, ω) = 0 a.s. and applying the lower bound of Lemma 6.5 to Vε,

we see that for every δ > 0

E Q
ε,c
0 (〈θ, x(t)〉 − ξε(t)) 6 tλ− E Q

ε,c
0 Vδ,ε(x(t), ω)+ C

d
εδ2.

From the variational formula and the above inequality, we get

uε(t, 0, ω) 6 tλ− inf
c∈C∗

E Q
ε,c
0 Vδ,ε(x(t), ω)+ C

d
εδ2.

By Lemma 6.2, Vδ(x, ω) has a bounded gradient. Then by the ergodic the-

orem Vδ(x, ω) is sublinear: for every η > 0 there is a constant Cη,δ such that

|Vδ(x, ω)| 6 η‖x‖ + Cη,δ for all x and a.e. ω. After the rescaling we get

|Vδ,ε(x, ω)| 6 η‖x‖ + εCη,δ.

This inequality and Lemma 4.1 (see also (7.1) below) imply the desired statement

when we let ε → 0, then δ → 0, and finally η → 0. �
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By (6.3) we can choose λ = H(θ). Using Theorem 6.7 and the already proved

general lower bound, we obtain the homogenization result for affine initial data at

x = 0.

COROLLARY 6.8 Assume (H1) and (H2). Let uε(t, x, ω) be the solution of (1.1)

with the initial condition f (x) = 〈θ, x〉. Then with probability 1

lim sup
ε→0

uε(t, 0, ω) = t H(θ).

The following obvious corollary will be used in the next section:

COROLLARY 6.9 Let θ ∈ R
d and λ ∈ R admit a v as in Lemma 6.4. Then

H(θ) 6 λ.

7 Proof of Theorem 2.2

We are now ready to proceed with the proof of Theorem 2.2. Let us recall the

formula

uε(t, x, ω) = sup
c∈C

E Q
ε,c
x [ f (x(t))− ξε(t)],

where

ξε(t) =
∫ t

0

L
(
(c(ε−1s, ε−1x(s)), τε−1x(s)ω

)
ds

and Qε,c
x is the diffusion process on C([0, T ]; R

d) corresponding to the generator

ε

2
1+ c(ε−1s, ε−1x) · ∇

starting at time 0 from x ∈ R
d so that almost surely with respect to Qε,c

x

xε(t) = x(t) = x +
∫ t

0

c(ε−1s, ε−1x(s))ds +
√
εβ(t),

β(·) being the standard Brownian motion on R
d .

The following steps require only assumptions (H1), (H2), and (H6).

Step 1. As we saw in Lemma 4.1, the supremum in the variational formula (3.4)

can be restricted to the set C∗ that consists of all controls c ∈ C that satisfy condition

(4.1). Observe that ‖xε(t)‖ and therefore f (xε(t)) is uniformly integrable with

respect to {Qε,c
x : ‖x‖ 6 ℓ, 0 6 t 6 T, 0 < ε 6 1, c ∈ C∗}, and

(7.1) sup
‖x‖6ℓ

sup
06t6T

sup
c∈C∗

sup
0<ε61

E Q
ε,c
x [‖xε(t)‖ + |ξε(t)|] < ∞.

This is a simple consequence of Lemma 4.1 and inequalities (4.5) and (4.6).

Step 2. For any δ > 0, we can find Mδ such that

uε(t, x, ω)− u(t, x)

= sup
c∈C∗

E Q
ε,c
x ( f (xε(t))− ξε(t))− sup

y∈Rd

[
f (y)− tI

(
y − x

t

)]
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6 sup
c∈C∗

E Q
ε,c
x

[[
tI

(
xε(t)− x

t

)
− ξε(t)

]
1‖xε(t)‖6Mδ

]
+ δ

= sup
c∈C∗

E Q
ε,c
x

[(
t sup
θ∈Rd

(〈
θ,

xε(t)− x

t

〉
− H(θ)

)
− ξε(t)

)
1‖xε(t)‖6Mδ

]
+ δ.

Note that according to (2.16),

H(θ) > c1‖θ‖α − c2.

The above estimate together with estimate (7.1) ensures that large values of θ will

not matter. In view of the continuity of H , it suffices to show that for each fixed

θ ∈ R
d , ℓ, T, η > 0,

(7.2) lim
ε→0

sup
c∈C∗

sup
‖x‖6ℓ

sup
06t6T

Qε,c
x

{
〈θ, xε(t)− x〉 − t H(θ)− ξε(t) > η

}
= 0.

Here we are using the facts that ξε(t) is bounded below uniformly in ε and that the

family {‖xε‖} is uniformly integrable.

PROOF OF THEOREM 2.2 ASSUMING (H3): According to Lemma 6.3, for any

θ ∈ R
d and δ > 0, there is a uniformly bounded vector field v̂δ that is a potential

gradient. Let Vδ(x, ω) be its integral as in Lemma 6.2. Then there exists a set N

with P(N ) = 1 such that for ω ∈ N , Vδ,ε(x, ω) = εVδ(ε
−1x, ω) satisfies

lim
ε→0

sup
‖x‖6ℓ

|Vδ,ε(x, ω)| = 0,(7.3)

sup
0<ε61

|Vδ,ε(x, ω)| 6 Mδ‖x‖,(7.4)

for some constant Mδ. Applying Itô’s formula to Vδ,ε, a.e. with respect to Qε,c
x , we

have

Vδ,ε(x(t), ω)− Vδ,ε(x(0), ω)

=
∫ t

0

1

2
(∇ · v̂δ)(ε−1x(s), ω)ds +

∫ t

0

〈c(ε−1s, ε−1x(s)), v̂δ(ε
−1x(s), ω)〉ds

+
√
ε

∫ t

0

〈v̂δ(ε−1x(s), ω), dβ(s)〉.

Here and below, we simply write x(t) for xε(t). From (3.5) we also have

〈θ, x(t)− x〉 =
∫ t

0

〈θ, c(ε−1s, ε−1x(s))〉ds +
√
ε〈θ, β(t)〉.

Adding the two, noticing that 〈c, p〉 6 H(p, ω)+L(c, ω), and using the inequality

of Lemma 6.3, we obtain

Vδ,ε(x(t), ω)− Vδ,ε(x(0), ω)+ 〈θ, x(t)− x〉

6 [H(θ)+ ν̂(δ)] t + ξε(t)+
√
ε

∫ t

0

〈θ + v̂δ(ε
−1x(s), ω), dβ(s)〉.



HOMOGENIZATION OF H-J-B EQUATIONS 25

Since we consider only c ∈ C∗, the family {‖xε(t)‖} is uniformly integrable. This

together with (7.3) and (7.4) imply

lim
ε→0

sup
c∈C∗

sup
‖x‖6ℓ

sup
06t6T

Qε,c
x

[
|Vδ,ε(x(t))− Vδ,ε(x)| > η

]
= 0.

Since v̂δ ∈ L∞(�,P),

(7.5) lim
ε→0

sup
c∈C∗

sup
‖x‖6ℓ

sup
06t6T

Qε,c
x

[√
ε

∣∣∣∣
∫ t

0

〈θ + v̂δ(ε
−1x(s), ω), dβ(s)〉

∣∣∣∣ > η

]
= 0.

From limδ→0 ν̂(δ) = 0 and the last three inequalities, we obtain

lim
ε→0

sup
c∈C∗

sup
‖x‖6ℓ

sup
06t6T

Qε,c
x

[
〈θ, x(t)− x〉 − ξε(t)− t H(θ) > η

]
= 0,

thereby completing the proof of Theorem 2.2 assuming (H3). �

The main problem in the absence of assumption (H3) is that we cannot reg-

ularize v to get a bounded vδ that still satisfies the inequality of Lemma 6.3. In

the absence of regularization, one cannot get a bound ‖∇v‖∞, which is needed to

control the stochastic integral term (7.5) as well as to obtain the uniformity in the

ergodic theorem. This is handled differently in the two cases depending on whether

(H4) or (H5) is assumed.

PROOF OF THEOREM 2.2 ASSUMING (H4): In this case since v ∈ Lα(P) with

α > d, one uses Sobolev’s imbedding to control the ‖V ‖∞ locally and then mar-

tingale theory to control, also locally, the quadratic variation

E Q
ε,c
x

[ ∫ τ

0

‖v(ε−1x(s))‖2 ds

]

for a suitable stopping time τ .

Recall v(x, ω) = v(τxω). Since v( · , ω) ∈ Lαloc(R
d) for almost all ω, Sobolev’s

imbedding theorem gives us an almost surely continuous choice of V (x, ω) that

can be normalized so that V (0, ω) = 0 for P-a.e. ω.

Step 1. Let τε,a = inf{t > 0 : ξε(t) > a}, τ̂ε,b = inf{t > 0 : ‖xε(t) − x‖ >

b}, and σ = σ(ε, a, b) = τε,a ∧ τ̂ε,b. Then an argument similar to the proof of

Lemma 4.1 shows that for sufficiently large a and b

lim
ε→0

sup
c∈C∗

sup
‖x‖6ℓ

sup
06t6T

Qε,c
x

{
〈θ, x(t)− x〉 − H(θ)t − ξε(t) > η

}

= lim
ε→0

sup
c∈C∗

sup
‖x‖6ℓ

sup
06t6T

Qε,c
x

{
〈θ, x(t)− x〉 − H(θ)t − ξε(t) > η; σ > t

}
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Let Vδ,ε(x, ω) = εVδ(x/ε, ω). Recalling definitions (3.5) and (3.6) and applying

the rescaled version of Lemma 6.4, we get for each c ∈ C and ε > 0

〈θ, x(t)− x〉 − t H(θ)− ξε(t)

6 Vδ,ε(x, ω)− Vδ,ε(x(t), ω)

+
√
ε

∫ t

0

〈θ + vδ(τε−1x(s)ω), dβ(s)〉 + rc(δ)t

(7.6)

where rc(δ) → 0 as δ → 0 for each c ∈ C. An application of Itô’s formula gives

√
ε

∫ t

0

〈vδ(τx(s)ω), dβ(s)〉

= Vδ,ε(x(t), ω)− Vδ,ε(x, ω)

−
∫ t

0

ε

2
∇ · vδ(τε−1x(s)ω)+ 〈c(s, x(s)), vδ(τε−1x(s)ω)〉 ds.

(7.7)

Substituting this into (7.6) we obtain, almost surely with respect to Qε,c
x ,

〈θ, x(t)− x〉 − t H(θ)− ξε(t)

6
√
ε〈θ, β(t)〉

−
∫ t

0

ε

2
∇ · vδ(τε−1x(s)ω)+ 〈c(s, x(s)), vδ(τε−1x(s)ω)〉ds + rc(δ)t.

Setting

Fδ,ε(s, x, ω) = ε

2
∇ · vδ(τε−1xω)+ 〈c(s, x), vδ(τε−1xω)〉,

we observe that it is enough to show that for almost all ω

(7.8) lim
ε→0

sup
c∈C∗

sup
‖x‖6ℓ

sup
06t6T

lim sup
δ→0

E Q
ε,c
x

(∫ t∧σ

0

Fδ,ε(s, x(s), ω)ds

)2

= 0.

Step 2. Below we shall write Ex instead of E Q
ε,c
x and also drop ω from the

notation. Rewriting the square of the integral as twice the time-ordered double

integral, we get

Ex

( ∫ t∧σ

0

Fδ,ε(s, x(s))ds

)2

= 2Ex

∫ t∧σ

0

Fδ,ε(s, x(s))

(∫ t∧σ

s

Fδ,ε(u, x(u))du

)
ds.

After conditioning on the σ -algebra up to time s and using (7.7), we see that the

last integral is equal to

2Ex

∫ t∧σ

0

Fδ,ε(s, x(s))Ex(s)

(
Vδ,ε(x(t ∧ σ))− Vδ,ε(x(s))

)
ds.
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Thus, for all starting points x with ‖x‖ 6 ℓ

Ex

[ ∫ t∧σ

0

Fδ,ε(s, x(s))ds

]2

6 4 sup
‖x‖6b+ℓ

|Vδ,ε(x)|Ex

∫ t∧σ

0

|Fδ,ε(s, x(s))|ds

= 4 sup
‖x‖6b+ℓ

|Vδ,ε(x)|
[

2Ex

∫ t∧σ

0

[Fδ,ε(s, x(s))]+ ds

− Ex

∫ t∧σ

0

Fδ,ε(s, x(s))ds

]

6 8 sup
‖x‖6b+ℓ

|Vδ,ε(x)|
[

Ex

∫ t∧σ

0

[Fδ,ε(s, x(s))]+ ds + sup
‖x‖6b+ℓ

|Vδ,ε(x)|
]
.

Step 3. Only now we use the assumption α > d. Sobolev’s imbedding theorem

and Lemma 6.1 imply that for almost all ω, the function V satisfies

|V (x, ω)− V (y, ω)| 6 C(‖x − y‖),
where C(r) → 0 as r → 0 and C(r) 6 Cr for r > 1. By the uniform continuity

and the ergodic theorem there is a set N ⊂ � with P(N ) = 1 such that for all

ω ∈ N

lim
ε→0

lim
δ→0

Vδ,ε(x, ω) = 0

uniformly on bounded subsets of R
d . Thus, a bound on

Ex

∫ t∧σ

0

[Fδ,ε(s, x(s))]+ ds

will complete the proof. From the definition of Fδ,ε, the rescaled versions of (6.7)

and (6.3), and the weak regularity of L , we obtain

Ex

∫ t∧σ

0

[Fδ,ε(s, x)]+ ds 6 Ex

∫ t∧σ

0

[
H(θ)+ L(ε−1s, ε−1x(s)), τε−1x(s)ω)

− 〈θ, c(ε−1s, ε−1x(s))〉 + rc(δ)
]
+ ds

as δ → 0. Lemma 4.1 implies the desired bound (7.8) and finishes the proof. �

Finally, we turn to the proof of Theorem 2.2 under assumptions (H1), (H2), and

(H5). First we prove almost sure weak convergence of uε(t, x, ω) to u(t, x). Look-

ing at (7.6) we observe that the main problem is getting a control on the martingale

term. The idea of the proof is to perturb the Hamiltonian H by replacing it with

H γ (p, ω) = H(p, ω) + γ ‖p‖2 with small γ > 0 and then using the “leftover”

quadratic term to control the martingale by means of the following lemma (see, for

example, section 2.3 of [14]).
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LEMMA 7.1 Let z be a nonanticipating Brownian functional such that

P

[ ∫ t

0

z2 dt < ∞, t > 0

]
= 1.

Then

P

[
sup
t>0

(∫ t

0

z dβ − a

2

∫ t

0

z2 ds

)
> b

]
6 e−ab.

After passing to the limit as ε → 0 we would let γ → 0. Assumption (H5) will

assure that the new effective Hamiltonian H
γ

decreases to H
0 = H as γ ↓ 0.

LEMMA 7.2 For any θ ∈ R
d

lim
γ→0

H
γ
(θ) = H(θ).

PROOF: Obviously, H
γ1

> H
γ2

for γ1 > γ2 > 0 and limγ→0 H
γ
(θ) > H(θ).

We need to prove that limγ→0 H
γ
(θ) 6 H(θ).

Fix θ ∈ R
d and apply Theorem 5.2 to get the gradient v of a supersolution

corresponding to θ/(1 − δ). Then the function ψ = (1 − δ)v satisfies

1

2
(∇ · ψ)(ω)+ (1 − δ)H

(
θ + ψ(ω)

1 − δ
, ω

)
6 (1 − δ)H

(
θ

1 − δ

)
.

From (H5) we get

(1 − δ)H

(
θ + p

1 − δ
, ω

)
> H(θ + p, ω)+ γ (δ)‖θ + p‖2 − C(δ).

Then for all 0 6 γ 6 γ (δ)

(7.9)
1

2
(∇ · ψ)(ω)+ H γ (θ + ψ(ω), ω) 6 (1 − δ)H

(
θ

1 − δ

)
+ C(δ).

Using Corollary 6.9 with

λ = (1 − δ)H

(
θ

1 − δ

)
+ C(δ)

and H(θ) replaced by H
γ
(θ), we obtain the estimate

H
γ
(θ) 6 (1 − δ)H

(
θ

1 − δ

)
+ C(δ).

Finally, we let γ → 0 and then δ → 0. �
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Let vδ and Vδ be convolutions with a mollification kernel ρδ(x) = δ−dρ(x/δ)

as in Lemma 6.2.

PROOF OF OF THEOREM 2.2 UNDER (H5): The proof in this case involves sev-

eral steps.

Step 1. Recall that Qc
x denotes the law of a diffusion with drift c that starts

from a point x . Let us write Qc
ϕ for the law of the same diffusion when the initial

position is distributed according to a probability measure with a density ϕ. We

start with H γ (p, ω) = H(p, ω)+γ ‖p‖2 and construct the corresponding vγ using

Theorem 5.2. We have that E vγ = 0, ∇ × vγ = 0, and

1

2
∇ · vγ + H(θ + vγ , ω)+ γ ‖vγ ‖2

6 H
γ
(θ).

Then we define V γ as in (6.1) so that V γ ∈ Lαloc(R
d), ∇V γ = vγ , and V γ (0, ω) =

0 for P-a.e. ω. They are then smoothed to obtain V
γ

δ satisfying ∇V
γ

δ = v
γ

δ and

V
γ

δ (x) =
∫

V γ (x + δy, ω)ρ(y)dy. Let c ∈ C. Then by Itô’s formula,for P-a.e. ω

and Qc
ϕ-a.e. path x(·)

V
γ

δ ((x(t))− V
γ

δ (x(0))+ 〈θ, x(t)− x(0)〉

=
∫ t

0

(
1

2
∇ · vγδ + c · (θ + v

γ

δ )

)
(s, x(s))ds +

∫ t

0

〈(vγδ ((x(s))+ θ), dβ(s)〉.

We add γ
∫ t

0
‖θ + v

γ

δ ‖2 ds to both sides and use the inequality

〈c, p〉 6 L(c, ω)+ H γ (p, ω)− γ ‖p‖2

to obtain

〈θ, x(t)− x(0)〉 + γ

∫ t

0

‖θ + v
γ

δ (x(s))‖2 ds

−
∫ t

0

L(c(s, x(s)), τx(s)ω)ds − t H
γ
(θ)

6 −V
γ

δ ((x(t))+ V
γ

δ (x(0))+
∫ t

0

〈vγδ (x(s))+ θ, dβ(s)〉 + rc(δ)t,
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Qc
ϕ-a.e. as in Lemma 6.4. If the initial distribution of x(0) were given by a nice

density ϕ(x)dx , then since t and c ∈ C are fixed, we could let δ → 0 to arrive at

〈θ, x(t)− x(0)〉 −
∫ t

0

L(c(s, x(s)), τx(s)ω)ds − t H
γ
(θ)

6 −V γ ((x(t))+ V γ (x(0))+
∫ t

0

〈vγ (x(s))+ θ, dβ(s)〉

− γ

∫ t

0

‖θ + vγ (x(s))‖2 ds

a.e. Qc
ϕ .

We can now use Lemma 6.5 to replace V γ (x(t)) by V
γ

δ (x(t)):

〈θ, x(t)− x(0)〉 −
∫ t

0

L(c(s, x(s)), τx(s)ω)ds − t H
γ
(θ)

6 −V
γ

δ ((x(t))+ V γ (x(0))+
∫ t

0

〈vγ (x(s))+ θ, dβ(s)〉

− γ

∫ t

0

‖θ + vγ (x(s))‖2 ds + Cδ2

a.e. Qc
ϕ . Now we rescale and let ε → 0, allowing arbitrary choices for c = cε ∈ C∗

and suitable choices of ϕ = ϕε. In fact, the choices of cε will be limited to those

that satisfy

E Q
cε
ϕ

[
γ

∫ t

0

‖θ + vγ (x(s))‖2 ds

]
6 Ct

for some C independent of ε. By the ergodic theorem, εV
γ

δ (x(ε
−1t)) → 0. By

Lemma 7.1 the stochastic integral term goes to 0. If the choice of ϕε(y) is of the

form ϕ(xε − y), with fixed ϕ and εxε → x , then the ergodic theorem again can be

used to show that

lim
ε→0

E Q
cε
ϕε [ε|V γ (x(0))|] = 0.

Now one can see that with probability 1

(7.10) lim
ε→0

sup
06t6T

sup
|x |6ℓ

∣∣∣∣
∫

uε(t, x + εy, ω)ϕ(y)dy − u(t, x)

∣∣∣∣ = 0.

Step 2. By (H5) the function L satisfies

L(q, ω) 6 c3‖q‖α′ + c4

with α′ < 2. Then it is possible to pick c( · , · ) : [0, t] × R
d → R

d such that the

process Qc
x is the Brownian bridge from x to y with Qc

x [x(t) = y] = 1. For a

Brownian bridge the choice of c is

c(s, x) = y − x

t − s
.
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Since

x(s) =
(

1 − s

t

)
x + s

t
y + β(s)− s

t
β(t), 0 6 s 6 t,

we have that

c(s, x(s)) = y − x(s)

t − s
= y − x

t
+ β(t)− β(s)

t − s
− β(t)

t

and

‖c(s, x(s))‖α′
6 A

∥∥∥∥
y − x

t

∥∥∥∥
α′

+ A

∥∥∥∥
β(t)− β(s)

t − s

∥∥∥∥
α′

+ A

∥∥∥∥
β(t)

t

∥∥∥∥
α′

with A = 3α
′−1. Computing the expected value, we get

E Qc
x ‖c(s, x(s))‖α′

6 A

∥∥∥∥
y − x

t

∥∥∥∥
α′

+ B

(t − s)α
′/2

+ B

tα
′/2
.

For α′ < 2 the integration from 0 to t gives

E Qc
x

[ ∫ t

0

‖c(s, x)‖α′
ds

]
6 At

∥∥∥∥
|x − y|

t

∥∥∥∥
α′

+ Ct1−α′/2 < ∞,

providing the following lower bound for vε(t, x, ω), the solution of (3.1):

vε(t, x, ω) > sup
y

[
1

ε
f (εy)− At

∥∥∥∥
|x − y|

t

∥∥∥∥
α′

− Ct1−α′/2 − c4t

]
.

Recalling that uε(t, x, ω) = εvε(t/ε, x/ε, ω), we obtain

uε(t, x, ω) > sup
y

[
f (εy)− At

∥∥∥∥
|x − εy|

t

∥∥∥∥
α′

− εC

(
t

ε

)1−α′/2

− c4t

]

= sup
y

[
f (y)− At

∥∥∥∥
|x − y|

t

∥∥∥∥
α′

− Cεα
′/2t1−α′/2 − c4t

]
.

Combining the above estimate with the semigroup property, we arrive at

(7.11) uε(t+h, x, ω) > sup
y

[
uε(t, y, ω)−Ah1−α′‖x−y‖α′−Cεα

′/2h1−α′/2−c4h
]
.

Step 3. It follows from (7.10) that uniformly for (t, x) ∈ [0, T ]×{x : ‖x‖ 6 ℓ}
and 0 6 h 6 1

lim sup
ε→0

inf
y:‖y−x‖6ε

uε(t + h, y, ω) 6 u(t + h, x).

Then from (7.11) we obtain

inf
y:‖y−x‖6ε

uε(t + h, y, ω) > uε(t, x, ω)− Ah1−α′
εα

′ − Cεα
′/2 − c4h.

The above two inequalities imply the estimate

lim sup
ε→0

uε(t, x, ω) 6 u(t + h, x)+ c4h
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uniformly for (t, x) ∈ [0, t) × {x : ‖x‖ 6 ℓ}. Since u(t, x) is given explicitly by

(2.14), one can now let h → 0 and obtain the upper bound. �

Remark 7.3. If (H5) holds with α = 2, then we only get (7.10). This, of course,

implies local L p convergence of uε to u.

Remark 7.4. In the absence of (H3), (H4), and (H5), one cannot control the stochas-

tic integral, and one can only prove (7.10) for linear f . If α > 2, this convergence

can be improved to locally uniform convergence, as we have shown above.
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