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STOCHASTIC HOMOGENIZATION

OF VISCOUS HAMILTON–JACOBI EQUATIONS AND APPLICATIONS

SCOTT N. ARMSTRONG AND HUNG V. TRAN

We present stochastic homogenization results for viscous Hamilton–Jacobi equations using a new argument

that is based only on the subadditive structure of maximal subsolutions (i.e., solutions of the “metric

problem”). This permits us to give qualitative homogenization results under very general hypotheses: in

particular, we treat nonuniformly coercive Hamiltonians that satisfy instead a weaker averaging condition.

As an application, we derive a general quenched large deviation principle for diffusions in random

environments and with absorbing random potentials.

1. Introduction

1A. Motivation and informal summary of results. In this paper, we consider the qualitative stochastic

homogenization of second-order, “viscous” Hamilton–Jacobi equations. We present a new, short and

self-contained argument that yields homogenization under very general and essentially optimal hypotheses.

Our framework includes a class of equations for which the homogenization result has an equivalent

formulation in probabilistic terms as a quenched large deviation principle (LDP) for diffusions in random

environments (and/or with random obstacles), and so a corollary of our analysis is a very general LDP for

such problems that generalizes many previous results on the topic.

In its time-dependent form, the viscous Hamilton–Jacobi equation we consider is

uεt − ε tr
(

A
(

x

ε

)
D2uε

)
+ H

(
Duε,

x

ε

)
= 0 in R

d × (0,∞). (1-1)

Here Dφ and D2φ denote the gradient and Hessian of a real-valued function φ, and tr B is the trace

of a d-by-d matrix B. The coefficients A and H are called the diffusion matrix and the Hamiltonian,

respectively, and are assumed to be stationary-ergodic random fields. That is, they are randomly selected

from the set of all such equations by an underlying probability measure that is stationary and ergodic

with respect to Rd-translations. The essential structural hypotheses on the coefficients are that A takes

values in the nonnegative definite matrices (and in particular may be degenerate or even vanish) and H

is convex and growing superlinearly in its first variable. See below for some important examples of the

equations that fit into our framework.

The presence of the ε factor in the diffusion term of (1-1) gives the equation a critical scaling, and it

turns out that it behaves like a first-order Hamilton–Jacobi equation in the limit ε→ 0. Indeed, rather
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than providing any useful regularizing effect, the diffusion term actually makes the analysis more difficult

compared to the pure first-order case by destroying localization effects (such as the finite speed of

propagation). Also notice that, while we choose to write the principal part of (1-1) in nondivergence form,

thanks to the scaling of the equation, our study also covers the case of equations with principal part in

divergence form. Indeed, we may rewrite an equation with principal part divergence form, at least in the

case that the diffusion matrix is sufficiently smooth (on the microscopic scale) in the form of (1-1) by

simply expanding out the divergence, observing that the ε’s cancel, and absorbing the new first-order

drift term into the Hamiltonian.

The archetypical result of almost-sure, qualitative homogenization for (1-1) is that there exists a

deterministic, constant-coefficient equation

ut + H(Du)= 0 in R
d × (0,∞) (1-2)

such that, subject to an appropriate initial condition, uε converges locally uniformly, as ε→ 0 and with

probability one, to the solution u of (1-2). The nonlinearity H , called the effective Hamiltonian, depends

on P but is a deterministic quantity. It inherits convexity and superlinearity from the heterogeneous

Hamiltonian. Its fine qualitative properties encode information regarding the behavior of solutions of the

heterogeneous equation (1-1). In the particular case corresponding to quenched large deviation principles

for diffusions in random environments, H is, up to a constant, the Legendre–Fenchel transform of the

rate function (see below for more details).

The first qualitative homogenization results of this type for second-order equations, asserting that (1-1)

homogenizes to a limiting equation of the form of (1-2), were proved independently by Kosygina, Reza-

khanlou and Varadhan [Kosygina et al. 2006] and Lions and Souganidis [2005]. Earlier homogenization

results for first-order equations (i.e., A ≡ 0) in the random setting are due to Souganidis [1999] and

Rezakhanlou and Tarver [2000], and subsequent work can be found in [Armstrong and Souganidis 2012;

Lions and Souganidis 2010]. We also refer the reader to the nice survey article of Kosygina [2007].

In this paper, we present a new proof of homogenization that applies to a wider class of equations. The

idea is to apply the subadditive ergodic theorem to certain maximal subsolutions (these are the functions mµ

in Section 2), thereby obtaining a deterministic limit (which we denote mµ) and hence a candidate for H

(by the formula (3-2)) and then recovering the full homogenization result by deterministic comparison

arguments (presented in Sections 4 and 5). The approach is simple and more or less self-contained

(the reader may consult our recent paper [Armstrong and Tran 2014] for the necessary deterministic

PDE theory) and yields a very general qualitative homogenization theorem under essentially optimal

hypotheses. In addition to recovering all of the known cases, including the results mentioned above, we

can also treat for the first time general Hamiltonians that are not necessarily uniformly coercive. An

essential characteristic of (1-1) is that p 7→ H(p, y) exhibits superlinear growth in p, and this is typically

assumed to be uniform in x . Here we can handle Hamiltonians satisfying an averaged coercivity condition

that is not uniform in x .

The most important feature of the method is that, unlike previous approaches, our proof of homogeni-

zation is quantifiable, as demonstrated in [Armstrong and Cardaliaguet 2015]. Much recent effort has been
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put into obtaining quantitative stochastic homogenization results, for example, estimates for the difference

uε − u, rigorous bounds for numerical methods for computing effective coefficients and so on. For first-

order Hamilton–Jacobi equations, quantitative stochastic homogenization results were recently obtained

by Armstrong, Cardaliaguet and Souganidis [Armstrong et al. 2014], who quantified the convergence

proof in [Armstrong and Souganidis 2013]. Unfortunately, the method of this last paper is not applicable

in the viscous case without new ideas, as the presence of the diffusion term generates significant additional

difficulties. From this point of view, the results in this paper can be considered as the completion of the

idea that originated in [Armstrong and Souganidis 2013].

1B. Statement of the main results. We begin by defining “the set of all equations” by specifying some

structural conditions on the coefficients. We work with parameters q > 1, n ∈ N, 31 ≥ 1 and 32 ≥ 0,

which are fixed throughout the paper.

We require the coefficients to be functions A : Rd → Sd (here Sd denotes the set of d-by-d real

symmetric matrices) and H : Rd ×Rd → R satisfying the following conditions. First, the diffusion matrix

has a Lipschitz square root. Precisely, we assume that there exists a function σ : Rd → Rn×d such that

A = 1
2
σ tσ,

where σ is bounded and Lipschitz: for every y, z ∈ Rd ,

|σ(y)| ≤32, (1-3)

|σ(y)− σ(z)| ≤32|y − z|. (1-4)

(Here Rn×d is the set of real n-by-d matrices.) Regarding the Hamiltonian, we assume that, for every

y ∈ Rd ,

p 7→ H(p, y) is convex (1-5)

and, for every R > 0, there exist constants 0 < aR ≤ 1 and MR ≥ 1 such that, for every p, p̂ ∈ Rd

and y, z ∈ BR ,

aR|p|q − MR ≤ H(p, y)≤31(|p|q + 1), (1-6)

|H(p, y)− H(p, z)| ≤ (31|p|q + MR)|y − z|, (1-7)

|H(p, y)− H( p̂, y)| ≤31(|p| + | p̂| + 1)q−1|p − p̂|. (1-8)

We define the probability space � to be the set of ordered pairs (σ, H) satisfying the above conditions:

� := {(σ, H) : σ and H satisfy (1-3), (1-4), (1-5), (1-6), (1-7), and (1-8)}.

We may write �=�(q, n,31,32) if we wish to emphasize the dependence of � on the parameters.

We endow the set � with

F := σ -algebra generated by (σ, H) 7→ σ(y) and (σ, H) 7→ H(p, y) with p, y ∈ R
d .

The random environment is modeled by a probability measure P on (�,F). The expectation with

respect to P is denoted by E. We assume that P is stationary and ergodic with respect to the action of Rd
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on� given by translation. To be precise, we let {τz}z∈Rd be the group action of translation on� defined by

τz(σ, H) := (τzσ, τz H), where (τzσ)(y) := σ(y + z) and (τz H)(p, y) := H(p, y + z).

We extend this to F by setting, for every event F ∈ F,

τz F := {τzω : ω ∈ F}.

The stationary-ergodic hypothesis is that

for all y ∈ R
d and F ∈ F, P[τy F] = P[F] (stationarity) (1-9)

and, for all F ∈ F,

⋂

z∈Rd

τz F = F implies that P[F] ∈ {0, 1} (ergodicity). (1-10)

The final assumption we impose on P is a weak coercivity condition: there exists an exponent α > d such

that

E

[(32

a1

)2α/(q−1)

+
( M1

a1

)α/q]
<+∞. (1-11)

It is important to note that 32 ≥ 0 is a constant but 0< a1 ≤ 1 and M1 ≥ 1 are random variables in the

above condition.

Remark 1.1. We emphasize that, in contrast to q, n, 31 and 32, the positive constants aR and MR in

the assumptions (1-6) and (1-7) depend on H itself; that is, they are random variables on �. To make

this precise, for each ω = (σ, H) ∈�, we redefine MR(ω) to be the smallest constant not smaller than 1

for which (1-7) holds in BR; we then redefine aR(ω) to be the largest constant not larger than 1 for

which (1-6) holds in BR . We denote

aR(x, ω) := aR(τxω) and MR(x, ω) := MR(τxω).

We drop the dependence on ω from the notation where possible, e.g., aR(x, ω)= aR(x).

We present our main homogenization result in terms of the initial-value problem

{
uεt − ε tr

(
A
(

x

ε

)
D2uε

)
+ H

(
Duε,

x

ε

)
= 0 in Rd × (0,∞),

uε = g on Rd × {0}.
(1-12)

Here the initial data g is a given element of BUC(Rd), the set of bounded and uniformly continuous real-

valued functions on Rd , and the unknown function uε depends on (x, t) as well as g and the coefficients

ω = (σ, H). We typically write uε(x, t, g, ω) or often simply uε(x, t, g) or uε(x, t). As explained

in Section 5, under our assumptions, the problem (1-12) has a unique viscosity solution (subject to an

appropriate growth condition) almost surely with respect to P. In fact, it is defined by formula (5-2)

below. We remark that all differential equations and inequalities in this paper, including the ones above,

are interpreted in the viscosity sense; see Section 1D.
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In our main result, we identify a continuous, convex H : Rd → R and show that, as ε → 0, the

solutions uε of (1-12) converge, P-almost surely, to the unique solution of
{

ut + H(Du)= 0 in Rd × (0,∞),

u = g on Rd × {0}.
(1-13)

That the latter has a unique solution is a consequence of the properties of H summarized in Lemma 3.1

(see Section 5 for more details).

We now state our main homogenization theorem.

Theorem 1. Let (�,F) be defined as above for fixed constants q > 1 and 31,32 > 0. Suppose that P is

a probability measure on (�,F) satisfying (1-9), (1-10) and (1-11). Then there exists a convex H ∈ C(Rd)

satisfying, for some constants C, c > 0,

c(|p|q − C)≤ H(p)≤ C(|p|q + 1)

with the following property: with uε(x, t, g, ω) defined by (5-2), and denoting by u = u(x, t, g) the unique

solution of (1-13), we have

P

[
∀g ∈ BUC(Rd), ∀R > 0, lim sup

ε→0

sup
(x,t)∈BR×[0,R)

|uε(x, t, g)− u(x, t, g)| = 0
]

= 1.

Let us say a few words regarding the role of the weak coercivity assumption. The first thing to notice

about (1-11) is that a particular case occurs when P is supported on the set of (σ, H) for which H

satisfies (1-6) and (1-7) for constants aR > 0 and MR > 1 that are independent of R. We call this a

uniform coercivity condition, and it is the traditional hypothesis under which homogenization results for

viscous Hamilton–Jacobi equations have been obtained. From the PDE point of view, it is important

because it provides uniform Lipschitz estimates for solutions, which is a starting point for the analysis.

The condition (1-11) can then be seen as a relaxation of the uniform coercivity condition, replacing it by

an averaging condition. We remark that we expect the averaging condition stated here to be optimal in

terms of the range of the exponent α. The result should not hold if we only have (1-11) for α = d .

There are few homogenization results in the random setting without uniform coercivity. Armstrong and

Souganidis [2012] recently proved such a result under a less general averaging condition (essentially (1-11)

with a1 bounded below). They also assumed the random environment satisfied a strong mixing condition

with an algebraic mixing rate assumed to be sufficiently fast, depending on the exponent α. Similar

results stated in probabilistic terms were obtained at about the same time by Rassoul-Agha, Seppäläinen

and Yilmaz [Rassoul-Agha et al. 2013]. In contrast to these results, we do not require any mixing condition

here, merely that the environment be stationary-ergodic.

We next present a model equation that fits into our framework.

Example 1.2. Consider the particular case of the Hamiltonian

H(p, y)= a(y)|p|q − V (y), (1-14)

where q > 1, the functions a and V are stationary-ergodic random fields that are almost surely locally

Lipschitz, V ≥ 0 and a is positive and uniformly Lipschitz on Rd . Assume also that A satisfies the usual
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assumption stated above. This of course fits under our framework since given such a random function H

(together with σ ) we simply take P to be the law of (σ, H). The weak coercivity condition is satisfied in

this case provided that, for some α > d ,

E

[(
1

a(0)

)2α/(q−1)

+

(
‖V ‖C0,1(B1)

a(0)

)α/q]
<+∞.

If the diffusion matrix A vanishes, we only need that, for some α > d ,

E

[(
‖V ‖C0,1(B1)

a(0)

)α/q]
<+∞.

In the case that V is bounded and uniformly Lipschitz, we need simply that a−1 ∈ L p(�) for some

p > 2d/(q − 1); if in addition there is no diffusion (A = 0), then we just need p > d/q. Even in these

relatively simple situations, the homogenization result we obtain is completely new. In the case that a is

bounded below, then we just need that E[‖V ‖
p

C0,1(B1)
]<+∞ for some p > d/q , which is better than the

condition p ≥ d assumed in [Armstrong and Souganidis 2012].

Remark 1.3. It is customary in the homogenization literature to hide the specifics of the probability

space � by introducing the “dummy variable” ω and expressing σ and H as maps σ : Rd ×�→ Sd

and H : Rd × Rd ×�→ R by identifying σ( · , ω) and H( · , · , ω) with σ̃ and H̃ , respectively, where

ω = (σ̃ , H̃). Viewed this way, the functions A and H are stationary with respect to the translation group

action {τz}z∈Rd in the sense that, for every p, y, z ∈ Rd and ω ∈�,

σ(y, τzω)= σ(y + z, ω) and H(p, y, τzω)= H(p, y + z, ω).

While this is evidently equivalent to the formulation here, we feel that writing ω everywhere is both

unsightly and unnecessary, and so we avoid it wherever possible. The meaning of expressions such as

P[ · · · ] and E[ · · · ] are always quite clear from the context. Meanwhile, measurability issues are already

set up by the definition of F and become, in our opinion, more rather than less confusing if we display

explicit dependence on ω.

1C. A quenched LDP for diffusions in random environments. In order to state the main probabilistic

application of Theorem 1, we require some additional notation. We begin with another example of a

Hamilton–Jacobi equation with random coefficients that is contained in the framework of Theorem 1.

Example 1.4. With σ : Rd → Rd×d as described in the hypotheses (with n = d) and given a random

vector field b and potential V ≥ 0, we define the Hamiltonian

H(p, y)= 1
2
|σ p|2 + b(y) · p − V (y)= p · Ap + b(y) · p − V (y), (1-15)

where as usual A = 1
2
σ tσ , which is precisely the given diffusion matrix. The weak coercivity condition

is satisfied provided there exists α > d such that

E

[(
1

λ1(A(0))

)2α

+

(
‖V ‖C0,1(B1)

λ1(A(0))

)α/2]
<+∞, (1-16)
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where λ1(A)=
1
2

min|z|=1|σ z|2 is the smallest eigenvalue of A. If this random variable is bounded below,

we say that A is uniformly elliptic, and in this case, we need only that the potential V has a finite q-th

moment for some q > d/2.

Throughout the rest of this subsection, we take σ , A, b and V to be as in Example 1.4. In this situation,

we may identify the probability space � with ordered triples (σ, b, V ).

We denote by t 7→ X t the canonical process on C(R+,Rd). Recall that the martingale problem

corresponding to σ and b has a unique solution [Stroock and Varadhan 1979]. This means that, for each

x ∈ Rd and ω = (σ, b, V ) ∈�, there exists a unique probability measure Px,ω on C(R+,Rd) such that,

under Px,ω, the canonical process X = {X t }t≥0 satisfies the stochastic differential equation

{
d X t = σ(X t , ω) dBt + b(X t , ω) dt,

Px,ω[X0 = x] = 1,

where {Bt }t≥0 is a d-dimensional Brownian motion with respect to Px,ω.

The main object of interest is the quenched path measure of the diffusion t 7→ X t in the random

potential V ( · , ω), which is defined, for each x ∈ Rd , ω ∈� and t > 0, by

Qt,x,ω(dv) :=
1

S(t, x, ω)
exp

(
−

ˆ t

0

V (Xs, ω) ds

)
Px,ω(dv),

where the normalizing factor S(t, x, ω), called the quenched partition function, is given by

S(t, x, ω) := Ex,ω

[
exp

(
−

ˆ t

0

V (Xs, ω) ds

)]
. (1-17)

Note that Qt,x,ω is a probability measure on the path space C(R+; Rd).

The physical interpretation of the quenched path measures is that Qt,x,ω describes the behavior of

the diffusion X in an “absorbing” potential (in this interpretation, the half-life of a particle at position x

is log 2/V (x, ω)) conditioned on the (exponentially unlikely event) that X is not absorbed up to time t ;

the probability that the particle lives until time t is precisely St,x,ω. We note that the case V ≡ 0 is also of

interest, in which case Qt,x,ω = Px,ω and our results below describe the quenched large deviations of Px,ω,

that is, of the diffusion in the random medium with no absorption. We also remark that we may allow V to

take negative values, provided that V is uniformly bounded below; in the particle interpretation, negative

values of V correspond to the creation of particles.

A central task in the study of diffusions in random environments is to obtain statistical information

about the typical sample paths under Qt,t x,ω. Here we are interested in information regarding the large

deviations of Qt,t x,ω in the asymptotic limit t → ∞.

Corollary 2. Let P be a probability measure on � (which is identified with ordered triples (σ, b, V )

as explained above) satisfying (1-9), (1-10) and (1-16). Let H be as in the statement of Theorem 1

corresponding to the Hamiltonian H given in (1-15), and let L be the Legendre–Fenchel transform of H ,

defined for z ∈ Rd by

L(z) := sup
p∈Rd

(p · z − H(p)).
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Then there exists �0 ∈ F with P[�0] = 1 such that, for every ω ∈�0, we have the following:

(i) For every closed set K ⊆ Rd and x ∈ Rd ,

lim inf
t→∞

−
1

t
log Qt,t x,ω[X t ∈ t K ] ≥ inf

y∈K
L(x − y)+ H(0). (1-18)

(ii) For every open set U ⊆ Rd and x ∈ Rd ,

lim sup
t→∞

−
1

t
log Qt,t x,ω[X t ∈ tU ] ≤ inf

y∈U
L(x − y)+ H(0). (1-19)

The proof that Theorem 1 implies Corollary 2 is presented in Section 6, and it follows along similar

lines as the ones that previously appeared for example in [Lions and Souganidis 2005; Kosygina 2007].

Sznitman [1994] was the first to prove a quenched large deviations result like this in dimensions

larger than one. Precisely, he proved Corollary 2 in the special case that σ = Id is the identity matrix,

b(y, ω)= b0 ∈ Rd is a constant vector and the potential V is Poissonian; i.e.,

V (y, ω)=

ˆ

Rd

W (y − z) dρ(z),

where W ∈ C∞
c (R

d) and the locally finite measure ρ has a Poissonian law (see [Sznitman 1998, Theorem

4.7]). In particular, such a random potential has a finite range of dependence and bounded finite moments.

In fact, the first phase of the strategy followed in this paper to homogenize the Hamilton–Jacobi equation

is analogous in many respects to the probabilistic approach Sznitman used to obtain the large deviation

principle. His proof relied on an application of the subadditive ergodic theorem to certain quantities,

essentially equivalent to the maximal subsolutions considered here (the mµ’s), to obtain deterministic

limits, the Lyapunov exponents, which are precisely the mµ’s we encounter in the next section. See also

the discussion preceding Proposition 2.5.

Let us check that the rate function in Corollary 2 agrees with the one in [Sznitman 1998]. First note

that minRd H = H(0)= 0 in Sznitman’s case. The effective Lagrangian L may thus be expressed in terms

of the mµ’s as follows:

L(z)= sup
z∈Rd

(p · z − H(p)) (definition of L)

= sup
µ>0

sup{p · z − H(p) : H(p)≤ µ} (by 0 = min H )

= sup
µ>0

sup{p · z −µ : H(p)≤ µ}

= sup
µ>0

(mµ(z)−µ) (by (3-3) below).

In the absorption-free case V ≡ 0, Zerner [1998] proved a result similar to Corollary 2 for random walks

on the lattice Zd with i.i.d. transition probabilities at each lattice point. He required (loosely translated

into our notation) that A be “almost” uniformly elliptic:

E[−log λ1(A(0, ω))
d ]<∞. (1-20)
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This condition is much weaker than our (1-16) but is compensated for by the much stronger independence

assumption on the random environment.

The subject of large deviations of random walks in random environments continues to receive much

attention, and the works of Sznitman and Zerner have been subsequently extended to more general settings,

and properties of the rate function have been studied in more depth; in particular, we refer to [Varadhan

2003; Rassoul-Agha 2004]. See also the more recent work of Yilmaz [2009], who proves a discrete

version of Corollary 2 with no absorption, V = 0, in a quite general stationary-ergodic framework like

ours with a slight strengthening of (1-20). Finally, a large deviation result for random walks in the case of

absorption, V 6≡ 0, was proved recently by Rassoul-Agha et al. [2013] under the assumptions that the

random environment is strongly mixing. Admitting the proof of Corollary 2 from Theorem 1, the results

of [Rassoul-Agha et al. 2013] may be compared to those of [Armstrong and Souganidis 2012].

Finally, we mention that the connection between large deviations and viscosity solutions of Hamilton–

Jacobi equations was observed by Evans and Ishii [1985], who studied large deviations of the occupation

times of small random perturbations of ODEs.

1D. Disclaimer on viscosity solutions. Throughout the paper, all differential equalities and inequalities

are understood in the viscosity sense. For a general introduction to viscosity solutions, we refer to

[Crandall et al. 1992]. Many of the fundamental PDE results we need here are proved in [Armstrong

and Tran 2014], which we cite many times below. Recall that the natural function space for viscosity

subsolutions on a domain X is the space USC(X) of upper semicontinuous functions on X and, for

supersolutions, it is LSC(X), the set of lower semicontinuous functions on X .

1E. Outline of the paper. In the next section, we introduce the maximal subsolutions and homogenize

them using the subadditive ergodic theorem. In Section 3, we construct the effective Hamiltonian and

study some of its basic properties. In Section 4, we give the proof of an intermediate homogenization

result and finally prove Theorem 1 in Section 5. The quenched large deviation principle is shown in

Section 6 to be a consequence of the homogenization result.

2. The shape theorem: homogenization of the maximal subsolutions

In this section, we homogenize the maximal subsolutions of the inequality

− tr(A(y)D2w)+ H(Dw, y)≤ µ in R
d . (2-1)

In subsequent sections, we show with comparison arguments that homogenizing these maximal subsolu-

tions is enough to imply Theorem 1. As we will see, the reason that the maximal subsolutions are easier

to homogenize is due to their subadditive structure.

The maximal subsolutions are defined, for each µ ∈ R and y, z ∈ Rd , by

mµ(y, z) := sup
{
w(y)− sup

B1(z)

w : w ∈ USC(Rd) satisfies (2-1)
}
. (2-2)
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If the admissible class in the supremum above is empty, then we take mµ(y, z)≡ −∞. We denote, for

every ω = (σ, H) ∈�, the critical parameter h(ω) for which mµ is finite by

h := inf{µ : there exists w ∈ USC(Rd) satisfying (2-1)}. (2-3)

According to (1-6), we have h(ω)≤31. It is sometimes convenient to work with the quantity

m̃µ(y, z) := sup
B1(y)

mµ( · , z). (2-4)

Some deterministic properties of the maximal subsolutions are summarized in the following proposition,

which is proved in [Armstrong and Tran 2014]. See Proposition 3.1 and Section 5 of that paper. The

estimate (2-7) below is particularly important in our analysis and comes from the explicit Lipschitz

estimates proved in [Armstrong and Tran 2014, Proposition 3.1].

Proposition 2.1 [Armstrong and Tran 2014]. Fix ω = (σ, H) ∈� and µ≥ h(ω). Then, for every z ∈ Rd ,

the function mµ( · , z) belongs to C
0,1
loc (R

d \ B1(z))∩ USC(Rd) and satisfies

− tr(A(y)D2mµ)+ H(Dmµ, y)≤ µ in R
d (2-5)

as well as

− tr(A(y)D2mµ)+ H(Dmµ, y)= µ in R
d \ B1(z). (2-6)

There exists a constant C > 0, depending only on d and q, such that, for every y, z ∈ Rd ,

osc
B1(y)

mµ( · , z)≤ C

[(
(1 +31)

1/2‖σ‖C0,1(B2(y))

a2(y)

)2/(q−1)

+

(
M2(y)+µ

a2(y)

)1/q]
. (2-7)

For every λ ∈ [0, 1], µ, ν ≥ h(ω) and y, z ∈ Rd ,

mλµ+(1−λ)ν(y, z)≥ λmµ(y, z)+ (1 − λ)mν(y, z). (2-8)

Finally, for every x, y, z ∈ Rd , we have

m̃µ(y, z)≤ m̃µ(y, x)+ m̃µ(x, z). (2-9)

We define Kµ(y) to be the random variable on the right side of (2-7), that is,

Kµ(y) := C

[(
(1 +31)

1/2‖σ‖C0,1(B2(y))

a2(y)

)2/(q−1)

+

(
M2(y)+µ

a2(y)

)1/q]
,

so that we can write the bound (2-7) as

osc
B1(y)

mµ( · , z)≤ Kµ(y). (2-10)

We also denote Kµ = Kµ(0). The primary use of the weak coercivity hypothesis (1-11) is that it implies

that the α-th moment of Kµ, which we denote by K α
µ, is finite for some α > d:

Kµ := E[K α
µ]1/α <+∞. (2-11)
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Note that we have used (1-11) with a2 and M2 replacing a1 and M1, respectively, which is seen to be

equivalent to (1-11) by an easy covering argument.

As far as the dependence of Kµ on µ, we use M2 ≥ 1 to check that

Kµ ≤ K 0(1 +µ1/q). (2-12)

We next use ergodicity to show that the random variable h defined in (2-3) is, up to an event of

probability zero, a deterministic constant.

Lemma 2.2. Assume that P is a probability measure on (�,F) satisfying (1-9) and (1-10). Then there

exists a constant H∗ ∈ R, depending on P, such that

P
[
H∗ = inf{µ ∈ R : there exists w ∈ USC(Rd) satisfying (2-1)}

]
= 1. (2-13)

Proof. Let us see that h defined in (2-3) is finite. We have already seen that h ≤31 by (1-6). To argue

that h(ω) >−∞ for every ω = (σ, H) ∈�, we use the test function

φ(y) := k(1 − |y|2)−1/(q−1).

If k > 1 and C > 1 are sufficiently large, depending only on 32 and the constants a1 and M1 in (1-6)

for H , then φ is a smooth solution of

− tr(A(y)D2φ)+ H(Dφ, y) >−C in B1.

Now consider an arbitrary element w ∈ USC(Rd). Since φ(y)→ +∞ as y → ∂B1, there exists x0 ∈ B1

such that w−φ has a local maximum at x0. In view of the differential inequality for φ, we obtain that w

cannot be a subsolution of (1-6) for any µ≥ −C .

It is immediate from its definition that h is invariant under the translation group action {τy}y∈Rd . By the

ergodicity assumption, this implies that P assigns each of the events {h >λ} and {h <λ}, for every λ ∈ R,

probability either zero or one. This implies that h is P-almost surely a constant. Taking this constant to

be H∗ yields the lemma. �

Our main interest lies in the asymptotic behavior of mµ(y, z) for |y − z| ≃ |z| ≫ 1. In the next lemma,

we use Morrey’s inequality together with the local oscillation bound (2-10) and the ergodic theorem to

prove the large-scale oscillation bound oscBR(Ry) mµ( · , z). R uniformly in z ∈ Rd for R ≫ 1. Recall

that Morrey’s inequality [Evans 1998, Section 5.6.2] states that, for any R > 0, u ∈ C1(BR) and β > d,

there exists C(β, d) > 1 such that

osc
BR

u ≤ C R

(
 

BR

|Du(x)|β dx

)1/β

. (2-14)

Therefore, we can control the oscillation of a function in terms of “averaged pointwise oscillation bounds”.

Thus, it is natural to attempt to control the large-scale oscillation of mµ( · , z) in terms of the average of a

power of its local oscillation with the hope of using (2-10), (2-11) and the ergodic theorem to control the

latter.
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Lemma 2.3. Assume that P is a probability measure on (�,F) satisfying (1-9), (1-10) and (1-11). Then

there exists C > 0, depending only on d and α, such that

P

[
∀µ≥ H∗, ∀x ∈ R

d , lim sup
R→∞

sup
z∈Rd

1

R
osc

BR(Rx)
mµ( · , z)≤ C Kµ

]
= 1. (2-15)

Proof. It is convenient to mollify the functions in order to put the local oscillation bounds into a pointwise

form suitable for the application of Morrey’s inequality. We first observe that, owing to Lemma 2.2, we

may assume that mµ is finite for all µ≥ H∗ by removing an event of zero probability.

We now fix µ ≥ H∗ and z ∈ Rd and take a nonnegative η ∈ C∞
c (R

d) with support in B1/2 and unit

mass,
´

Rd η(y) dy = 1, and set

m̂µ(y) :=

ˆ

Rd

η(y − x)mµ(x, z) dx . (2-16)

Then m̂µ is smooth, and using (2-7), we have, for every y ∈ Rd ,

|m̂µ(y)− mµ(y, z)| ≤

ˆ

Rd

η(y − x)|mµ(x, z)− mµ(y, z)| dx

≤ osc
B1/2(y)

mµ( · , z)≤ inf
B1/2(y)

Kµ( · ) (2-17)

and

|Dm̂µ(y)| =

∣∣∣∣
ˆ

Rd

Dη(y − x)(mµ(x, z)− mµ(y, z)) dx

∣∣∣∣ ≤ C Kµ(y). (2-18)

Applying (2-14) and then using (2-18), we deduce the existence of C(d, α) > 1 such that, for every

x ∈ Rd ,

osc
BR(x)

m̂µ ≤ C R

(
 

BR(x)

|Dm̂µ(y)|
α dy

)1/α

≤ C R

(
 

BR(x)

K α
µ(y) dy

)1/α

. (2-19)

Next, we return to (2-17) and observe that

sup
y∈BR(x)

|m̂µ(y)− mµ(y, z)| ≤ sup
y∈BR(x)

inf
x∈B1/2(y)

Kµ(x)≤

(
sup

y∈BR(x)

 

B1/2(y)

K α
µ(x) dx

)1/α

≤ C

(
ˆ

BR+1(x)

K α
µ(x) dx

)1/α

≤ C(R + 1)d/α
(
 

BR+1(x)

K α
µ(x) dx

)1/α

.

Making note of the fact that d/α < 1 and combining the above inequality with (2-19), we deduce that,

for every R > 1 and x, z ∈ Rd ,

1

R
osc

BR(x)
mµ( · , z)≤ C

(
 

BR+1(x)

K α
µ(y) dy

)1/α

. (2-20)

According to the ergodic theorem [Becker 1981],

P

[
lim

R→∞

(
 

BR+1(Rx)

K α
µ(y) dy

)1/α

= E[K α
µ]1/α

]
= 1.
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In view of the definition of Kµ, the last two lines yield that, for every µ≥ H∗,

P

[
∀x ∈ R

d , lim sup
R→∞

sup
z∈Rd

1

R
osc

BR(Rx)
mµ( · , z)≤ C Kµ

]
= 1.

Using the monotonicity ofµ→mµ and the continuity ofµ 7→ Kµ and intersecting the events corresponding

to all rational µ and µ= H∗, we obtain (2-15). �

The following lemma is an abstract tool that allows us to obtain uniform convergence, with respect to

the translation group {τy}y∈Rd , for sequences of random variables that converge almost surely and satisfy

appropriate oscillation bounds. The argument follows an (unpublished) idea attributed to Varadhan, using

a combination of Egoroff’s theorem and the ergodic theorem.

Lemma 2.4. Assume P is a probability measure on (�,F) satisfying (1-9) and (1-10). Suppose that

{X t }t>0 is a family of F-measurable random variables on � such that

P

[
lim sup

t→∞
X t(0)≤ 0

]
= 1.

Denote X t(y, ω) := X t(τyω), and suppose that

P

[
∀z ∈ R

d , lim sup
r→0

lim sup
t→∞

osc
y∈Btr (t z)

X t(y, · )= 0
]

= 1.

Then

P

[
∀R > 0, lim sup

t→∞
sup

y∈Bt R

X t(y, · )≤ 0
]

= 1.

Proof. We first notice that, after a routine covering argument, the second hypothesis can be rewritten in a

slightly stronger way as

P

[
∀R > 0, lim sup

r→0

lim sup
t→∞

sup
z∈BR

osc
y∈Btr (t z)

X t(y, · )= 0
]

= 1. (2-21)

By the first hypothesis, for each ε > 0, there exists Tε > 0 sufficiently large that

P

[
sup
t≥Tε

X t(0, · )≤ ε

]
≥ 1 − 1

2
εd . (2-22)

Denote this event by Dε := {ω ∈ � : supt≥Tε
X t(0, ω) ≤ ε}. According to the multiparameter ergodic

theorem [Becker 1981], for each ε > 0, there exists an event �̃ε ∈ F with P[�̃ε] = 1 such that, for every

ω ∈ �̃ε,

lim
r→∞

 

Br

1Dε
(τxω) dx = P[Dε] ≥ 1 − 1

2
εd . (2-23)

Here 1E denotes the indicator function of an event E ∈ F. It follows that, for each ω ∈ �̃ε, there exists

rε > 0 sufficiently large (and depending on ω in addition to ε) that

inf
r≥rε

 

Br

1Dε
(τxω) dx > 1 − εd . (2-24)
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Notice that (2-24) implies that, for r ≥ rε(ω),

|{x ∈ Br : τxω ∈ Dε}|> (1 − εd)|Br |. (2-25)

In particular, if r ≥ rε(ω), then no ball of radius rε is contained in {x ∈ Br : τxω /∈ Dε}.

Let �̃ be the intersection of �̃ε over all ε ∈ Q+. Fix R, ε > 0 with ε ∈ Q+, ω ∈ �̃ such that ω also

belongs to the event inside the probability in (2-21), t ≥ R−1 max{rε(ω), Tε} and y ∈ Bt R . Then there

exists z ∈ BR such that τt zω ∈ Dε and |y − t z| ≤ t Rε. Note that τt zω ∈ Dε is equivalent to X t(t z, ω)≤ ε.

We deduce that

X t(y, ω)≤ X t(t z, ω)+ osc
x∈Bt Rε(t z)

X t(x, ω)≤ ε+ sup
z′∈BR

osc
x∈Bt Rε(t z′)

X t(x, ω).

This holds for all y ∈ Bt R; hence,

sup
y∈Bt R

X t(y, ω)≤ ε+ sup
z′∈BR

osc
x∈Bt Rε(t z′)

X t(x, ω).

We have shown that, for all ε ∈ Q such that ε > 0, we have

lim sup
t→∞

sup
y∈Bt R

X t(y, ω)≤ ε+ lim sup
t→∞

sup
z′∈BR

osc
x∈Bt Rε(t z′)

X t(x, ω).

Sending ε→ 0, using that ω belongs to the event inside the probability in (2-21), we obtain

lim sup
t→∞

sup
y∈Bt R

X t(y, ω)≤ 0.

This conclusion applies for every R > 0 and ω belonging to the intersection of �̃ and the event in (2-21),

which has probability one. �

We next employ the subadditive ergodic theorem [Akcoglu and Krengel 1981] and the subadditivity

of mµ to get the following result, which asserts that, for large t>0, we have mµ(t y, t z)≈ tmµ(y−z)+o(t)

for some deterministic function mµ. The key ingredients in the proof are subadditivity (2-9) and the local

oscillation estimate (2-15).

The terminology “shape theorem” originated in first-passage percolation, and “shape” refers to the

sublevel sets of mµ. In particular, the result here generalizes [Sznitman 1998, Theorem 5.2.5] and also

covers the case that A ≡ 0 and the Hamiltonian has the specific form H(p, x)= a(x)|p| where a > 0 is

an appropriate random field, which is a continuum analogue of the first passage percolation model.

Proposition 2.5 (the shape theorem). Assume P is a probability measure on (�,F) satisfying (1-9), (1-10)

and (1-11). Then there exists a family {mµ :µ≥ H∗}⊆C(Rd) of convex, positively homogeneous functions

such that

P

[
∀µ≥ H∗, ∀R > 0, lim sup

t→∞
sup

y,z∈BR

∣∣∣mµ(t y, t z)

t
− mµ(y − z)

∣∣∣ = 0
]

= 1. (2-26)

Proof. We break the argument into five steps. In the first step, we construct mµ using the subadditive

ergodic theorem and, in Step 2, derive some of its basic properties. In Step 3, we prove (2-26) for z = 0,
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and in the fourth step, we remove this restriction. For the first four steps, we fix µ≥ H∗. The universal

quantifier over µ≥ H∗ will be moved inside the probability in the final step.

Before commencing with the argument, we make a reduction. With m̃µ defined as in (2-4), we observe

that

0 ≤ m̃µ(y, z)− mµ(y, z)= sup
ξ∈B1(y)

(mµ(ξ, z)− mµ(y, z))≤ osc
B1(y)

mµ( · , z).

Using this together with Lemma 2.3, we find that

P

[
∀µ≥ H∗, ∀R > 0, lim sup

t→∞
sup

y,z∈BR

1

t
|mµ(t y, t z)− m̃µ(t y, t z)| = 0

]

≥ P

[
∀µ≥ H∗, ∀R > 0, lim sup

t→∞
sup

y,z∈BR

1

t
osc

B1(t y)
mµ( · , t z)= 0

]

≥ P

[
∀µ≥ H∗, ∀R, δ > 0, lim sup

t→∞
sup
z∈Rd

sup
y∈BR

1

t
osc

Btδ(t y)
mµ( · , z)≤ C Kµδ

]
= 1.

Therefore, it suffices to prove the proposition with m̃µ in place of mµ.

Step 1. We apply the subadditive ergodic theorem to construct mµ. Note that it is immediate from the

definitions that both mµ and m̃µ are jointly stationary in (y, z). Precisely, we mean that, using the notation

mµ(y, z, ω) and m̃µ(y, z, ω) to denote dependence on ω ∈�, then with respect to the translation group

action {τx}x∈Rd , we have

mµ(y, z, τxω)= mµ(y + x, z + x, ω) and m̃µ(y, z, τxω)= m̃µ(y + x, z + x, ω).

Note that m̃µ is subadditive by (2-9) and P-integrable on � since (2-20) implies

E[m̃µ(y, z)] ≤ E

[
sup

B|y−z|+1(z)

mµ( · , z)

]

≤ C(|y − z| + 1)E

[(
 

B|y−z|+2

K α
µ(x) dx

)1/α]
≤ C Kµ(|y − z| + 1), (2-27)

where the last inequality follows by Jensen’s inequality. We have checked that m̃µ verifies the hypothesis

of the subadditive ergodic theorem [Akcoglu and Krengel 1981], and we obtain, for each fixed y ∈ Rd , a

random variable mµ(y) such that

P

[
lim

t→∞

1

t
m̃µ(t y, 0)= mµ(y)

]
= 1. (2-28)

However, it turns out that mµ(y) is constant P-almost surely, that is,

P
[
mµ(y)= E[mµ(y)]

]
= 1. (2-29)
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This follows from the ergodic hypothesis and the fact that mµ(y) is invariant under translations. To see this,

we write m̃µ(y, z, ω) and mµ(y, ω) to denote dependence on ω ∈� and observe that, for every z ∈ Rd ,

mµ(y, τzω)= lim
t→∞

1

t
m̃µ(t y + z, z, ω)

≤ lim
t→∞

1

t

(
m̃µ(t y + z, t y, ω)+ m̃µ(t y, 0, ω)+ m̃µ(0, z, ω)

)

≤ lim
t→∞

1

t
m̃µ(t y, 0, ω)+ lim sup

t→∞

1

t

(
osc

B|z|+1(t y)
mµ( · , t y, ω)+ osc

B1(0)
mµ( · , z, ω)

)

= lim
t→∞

1

t
m̃µ(t y, 0, ω)= mµ(y, ω).

Here we used stationarity, followed by (2-9), the definition of m̃µ and Lemma 2.3. We deduce that

mµ(y, τzω) = mµ(y, ω) for all ω ∈ � and z ∈ Rd , which, in view of (1-10), implies that each of the

events {ω ∈� : mµ(y, ω) > E[mµ(y, · )]} and {ω ∈� : mµ(y, ω) < E[mµ(y, · )]} has probability either

zero or one. So both must be of probability zero, and (2-29) holds.

We henceforth identify mµ(y) and the deterministic quantity E[mµ(y, · )]. With this identification, we

may combine (2-28) and (2-29) to write

P

[
lim sup

t→∞

∣∣∣ m̃µ(t y, 0)

t
− mµ(y)

∣∣∣ = 0
]

= 1. (2-30)

This holds for all y ∈ Rd . By intersecting the events in (2-30) over all y ∈ Qd , we get

P

[
∀y ∈ Q

d , lim sup
t→∞

∣∣∣ m̃µ(t y, 0)

t
− mµ(y)

∣∣∣ = 0
]

= 1. (2-31)

Step 2. We next verify that mµ : Rd → R is continuous, convex and positively homogeneous. It is

immediate from (2-27) that

|mµ(y)| ≤ C Kµ|y|. (2-32)

The stationarity and subadditivity of m̃µ yield that mµ is sublinear. Indeed, for every y, z ∈ Rd ,

mµ(y + z)= lim
t→∞

1

t
E[m̃µ(t (y + z), 0)] ≤ lim

t→∞

1

t
E[m̃µ(t (y + z), t z)+ m̃µ(t z, 0)]

= lim
t→∞

1

t
E[m̃µ(t y, 0)] + lim

t→∞

1

t
E[m̃µ(t z, 0)] = mµ(y)+ mµ(z). (2-33)

Combining (2-32) and (2-33) yields

mµ(y)− mµ(z)≤ mµ(y − z)≤ C Kµ|y − z|.

By interchanging y and z, we get

|mµ(y)− mµ(z)| ≤ C Kµ|y − z|, (2-34)

and so mµ is Lipschitz with constant C Kµ. It is immediate from the form of the limit (2-28) that mµ is

positively homogeneous, and from this and (2-33), we deduce that mµ is convex. For future reference, we

observe that µ 7→ mµ(y) is concave by (2-8). Since this map is nondecreasing, it must also be continuous.
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Step 3. We next upgrade assertion (2-31) to

P

[
∀R > 0, lim

t→∞
sup
y∈BR

∣∣∣1

t
m̃µ(t y, 0, ω)− mµ(y)

∣∣∣ = 0
]

= 1. (2-35)

Observe that, for every y ∈ Rd and z ∈ Qd , we have

∣∣∣1

t
m̃µ(t y, 0)− mµ(y)

∣∣∣ ≤
1

t
|m̃µ(t y, 0)− m̃µ(t z, 0)| +

∣∣∣1

t
m̃µ(t z, 0)− mµ(z)

∣∣∣ + |mµ(y)− mµ(z)|

≤
1

t
osc

Bt |y−z|+2(t z)
mµ( · , 0)+

1

t
|m̃µ(t z, 0)− mµ(z)| + C Kµ|y − z|.

Fix R> 0. Let δ > 0, and select finitely many z1, . . . , zk ∈ Qd ∩BR such that the union of the balls B(zi , δ)

covers BR . Then from the above inequality, we find that

sup
y∈BR

∣∣∣1

t
m̃µ(t y, 0)−mµ(y)

∣∣∣≤ sup
y∈BR

sup
i∈{1,...,k}

1

t
osc

Btδ+2(t zi )
mµ( · , 0)+ sup

i∈{1,...,k}

1

t
|m̃µ(t zi , 0)−mµ(zi )|+C Kµδ.

Now taking the lim sup as t → ∞, we deduce from (2-15) and (2-31) that, for every R, δ > 0,

P

[
lim

t→∞
sup
y∈BR

∣∣∣1

t
m̃µ(t y, 0, ω)− mµ(y)

∣∣∣ ≤ 2C Kµδ
]

= 1.

We recover (2-35) after intersecting over all the events corresponding to δ ∈ Q+ and then over all of the

resulting events corresponding to R ∈ N∗.

Step 4. We next release the vertex point using Lemma 2.4 with

X t := sup
y∈B2R

∣∣∣1

t
m̃µ(t y, 0)− mµ(y)

∣∣∣, t > 0.

Lemma 2.3 and (2-35) give the hypotheses of Lemma 2.4 for X t , and so an application of the lemma

yields, for every R > 0,

P

[
lim

t→∞
sup

y,z∈BR

∣∣∣1

t
m̃µ(t y, t z)−mµ(y−z)

∣∣∣=0
]
≥P

[
lim

t→∞
sup
z∈BR

sup
y∈B2R(z)

∣∣∣1

t
m̃µ(t y+t z, t z)−mµ(y)

∣∣∣=0
]
=1.

Intersecting the events corresponding to R = 1, 2, . . . , we obtain

P

[
∀R > 0, lim

t→∞
sup

y,z∈BR

∣∣∣1

t
m̃µ(t y, t z)− mµ(y − z)

∣∣∣ = 0
]

= 1. (2-36)

Step 5. We immediately obtain (2-26) from (2-36) by the monotonicity of µ 7→ mµ(y, z), the continuity

of µ 7→ mµ(y) (see the end of Step 2) and intersecting the events corresponding to each rational µ> H∗

as well as to µ= H∗. �

Remark 2.6. For future reference, we note that mµ(y, z)≥ β|y − z| for any β > 0 and µ≥31(β
q + 1).

Indeed, in view of the monotonicity of µ 7→ mµ(y, z), it is enough to check that the cone function

φ(y) := β max{0, |y − z| − 1} is a subsolution of (2-1) for µ = 31(β
q + 1). This is easy to obtain
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from (1-6), using |Dφ| ≤ β and the fact that the diffusion term has a helpful sign due to the convexity

of φ. This also yields

µ≥31(β
q + 1) =⇒ for all y ∈ R

d , mµ(y)≥ β|y|. (2-37)

In view of the concavity of µ 7→ mµ(y), which was obtained in Step 2 of the proof above, we get the

following: there exists c > 0 such that, for every µ≥ ν ≥ H∗ and y, z ∈ Rd ,

mµ(y)≥ mν(y)+ cµ−(q−1)/q(µ− ν)|y|.

(This remark is needed in the proof (3-4) and to check that H is well defined.)

3. Identification of the effective Hamiltonian

In this section, we define H in terms of the family {mµ : µ≥ H∗} of homogenized maximal subsolutions

and proceed to study some of its basic properties. Throughout this section, we assume that P is a given

probability measure satisfying (1-9), (1-10) and (1-11).

We begin with an informal heuristic that leads to a guess for what H should be, thinking in terms of

an inverse problem. Write the metric problem in the “theatrical scaling” by introducing a parameter ε > 0

and defining

mε
µ(x) := εmµ

(
x

ε
, 0

)
.

At this scale, Proposition 2.5 asserts that mε
µ → mµ locally uniformly in Rd and P-almost surely, as ε→ 0,

and we may write (2-6) as

−ε tr
(

A
(

x

ε

)
D2mε

µ

)
+ H

(
Dmε

µ,
x

ε

)
= µ in R

d \ Bε(0).

By formally passing to the limit ε→ 0 in this equation (and in the rescaled version of (2-5)) under the

assumption that it homogenizes, this suggests that we should obtain

H(Dmµ)≤ µ in R
d and H(Dmµ)= µ in R

d \ {0}. (3-1)

That is, we expect that mµ is the maximal subsolution of H with respect to µ and the gradient of this

positively homogeneous function should prescribe the µ-level set of H ; the image of its subdifferential

should be the µ-sublevel set of H .

In view of this discussion, we simply define H in such a way that this is so:

H(p) := inf{µ≥ H∗ : ∀y ∈ R
d , mµ(y)≥ p · y}. (3-2)

Note that, since mµ is convex and positively homogeneous, the subdifferential ∂mµ(0) is actually the

closed convex hull of the image of Rd under Dmµ. Recall that the subdifferential ∂φ(x) of a convex

function φ : Rd → R at a point x is defined by

∂φ(x) := {p ∈ R
d : ∀y ∈ R

d , φ(y)≥ φ(x)+ p · (y − x)}.
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We expect ∂mµ(0) to be the µ-sublevel set of H and the image of Rd under Dmµ to be the µ-level set

of H . This indeed follows from (3-2), and we may invert this formula to write mµ in terms of H :

mµ(y)= sup{p · y : H(p)≤ µ}. (3-3)

That is, mµ is simply the support function of the µ-sublevel set of H . So the definition (3-2) is formally

in accord with (3-1), and once we have verified that H is convex (which we do below in Lemma 3.1),

checking the latter in the viscosity sense is simply a routine exercise. Since here we do not actually use

this fact, we omit the argument, but the reader may consult for example [Armstrong and Souganidis 2013]

or else argue directly that the maximal subsolutions of a constant-coefficient convex Hamiltonian are the

support functions of the sublevel sets.

We need to check that the quantity H(p) is well defined (and finite). In view of the monotonicity

of µ 7→ mµ, we need only show that, for every p ∈ Rd , there exists µ > H∗ sufficiently large that the

graph of mµ is above the plane y 7→ p · y. But this is immediate from (2-37), which in fact gives the

estimate

H∗ ≤ H(p)≤31(|p|q + 1). (3-4)

We collect some more basic properties of the effective Hamiltonian H : Rd → R in the following lemma:

Lemma 3.1. The function H :Rd →R is continuous, convex and satisfies H∗ =minp∈Rd H(p). Moreover,

there exist C, c > 0, depending only on d, such that

cK
−q

0 (|p| − C K 0)
q ≤ H(p)≤31(|p|q + 1). (3-5)

Proof. By definition, H( · ) ≥ H∗. On the other hand, take δ > 0, and set µ := H∗ + δ. Since mµ is

convex, we may select p0 ∈ ∂mµ(0). This implies that mµ(y)≥ p0 · y for every y ∈ Rd . Thus,

min
p∈Rd

H(p)≤ H(p0)≤ µ= H∗ + δ.

Since δ > 0 was arbitrary, we obtain the first assertion that H∗ = minp∈Rd H(p).

The upper bound for H was proved already in (3-4). The lower bound follows from (2-12) and (2-32)

and the definition of H after an easy computation. �

An immediate consequence of the convexity of H is that, with the possible exception of the minimal

level set {H = H∗}, each of the level sets of H is the boundary of the corresponding sublevel set. That is,

for every p ∈ Rd ,

H(p) > H∗ implies that p ∈ ∂{ p̂ ∈ R
d : H( p̂)≤ H(p)}. (3-6)

To prove the main homogenization result, we need further geometric information, summarized in the

following lemma, relating the level sets of H and the maximal subsolutions.

Recall that, if K ⊆ Rd is closed and convex, an exposed point of K is a point p ∈ K such that there

exists a linear functional l : Rd → R such that l(p) > l( p̂) for every p̂ ∈ K \{p}. The set of exposed points

is, for a general bounded convex subset K of Rd , a subset of the set of extreme points of K . However,
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Straszewicz’s theorem [Rockafellar 1970, Theorem 18.6] asserts that every extreme point is a limit of

exposed points.

Lemma 3.2. Let µ≥ H∗ and p ∈ ∂{ p̂ ∈ Rd : H( p̂)≤ µ}. There exists a unit vector e ∈ ∂B1 such that

mµ(e)− p · e = 0 = inf
y∈Rd

(mµ(y)− p · y). (3-7)

If in addition p is an exposed point of { p̂ ∈ Rd : H( p̂)≤ µ}, then e can be chosen in such a way that mµ

is differentiable at e with p = Dmµ(e).

Proof. Set S := { p̂ ∈ Rd : H( p̂)≤ µ}. By elementary convex separation, there exists a linear functional

l : Rd → R such that l(p) = 0 and l( p̂) ≤ 0 for every p̂ ∈ S. If p is an exposed point, then we also

take l so that l( p̂) < 0 for every p̂ ∈ S \ {p}. There exists e ∈ Rd \ {0} such that l(x) = e · (x − p). By

normalizing, we may assume that |e| = 1. We deduce that, for every y ∈ Rd ,

mµ(e)− p · e = sup{( p̂ − p) · e : p̂ ∈ S} = 0 ≤ sup{( p̂ − p) · y : p̂ ∈ S} = mµ(y)− p · y. (3-8)

This is (3-7). Since mµ is positively homogeneous, we see that p ∈ ∂mµ(e). In fact, if we repeat (3-8)

with an arbitrary element of S in place of p, we find that

∂mµ(e)⊆ { p̂ ∈ S : l( p̂)= 0}. (3-9)

Thus, if p is an exposed point of S, then we have ∂mµ(e)= {p} by our choice of l. This implies that mµ

is differentiable at e and Dmµ(e)= p. �

Remark 3.3. We can express H via the following “min-max” formula:

H(p)= inf
{
µ ∈ R : there exists w ∈ C

0,1
loc (R

d) satisfying (2-1) and lim inf
|y|→∞

w(y)− p · y

|y|
≥ 0

}
. (3-10)

Indeed, if w ∈ USC(Rd) satisfies (2-1), then

mµ(y)− p · y ≥ lim inf
t→∞

w(t y)− p · (t y)

t
.

If the latter is nonnegative for all y ∈ Rd , then H(p) ≤ µ by definition. This yields “≤” in (3-10). To

obtain the reverse inequality, we use mµ with µ= H(p) and observe that

lim inf
|y|→∞

mµ(y)− p · y

|y|
= lim inf

t→∞
inf

|y|=1

(mµ(t y)

t
− p · y

)
= inf

|y|=1
(mµ(y)− p · y)≥ 0.

The reason that we call (3-10) a “min-max” representation is that it can be formally written

H(p)= inf
w∈Lp

sup
y∈Rd

(
− tr(A(y)D2w(y))+ H(Dw(y), y)

)
, (3-11)

where

Lp :=
{
w ∈ C

0,1
loc (R

d) : lim inf
|y|→∞

w(y)− p · y

|y|
≥ 0

}
.

The expression inside the infimum on the right of (3-11) does not make sense since w may not have

enough regularity. It must therefore be interpreted in the viscosity sense, and this leads precisely to (3-10).
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4. Homogenization of the approximate cell problem

In this section, we show using a comparison argument that Proposition 2.5 implies a homogenization

result for a special time-independent problem. The particularities of this argument are new here, even for

uniformly coercive Hamiltonians or first-order equations.

Throughout, we assume P is a probability measure on (�,F) satisfying (1-9), (1-10) and (1-11).

For each fixed p ∈ Rd , we consider the problem

wε − ε tr
(

A
(

x

ε

)
D2wε

)
+ H

(
p + Dwε,

x

ε

)
= 0 in R

d . (4-1)

We will show that (4-1) has a unique bounded-below solution with probability one that we denote by

wε( · , p). We argue that

P

[
∀p ∈ R

d , ∀R > 0, lim sup
ε→0

sup
x∈BR

|wε(x, p)+ H(p)| = 0
]

= 1. (4-2)

Recall that (4-1), often written at the microscopic (“nontheatrical”) scale (as in (4-5) below), is often

called the approximate cell problem and homogenizing it (by which we mean proving (4-2)) is the key

step in the derivation of Theorem 1 from Proposition 2.5. To see why we expect wε( · , p) to converge

locally uniformly to the constant −H(p) as ε→ 0, observe that the (unique) solution of

w+ H(p + Dw)= 0 in R
d (4-3)

is precisely the constant function w ≡ −H(p). Thus, (4-2) can be understood roughly as the assertion

that “(4-1) homogenizes to (4-3)”.

4A. Basic properties of (4-1). In order to prove (4-2), we must first establish some fundamental properties

of (4-1) including wellposedness. In the uniformly coercive case, it is straightforward (and classical) to

show that the Perron method and the comparison principle yield a unique bounded solution of (4-1) given

by the formula

wε(x, p) := sup{v(x) : v ∈ USC(Rd) is a subsolution of (4-1)}. (4-4)

Wellposedness in the general weakly coercive setting is more nontrivial because it is less easy to show

a priori that wε( · , p) satisfies a suitable growth condition at infinity for the application of the comparison

principle.

We take (4-4) to be the definition of the function wε(x, p) and continue with a discussion of some

elementary properties ofwε. First, we remark that it is often convenient to consider (4-1) at the microscopic

scale in order to use the stationarity of the environment. The rescaled equation is

εv− tr(A(y)D2v)+ H(p + Dv, y)= 0 in R
d , (4-5)

and we rescale wε by introducing

vε(y, p) :=
1

ε
wε(εy, p)= sup{v(x) : v ∈ USC(Rd) is a subsolution of (4-5)}. (4-6)



1990 SCOTT N. ARMSTRONG AND HUNG V. TRAN

The second equality in (4-6) follows from the definition of wε and a rescaling of (4-1). Note that it is

immediate from (4-6) that vε(x, p) is stationary with respect to the translation action. According to

[Armstrong and Tran 2014, Theorem 6.1], for every ε > 0, p ∈ Rd and choice of coefficients (σ, H) ∈�,

the function vε( · , p) defined in (4-6) belongs to C
0,1
loc (R

d) and is a solution of (4-5). It follows immediately

from reversing the scaling that wε( · , p) ∈ C
0,1
loc (R

d) is a solution of (4-1). Uniqueness is a separate issue

addressed below; see (4-16).

Next, we observe that wε( · , p) is bounded below uniformly in ε. Indeed, for all p ∈ Rd ,

inf
x∈Rd

wε(x, p)≥ −31(|p|q + 1). (4-7)

This follows from the definition of wε and the fact that the right side of this inequality is a subsolution

of (4-1), according to (1-6), as we have already seen in (2-37). Using this bound for the equation at the

microscopic scale, we obtain that vε( · , p) is a solution of the inequality

− tr(A(y)D2vε)+ H(p + Dvε, y)≤31(|p|q + 1) in R
d .

Then according to the definition of mµ with µ=31(|p|q + 1), we obtain the estimate

vε(y, p)− sup
x∈B1(z)

vε(x, p)≤ mµ(y, z) for every µ≥31(|p|q + 1). (4-8)

Note that this inequality holds uniformly in ε.

Lemma 4.1. For every ε > 0, x ∈ Rd and (σ, H) ∈�,

p 7→ wε(x, p) is concave. (4-9)

Proof. Observe that, if v1, v2 ∈ USC(Rd) are subsolutions of (4-1) with p = p1 and p = p2, respectively,

and λ ∈ [0, 1], then the function λv1 + (1−λ)v2 is a subsolution of (4-1) with p = λp1 + (1−λ)p2. This

follows formally from the convexity of the Hamiltonian, and for a rigorous proof, we refer to the argument

of [Armstrong and Tran 2014, Lemma 2.4]. In view of the definition of wε in (4-4), this observation gives

the lemma. �

An immediate consequence of (4-7) and Lemma 4.1 is that the map p 7→ max{k, wε(x, p)} is uniformly

continuous for every k > 0. Indeed, we obtain that, for all p, p̂ ∈ Rd with |p − p̂|< 1,

wε(x, p)≥ (1 − |p − p̂|)wε(x, p̂)−31(|p|q + 1)|p − p̂|. (4-10)

We next show that wε(x, p) satisfies, almost surely with respect to P, an appropriate sublinear growth

condition uniformly in ε and for bounded |p|. This is required both in order to establish wε as the unique

bounded-below solution of (4-1) and is also needed in the proof of (4-2). Note that this estimate is trivial

for uniformly coercive Hamiltonians since in that case wε(x, p) is bounded above uniformly for x ∈ Rd ,

p ∈ BR and 0< ε ≤ 1. In the general case, it is a consequence of the averaged coercivity condition (1-11)

and its proof uses the ergodic theorem, which is the reason we expect it to hold only almost surely with

respect to P.
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Lemma 4.2. We have

P

[
∀R > 0, lim sup

|x |→∞

sup
|p|≤R

sup
0<ε≤1

|wε(x, p)|

|x |
= 0

]
= 1. (4-11)

Proof. In view of (4-7), we need only prove upper bounds for wε. For most of the argument, we work at

the microscopic scale. It clearly suffices to prove the lemma for fixed R > 0 since we obtain the general

case by intersecting the events corresponding to all positive integers R.

It is convenient to work with the random fields

V ε(y) := sup
|p|≤R

sup
z∈B1(y)

vε(z, p).

Note that V ε is stationary with respect to the translation group action. According to [Armstrong and Tran

2014, Theorem 4.2], the family {V ε}ε>0 is locally equi-Lipschitz continuous in Rd for every realization

ω = (σ, H) ∈� of the coefficients.

Step 1. We begin from the estimate from [Armstrong and Tran 2014] that, for C > 0 depending only on d

and q,

P

[
∀ε ∈ (0, 1], εV ε(0)≤ M2(1 +31 Rq)+ C

(
32

2

a2

)1/(q−1)]
= 1. (4-12)

This is shown by exhibiting explicit, smooth supersolutions. See for example [Armstrong and Tran 2014,

Lemma 3.2, Remark 4.5], which handles the case R = 0, and note that the estimate for R > 0 can be

reduced to the former by using (1-8).

Let ξ denote the random variable

ξ := M2(1 +31 Rq)+ C

(
32

2

a2

)1/(q−1)

,

and let I denote its essential infimum (with respect to P):

I := inf{λ ∈ R : P[ξ < λ]> 0}<∞.

We eventually apply Lemma 2.4 to the sequence of random fields defined by

X t(y) :=
1

t
inf

z∈Bt (y)
sup

0<ε≤1

(
V ε(z)−

2

ε
I
)
, t > 0.

In the next few steps, we check that the hypotheses of Lemma 2.4 hold for X t .

Step 2. We show that

P

[
lim sup

t→∞
X t(0)≤ 0

]
= 1. (4-13)

According to the ergodic theorem,

P

[
lim

s→∞

 

Bs

1{ξ( · )≤2I }(y) dy = P[ξ(0)≤ 2I ]

]
= 1.
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Note that P[ξ(0) ≤ 2I ] > 0 by the definition of I and that, if 1{ξ( · )≤2I }(y) does not vanish identically

in Bt , then X t(0)≤ 0 by (4-12). This yields (4-13).

Step 3. We show that

P

[
lim sup

r→0

lim sup
t→∞

1

t
sup
y∈Bt

sup
0<ε≤1

osc
Br t (y)

V ε = 0
]

= 1. (4-14)

To see this, observe that (4-8) implies that, for every ε > 0 and y, z ∈ Rd ,

V ε(y)− V ε(z)≤ m̃µ(y, z) with µ :=31(R
q + 1).

We therefore obtain (4-14) from (2-15). As a consequence of (4-14), we get

P

[
lim sup

r→0

lim sup
t→∞

sup
y∈Bt

osc
Br t (y)

X t = 0
]

= 1. (4-15)

Step 4. We complete the argument. In view of (4-13) and (4-15), we may apply Lemma 2.4 to conclude

that

P

[
∀K > 0, lim sup

t→∞
sup

y∈BK t

X t(y)≤ 0
]

= 1.

Using the definition of X t , replacing K t by t and setting r = 1/K , this gives

P

[
∀r > 0, lim sup

t→∞

1

t
sup
y∈Bt

inf
z∈Br t (y)

sup
0<ε≤1

(
V ε(z)−

2

ε
I
)

≤ 0
]

= 1.

Using again (4-14), we obtain

P

[
lim sup

t→∞

1

t
sup
y∈Bt

sup
0<ε≤1

(
V ε(y)−

2

ε
I
)

≤ 0
]

= 1.

Using the definition of V ε and rewriting the expression in terms of wε, we get

P

[
lim sup

t→∞
sup

0<ε≤1

sup
|p|≤R

sup
x∈Bεt

wε(x, p)− 2I

εt
≤ 0

]
= 1.

This is actually stronger than (4-11). Indeed,

lim sup
t→∞

sup
0<ε≤1

sup
|p|≤R

sup
x∈Bεt

wε(x, p)− 2I

εt
= lim

s→∞
sup
t≥s

sup
0<ε≤1

sup
|p|≤R

sup
x∈Bεt

wε(x, p)− 2I

εt

≥ lim sup
s→∞

sup
0<ε≤1

sup
|p|≤R

sup
x∈Bs

wε(x, p)− 2I

s

≥ lim sup
|x |→∞

sup
0<ε≤1

sup
|p|≤R

wε(x, p)

|x |
.

Note that the inequality on the second line was obtained by reversing the first two suprema and then

taking t = s/ε in the supremum over t . This completes the proof. �
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It follows from Lemma 4.2 and [Armstrong and Tran 2014, Theorem 2.1] that, with probability one,

wε( · , p) is the unique bounded-below solution of (4-1) for every fixed ε > 0 and p ∈ Rd . That is,

P
[
∀p ∈ R

d , ∀ε > 0, wε( · , p) belongs to C
0,1
loc (R

d) and is the unique solution of (4-1),

which is bounded below on R
d
]
= 1. (4-16)

4B. The proof of (4-2). The next lemma is the first step in the direction of (4-2). For the argument, we

again use Lemma 2.4.

Lemma 4.3. We have

P

[
∀p ∈ R

d , ∀R > 0, lim sup
ε→0

sup
x∈BR

wε(x, p)≤ −H∗

]
= 1. (4-17)

Proof. Here we employ a soft compactness argument using the rescaled functions vε defined in (4-6). Let

E :=
{
(σ, H) ∈� : H∗ = inf{µ ∈ R : there exists w ∈ USC(Rd) satisfying (2-1)}

}
.

Recall from Lemma 2.2 that P[E] = 1.

Step 1. We first show that, for all p ∈ Rd and ω ∈ E ,

lim sup
ε→0

sup
z∈B1

εvε(z, p)≤ −H∗. (4-18)

Suppose on the contrary that there exist η > 0 and a subsequence εk → 0 such that, for every k ∈ N,

εk sup
z∈B1

vεk (z, p)≥ −H∗ + η.

Define the function

ṽε(y, p) := p · y + vε(y, p)− sup
z∈B1

vε(z, p).

According to the local Lipschitz estimates [Armstrong and Tran 2014, Proposition 3.1] and (4-11), the

family {ṽε}ε>0 is uniformly bounded in C0,1(Bs) for every s > 0. By taking a further subsequence of {εk},

we may suppose that ṽεk converges locally uniformly on Rd to a function ṽ ∈ C
0,1
loc (R

d). In view of the

fact that ṽε satisfies the equation

εṽε − tr(A(y)D2ṽε)+ H(Dṽε, y)= −ε sup
z∈B1

vε(z, p) in R
d ,

we obtain, by the stability of viscosity solutions under local uniform convergence, that ṽ satisfies

− tr(A(y)D2ṽ)+ H(Dṽ, y)≤ H∗ − η in R
d .

This contradicts the assumption that ω= (σ, H)∈ E and completes the proof of (4-18). As a consequence,

we obtain

P

[
∀p ∈ R

d , lim sup
ε→0

sup
z∈B1

εvε(z, p)≤ −H∗

]
= 1. (4-19)
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Step 2. To obtain the conclusion of the lemma from (4-18), we apply Lemma 2.4 to the family of random

variables

X t := sup
z∈B1

εvε(z, p) with t = ε−1.

The first hypothesis of Lemma 2.4 is satisfied by (4-18), and the second hypothesis is confirmed by (4-8)

and (2-15). The conclusion of Lemma 2.4 yields that, for every p ∈ Rd ,

P

[
∀R > 0, lim sup

ε→0

sup
z∈BR/ε

εvε(z, p)≤ −H∗

]
= 1.

Using (4-10) and intersecting over all events corresponding to rational p, we obtain

P

[
∀p ∈ R

d , ∀R > 0, lim sup
ε→0

sup
z∈BR/ε

εvε(z, p)≤ −H∗

]
= 1.

This is equivalent to (4-17). �

We now show that (4-1) homogenizes to (4-3).

Proposition 4.4. The assertion (4-2) holds.

Proof. The argument is deterministic and based on the comparison principle. To give an overview of the

proof, we introduce the following events:

E1 :=
{
(σ, H) ∈� : ∀µ≥ H∗, ∀R > 0, lim sup

t→∞
sup

y,z∈BR

∣∣∣mµ(t y, t z)

t
− mµ(y − z)

∣∣∣ = 0
}
,

E2 :=
{
(σ, H) ∈� : ∀R > 0, lim sup

|x |→∞

sup
|p|≤R

sup
0<ε≤1

|wε(x, p)|

|x |
= 0

}
,

E3 :=
{
(σ, H) ∈� : ∀p ∈ R

d , lim sup
ε→0

sup
x∈BR

wε(x, p)≤ −H∗

}
,

E4 :=
{
(σ, H) ∈� : ∀p ∈ R

d , ∀R > 0, lim sup
ε→0

sup
x∈BR

|wε(x, p)+ H(p)| = 0
}
.

According to Proposition 2.5, Lemma 4.2 and Lemma 4.3, we have

P[E1 ∩ E2 ∩ E3] = 1.

To obtain P[E4] = 1, it therefore suffices to demonstrate that

E1 ∩ E2 ∩ E3 ⊆ E4. (4-20)

Thus, for the remainder of the proof, we fix p ∈ Rd , R > 0 and (σ, H) ∈ E1 ∩ E2 ∩ E3 and argue that

lim sup
ε→0

sup
x∈BR

|wε(x, p)+ H(p)| = 0. (4-21)

The proof of (4-21) is broken into two steps.

Step 1. We show that

lim inf
ε→0

inf
z∈BR

wε(z, p)≥ −H(p). (4-22)
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We begin with some reductions. By the concavity of the map p̂ 7→wε(x, p̂), we may assume without loss

of generality that p is an extreme point of { p̂ : H( p̂)≤ H(p)}. Second, by (4-10), we may also suppose

that H(p) > H∗. Next, Straszewicz’s theorem [Rockafellar 1970, Theorem 18.6] and (4-10) permit us to

further suppose that p is an exposed point of { p̂ : H( p̂) ≤ H(p)}. This is useful in view of (3-6) and

Lemma 3.2, which imply the existence of e ∈ ∂B1 such that mµ(e)= e · p and mµ is differentiable at e

with p = Dmµ(e), where as usual we have set µ := H(p) for convenience. In view of the limit (2-26),

this forces the function mµ( · , z − te), with t > 0 very large, to be very “flat” in large balls centered at z,

as we will see. This is what allows us to use this function as an “approximate subcorrector” in order to

bound wε from below.

We proceed with the demonstration of (4-22) by supposing that −H(p) − wε(z, p) ≥ δ > 0 for

some z ∈ BR and deriving a contradiction if 0<ε≤ 1 is too small. The idea is to compare wε( · , p) in the

ball Bs(z), for a large enough but fixed s> 0, to the function x 7→ −p ·(x −z+ te)+εmµ(x/ε, (z− te)/ε)

for t ≫ s. We argue that the former is a strict supersolution of the equation solved by the latter, and then

we derive a contradiction by showing that their difference has a local minimum. To ensure that we can

touch the first function from below by the second, we use the fact that both functions are expected to

be “flat” near z (for the second function, this is due to the fact that p = Dmµ(e)), and we add a small

linearly growing perturbative term made possible by the positivity of δ.

In order to prepare wε( · , p) for comparison, we take c > 0 and λ > 1 to be selected below and define

the auxiliary function

W ε(x) := λ(wε(x, p)−wε(z, p))+ cδ((1 + |x − z|2)1/2 − 1).

Since ω ∈ E2, there exists an s > 0, which does not depend on z or ε > 0, such that

Uε :=
{

x ∈ R
d : W ε(x)≤ 1

4
δ
}

⊆ Bs(z).

We claim that, by choosing λ sufficiently close to 1 and c > 0 sufficiently small depending on λ, then we

have

− tr
(

A
(

x

ε

)
D2W ε

)
+ H

(
p + DW ε,

x

ε

)
≥ H(p)+ 1

2
δ in Uε. (4-23)

In order to verify (4-23), take any smooth test function ϕ such that vε − ϕ has a strict local minimum

at x0 ∈ Uε. Set ψ(x) := (1 + |x − z|2)1/2. Then wε − λ−1(ϕ + cδψ) has a strict local minimum at x0.

Using the equation satisfied by wε and the definition of viscosity supersolution, we obtain

wε(x0)− ε tr
(

A
( x0

ε

)
λ−1 D2(ϕ+ cδψ)(x0)

)
+ H

(
p + λ−1 D(ϕ+ cδψ)(x0),

x0

ε

)
≥ 0.

The convexity of H gives

H
(

p+λ−1 D(ϕ+cδψ)(x0),
x0

ε

)
≤λ−1 H

(
p+Dϕ(x0),

x0

ε

)
+(1−λ−1)H

(
p+(λ−1)−1cδDψ(x0),

x0

ε

)
.

Combining the above computations and using x0 ∈ Uε, we deduce that, for λ sufficiently close to 1

and c > 0 sufficiently small depending on λ,

− tr
(

A
( x0

ε
, ω

)
D2ϕ(x0)

)
+ H

(
p + Dϕ(x0),

x0

ε
, ω

)
≥ H(p)+ 1

2
δ.
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This completes the proof of (4-23).

We may now apply the comparison principle [Armstrong and Tran 2014, Theorem 2.2] to conclude

that, for every t ≥ s + 1,

inf
x∈Uε

(
W ε(x)+ p · (x − z + te)− εmµ

(
x

ε
,

z − te

ε

))

= inf
x∈∂Uε

(
W ε(x)+ p · (x − z + te)− εmµ

(
x

ε
,

z − te

ε

))
. (4-24)

Estimating the infimum on the left side of (4-24) by taking x = z and recalling that W ε(z)= 0 and the

term on the right side by using that W ε ≡ δ/4 on ∂Uε and ∂Uε ⊆ Bs(z), we conclude after a rearrangement

that, for every t ≥ s + 1,

inf
x∈Bs(z)

(
p · (x − z)+ εmµ

(
z

ε
,

z−te

ε

)
− εmµ

(
x

ε
,

z−te

ε

))
≤ − 1

4
δ. (4-25)

This holds for every z ∈ BR and ε> 0 for which −H(p)−wε(z, p)≥ δ > 0. So if −H(p)−wε j (z j , p)≥ δ

along subsequences {z j } j∈N ⊆ BR and ε j → 0, then by passing to limits in (4-25), using (2-26), we

obtain, for every t ≥ s + 1,

inf
x∈Bs

(p · x + mµ(te)− mµ(x + te))≤ − 1
4
δ.

This contradicts the fact that p = Dmµ(e) since the latter implies, in view of the positive homogeneity

of mµ, that

lim
t→∞

sup
x∈Bs

|mµ(x + te)− mµ(te)− p · x | = 0. (4-26)

This completes the proof of (4-22).

Step 2. We demonstrate that

lim sup
ε→0

sup
z∈BR

wε(z, p)≤ −H(p). (4-27)

We may suppose that H(p) > H∗ since otherwise the claim follows from ω ∈ E3.

The argument is similar to one introduced in [Armstrong and Souganidis 2013], relying on the

limit (2-26) and using mµ as a supercorrector. Here it is a bit simpler than Step 1 since we do not need to

use Straszewicz’s theorem or to restrict our attention to exposed points of the sublevel set of H . Applying

Lemma 3.2 in view of (3-6) and the assumption that H(p) > H∗, we may select e ∈ ∂B1 such that

p ∈ ∂mµ(e) and mµ(e)= e · p, where as usual we set µ := H(p). The reason we do not need p = Dmµ(e)

is because mµ will be used as a supercorrector; so the fact that it may not be flat and rather “bends upward”

like a cone can only help in the comparison argument.

We consider a point z ∈ Bs and ε, δ > 0 such that wε(z, p, ω)+ H(p)≥ δ > 0. With c > 0 and λ < 1

to be selected, we consider the auxiliary function

W ε(x) := λ(wε(x, p)−wε(z, p))− cδ(1 + |x − z|2)1/2 + cδ. (4-28)
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Since ω ∈ E2, there exists s > 0, which does not depend on z or ε, such that

Uε :=
{

x ∈ R
d : W ε(x)≥ − 1

4
δ
}

⊆ Bs(z). (4-29)

Choosing λ sufficiently close to 1 and c>0 sufficiently small depending on λ and after similar computations

arguments as in the demonstration of (4-23), we find that

− tr
(

A
(

x

ε

)
D2W ε

)
+ H

(
p + DW ε,

x

ε

)
≤ H(p)− 1

2
δ in Uε. (4-30)

The comparison principle yields

inf
x∈Uε

(
εmµ

(
x

ε
,

z−(s+1)e

ε

)
− W ε(x)− p · (x − z + (s + 1)e)

)

= inf
x∈∂Uε

(
εmµ

(
x

ε
,

z−(s+1)e

ε

)
− W ε(x)− p · (x − z + (s + 1)e)

)
. (4-31)

Using that W ε(z)= 0 and W ε ≡ −δ/4 on ∂Uε ⊆ Bs(z) and rearranging, we obtain

inf
x∈Bs(z)

(
εmµ

(
x

ε
,

z−(s+1)e

ε

)
− εmµ

(
z

ε
,

z−(s+1)e

ε

)
− p · (x − z)

)
≤ − 1

4
δ. (4-32)

To obtain a contradiction, we suppose that wε j (z j , p)+ H(p) ≥ δ > 0 for sequences {z j } j∈N ⊆ BR

and ε j → 0. Applying (4-32) and sending j → ∞ yields, in light of (2-26),

inf
x∈Bs

(
mµ(x + (s + 1)e)− mµ((s + 1)e)− p · x

)
≤ − 1

4
δ. (4-33)

Since mµ((s + 1)e)= (s + 1)e · p, we conclude that, for some x ∈ Bs ,

mµ(x + (s + 1)e)− p · (x + (s + 1)e)≤ − 1
8
δ. (4-34)

This contradicts that p ∈ ∂mµ(e) and finishes Step 2 and the proof of the proposition. �

Remark 4.5. The reader may object to the proof of Theorem 1 on the grounds that several steps in the

proof are not as “quantifiable” as promised in the introduction. In particular, it seems at first glance

impossible to quantify (i) the limit in (4-26) without extra information about the shape of the level sets

of H (which is not easy to obtain) and (ii) Lemma 4.3 since it is obtained by a compactness argument.

About (i): this step is actually quantifiable because we can approximate the level sets of H by nice sets

with positive curvature. Rather than the exposed points of the sublevel sets of H , we may instead consider

“points of positive curvature” of the boundary of the level set, that is, points that also lie on the boundary

of a large ball that contains the level set. The radius of this ball controls the rate of the limit (4-26), and

the error this introduces is relatively small. The details will appear in [Armstrong and Cardaliaguet 2015].

The second objection is more serious, but the phenomenon we encounter here is not artificial or a

limitation of the method. Indeed, it was shown already in the first-order case [Armstrong et al. 2014] that

the rate of convergence in the limit in Lemma 4.3 may be arbitrarily slow (even with a finite range of de-

pendence quantifying the ergodicity assumption). In this sense, the proof above seems to optimally capture

the underlying phenomena driving the homogenization of Hamilton–Jacobi equations in random media.
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5. Homogenization: the proof of Theorem 1

In this section, we present the proof of our main result, Theorem 1. The convergence result is obtained

from the classical perturbed test function argument, suitably modified to handle the lack of uniform

Lipschitz estimates for weakly coercive Hamiltonians. The argument can be seen as a method for showing

that the homogenization result of (4-2), which is a special case of Theorem 1, is actually strong enough

to imply the theorem.

As in the previous section, we assume throughout that P is a probability measure on (�,F) satisfying

(1-9), (1-10) and (1-11).

5A. Wellposedness and basic properties. Before giving the proof of homogenization, we first consider

the question of wellposedness of solutions of the time-dependent initial-value problem

{
uεt − ε tr

(
A
(

x

ε

)
D2uε

)
+ H

(
Duε,

x

ε

)
= 0 in Rd × (0,∞),

uε( · , 0)= g ∈ BUC(Rd).
(5-1)

For each ε > 0, g ∈ BUC(Rd) and (x, t) ∈ Rd × (0,∞), we define the random variable

uε(x, t, g) := sup
{
w(x, t) : w ∈ USC(Rd × [0, t]) is a subsolution of (1-1) in R

d × [0, t),

lim sup
|x |→∞

sup
0<s≤t

w(x, s)

|x |
= 0 and w( · , 0)≤ g on R

d
}
. (5-2)

This is the candidate for the unique solution of (5-1). Observe that we have

uε(x, t, g)≥ −31t + inf
Rd

g (5-3)

since the function on the right belongs to the admissible class in (5-2) by (1-6) and (1-3).

Similar to the situation for the approximate cell problem, checking that (x, t) 7→ uε(x, t, g) does indeed

solve (5-1) reduces to proving a sublinear growth condition at infinity (uniformly in time). We remark

that this is of interest only in the nonuniformly coercivity case since otherwise wellposedness of (5-1) is

classical.

Lemma 5.1. We have

P

[
∀T > 0, ∀g ∈ BUC(Rd), lim sup

|x |→∞

sup
0<t≤T

sup
0<ε≤1

|uε(x, t, g)|

|x |
= 0

]
= 1.

Proof. In view of (5-3), we may focus only on obtaining upper bounds for uε. By definition, g 7→uε(x, t, g)

is monotone nondecreasing, and so we may suppose that g is constant. Since g 7→ uε(x, t, g) also

commutes with constants, it suffices therefore to prove the sublinear growth estimate for g ≡ 0. That is,

we need to show only the following:

P

[
∀T > 0, lim sup

|x |→∞

sup
0<t≤T

sup
0<ε≤1

|uε(x, t, 0)|

|x |
= 0

]
= 1.
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We proceed by exhibiting an explicit supersolution and appealing to the comparison principle. The

supersolution is

V ε(x, t) := etwε(x, 0)+ et31,

where wε(x, p) is, as in the previous section, the solution of (4-1). The convexity of H and (1-6) imply

that, for every p ∈ Rd and λ≥ 1,

λ−1 H(λp, y)≥ H(p, y)− (1 − λ−1)H(0, y)≥ H(p, y)− (1 − λ−1)31.

Using this with λ= et , we find that, for each t > 0, the function wε( · , 0) satisfies the inequality

wε − ε tr
(

A
(

x

ε

)
D2wε

)
+ e−t H

(
et Dwε,

x

ε

)
≥ −(1 − e−t)31 in R

d .

From this, it follows that V ε satisfies

V ε
t − ε tr

(
A
(

x

ε

)
D2V ε

)
+ H

(
DV ε,

x

ε

)
≥ 0 in R × [0,∞).

Since V ε is bounded below by 0 uniformly in Rd × [0,∞), by comparing V ε to any function in the

admissible class in (5-2) using the comparison principle, we find that, for all (x, t) ∈ Rd × [0,∞) and

every realization of the coefficients,

uε(x, t, 0)≤ V ε(x, t).

According to Lemma 4.2,

P

[
∀T > 0, lim sup

|x |→∞

sup
0<t≤T

sup
0<ε≤1

|V ε(x, t)|

|x |
= 0

]
= 1.

This yields the lemma. �

By Lemma 5.1, the lower bound (5-3), the comparison principle [Armstrong and Tran 2014, Theorem

2.3] and the classical Perron argument, we obtain

P
[
∀ε > 0, ∀g ∈ BUC(Rd), (x, t) 7→ uε(x, t, g) belongs to C(Rd × (0,∞)) and, for all T > 0,

is the unique bounded-below solution of (5-1) in R
d × [0, T ]

]
= 1. (5-4)

5B. Homogenization. In this subsection, we complete the proof of Theorem 1. We let u(x, t, g) denote

the unique solution of the homogenized problem

{
ut + H(Du)= 0 in Rd × (0,∞),

u = g on Rd × {0}.
(5-5)

In view of the growth condition (3-5), the problem (5-5) indeed possesses a unique solution, and it is

given by the Hopf–Lax formula

u(x, t, g) := inf
y∈Rd

(
t L

( x − y

t

)
+ g(y)

)
,
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where L : Rd → R is the Legendre–Fenchel transform of H , that is,

L(z) := sup
p∈Rd

(p · z − H(p)).

Note that L is continuous, convex and satisfies |z|−1L(z)→ +∞ as |z| → ∞ [Evans 1998].

A proof that the Hopf–Lax formula defines a viscosity solution of (5-5) can be found for example in

[Evans 1998, Theorem 3 in Section 10.3.4] under the assumption that g ∈ C
0,1
loc (R

d). It is easy to extend

this to the case that g ∈ BUC(Rd) using the monotonicity of the Hopf–Lax formula in g and the stability

of viscosity solutions under local uniform convergence. The uniqueness of this solution follows from

classical comparison principles for first-order equations.

We now present the proof of the main result.

Proof of Theorem 1. The theorem follows from Proposition 4.4 by a variation of the classical perturbed test

function argument first introduced by Evans [1992]. This comparison argument is entirely deterministic.

The fact that the functions uε are not uniformly equi-Lipschitz continuous causes a technical difficulty

that is overcome by the use of the parameter λ in Step 1, an idea which first appeared in [Armstrong and

Souganidis 2012].

To set up the argument, we let the events E2 and E4 be defined as in the proof of Proposition 4.4 and set

E5 :=
{
(σ, H) ∈� : ∀g ∈ BUC(Rd), ∀R > 0, lim sup

ε→0

sup
(x,t)∈BR×[0,R)

|uε(x, t, g)− u(x, t, g)| = 0
}
.

We claim that

E2 ∪ E4 ⊆ E5. (5-6)

Since P[E2 ∩ E4] = 1 by Lemma 4.2 and Proposition 4.4, the theorem follows from (5-6).

For the rest of the argument, we fix (σ, H) ∈ E2 ∩ E4, g ∈ BUC(Rd) and R > 0 and argue that

lim sup
ε→0

sup
(x,t)∈BR×[0,R)

|uε(x, t, g)− u(x, t, g)| = 0.

By the comparison principle [Armstrong and Tran 2014, Theorem 2.3], the flow g 7→ uε( · , t, g) is

monotone nondecreasing as well as a contraction mapping on L∞(Rd). We may therefore assume without

loss of generality that g ∈ C1,1(Rd). For notational convenience, we henceforth drop the dependence of u

and uε on g.

We first argue that

U (x, t) := lim sup
ε→0

uε(x, t)≤ u(x, t). (5-7)

By the comparison principle, it suffices to check that U is a subsolution of the limiting equation and

U ( · , 0)≤ g. We handle these claims in the next two steps.

Step 1. To check that U is a subsolution of the limiting equation, take a smooth test function ψ ∈

C∞(Rd × (0,∞)) and a point (x0, t0) ∈ Rd × (0,∞) so that

U −ψ has a strict local maximum at (x0, t0). (5-8)
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We must show that

ψt(x0, t0)+ H(Dψ(x0, t0))≤ 0. (5-9)

Arguing by contradiction, we suppose on the contrary that

η := ψt(x0, t0)+ H(Dψ(x0, t0)) > 0. (5-10)

With p0 := Dψ(x0, t0) and λ> 1 a constant to be selected below, we introduce the perturbed test function

ψε(x, t) := ψ(x, t)+ λwε(x, p0),

where wε is the solution of the approximate cell problem (4-1). It is appropriate to compare ψε to uε,

and to this end, we must check that, for ε, r > 0 sufficiently small, ψε is a solution of the inequality

ψεt − ε tr
(

A
(

x

ε

)
D2ψε

)
+ H

(
Dψε,

x

ε

)
≥ 1

6
η in B(x0, r)× (t0 − r, t0 + r). (5-11)

Let us admit the claim (5-11) for the moment and show that it allows us to obtain the desired contraction,

completing the proof that U is a subsolution of the limiting equation. Applying the comparison principle

[Armstrong and Tran 2014, Theorem 2.3], in view of (5-11) and the equation satisfied by uε, we deduce that

sup
B(x0,r)×(t0−r,t0+r)

(uε −ψε)= sup
∂(B(x0,r)×(t0−r,t0+r))

(uε −ψε).

This holds for all sufficiently small r > 0 and ε > 0, and by passing to the limit ε → 0, using that by

(σ, H) ∈ E4 we have that wε( · , p0) converges to the constant −H(p0) uniformly on compact subsets

of Rd as ε→ 0, we find that

sup
B(x0,r)×(t0−r,t0+r)

(U −ψ)= sup
∂(B(x0,r)×(t0−r,t0+r))

(U −ψ).

This holds for all sufficiently small r > 0, which contradicts the assumption (5-8).

To check that (5-11) holds in the viscosity sense, we take a smooth test function ϕ and a point

(x1, t1) ∈ B(x0, r)× (t0 − r, t0 + r) such that

ψε −ϕ has a strict local minimum at (x1, t1).

Rewriting this using the definition of ψε, we get

(x, t) 7→ wε(x, p0)− λ
−1(ϕ−ψ)(x, t) has a strict local minimum at (x1, t1).

Using the equation for wε, we find that

wε(x1, p0)− ε tr
(

A
( x1

ε

)
λ−1 D2(ϕ−ψ)(x1, t1)

)
+ H

(
p0 + λ−1 D(ϕ−ψ),

x1

ε

)
≥ 0. (5-12)

Using that (σ, H) ∈ E4 and ψ is smooth, we may select ε > 0 sufficiently small and λ sufficiently close

to 1 so that

|λwε(x1, p0)+ H(p0)| +
∣∣∣ε tr

(
A
( x1

ε

)
D2ψ(x1, t1)

)∣∣∣ ≤ 1
3
η. (5-13)
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Next, by selecting r > 0 small enough, depending on λ and ψ , we obtain

(λ− 1)−1|λp0 − Dψ(x1, t1)| ≤ |p0| + (λ− 1)−1|p0 − Dψ(x1, t1)| ≤ 2|p0|.

Using the convexity of H together with the previous line and (1-6), we discover that

λH
(

p0 + λ−1 D(ϕ−ψ)(x1, t1),
x1

ε

)
≤ H

(
Dϕ(x1, t1),

x1

ε

)
+ (λ− 1)H

(λp0 − Dψ(x1, t1)

λ− 1
,

x1

ε

)

≤ H
(

Dϕ(x1, t1),
x1

ε

)
+31(λ− 1)(2q |p0|

q + 1).

Taking λ > 1 closer to 1, if necessary, we obtain

λH
(

p0 + λ−1 D(ϕ−ψ)(x1, t1),
x1

ε

)
≤ H

(
Dϕ(x1, t1),

x1

ε

)
+ 1

3
η. (5-14)

Combining (5-12), (5-13) and (5-14) yields

−H(p0)− ε tr
(

A
( x1

ε

)
D2ϕ(x1, t1)

)
+ H

(
Dϕ,

x1

ε

)
≥ − 2

3
η, (5-15)

and then combining (5-10) and (5-15) gives

ψt(x0, t0)− ε tr
(

A
( x1

ε

)
D2ϕ(x1, t1)

)
+ H

(
Dϕ,

x1

ε

)
≥ 1

3
η.

By making r > 0 smaller, if necessary, and using ϕt(x1, t1)= ψt(x1, t1), we obtain

ϕt(x1, t1)− ε tr
(

A
( x1

ε

)
D2ϕ(x1, t1)

)
+ H

(
Dϕ,

x1

ε

)
≥ 1

6
η.

This completes the proof of (5-11) and thus that of Step 1.

Step 2. We next show that U (·, 0)≤ g or, more precisely, that for every R > 0,

lim sup
t→0

sup
x∈BR

(U (x, t)− g(x))≤ 0. (5-16)

To accomplish this, we must construct supersolution barriers from above and apply the comparison

principle. Note that this is very easy to do in the uniformly coercive case; we simply use the map

(x, t) 7→ g(x) + kt where k > 0 is a large constant depending on the constants in the hypotheses

and ‖g‖C1,1(Rd ). Unfortunately, this function is not a supersolution in the nonuniformly coercive case,

and so we need to consider a more elaborate barrier function. Rather than construct a barrier from scratch,

we build it from the functions wε and use the fact that these homogenize.

For each fixed x0 ∈ Rd , the functions we consider have the form

V ε(x, t) := 2W ε(x, t)−φ(x, t),

where

W ε(x, t) := etwε
(
x, 1

2
Dg(x0)

)
+ H

(
1
2

Dg(x0)
)
+ 1

2
g(x0)+

1
2

Dg(x0) · (x − x0)

and

φ(x, t) := −2(1 + ‖g‖C1,1(Rd ))((1 + |x − x0|
2)1/2 − 1)− k(et − 1)
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and k > 0 is a constant depending only on g, x0, and other structural constants defined by

k := 232(1 + ‖g‖C1,1(Rd ))+31(2
q(1 + ‖g‖C1,1(Rd ))

q + 1)+ 231(2
−q |Dg(x0)|

q + 1).

We next derive a supersolution inequality for W ε. The convexity of H and (1-6) imply that, for every

p, p̂ ∈ Rd and λ≥ 1,

λ−1 H(λp + p̂, y)≥ H(p + p̂, y)− (1 − λ−1)H( p̂, y)≥ H(p + p̂, y)− (1 − λ−1)31(| p̂|q + 1).

Using this with p̂ fixed and λ= et , we find that, for each t>0, the functionwε( · , p̂) satisfies the inequality

wε − ε tr
(

A
(

x

ε

)
D2wε

)
+ e−t H

(
p̂ + et Dwε,

x

ε

)
≥ −(1 − e−t)31(| p̂|q + 1) in R

d .

From this, we see that W ε satisfies the inequality

W ε
t − ε tr

(
A
(

x

ε

)
D2W ε

)
+ H

(
DW ε,

x

ε

)
≥ −(et − 1)31(2

−q |Dg(x0)|
q + 1) in R

d × (0,∞).

On the other hand, we see by a routine calculation, using the definition of k, (1-6) and (1-3), that φ is

a (smooth) subsolution of the inequality

φt − ε tr
(

A
(

x

ε

)
D2φ

)
+ H

(
Dφ,

x

ε

)
≤ −2et31(2

−q |Dg(x0)|
q + 1) in R

d × (0,∞).

The definition of k has been split into three terms, and we see from (1-6) that the first two terms take care

of the contributions from spatial derivatives of φ and the third term is responsible for the right-hand side.

We may now apply [Armstrong and Tran 2014, Lemma 2.5 and Remark 2.6 with λ= 1] to find that

V ε is a supersolution of

V ε
t − ε tr

(
A
(

x

ε

)
D2V ε

)
+ H

(
DV ε,

x

ε

)
≥ 0 in R

d × (0,∞).

Therefore, the comparison principle implies that, for every ε > 0,

uε ≤ V ε − inf
x∈Rd

(V ε(x, 0)− g(x)) in R
d × [0,∞). (5-17)

Since wε is bounded below (see (4-7)) and g is bounded, the linearly growing term in φ ensures

that V ε( · , 0) is larger than g outside a ball of fixed radius and centered at x0. But due to the fact

that ω = (σ, H) belongs to E4, we have that, for every R > 0,

lim
ε→0

sup
x∈BR

sup
0≤t≤R

|V ε(x, t)− V (x, t)| = 0,

where

V (x, t) := 2(et − 1)H
(

1
2

Dg(x0)
)
+ g(x0)+ Dg(x0) · (x − x0)

+ 2(1 + ‖g‖C1,1(Rd ))((1 + |x − x0|
2)1/2 − 1)+ k(et − 1).

It is routine to check that, for every x ∈ Rd ,

g(x)≤ g(x0)+ Dg(x0) · (x − x0)+ 2(1 + ‖g‖C1,1(Rd ))((1 + |x − x0|
2)1/2 − 1)= V (x, 0).
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We deduce that

lim sup
ε→0

inf
x∈Rd

(V ε(x, 0)− g(x))≥ 0.

Since V (x0, 0)= g(x0) and V is uniformly Lipschitz continuous on Rd × [0, 1) with a constant that is

bounded above independently of x0, this inequality combined with (5-17) yields (5-16).

Step 3. We complete the proof by arguing that

lim inf
ε→0

uε(x, t)≥ u(x, t). (5-18)

The argument here is similar to the demonstration of (5-7). We omit the proof that the left side of (5-18)

is a supersolution of the limiting equation since this part is essentially identical to Step 1 (except that we

remark that it is necessary to take 0<λ< 1 in contrast to λ> 1 as we did above). The second step, which

is the analogue of Step 2, is actually much easier because we may produce a single smooth function that

is a subsolution of the heterogeneous equation for all ε > 0. Indeed, since H(p, x) is uniformly bounded

above for bounded |p|, we may take k > 0 large enough, depending only on 31, 32 and ‖g‖C1,1(Rd ), such

that (x, t) 7→ g(x)− kt is a subsolution of (5-1). Thus, uε(x, t)≥ g(x)− kt for all ε > 0, giving us the

desired lower bound at the initial time. �

6. The proof of the quenched large deviation principle

In this section, we give the proof of Corollary 2 and study some properties of the rate function L . To our

knowledge, the argument is originally due to Varadhan (communicated orally and unpublished) and also

appeared later in [Lions and Souganidis 2005] and well as in [Kosygina 2007].

Before giving the demonstration of Corollary 2, let us see how the viscous Hamilton–Jacobi equation

arises by considering the asymptotics of the partition function. According to the Feynman–Kac formula,

for each ω ∈�, the map (x, t) 7→ S(t, x, ω) defined in (1-17) is a solution of the equation

St − tr(A(y, ω)D2S)− b(y, ω) · DS + V (y, ω)S = 0 in R
d × R+

and we have S(0, · , ω)≡ 1. If we take the (inverse) Hopf–Cole transform of S, setting

U (x, t, ω) := −log S(t, x, ω),

then we check that (x, t) 7→ U (x, t, ω) is the unique viscosity solution of the initial-value problem
{

Ut − tr(A(y, ω)D2U )+ DU · A(y, ω)DU + b(y, ω) · DU − V (y, ω)= 0 in Rd × R+,

U ( · , 0, ω)≡ 0 on Rd .

This suggests the definition (1-15) of H . Rescale by setting

uε(x, t, ω) := εU
(

x

ε
,

t

ε
, ω

)
, (6-1)

and observe that uε is the solution of (5-1) with g ≡ 0. An application of Theorem 1 yields

P

[
lim

t→∞

1

t
U (t x, t, ω)= lim

ε→0
uε(x, 1, ω)= −H(0) locally uniformly in x ∈ R

d
]

= 1.
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This gives the approximate likelihood that a particle survives for a very long time:

sup
|x |≤Rt

e−H(0)t S(t, t x, ω)= exp(o(t)) as t → ∞. (6-2)

(Note that in this context we have H(0) ≤ 0 as can be seen from the fact that wε ≥ 0 since the zero

function is a subsolution of (4-1).) In fact, we have just proved Corollary 2 in the case K = U = Rd since,

by the duality of the Legendre transform,

inf
y∈Rd

L(y)= −H(0).

It turns out that by varying the initial condition g in Theorem 1 (taking it to be approximately the

characteristic function of K or U ) and using the Hopf–Lax formula for the solution of the limiting

equation, this argument yields a proof of the large deviation principle. Here it is:

Proof of Corollary 2. Fix an element ω ∈� belonging to the event inside the probability in the conclusion

of Theorem 1. We prove only the upper bound since the argument for the lower bound is similar (except

that in the latter case we have to approximate initial data that is −∞ from below, but this technicality

can be handled by recalling the monotonicity of the solutions with respect to the data and using an

approximation argument). Select a positive, uniformly continuous function g on Rd such that g ≤ 1 in Rd

and g ≡ 1 on K , and observe that

−log Qt,x,ω[X t ∈ sK ] ≥ −log Ex,ω

[
g(X t/s) exp

(
−

ˆ t

0

V (Xs, ω) ds

)]

︸ ︷︷ ︸
=: U (x, t, ω; s)

+ log S(t, x, ω). (6-3)

The limit of the second term on the right side is given by (6-2):

lim
t→∞

1

t
log S(t, t x, ω)= H(0).

Therefore, we concentrate on the first term on the right of (6-2). By the Feynman–Kac formula and an

inverse Hopf–Cole change of variables, the function U defined in (6-3) is a solution of the initial-value

problem
{

Ut − tr(A(y, ω)D2U )+ DU · A(y, ω)DU + b(y, ω) · DU − V (y, ω)= 0 in Rd × R+,

U ( · , 0, ω; s)= −log g( · /s) on Rd .

Rescale by introducing

uε(x, t, ω) := εU
(

x

ε
,

t

ε
, ω;

1

ε

)
,

and notice that uε satisfies the rescaled equation

uεt − ε tr
(

A
(

x

ε
, ω

)
D2uε

)
+ Duε · A

(
x

ε
, ω

)
Duε + b

(
x

ε
, ω

)
· Duε − V

(
x

ε
, ω

)
= 0 in R

d × R+

with the initial condition uε( · , 0, ω)= −log g on Rd .

Since ω belongs to the event in the conclusion of Theorem 1, we have

lim
t→∞

1

t
U (t x, t, ω; t)= lim

ε→0
uε(x, 1, ω)= u(x, 1),
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where u = u(x, t) is the unique solution of the deterministic problem
{

ut + H(Du)= 0 in Rd × R+,

u( · , 0)= −log g on Rd .

According to the Hopf–Lax formula, we have

u(x, t)= inf
y∈Rd

(
t L

( x − y

t

)
− log g(y)

)
.

Combining the last few lines, we obtain

lim
t→∞

1

t
U (t x, t, ω; t)= inf

y∈Rd
(L(x − y)− log g(y)).

Inserting into (6-3), we obtain

lim
t→∞

−
1

t
log Qt,t x,ω[X t ∈ t K ] ≥ inf

y∈Rd
(L(x − y)− log g(y))+ H(0).

Using the continuity of L and taking g to approximate the characteristic function of K , we obtain

lim
t→∞

−
1

t
log Qt,t x,ω[X t ∈ t K ] ≥ inf

y∈K
L(x − y)+ H(0). �
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